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Abstract. We study here the existence and uniqueness of periodic solutions for evolution equa-

tions. First of all we analyse the one-dimensional case. In arbitrary dimension (finite or not) the
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non-linear sub-differential operators A = ∂ϕ where ϕ is convex i.s.c.

Key words : maximal monotone operators, evolution equations, Hille-Yosida’s theory.

AMS subject classifications : 34B05, 34G10, 34G20.

1 Introduction

Many theoretical and numerical studies in applied mathematics focus on permanent regimes for

ordinary or partial differential equations. The main purpose of this paper is to establish existence

and uniqueness results for periodic solutions in the general framework of evolution equations :

x′(t) +Ax(t) = f(t), t ∈ IR, (1)

by using the penalization method. Note that in the linear case a necessary condition for the

existence is given by :

< f >:=
1
T

∫ T

0

f(t)dt ∈ Range(A). (2)

Unfortunately this condition is not always sufficient for the existence (see the example of the

orthogonal rotation of IR2). Nevertheless the condition (2) is sufficient in the symmetric case. The

key point consists of considering first perturbed equations :

αxα(t) + x′α(t) +Axα(t) = f(t), t ∈ IR, (3)

where α > 0. By using the Banach’s fixed point theorem we deduce the existence and uniqueness

of the periodic solutions xα, α > 0. Under the assumption (2), in the linear symmetric case we

show that (xα)α>0 is a Cauchy sequence in C1 and by passing to the limit for α → 0 it follows

that the limit function is a periodic solution for (1).
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These results have been announced by [4]. The same approach applies for the study of almost

periodic solutions (see [5]).

Results concerning this topic have been obtained previously by other authors by using different

methods. A similar condition (2) has been investigated in [3] by studying the range of sums of

monotone operators. A different way consists of applying fixed point techniques, see for example

[2], [7].

The article is organized as follows. First we analyse the one dimensional case. Necessary and

sufficient conditions for the existence and uniqueness of periodic solutions are shown. Results for

sub(super)-periodic solutions are proved as well in this case. In the next section we show that the

same existence result holds for linear symmetric maximal monotone operators on Hilbert spaces.

In the last section the case of non-linear sub-differential operators is considered.

2 Periodic solutions for one dimensional evolution equations

In order to study the periodic solutions for evolution equations it is convenient to consider first

the one dimensional case :

x′(t) + g(x(t)) = f(t), t ∈ IR, (4)

where g : IR → IR is increasing Lipschitz continuous in x and f : IR → IR is T -periodic and

continuous in t. By Picard’s theorem it follows that for each initial data x(0) = x0 ∈ IR there is

an unique solution x ∈ C1(IR; IR) for (4). We are looking for T -periodic solutions. Let us start by

the uniqueness study :

2.1 Uniqueness

Proposition 1 Assume that g is strictly increasing and f is periodic. Then there is at most one

periodic solution for (4).

Proof : Let x1, x2 be two periodic solutions for (4). By taking the difference between the two

equations and multiplying by x1(t)− x2(t) we get :

1
2
d

dt
|x1(t)− x2(t)|2 + [g(x1(t))− g(x2(t))][x1(t)− x2(t)] = 0, t ∈ IR. (5)

Since g is increasing we have (g(x1) − g(x2))(x1 − x2) ≥ 0 ∀x1, x2 ∈ IR and therefore we deduce

that |x1(t)− x2(t)| is decreasing. Moreover as x1 and x2 are periodic it follows that |x1(t)− x2(t)|
doesn’t depend on t ∈ IR and therefore, from (5) we get :

[g(x1(t))− g(x2(t))][x1(t)− x2(t)] = 0, t ∈ IR.

Finally, the strictly monotony of g implies that x1 = x2.
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Remark 1 If g is only increasing, it is possible that (4) has several periodic solutions. Let us

consider the function :

g(x) =





x+ ε, x < −ε,
0, x ∈ [−ε, ε],
x− ε, x > ε,

(6)

and f(t) = ε
2 cos t. We can easily check that xλ(t) = λ+ ε

2 sin t are periodic solutions for (4) for

λ ∈ [− ε2 , ε2 ].

Generally we can prove that every two periodic solutions differ by a constant :

Proposition 2 Let g be an increasing function and x1, x2 two periodic solutions of (4). Then

there is a constant C ∈ IR such that :

x1(t)− x2(t) = C, ∀t ∈ IR.

Proof : As shown before there is a constant C ∈ IR such that |x1(t) − x2(t)| = C, t ∈ IR.

Moreover x1(t)− x2(t) has constant sign, otherwise x1(t0) = x2(t0) for some t0 ∈ IR and it follows

that |x1(t)− x2(t)| = |x1(t0)− x2(t0)| = 0, t ∈ IR or x1 = x2. Finally we find that :

x1(t)− x2(t) = sign(x1(0)− x2(0))C, t ∈ IR.

Before analysing in detail the uniqueness for increasing functions, let us denote by O(y), y ∈ IR
the set :

O(y) =




{x ∈ IR |x+

∫ t
0
(f(s)− y)ds ∈ g−1(y) ∀t ∈ IR} ⊂ g−1(y), y ∈ g(IR),

∅, y /∈ g(IR).

Proposition 3 Let g be an increasing function and f periodic. Then equation (4) has different

periodic solutions iff Int(O < f >) 6= ∅.

Proof : Assume that (4) has two periodic solutions x1 6= x2. By the previous proposition we have

x2 − x1 = C > 0. By integration on [0, T ] one gets :
∫ T

0

g(x1(t))dt =
∫ T

0

f(t)dt =
∫ T

0

g(x2(t))dt. (7)

Since g is increasing we have g(x1(t)) ≤ g(x2(t)), t ∈ IR and therefore :
∫ T

0

g(x1(t))dt ≤
∫ T

0

g(x2(t))dt. (8)

From (7) and (8) we deduce that g(x1(t)) = g(x2(t)), t ∈ IR and thus g is constant on each interval

[x1(t), x2(t)] = [x1(t), x1(t)+C], t ∈ IR. Finally it implies that g is constant on Range(x1)+[0, C] =

{x1(t) + y | t ∈ [0, T ], y ∈ [0, C]} and this constant is exactly the time average of f :

g(x1(t)) = g(x2(t)) =< f >, t ∈ [0, T ]. (9)
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Let x be an arbitrary real number in ]x1(0), x1(0) + C[. Then :

x+
∫ t

0

{f(s)− < f >}ds = x− x1(0) + x1(0) +
∫ t

0

{f(s)− g(x1(s))}ds
= x− x1(0) + x1(t)

> x1(t), t ∈ IR.

Similarly :

x+
∫ t

0

{f(s)− < f >}ds = x− x2(0) + x2(0) +
∫ t

0

{f(s)− g(x2(s))}ds
= x− x2(0) + x2(t)

< x2(t), t ∈ IR.

Therefore x +
∫ t

0
{f(s)− < f >}ds ∈]x1(t), x2(t)[⊂ g−1(< f >), t ∈ IR which implies that

x ∈ O < f > and hence ]x1(0), x2(0)[⊂ O < f >.

Conversely, suppose that there is x and C > 0 small enough such that x, x + C ∈ O < f >. It is

easy to check that x1, x2 given below are different periodic solutions for (4) :

x1(t) = x+
∫ t

0

{f(s)− < f >}ds, t ∈ IR,

x2(t) = x+ C +
∫ t

0

{f(s)− < f >}ds = x1(t) + C, t ∈ IR.

Remark 2 The condition Int(O < f >) 6= ∅ is equivalent to :

diam(g−1 < f >) > diam(Range
∫
{f(t)− < f >}dt).

Example : Consider the equation x′(t) + g(x(t)) = η cos t, t ∈ IR with g given in Remark 1. We

have < η cos t >= 0 ∈ g(IR) and :

O(0) = {x ∈ IR |x+
∫ t

0

η cos s ds ∈ g−1(0), t ∈ IR} (10)

= {x ∈ IR |x+ η sin t ∈ g−1(0), t ∈ IR}
= {x ∈ IR | − ε ≤ x+ η sin t ≤ ε, t ∈ IR}

=





∅, |η| > ε,

{0}, |η| = ε,

[|η| − ε, ε− |η|] |η| < ε.

(11)

Therefore uniqueness doesn’t occur if |η| < ε, for example if η = ε/2, as seen before in the Remark

1. If |η| ≥ ε there is an unique periodic solution.

In the following we suppose that g is increasing and we establish the existence result.
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2.2 Existence

In order to study the existence, note that a necessary condition is given by :

Proposition 4 Assume that equation (4) has T -periodic solutions. Then there is x0 ∈ IR such

that < f >:= 1
T

∫ T
0
f(t)dt = g(x0).

Proof : Indeed, after integration on a period interval [0, T ] we obtain :

x(T )− x(0) +
∫ T

0

g(x(t))dt =
∫ T

0

f(t)dt. (12)

Since x is periodic and g ◦ x is continuous we get :

Tg(x(τ)) =
∫ T

0

f(t)dt, τ ∈]0, T [, (13)

and hence :

< f >:=
1
T

∫ T

0

f(t)dt ∈ Range(g). (14)

In the following we will show that this condition is also sufficient for the existence of periodic

solutions. We will prove this result in several steps. First we establish the existence for the

equation :

αxα(t) + x′α(t) + g(xα(t)) = f(t), t ∈ IR, α > 0. (15)

Proposition 5 Suppose that g is increasing Lipschitz continuous and f is T -periodic and conti-

nuous. Then for every α > 0 the equation (15) has exactly one periodic solution.

Remark 3 Before starting the proof let us observe that (15) reduces to an equation of type (4) with

gα = α1IR + g. Since g is increasing, is clear that gα is strictly increasing and by the Proposition

1 we deduce that the uniqueness holds. Moreover since Range(gα) = IR, the necessary condition

(14) is trivially verified and therefore, in this case we can expect to prove existence.

Proof : First of all remark that the existence of periodic solutions reduces to finding x0 ∈ IR such

that the solution of the evolution problem :




αxα(t) + x′α(t) + g(xα(t)) = f(t), t ∈ [0, T ],

x(0) = x0,
(16)

verifies x(T ; 0, x0) = x0. Here we denote by x(· ; 0, x0) the solution of (16) (existence and unique-

ness assured by Picard’s theorem). We define the map S : IR→ IR given by :

S(x0) = x(T ; 0, x0), x0 ∈ IR. (17)
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We demonstrate the existence and uniqueness of the periodic solution of (16) by showing that the

Banach’s fixed point theorem applies. Let us consider two solutions of (16) corresponding to the

initial datas x1
0 and x2

0. Using the monotony of g we can write :

α|x(t ; 0, x1
0)− x(t ; 0, x2

0)|2 +
1
2
d

dt
|x(t ; 0, x1

0)− x(t ; 0, x2
0)|2 ≤ 0, (18)

which implies :
1
2
d

dt
{e2αt|x(t ; 0, x1

0)− x(t ; 0, x2
0)|2} ≤ 0, (19)

and therefore :

|S(x1
0)− S(x2

0)| = |x(T ; 0, x1
0)− x(T ; 0, x2

0)| ≤ e−αT |x1
0 − x2

0|. (20)

For α > 0 S is a contraction and the Banach’s fixed point theorem applies. Therefore S(x0) = x0

for an unique x0 ∈ IR and hence x(· ; 0, x0) is a periodic solution of (4).

Naturally, in the following proposition we inquire about the convergence of (xα)α>0 to a peri-

odic solution of (4) as α → 0. In view of the Proposition 4 this convergence doesn’t hold if (14)

is not verified. Assume for the moment that (4) has at least one periodic solution. In this case

convergence holds :

Proposition 6 If equation (4) has at least one periodic solution, then (xα)α>0 is convergent in

C0(IR; IR) and the limit is also a periodic solution of (4).

Proof : Denote by x a periodic solution of (4). By elementary calculations we find :

α|xα(t)− x(t)|2 +
1
2
d

dt
|xα(t)− x(t)|2 ≤ −αx(t)(xα(t)− x(t)), t ∈ IR, (21)

which can be also written as :

1
2
d

dt
{e2αt|xα(t)− x(t)|2} ≤ αeαt|x(t)| · eαt|xα(t)− x(t)|, t ∈ IR. (22)

Therefore, by integration on [0, t] we deduce :

1
2
{eαt|xα(t)− x(t)|}2 ≤ 1

2
|xα(0)− x(0)|2 +

∫ t

0

αeαs|x(s)| · eαs|xα(s)− x(s)|ds. (23)

Using Bellman’s lemma, formula (23) gives :

eαt|xα(t)− x(t)| ≤ |xα(0)− x(0)|+
∫ t

0

αeαs|x(s)|ds, t ∈ IR. (24)

Let us consider α > 0 fixed for the moment. Since x is periodic and continuous, it is also bounded

and therefore from (24) we get :

|xα(t)− x(t)| ≤ e−αt|xα(0)− x(0)|+ (1− e−αt)‖x‖L∞(IR), t ∈ IR. (25)

6



By periodicity we have :

|xα(t)− x(t)| = |xα(nT + t)− x(nT + t)|
≤ e−α(nT+t)|xα(0)− x(0)|+ (1− e−α(nT+t))‖x‖L∞(IR)

≤ e−α(nT+t)|xα(0)− x(0)|+ ‖x‖L∞(IR), t ∈ IR, n ≥ 0.

By passing to the limit for n→∞ we deduce that (xα)α>0 is uniformly bounded in L∞(IR) :

|xα(t)| ≤ |xα(t)− x(t)|+ |x(t)| ≤ 2‖x‖L∞(IR), t ∈ IR, α > 0.

The derivatives x′α are also uniformly bounded in L∞(IR) for α→ 0 :

|x′α(t)| = |f(t)− αxα(t)− g(xα(t))|
≤ ‖f‖L∞(IR) + 2α‖x‖L∞(IR) + max{g(2‖x‖L∞(IR)),−g(−2‖x‖L∞(IR))}.

The uniform convergence of (xα)α>0 follows now from the Arzela-Ascoli’s theorem. Denote by u

the limit of (xα)α>0 as α→ 0. Obviously u is also periodic :

u(0) = lim
α→0

xα(0) = lim
α→0

xα(T ) = u(T ).

In order to prove that u verify equation (4), we write :

xα(t) = xα(0) +
∫ t

0

{f(s)− g(xα(s))− αxα(s)}ds, t ∈ IR.

Since the convergence is uniform, by passing to the limit for α→ 0 we obtain :

u(t) = u(0) +
∫ t

0

{f(s)− g(u(s))}ds,

and hence u ∈ C1(IR; IR) and :

u′(t) + g(u(t)) = f(t), t ∈ IR.

From the previous proposition we conclude that the existence of periodic solutions for (4) reduces

to uniform estimates in L∞(IR) for (xα)α>0 :

Proposition 7 Assume that g is increasing Lipschitz continuous and f is T -periodic and conti-

nuous. Then the following statements are equivalent :

(i) equation (4) has periodic solutions;

(ii) the sequence (xα)α>0 is uniformly bounded in L∞(IR). Moreover, in this case (xα)α>0 is

convergent in C0(IR; IR) and the limit is a periodic solution for (4).

Note that generally we can not estimate (xα)α>0 uniformly in L∞(IR). Indeed, by standard

computations we obtain :

α(xα(t)− u)2 +
1
2
d

dt
(xα(t)− u)2 ≤ |f(t)− αu− g(u)| · |xα(t)− u|, t, u ∈ IR
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and therefore :

1
2
d

dt
{e2αt(xα(t)− u)2} ≤ eαt|f(t)− αu− g(u)| · eαt|xα(t)− u|, t, u ∈ IR.

By integration on [t, t+ h] we get :

1
2
e2α(t+h)(xα(t+ h)− u)2 ≤

∫ t+h

t

e2αs|f(s)− αu− g(u)| · |xα(s)− u|ds

+
1
2
e2αt(xα(t)− u)2, t < t+ h, u ∈ IR.

Now by using Bellman’s lemma we deduce :

|xα(t+ h)− u| ≤ e−αh|xα(t)− u|+
∫ t+h

t

e−α(t+h−s)|f(s)− αu− g(u)|ds, t < t+ h.

Since xα is T -periodic, by taking h = T we can write :

|xα(t)− u| ≤ 1
1− e−αT

∫ T

0

e−α(T−s)|f(s)− αu− g(u)|ds, t ∈ IR,

and thus for u = 0 we obtain :

‖xα‖L∞(IR) ≤
1

1− e−αT
∫ T

0

|f(s)− g(0)|ds ∼ O
(

1
α

)
, α > 0.

Now we can state our main existence result :

Theorem 1 Assume that g is increasing Lipschitz continuous, and f is T -periodic and continuous.

Then equation (4) has periodic solutions iff < f >:= 1
T

∫ T
0
f(t)dt ∈ Range(g) (there is x0 ∈ IR

such that < f >= g(x0)). Moreover in this case we have the estimate :

‖x‖L∞(IR) ≤ |x0|+
∫ T

0

|f(t)− < f > |dt, ∀ x0 ∈ g−1 < f >,

and the solution is unique iff Int(O < f >) = ∅ or :

diam(g−1 < f >) ≤ diam(Range
∫
{f(t)− < f >}dt).

Proof : The condition is necessary (see Proposition 4). We will prove now that it is also sufficient.

Let us consider the sequence of periodic solutions (xα)α>0 of (15). Accordingly to the Proposition

7 we need to prove uniform estimates in L∞(IR) for (xα)α>0. Since xα is T -periodic by integration

on [0, T ] we get : ∫ T

0

{αxα(t) + g(xα(t))}dt = T < f >, α > 0.

Using the average formula for continuous functions we have :
∫ T

0

{αxα(t) + g(xα(t))}dt = T{αxα(tα) + g(xα(tα))}, tα ∈]0, T [, α > 0.

By the hypothesis there is x0 ∈ IR such that < f >= g(x0) and thus :

αxα(tα) + g(xα(tα)) = g(x0), α > 0. (26)
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Since g is increasing, we deduce :

αxα(tα)[x0 − xα(tα)] = [g(x0)− g(xα(tα))][x0 − xα(tα)] ≥ 0, α > 0,

and thus :

|xα(tα)|2 ≤ xα(tα)x0 ≤ |xα(tα)||x0|.

Finally we deduce that xα(tα) is uniformly bounded in IR :

|xα(tα)| ≤ |x0|, ∀ α > 0.

Now we can easily find uniform estimates in L∞(IR) for (xα)α>0. Let us take in the previous

calculus u = xα(tα)and integrate on [tα, t] :

1
2
e2αt(xα(t)− xα(tα))2 ≤

∫ t

tα

e2αs|f(s)− αxα(tα)− g(xα(tα))| · |xα(s)− xα(tα)|ds.

By using Bellman’s lemma we get :

|xα(t)− xα(tα)| ≤
∫ t

tα

e−α(t−s)|f(s)− αxα(tα)− g(xα(tα))|ds, t > tα,

and hence by (26) we deduce :

|xα(t)| ≤ |x0|+
∫ T

0

|f(t)− αxα(tα)− g(xα(tα))|dt

= |x0|+
∫ T

0

|f(t)− < f > |dt, t ∈ IR, α > 0. (27)

Now by passing to the limit in (27) we get :

|x(t)| ≤ |x0|+
∫ T

0

|f(t)− < f > |dt, t ∈ IR, ∀ x0 ∈ g−1 < f > .

2.3 Sub(super)-periodic solutions

In this part we generalize the previous existence results for sub(super)-periodic solutions. We will

see that similar results hold. Let us introduce the concept of sub(super)-periodic solutions :

Definition 1 We say that x ∈ C1([0, T ]; IR) is a sub-periodic solution for (4) if :

x′(t) + g(x(t)) = f(t), t ∈ [0, T ],

and x(0) ≤ x(T ).

Note that a necessary condition for the existence is given by :

Proposition 8 If equation (4) has sub-periodic solutions, then there is x0 ∈ IR such that g(x0) ≤
< f >.
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Proof : Let x be a sub-periodic solution of (4) . By integration on [0, T ] we find :

x(T )− x(0) +
∫ T

0

g(x(t))dt = T < f > .

Since g ◦ x is continuous, there is τ ∈]0, T [ such that :

g(x(τ)) =< f > − 1
T

(x(T )− x(0)) ≤ < f > .

Similarly we define the notion of super-periodic solution :

Definition 2 We say that y ∈ C1([0, T ]; IR) is a super-periodic solution for (4) if :

y′(t) + g(y(t)) = f(t), t[0, T ],

and y(0) ≥ y(T ).

The analogous necessary condition holds :

Proposition 9 If equation (4) has super-periodic solutions, then there is y0 ∈ IR such that g(y0) ≥
< f >.

Remark 4 It is clear that x is periodic solution for (4) iff is in the same time sub-periodic and

super-periodic solution. Therefore there are x0, y0 ∈ IR such that :

g(x0) ≤ < f > ≤ g(y0).

Since g is continuous, we deduce that < f >∈ Range(g) which is exactly the necessary condition

given by the Proposition 4.

As before we will prove that the necessary condition of Proposition 8 is also sufficient for the

existence of sub-periodic solutions. We have the theorem :

Theorem 2 Assume that g is increasing Lipschitz continuous and f is T -periodic continuous.

Then equation (4) has sub-periodic solutions iff there is x0 ∈ IR such that g(x0) ≤< f >.

Proof : The condition is necessary (see Proposition 8). Let us prove now that it is also sufficient.

Consider z0 an arbitrary initial data and denote by x : [0,∞[→ IR the solution for (4) with the

initial condition x(0) = z0. If there is t0 ≥ 0 such that x(t0) ≤ x(t0+T ), thus xt0(t) := x(t0+t), t ∈
[0, T ] is a sub-periodic solution. Suppose now that x(t) > x(t + T ), ∀t ∈ IR. By integration on

[nT, (n+ 1)T ], n ≥ 0 we get :

x((n+ 1)T )− x(nT ) +
∫ T

0

g(x(nT + t))dt = T < f >, n ≥ 0.

Using the hypothesis and the average formula we have :

g(x(nT + τn)) =< f > +
1
T
{x(nT )− x((n+ 1)T )} > g(x0), τn ∈]0, T [, n ≥ 0.
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Since g is increasing we deduce that x(nT + τn) > x0, n ≥ 0. We have also x(nT + τn) ≤
x((n − 1)T + τn) ≤ · · · ≤ x(τn) ≤ supt∈[0,T ] |x(t)| and thus we deduce that (x(nT + τn))n≥0 is

bounded :

|x(nT + τn)| ≤ K, n ≥ 0.

Consider now the functions xn : [0, T ]→ IR given by :

xn(t) = x(nT + t), t ∈ [0, T ].

By standard computation we get :

1
2
d

dt
|xn(t)|2 + [g(xn(t))− g(0)]xn(t) = [f(t)− g(0)]xn(t), t ∈ [0, T ].

Using the monotony of g we obtain :

|xn(t)| ≤ |xn(s)|+
∫ t

s

|f(u)− g(0)|du, 0 ≤ s ≤ t ≤ T.

Taking s = τn ∈]0, T [ we can write :

|xn(t)| ≤ |xn(τn)|+
∫ t

τn

|f(u)− g(0)|du ≤ K +
∫ T

0

|f(u)− g(0)|du, t ∈ [τn, T ].

For t ∈ [0, τn], n ≥ 1 we have :

|xn(t)| = |x(nT + t)| ≤ |x((n− 1)T + τn−1)|+
∫ nT+t

(n−1)T+τn−1

|f(u)− g(0)|du

≤ K +
∫ (n+1)T

(n−1)T

|f(u)− g(0)|du

≤ K + 2
∫ T

0

|f(u)− g(0)|du.

Therefore the sequence (xn)n≥0 is uniformly bounded in L∞(IR) and :

‖xn‖L∞(IR) ≤ K + 2
∫ T

0

|f(t)− g(0)|dt := M.

Moreover, (x′n)n≥0 is also uniformly bounded in L∞(IR). Indeed we have :

|x′n(t)| = |f(t)− g(xn(t))| ≤ ‖f‖L∞(IR) + max{g(M),−g(−M)},

and hence, by Arzela-Ascoli’s theorem we deduce that (xn)n≥0 converges in C0([0, T ], IR) :

lim
n→∞

xn(t) = u(t), uniformly for t ∈ [0, T ].

As usual, by passing to the limit for n→∞ we find that u is also solution for (4). Moreover since

(x(nT ))n≥0 is decreasing and bounded, it is convergent and we can prove that u is periodic :

u(0) = lim
n→∞

xn(0) = lim
n→∞

x(nT ) = lim
n→∞

x((n+ 1)T ) = lim
n→∞

xn(T ) = u(T ).

Therefore u is a sub-periodic solution for (4). The analogous result holds for super-periodic solu-

tions :
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Proposition 10 Under the same assumptions as in Theorem 2 the equation (4) has super-periodic

solutions iff there is y0 ∈ IR such that g(y0) ≥< f >.

We state now a comparaison result between sub-periodic and super-periodic solutions :

Proposition 11 If g is increasing, x is a sub-periodic solution and y is a super-periodic solution

we have :

x(t) ≤ y(t), ∀t ∈ [0, T ],

provided that x and y are not both periodic.

Proof : Both x and y verify (4), thus :

(x− y)′(t) + g(x(t))− g(y(t)) = 0, t ∈ [0, T ].

With the notation :

r(t) =





g(x(t))−g(y(t))
x(t)−y(t) , t ∈ [0, T ], x(t) 6= y(t)

0 , t ∈ [0, T ], x(t) = y(t),
(28)

we can write g(x(t))− g(y(t)) = r(t)(x(t)− y(t)), t ∈ [0, T ] and therefore :

(x− y)′(t) + r(t)(x(t)− y(t)) = 0, t ∈ [0, T ],

which implies that :

x(t)− y(t) = (x(0)− y(0))e−
∫ t

0
r(s)ds

. (29)

Now it is clear that if x(0) ≤ y(0) we also have x(t) ≤ y(t), t ∈ [0, T ]. Suppose now that x(0) > y(0).

Taking t = T in (29) we obtain :

x(T )− y(T ) = (x(0)− y(0))e−
∫ T

0
r(t)dt

. (30)

Since g is increasing, by the definition of the function r we have r ≥ 0. Two cases are possible :(i)

either
∫ T

0
r(t)dt > 0, (ii) either

∫ T
0
r(t)dt = 0 in wich case r(t) = 0, t ∈ [0, T ] (r vanisches in

all points of continuity t such that x(t) 6= y(t) and also in all points t with x(t) = y(t) by the

definition). Let us analyse the first case (i). By (30) we deduce that x(T ) − y(T ) < x(0) − y(0)

or x(T ) − x(0) < y(T ) − y(0). Since x is sub-periodic we have x(0) ≤ x(T ) which implies that

y(T ) > y(0) which is in contradiction with the super-periodicity of y ( y(T ) ≤ y(0)).

In the second case (ii) we have g(x(t)) = g(y(t)), t ∈ [0, T ] so (x− y)′ = 0 and therefore there is a

constant C ∈ IR such that x(t) = y(t) + C, t ∈ [0, T ]. Taking t = 0 and t = T we obtain :

0 ≥ x(0)− x(T ) = y(0)− y(T ) ≥ 0,

and thus x and y are both periodic which is in contradiction with the hypothesis.
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In the following we will see how it is possible to retrieve the existence result for periodic solu-

tions by using the method of sub(super)-periodic solutions. Suppose that < f >∈ Range(g).

Obviously both sufficient conditions for existence of sub(super)-periodic solutions are satisfied and

thus there are x0(y0) sub(super)-periodic solutions. If y0 is even periodic the proof is finisched.

Assume that y0 is not periodic (y0(0) > y0(T )). Denote byM the set of sub-periodic solutions for

(4) :

M = {x : [0, T ]→ IR |x sub-periodic solution , x0(t) ≤ x(t), t ∈ [0, T ]}.

Since x0 ∈ M we have M 6= ∅. Moreover, from the comparaison result since y0 is super-periodic

but not periodic we have x ≤ y0, ∀x ∈ M. We prove that M contains a maximal element in

respect to the order :

x1 ≺ x2 (iff) x1(t) ≤ x2(t), t ∈ [0, T ].

Finally we show that this maximal element is even a periodic solution for (4) since otherwise it

would be possible to construct a sub-periodic solution greater than the maximal element.

We state now the following generalization :

Theorem 3 Assume that g : IR × IR → IR is increasing Lipschitz continuous function in x, T -

periodic and continuous in t and f : IR→ IR is T -periodic and continuous in t. Then the equation :

x′(t) + g(t, x(t)) = f(t), t ∈ IR, (31)

has periodic solutions iff there is x0 ∈ IR such that :

< f >:=
1
T

∫ T

0

f(t)dt =
1
T

∫ T

0

g(t, x0)dt = G(x0). (32)

Moreover, in this case we have the estimate :

‖x‖L∞(IR) ≤ |x0|+
∫ T

0

|f(t)− g(t, x0)|dt, ∀ x0 ∈ G−1 < f > .

Proof : Consider the average function G : IR→ IR given by :

G(x) =
1
T

∫ T

0

g(t, x)dt, x ∈ IR.

It is easy to check that G is also increasing and Lipschitz continuous with the same constant. Let

us prove that the condition (32) is necessary. Suppose that x is a periodic solution for (31). By

integration on [0, T ] we get :
1
T

∫ T

0

g(t, x(t))dt =< f > . (33)

We can write :

m ≤ x(t) ≤M, t ∈ [0, T ],

13



and thus :

g(t,m) ≤ g(t, x(t)) ≤ g(t,M), t ∈ [0, T ],

which implies :

G(m) =
1
T

∫ T

0

g(t,m)dt ≤ 1
T

∫ T

0

g(t, x(t))dt ≤ 1
T

∫ T

0

g(t,M)dt = G(M).

Since G is continuous it follows that there is x0 ∈ [m,M ] such that G(x0) = 1
T

∫ T
0
g(t, x(t))dt and

from (33) we deduce that < f >= G(x0).

Let us show that the condition (32) is also sufficient. As before let us consider the unique periodic

solution for :

αxα(t) + x′α(t) + g(t, xα(t)) = f(t), t ∈ [0, T ], α > 0,

(existence and uniqueness follow by the Banach’s fixed point theorem exactly as before). All we

need to prove is that (xα)α>0 is uniformly bounded in L∞(IR) (then (x′α)α>0 is also uniformly

bounded in L∞(IR) and by Arzela-Ascoli’s theorem we deduce that xα converges to a periodic

solution for (31)). Taking the average on [0, T ] we get :

1
T

∫ T

0

{αxα(t) + g(t, xα(t))}dt =< f >= G(x0), α > 0.

As before we can write :

αmα + g(t,mα) ≤ αxα(t) + g(t, xα(t)) ≤ αMα + g(t,Mα), t ∈ [0, T ], α > 0,

where :

mα ≤ xα(t) ≤Mα, t ∈ [0, T ], α > 0,

and hence :

αmα +G(mα) ≤ 1
T

∫ T

0

{αxα(t) + g(t, xα(t))}dt ≤ αMα +G(Mα), α > 0.

Finally we get :

G(x0) =
1
T

∫ T

0

{αxα(t) + g(t, xα(t))}dt = αuα +G(uα), uα ∈]mα,Mα[, α > 0. (34)

Multiplying by uα − x0 we obtain :

αuα(uα − x0) = −(G(x0)−G(uα))(x0 − uα), α > 0.

Since G is increasing we deduce that |uα|2 ≤ uαx0 ≤ |uα| · |x0|, α > 0 and hence (uα)α>0 is

bounded :

|uα| ≤ |x0|, α > 0.

Now using (34) it follows :

1
T

∫ T

0

{αxα(t) + g(t, xα(t))}dt =
1
T

∫ T

0

{αuα + g(t, uα)}dt,
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and thus there is tα ∈]0, T [ such that :

αxα(tα) + g(tα, xα(tα)) = αuα + g(tα, uα), α > 0.

Since α(xα(tα)−uα)2 = −[g(tα, xα(tα))−g(tα, uα)][xα(tα)−uα] ≤ 0 we find that xα(tα) = uα, α >

0 and thus (xα(tα))α>0 is also bounded :

|xα(tα)| ≤ |x0|, α > 0.

Now by standard calculations we can write :

1
2
d

dt
|xα(t)− xα(tα)|2 + [g(t, xα(t))− g(t, xα(tα))][xα(t)− xα(tα)]

≤ [f(t)− αxα(tα)− g(t, xα(tα))][xα(t)− xα(tα)], t ∈ IR,

and thus :

|xα(t)− xα(tα)| ≤
∫ t

tα

|f(s)− αxα(tα)− g(s, xα(tα))|ds, t > tα, α > 0,

which implies :

|xα(t)| ≤ |x0|+
∫ T

0

|f(t)− αxα(tα)− g(t, xα(tα))|dt, t ∈ [0, T ], α > 0. (35)

Since (xα(tα))α>0 is bounded we have :

uα = xα(tα)→ x1,

such that :

G(x0) = lim
α→0
{αuα +G(uα)} = G(x1).

Moreover, if x0 ≤ x1 we have :

0 ≤ 1
T

∫ T

0

[g(t, x1)− g(t, x0)]dt = G(x1)−G(x0) = 0,

and hence g(t, x1) = g(t, x0), ∀ t ∈ [0, T ]. Obviously the same equalities hold if x0 > x1. Now by

passing to the limit in (35) we find :

|x(t)| ≤ |x0|+
∫ T

0

|f(t)− g(t, x1)|dt (36)

= |x0|+
∫ T

0

|f(t)− g(t, x0)|dt, t ∈ [0, T ], ∀ x0 ∈ G−1 < f >,

and therefore (xα)α>0 is uniformly bounded in L∞(IR).

15



3 Periodic solutions for evolution equations on Hilbert spaces

In this section we analyse the existence and uniqueness of periodic solutions for general evolution

equations on Hilbert spaces :

x′(t) +Ax(t) = f(t), t > 0, (37)

where A : D(A) ⊂ H → H is a maximal monotone operator on a Hilbert space H and f ∈
C1(IR;H) is a T -periodic function. As known by the theory of Hille-Yosida, for every initial data

x0 ∈ D(A) there is an unique solution x ∈ C1([0,+∞[ ;H)∩C([0,+∞[ ;D(A)) for (37), see [6], pp.

101. Obviously, the periodic problem reduces to find x0 ∈ D(A) such that x(T ) = x0. As in the

one dimensional case we demonstrate uniqueness for strictly monotone operators. We state also

necessary and sufficient condition for the existence in the linear symmetric case. Finally the case

of non-linear sub-differential operators is considered. Let us start with the definition of periodic

solutions for (37) :

Definition 3 Let A : D(A) ⊂ H → H be a maximal monotone operator on a Hilbert space H

and f ∈ C1(IR ;H) a T -periodic function. We say that x ∈ C1([0, T ] ;H) ∩ C([0, T ] ;D(A)) is a

periodic solution for (37) iff :

x′(t) +Ax(t) = f(t), t ∈ [0, T ],

and x(0) = x(T ).

3.1 Uniqueness

Generally the uniqueness doesn’t hold (see the example in the following paragraph). However it

occurs under the hypothesis of strictly monotony :

Proposition 12 Assume that A is strictly monotone ((Ax1−Ax2, x1−x2) = 0 implies x1 = x2).

Then (37) has at most one periodic solution.

Proof : Let x1, x2 be two different periodic solutions. By taking the difference of (37) and

multiplying both sides by x1(t)− x2(t) we find :

1
2
d

dt
‖x1(t)− x2(t)‖2 + (Ax1(t)−Ax2(t), x1(t)− x2(t)) = 0, t ∈ [0, T ].

By the monotony of A we deduce that ‖x1 − x2‖2 is decreasing and therefore we have :

‖x1(0)− x2(0)‖ ≥ ‖x1(t)− x2(t)‖ ≥ ‖x1(T )− x2(T )‖, t ∈ [0, T ].

Since x1 and x2 are T -periodic we have :

‖x1(0)− x2(0)‖ = ‖x1(T )− x2(T )‖,
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which implies that ‖x1(t)− x2(t)‖ is constant for t ∈ [0, T ] and thus :

(Ax1(t)−Ax2(t), x1(t)− x2(t)) = 0, t ∈ [0, T ].

Now uniqueness follows by the strictly monotony of A.

3.2 Existence

In this section we establish existence results. In the linear case we state the following necessary

condition :

Proposition 13 Let A : D(A) ⊂ H → H be a linear maximal monotone operator and f ∈
L1(]0, T [; H) a T -periodic function. If (37) has T -periodic solutions, then the following necessary

condition holds :

< f >:=
1
T

∫ T

0

f(t)dt ∈ Range(A),

(there is x0 ∈ D(A) such that < f >= Ax0).

Proof: Suppose that x ∈ C1([0, T ]; H)∩C([0, T ]; D(A)) is a T -periodic solution for (37). Let us

consider the divisions ∆n : 0 = tn0 < tn1 < ... < tnn = T such that :

lim
n→∞

max
1≤i≤n

|tni − tni−1| = 0. (38)

We can write :

(tni − tni−1)x′(tni−1) + (tni − tni−1)Ax(tni−1) = (tni − tni−1)f(tni−1), 1 ≤ i ≤ n.

Since A is linear we deduce :

1
T

n∑

i=1

(tni − tni−1)x′(tni−1) +A

(
1
T

n∑

i=1

(tni − tni−1)x(tni−1)

)
=

1
T

n∑

i=1

(tni − tni−1)f(tni−1),

and hence :
[

1
T

n∑

i=1

(tni − tni−1)x(tni−1)),
1
T

n∑

i=1

(tni − tni−1)[f(tni−1)− x′(tni−1)]

]
∈ A.

By (38) we deduce that :

1
T

n∑

i=1

(tni − tni−1)x(tni−1))→ 1
T

∫ T

0

x(t)dt,

and :

1
T

n∑

i=1

(tni − tni−1)[f(tni−1)− x′(tni−1)] → 1
T

∫ T

0

[f(t)− x′(t)]dt

=
1
T

∫ T

0

f(t)dt− 1
T
x(t)|T0

=
1
T

∫ T

0

f(t)dt.
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Since A is maximal monotone Graph(A) is closed and therefore :
[

1
T

∫ T

0

x(t)dt,
1
T

∫ T

0

f(t)dt

]
∈ A.

Thus 1
T

∫ T
0
x(t)dt ∈ D(A) and < f >= A

(
1
T

∫ T
0
x(t)dt

)
.

Generally the previous condition is not sufficient for the existence of periodic solutions. For example

let us analyse the periodic solutions x = (x1, x2) ∈ C1([0, T ]; IR2) for :

x′(t) +Ax(t) = f(t), t ∈ [0, T ], (39)

where A : IR2 → IR2 is the orthogonal rotation :

A(x1, x2) = (−x2, x1), (x1, x2) ∈ IR2,

and f = (f1, f2) ∈ L1(]0, T [; IR2) is T -periodic. For a given initial data x(0) = x0 ∈ IR2 the

solution writes :

x(t) = e−tAx0 +
∫ t

0

e−(t−s)Af(s)ds, t > 0, (40)

where the semigroup e−tA is given by :

e−tA =


 cos t sin t

− sin t cos t


 , t ∈ IR. (41)

Since e−2πA = 1 we deduce that the equation (39) has 2π-periodic solutions iff :
∫ 2π

0

etAf(t)dt = 0. (42)

Thus if
∫ 2π

0
{f1(t) cos t−f2(t) sin t}dt 6= 0 or

∫ 2π

0
{f1(t) sin t+f2(t) cos t}dt 6= 0 equation (39) doesn’t

have any 2π-periodic solution and the necessary condition still holds because Range(A) = IR2.

Moreover if (42) is satisfied then every solution of (39) is periodic and therefore uniqueness doesn’t

occur (the operator A is not strictly monotone).

Let us analyse now the existence. As in the one dimensional case we have :

Proposition 14 Suppose that A : D(A) ⊂ H → H is maximal monotone and f ∈ C1(IR; H) is

T -periodic. Then for every α > 0 the equation :

αx(t) + x′(t) +Ax(t) = f(t), t ∈ IR, (43)

has an unique T -periodic solution in C1(IR;H) ∩ C(IR;D(A)).

Proof : Since α+A is strictly monotone the uniqueness follows from Proposition 12. Indeed :

α‖x− y‖2 + (Ax−Ay, x− y) = 0, x, y ∈ D(A),
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implies α‖x− y‖2 = 0 and hence x = y.

Consider now an arbitrary initial data x0 ∈ D(A). By the Hille-Yosida’s theorem, there is x ∈
C1([0,+∞[;H) ∩ C([0,+∞[;D(A)) solution for (43). Denote by (xn)n≥0 the functions :

xn(t) = x(nT + t), t ∈ [0, T ], n ≥ 0.

We have :

αxn+1(t) + x′n+1(t) +Axn+1(t) = f((n+ 1)T + t), t ∈ [0, T ],

and :

αxn(t) + x′n(t) +Axn(t) = f(nT + t), t ∈ [0, T ].

Since f is T -periodic, after usual computations we get :

α‖xn+1(t)− xn(t)‖2 +
1
2
d

dt
‖xn+1(t)− xn(t)‖2

+ (Axn+1(t)−Axn(t), xn+1(t)− xn(t)) = 0, t ∈ [0, T ].

Taking into account that A is monotone we deduce :

‖xn+1(t)− xn(t)‖ ≤ e−αt‖xn+1(0)− xn(0)‖, t ∈ [0, T ],

and hence :

‖xn+1(0)− xn(0)‖ = ‖xn(T )− xn−1(T )‖
≤ e−αT ‖xn(0)− xn−1(0)‖
≤ e−2αT ‖xn−1(0)− xn−2(0)‖
≤ ...

≤ e−nαT ‖x1(0)− x0(0)‖, n ≥ 0. (44)

Finally we get the estimate :

‖xn+1(t)− xn(t)‖ ≤ e−α(nT+t)‖Sα(T ; 0, x0)− x0‖, t ∈ [0, T ], n ≥ 0.

Here Sα(t; 0, x0) represents the solution of (43) for the initial data x0. From the previous estimate

it is clear that (xn)n≥0 is convergent in C0([0, T ];H) :

xn(t) = x0(t) +
n−1∑

k=0

(xk+1(t)− xk(t)), t ∈ [0, T ],

where :

‖
n−1∑

k=0

(xk+1(t)− xk(t))‖ ≤
n−1∑

k=0

‖xk+1(t)− xk(t)‖

≤
n−1∑

k=0

e−α(kT+t)‖Sα(T ; 0, x0)− x0‖

≤ e−αt

1− e−αT ‖Sα(T ; 0, x0)− x0‖.
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Moreover ‖xn(t)‖ ≤ ‖Sα(t; 0, x0)‖+ 1
1−e−αT ‖Sα(T ; 0, x0)−x0‖. Denote by xα the limit of (xn)n≥0

as n→∞. We should note that without any other hypothesis (xα)α>0 is not uniformly bounded

in L∞(]0, T [;H). We have only estimate in O(1 + 1
α ) :

‖xα‖L∞([0,T ];H) ≤ C
(

1 +
1

1− e−αT
)
∼ O

(
1 +

1
α

)
.

The above estimate leads immediately to the following :

Remark 5 The sequence (αxα)α>0 is uniformly bounded in L∞([0, T ];H).

Let us demonstrate that xα is T -periodic and solution for (43). Indeed :

xα(0) = lim
n→∞

xn(0) = lim
n→∞

xn−1(T ) = xα(T ).

Now let us show that (x′n)n≥0 is also uniformly bounded in L∞(]0, T [;H). By taking the difference

between the equations (43) at the moments t and t+ h we have :

α(x(t+ h)− x(t)) + x′(t+ h)− x′(t) +Ax(t+ h)−Ax(t) = f(t+ h)− f(t), t < t+ h.

After multiplication by x(t+ h)− x(t) we obtain :

α‖x(t+ h)− x(t)‖2 +
1
2
d

dt
‖x(t+ h)− x(t)‖2 ≤ ‖f(t+ h)− f(t)‖ · ‖x(t+ h)− x(t)‖,

which can be also rewritten as :

1
2
e2αt‖x(t+ h)− x(t)‖2 ≤

∫ t

0

eαs‖f(s+ h)− f(s)‖ · eαs‖x(s+ h)− x(s)‖ds

+
1
2
‖x(h)− x(0)‖2, t < t+ h.

By using Bellman’s lemma we conclude that :

1
h
‖x(t+ h)− x(t)‖ ≤

∫ t

0

e−α(t−s) 1
h
‖f(s+ h)− f(s)‖ds

+ e−αt
1
h
‖x(h)− x(0)‖, 0 ≤ t < t+ h. (45)

By passing to the limit for h→ 0 the previous formula yields :

‖x′(t)‖ ≤ e−αt‖x′(0)‖+
∫ t

0

e−α(t−s)‖f ′(s)‖ds

≤ e−αt‖f(0)− αx0 −Ax0‖+
1
α

(1− e−αt)‖f ′‖L∞(]0,T [;H)

≤ ‖f(0)− αx0 −Ax0‖+
1
α
‖f ′‖L∞(]0,T [;H) < +∞.

Therefore (x′n)n≥0 is uniformly bounded in L∞(]0, T [;H) since :

‖x′n‖L∞(]0,T [;H) = ‖x′(nT + (·))‖L∞(]0,T [;H) ≤ ‖x′‖L∞([0,+∞[;H),
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and thus we have x′n(t) ⇀ yα(t), t ∈ [0, T ]. We can write :

(xn(t), z) = (xn(0), z) +
∫ t

0

(x′n(s), z)ds, z ∈ H, t ∈ [0, T ], n ≥ 0,

and by passing to the limit for n→∞ we deduce :

(xα(t), z) = (xα(0), z) +
∫ t

0

(yα(s), z)ds, z ∈ H, t ∈ [0, T ],

wich is equivalent to :

xα(t) = xα(0) +
∫ t

0

yα(s)ds, t ∈ [0, T ].

Therefore xα is differentiable and x′α = yα. Finally we can write x′n(t) ⇀ x′α(t), t ∈ [0, T ]. Let us

show that xα is also solution for (43). We have :

[xn(t), f(t)− αxn(t)− x′n(t)] ∈ A, n ≥ 0, t ∈ [0, T ].

Since xn(t)→ xα(t), x′n(t) ⇀ x′α(t) and A is maximal monotone we conclude that :

[xα(t), f(t)− x′α(t)] ∈ A, t ∈ [0, T ], α > 0,

which means that xα(t) ∈ D(A) and Axα(t) = f(t)− x′α(t), t ∈ [0, T ].

Now we establish for the linear case the similar result stated in Proposition 7. Before let us

recall a standard result concerning maximal monotone operators on Hilbert spaces :

Proposition 15 Assume that A is a maximal monotone operator (linear or not) and αuα+Auα =

f, uα ∈ D(A), f ∈ H, α > 0. Then the following statements are equivalent :

(i) f ∈ Range(A);

(ii) (uα)α>0 is bounded in H. Moreover, in this case (uα)α>0 is convergent in H to the element

of minimal norm in A−1f .

Proof : (i) → (ii) By the hypothesis there is u ∈ D(A) such that f = Au. After multiplication

by uα − u we get :

α(uα, uα − u) + (Auα −Au, uα − u) = 0, α > 0.

Taking into account that A is monotone we deduce :

‖uα‖2 ≤ (uα, u) ≤ ‖uα‖ · ‖u‖, α > 0,

and hence ‖uα‖ ≤ ‖u‖, α > 0, u ∈ A−1f which implies that uα ⇀ u0. We have [uα, f − αuα] ∈
A, α > 0 and since A is maximal monotone, by passing to the limit for α → 0 we deduce that

[u0, f ] ∈ A, or u0 ∈ A−1f . Moreover :

‖u0‖ = ‖w − lim
α→0

uα‖ ≤ lim inf
α→0

‖uα‖ ≤ lim sup
α→0

‖uα‖ ≤ ‖u‖, ∀u ∈ A−1f.
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In particulat taking u = u0 ∈ A−1f we get :

‖w − lim
α→0

uα‖ = lim
α→0
‖uα‖,

and hence, since any Hilbert space is strictly convex, by Mazur’s theorem we deduce that the

convergence is strong :

uα → u0 ∈ A−1f, α→ 0,

where ‖u0‖ = infu∈A−1f ‖u‖ = minu∈A−1f ‖u‖.
(ii) → (i) Conversely, suppose that (uα)α>0 is bounded in H. Therefore uα ⇀ u in H. We have

[uα, f − αuα] ∈ A, α > 0 and since A is maximal monotone by passing to the limit for α → 0 we

deduce that [u, f ] ∈ A or u ∈ D(A) and f = Au.

Theorem 4 Assume that A : D(A) ⊂ H → H is a linear maximal monotone operator on a com-

pact Hilbert space H and f ∈ C1(IR;H) is a T -periodic function. Then the following statements

are equivalent :

(i) equation (37) has periodic solutions ;

(ii) the sequence of periodic solutions for (43) is bounded in C1(IR;H). Moreover in this case

(xα)α>0 is convergent in C0(IR;H) and the limit is also a T -periodic solution for (37).

Proof : (i)→ (ii) Denote by x, xα the periodic solutions for (37) and (43). By taking the difference

and after multiplication by xα(t)− x(t) we get :

α‖xα(t)− x(t)‖2 +
1
2
d

dt
‖xα(t)− x(t)‖2 ≤ α‖x(t)‖ · ‖xα(t)− x(t)‖, t ∈ IR. (46)

Finally, after integration and by using Bellman’s lemma, formula (46) yields :

‖xα(t)− x(t)‖ ≤ e−αt‖xα(0)− x(0)‖+
∫ t

0

αe−α(t−s)‖x(s)‖ds
≤ e−αt‖xα(0)− x(0)‖+ (1− e−αt)‖x‖L∞ , t ∈ IR.

Since xα and x are T -periodic we can also write :

‖xα(t)− x(t)‖ = ‖xα(nT + t)− x(nT + t)‖
≤ e−α(nT+t)‖xα(0)− x(0)‖+ (1− e−α(nT+t))‖x‖L∞ .

By passing to the limit for n→∞ we obtain :

‖xα − x‖L∞ ≤ ‖x‖L∞ , α > 0,

and hence :

‖xα‖L∞ ≤ 2‖x‖L∞ , α > 0.
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Since A is linear we can write :

α

h
(xα(t+ h)− xα(t)) +

1
h

(x′α(t+ h)− x′α(t)) +
1
h
A(xα(t+ h)− xα(t))

=
1
h

(f(t+ h)− f(t)), t < t+ h, α > 0, (47)

and :
1
h

(x′(t+ h)− x′(t)) +
1
h
A(x(t+ h)− x(t)) =

1
h

(f(t+ h)− f(t)), t < t+ h.

For every h > 0 denote by yα,h, yh and gh the periodic functions :

yα,h(t) =
1
h

(xα(t+ h)− xα(t)), t ∈ IR, α > 0,

yh(t) =
1
h

(x(t+ h)− x(t)), t ∈ IR,

gh(t) =
1
h

(f(t+ h)− f(t)), t ∈ IR,

and hence we have :

αyα,h(t) + y′α,h(t) +Ayα,h(t) = gh(t), t ∈ IR,

and :

y′h(t) +Ayh(t) = gh(t), t ∈ IR.

By the same computations we get :

‖yα,h(t)− yh(t)‖ ≤ e−αt‖yα,h(0)− yh(0)‖+
∫ t

0

αe−α(t−s)‖yh(s)‖ds.

Now by passing to the limit for h→ 0 we deduce :

‖x′α(t)− x′(t)‖ ≤ e−αt‖x′α(0)− x′(0)‖+
∫ t

0

αe−α(t−s)‖x′(s)‖ds
≤ e−αt‖x′α(0)− x′(0)‖+ (1− e−αt)‖x′‖L∞ , t ∈ [0, T ].

By the periodicity we obtain as before that :

‖x′α(t)− x′(t)‖ = ‖x′α(nT + t)− x′(nT + t)‖
≤ e−α(nT+t)‖x′α(0)− x′(0)‖+ (1− e−α(nT+t))‖x′‖L∞ ,

and hence by passing to the limit for n→∞ we conclude that :

‖x′α − x′‖L∞ ≤ ‖x′‖L∞ , α > 0.

Therefore (x′α)α>0 is also uniformly bounded in L∞ :

‖x′α‖L∞ ≤ 2‖x′‖L∞ , α > 0.

Conversely, the implication (ii) → (i) follows by using Arzela-Ascoli’s theorem and by passing to

the limit for α→ 0 in (43).
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Let us continue the analysis of the previous example. The semigroup associated to the equation

(43) is given by :

e−t(α+A) = e−αte−tA = e−αt


 cos t, sin t

− sin t, cos t


 , t ∈ IR, α > 0,

and the periodic solution for equation (43) writes :

xα(t) = (1− e−T (α+A))−1

∫ T

0

e−(T−s)(α+A)f(s)ds

+
∫ t

0

e−(t−s)(α+A)f(s)ds

=
1− e−T (α−A)

(1− e−αT cosT )2 + (e−αT sinT )2

∫ T

0

e−(T−s)(α+A)f(s)ds

+
∫ t

0

e−(t−s)(α+A)f(s)ds, t > 0, α > 0.

As we have seen, the existence of periodic solutions reduces to uniform L∞(]0, T [;H) estimates for

(xα)α>0 and (x′α)α>0 . Since A is linear bounded operator (‖A‖L(H; H) = 1) we have :

‖x′α‖L∞(]0,T [;H) = ‖f − αxα −Axα‖L∞(]0,T [;H)

≤ ‖f‖L∞(]0,T [;H) + (α+ ‖A‖L(H; H))‖xα‖L∞(]0,T [;H), α > 0,

and hence in this case it is sufficient to find only uniform L∞(]0, T [;H) estimates for (xα)α>0 or

uniform estimates for (xα(0))α>0 in H.

Case 1 : T = 2nπ, n ≥ 0. We have :

lim
α→0

xα(0) = lim
α→0

1
1− e−αT

∫ T

0

e−(T−s)(α+A)f(s)ds.

If
∫ T

0
e−(T−s)Af(s)ds 6= 0 , then (xα(0))α>0 is not bounded. In fact since e−2nπA = 1 it is easy to

check that equation (39) doesn’t have any periodic solution. If
∫ T

0
e−(T−s)Af(s)ds = 0 then every

solution of (39) is T -periodic and (xα(0))α>0 is convergent for α→ 0 :

lim
α→0

xα(0) = lim
α→0

∫ T
0

(e−α(T−s) − 1)e−(T−s)Af(s)ds
1− e−αT

= −
∫ T

0

T − s
T

e−(T−s)Af(s)

=
1
T

∫ T

0

se−(T−s)Af(s).

Case 2 : T 6= 2nπ ∀n ≥ 0. In this case (1− e−TA) is invertible and (xα(0))α>0 converges to x(0)

where x is the unique T -periodic solution of (39) :

lim
α→0

xα(0) = lim
α→0

(1− e−T (α+A))−1

∫ T

0

e−(T−s)(α+A)f(s)ds
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= (1− e−TA)−1

∫ T

0

e−(T−s)Af(s)ds

=
1

2 sin(T2 )

∫ T

0

e−(T+π
2 −s)Af(s)ds.

We state now our main result of existence in the linear and symmetric case :

Theorem 5 Assume that A : D(A) ⊂ H → H is a linear maximal monotone and symmetric

operator and f ∈ C1([0, T ];H) is a T -periodic function. Then the necessary and sufficient condition

for the existence of periodic solutions for (37) is given by :

< f >:=
1
T

∫ T

0

f(t)dt ∈ Range(A).

In this case we have the estimates :

‖x‖L∞(]0,T [;H) ≤ ‖A−1 < f > ‖+
√
T

2
‖f‖L2(]0,T [;H) +

T

2
‖f ′‖L1(]0,T [;H),

and :

‖x′‖L∞(]0,T [;H) ≤
1√
T
‖f‖L2(]0,T [;H) + ‖f ′‖L1(]0,T [;H),

and the solution is unique up to a constant in A−1(0).

Proof : The condition is necessary (see Proposition 13). Let us show now that it is also sufficient.

Consider the T -periodic solutions (xα)α>0 for :

αxα(t) + x′α(t) +Axα(t) = f(t), t ∈ [0, T ], α > 0.

First we prove that (xα)α>0 is uniformly bounded in C1([0, T ];H). Let us multiply by x′α(t) and

integrate on a period :
∫ T

0

‖x′α(t)‖2dt+
∫ T

0

α(xα(t), x′α(t)) + (Axα(t), x′α(t))dt =
∫ T

0

(f(t), x′α(t))dt.

Since A is symmetric and xα is T -periodic we have :
∫ T

0

α(xα(t), x′α(t)) + (Axα(t), x′α(t))dt =
∫ T

0

α

2
d

dt
‖xα(t)‖2dt

+
∫ T

0

1
2
d

dt
(Axα(t), xα(t))dt

=
1
2
{
α‖xα(t)‖2 + (Axα(t), xα(t))

} |T0
= 0.

Finally we get :

‖x′α‖2L2(]0,T [;H) ≤ (f, x′α)L2(]0,T [;H) ≤ ‖f‖L2(]0,T [;H) · ‖x′α‖L2(]0,T [;H),
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and hence :

‖x′α‖L2(]0,T [;H) ≤ ‖f‖L2(]0,T [;H), α > 0.

Therefore we can write :

min
t∈[0,T ]

‖x′α(t)‖ ≤ 1√
T
‖x′α‖L2(]0,T [;H) ≤

1√
T
‖f‖L2(]0,T [;H). (48)

As seen before, since A is linear we can write :

α

h
(xα(t+ h)− xα(t)) +

1
h

(x′α(t+ h)− x′α(t)) +
1
h
A(xα(t+ h)− xα(t)) =

1
h

(f(t+ h)− f(t)),

and by standard calculations we get :

1
h
‖xα(t+ h)− xα(t)‖ ≤ e−α(t−s) 1

h
‖xα(s+ h)− xα(s)‖

+
∫ t

s

e−α(t−τ) 1
h
‖f(τ + h)− f(t)‖dτ, s < t, h > 0.

By passing to the limit for h→ 0 we deduce :

‖x′α(t)‖ ≤ e−α(t−s)‖x′α(s)‖+
∫ t

s

e−α(t−τ)‖f ′(τ)‖dτ

≤ ‖x′α(s)‖+
∫ t

s

‖f ′(τ)‖dτ, s ≤ t, α > 0. (49)

From (48) and (49) we conclude that (x′α)α>0 is uniformly bounded in L∞(]0, T [;H) :

‖x′α‖L∞(]0,T [;H) ≤
1√
T
‖f‖L2(]0,T [;H) + ‖f ′‖L1(]0,T [;H), α > 0.

As shown before, since A is linear and xα is T -periodic we have also :

α < xα > +A < xα >=< f > . (50)

By the hypothesis there is x0 ∈ D(A) such that < f >= Ax0 and hence :

‖ < xα > ‖ = ‖(α+A)−1 < f > ‖ = ‖(α+A)−1Ax0‖ ≤ ‖x0‖, α > 0.

Now it is easy to check that (xα)α>0 is uniformly bounded in L∞(]0, T [;H) :

‖xα(t)− < xα > ‖ =

∥∥∥∥∥
1
T

∫ T

0

(xα(t)− xα(s))ds

∥∥∥∥∥

=

∥∥∥∥∥
1
T

∫ T

0

∫ t

s

x′α(τ)dτds

∥∥∥∥∥

≤
√
T

2
‖f‖L2(]0,T [;H) +

T

2
‖f ′‖L1(]0,T [;H),

and thus :

‖xα‖L∞(]0,T [;H) ≤ ‖ < xα > ‖+
√
T

2
‖f‖L2(]0,T [;H) +

T

2
‖f ′‖L1(]0,T [;H)

≤ ‖x0‖+
√
T

2
‖f‖L2(]0,T [;H) +

T

2
‖f ′‖L1(]0,T [;H).
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Now we can prove that (xα)α>0 is convergent in C1([0, T ];H). Indeed, by taking the difference

between the equations (43) written for α, β > 0, after multiplication by x′α(t)−x′β(t) and integration

on [0, T ] we get :
∫ T

0

{α(xα(t)− xβ(t), x′α(t)− x′β(t)) + ‖x′α(t)− x′β(t)‖2 + (A(xα(t)− xβ(t)), x′α(t)− x′β(t))}dt

= −(α− β)
∫ T

0

(xβ(t), x′α(t)− x′β(t))dt, α, β > 0.

Since A is symmetric, xα, xβ are T -periodic and uniformly bounded in L∞(]0, T [;H) we deduce

that :

‖x′α − x′β‖L2(]0,T [;H) ≤ |α− β| · sup
γ>0
‖xγ‖L2(]0,T [;H), α, β > 0,

or :

‖x′α − x′β‖L∞(]0,T [;H) ≤
|α− β|√

T
· sup
γ>0
‖xγ‖L2(]0,T [;H) + |α− β| · sup

γ>0
‖x′γ‖L1(]0,T [;H), α, β > 0,

and therefore (x′α)α>0 converges in C([0, T ];H).

We already know that (< xα >)α>0 = ((α + A)−1 < f >)α>0 is bounded in H and by the

Proposition 15 it follows that (< xα >)α>0 is convergent to the element of minimal norm in

A−1 < f >. We have :

xα(t) = xα(0) +
∫ t

0

x′α(s)ds, t ∈ IR, α > 0.

By taking the average we deduce that xα(0) =< xα > − <
∫ t

0
x′α(s)ds > and therefore, since

(x′α)α>0 is uniformly convergent, it follows that (xα(0))α>0 is also convergent. Finally we conclude

that (xα)α>0 is convergent in C1([0, T ];H) to the periodic solution x for (37) such that < x > is

the element of minimal norm in A−1 < f >.

Before analysing the periodic solution for the heat equation, following an idea of [7], let us state

the proposition :

Proposition 16 Assume that A : D(A) ⊂ H → H is a linear maximal monotone and symmetric

operator and f ∈ C1([0, T ];H) is a T -periodic function. Then for every x0 ∈ D(A) we have :

lim
t→∞

1
T

(x(t+ T ; 0, x0)− x(t; 0, x0)) =< f > −Proj
R(A)

< f >, (51)

where x(·; 0, x0) represents the solution of (37) with the initial data x0 and R(A) is the range of

A.

Remark 6 A being maximal monotone, A−1 is also maximal monotone and therefore D(A−1) =

R(A) is convex.

Proof : Consider x0 ∈ D(A) and denote by x(·) the corresponding solution. By integration on

[t, t+ T ] we get :
1
T

(x(t+ T )− x(t)) +A

(
1
T

∫ t+T

t

x(s)ds

)
=< f > . (52)
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For each α > 0 consider xα ∈ D(A) such that αxα +Axα =< f >. Denoting by y(·) the function

y(t) = 1
T

∫ t+T
t

x(s)ds, t ≥ 0, equation (52) writes :

y′(t) +Ay(t) = αxα +Axα, t ≥ 0, α > 0.

Let us search for y of the form y1 + y2 where :

y′1(t) +Ay1(t) = αxα, t ≥ 0,

with the initial condition y1(0) = 0 and :

y′2(t) +Ay2(t) = Axα, t ≥ 0, (53)

with the initial condition y2(0) = y(0) = 1
T

∫ T
0
x(t)dt. We are interested on the asymptotic

behaviour of Ay(t) = Ay1(t) +Ay2(t) for large t. We have :

y1(t) = e−tAy1(0) +
∫ t

0

e−(t−s)Aαxαds

=
∫ t

0

e−(t−s)Aαxαds,

and therefore :

Ay1(t) =
∫ t

0

Ae−(t−s)Aαxαds

= e−(t−s)Aαxα|t0
= (1− e−tA)αxα, t ≥ 0.

By the other hand, after multiplication of (53) by y′2(t) = (y2(t)− xα)′ we get :

‖y′2(t)‖2 + (A(y2(t)− xα), (y2(t)− xα)′) = 0, t ≥ 0.

Since A is symmetric, after integration on [0, t] we obtain :
∫ t

0

‖y′2(s)‖2ds+
1
2

(A(y2(t)− xα), y2(t)− xα) =
1
2

(A(y2(0)− xα), y2(0)− xα),

and therefore, by the monotony of A it follows that :
∫ ∞

0

‖y′2(t)‖2dt ≤ 1
2

(A(y2(0)− xα), y2(0)− xα).

Thus limt→∞ y′2(t) = 0 and by passing to the limit in (53) we deduce that limt→∞Ay2(t) =

limt→∞(Axα − y′2(t)) = Axα. Finally we find that :

lim
t→∞
{ 1
T

(x(t+ T )− x(t))− e−tAαxα} = lim
t→∞
{y′(t)− e−tAαxα}

= lim
t→∞
{< f > −Ay(t)− e−tAαxα}

= lim
t→∞
{< f > −Ay1(t)−Ay2(t)− e−tAαxα}

= < f > −αxα −Axα
= 0, α > 0. (54)
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Now let us put yα = Axα and observe that yα+αA−1yα = Axα+αxα =< f >, α > 0. Therefore :

lim
α↘0

yα = lim
α↘0

(1 + αA−1)−1 < f >

= lim
α↘0

JA
−1

α < f >

= Proj
D(A−1)

< f >

= Proj
R(A)

< f >,

and it follows that :

lim
α↘0

αxα = lim
α↘0

(< f > −Axα)

= lim
α↘0

(< f > −yα)

= < f > −Proj
R(A)

< f > .

Since Graph(A) is closed and [αxα, αyα] = [αxα, A(αxα)] ∈ A, α > 0, by passing to the limit for

α ↘ 0 we deduce that < f > −Proj
R(A)

< f >∈ D(A) and A(< f > −Proj
R(A)

< f >) = 0. It

is easy to see that we can pass to the limit for α ↘ 0 in (54). Indeed, for ε > 0 let us consider

αε > 0 such that ‖ limα↘0 αxα − αεxαε‖ < ε
2 . We have :

∥∥∥∥
1
T

(x(t+ T )− x(t))− e−tA lim
α↘0

αxα

∥∥∥∥ ≤
∥∥∥∥

1
T

(x(t+ T )− x(t))− e−tAαεxαε
∥∥∥∥

+
∥∥∥∥e−tAαεxαε − e−tA lim

α↘0
αxα

∥∥∥∥

≤
∥∥∥∥

1
T

(x(t+ T )− x(t))− e−tAαεxαε
∥∥∥∥

+ ‖αεxαε − lim
α↘0

αxα‖

≤ ε

2
+
ε

2
= ε, t ≥ t(αε, ε2) = t(ε),

and thus :

lim
t→∞
{ 1
T

(x(t+ T )− x(t))− e−tA(< f > −Proj
R(A)

< f >)} = 0.

But e−tA(< f > −Proj
R(A)

< f >) doesn’t depend on t ≥ 0 :

d

dt
e−tA(< f > −Proj

R(A)
< f >) = −Ae−tA(< f > −Proj

R(A)
< f >)

= −e−tAA(< f > −Proj
R(A)

< f >)

= 0,

and thus the previous formula writes :

lim
t→∞

1
T

(x(t+ T )− x(t)) =< f > −Proj
R(A)

< f > .

Remark 7 Under the same hypothesis as above we can easily check that :

inf
x0∈D(A)

‖x(T ; 0, x0)− x0‖
T

= ‖ < f > −Proj
R(A)

< f > ‖ = dist(< f >,R(A)).
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3.3 Periodic solutions for the heat equation

Consider Ω ⊂ IRd, d ≥ 1 an open bounded set with ∂Ω ∈ C2. The heat equation writes :

∂u

∂t
(t, x)−∆u(t, x) = f(t, x), (t, x) ∈ IR× Ω, (55)

with the Dirichlet boundary condition :

u(t, x) = g(t, x), (t, x) ∈ IR× ∂Ω, (56)

or the Neumann boundary condition :

∂u

∂n
(t, x) = g(t, x), (t, x) ∈ IR× ∂Ω, (57)

where we denote by n(x) the outward normal in x ∈ ∂Ω.

Theorem 6 Assume that f ∈ C1(IR;L2(Ω)) is T -periodic and g(t, x) = ∂u0
∂n (t, x), (t, x) ∈ IR×∂Ω

where u0 ∈ C1(IR;H2(Ω)) ∩ C2(IR;L2(Ω)) is T -periodic. Then the heat problem (55), (57) has

T -periodic solutions u ∈ C(IR;H2(Ω)) ∩ C1(IR;L2(Ω)) iff :
∫

∂Ω

∫ T

0

g(t, x)dtdσ +
∫

Ω

∫ T

0

f(t, x)dtdx = 0.

In this case the periodic solutions verifie the estimates :

‖u′ − u′0‖L∞([0,T ];L2(Ω)) ≤ 1√
T
‖f − u′0 + ∆u0‖L2(]0,T [;L2(Ω))

+ ‖f ′ − u′′0 + ∆u′0‖L1(]0,T [;L2(Ω)), (58)

and the solution is unique up to a constant.

Proof : Let us search for solutions u = u0 + v where :

∂v

∂t
(t, x)−∆v(t, x) = f(t, x)− ∂u0

∂t
(t, x) + ∆u0(t, x), (t, x) ∈ IR× Ω, (59)

and :
∂v

∂n
(t, x) = g(t, x)− ∂u0

∂n
(t, x) = 0, (t, x) ∈ IR× ∂Ω. (60)

Consider the operator AN : D(AN ) ⊂ L2(Ω)→ L2(Ω) given by :

D(AN ) = {v ∈ H2(Ω) | ∂v
∂n

(x) = 0, ∀ x ∈ ∂Ω},

and :

ANv = −∆v, ∀ v ∈ D(AN ).

The operator AN is linear monotone :

(ANv, v) = −
∫

Ω

∆v(x)v(x)dx

= −
∫

∂Ω

∂v

∂n
(x)v(x)dσ +

∫

Ω

‖∇v(x)‖2dx

=
∫

Ω

‖∇v(x)‖2dx
≥ 0, ∀ v ∈ D(AN ). (61)
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Since the equation λv − ∆v = f has unique solution in D(AN ) for every f ∈ L2(Ω), λ > 0 it

follows that AN is maximal (see [6]). Moreover, it is symmetric :

(ANv1, v2) =
∫

Ω

∇v1(x) · ∇v2(x)dx = (v1, ANv2), ∀ v1, v2 ∈ D(AN ).

Note that by the hypothesis the second member in (59) f − u′0 + ∆u0 belongs to C1(IR;L2(Ω)).

Therefore the Theorem 5 applies and hence the problem (59), (60) has periodic solutions iff there

is w ∈ D(AN ) such that :

−∆w =
1
T

∫ T

0

{f(t)− du0

dt
(t) + ∆u0(t)}dt.

Since u0 is T -periodic we have
∫ T

0
du0
dt (t)dt = 0 and thus w+ 1

T

∫ T
0
u0(t)dt is solution for the elliptic

problem :

−∆

(
w +

1
T

∫ T

0

u0(t)dt

)
=

1
T

∫ T

0

f(t)dt = F,

with the boundary condition :

∂

∂n

(
w +

1
T

∫ T

0

u0(t)dt

)
=

∂w

∂n
+

1
T

∫ T

0

∂u0

∂n
(t)dt

=
1
T

∫ T

0

g(t)dt = G.

As known from the general theory of partial differential equations (see [6]) this problem has solution

iff
∫
∂Ω
G(x)dσ +

∫
Ω
F (x)dx = 0 or :

∫

∂Ω

∫ T

0

g(t, x)dtdσ +
∫

Ω

∫ T

0

f(t, x)dtdx = 0.

The estimate (58) follows from the Theorem 5.

For the heat equation with Dirichlet boundary condition we have the existence result :

Theorem 7 Assume that f ∈ C1(IR;L2(Ω)) is T -periodic and g(t, x) = u0(t, x), (t, x) ∈ IR × ∂Ω

where u0 ∈ C1(IR;H2(Ω))∩C2(IR;L2(Ω)) is T -periodic. Then the heat problem (55), (56) has an

unique T -periodic solution u ∈ C(IR;H2(Ω)) ∩ C1(IR;L2(Ω)) and there is a constant C(Ω) such

that :

‖u− u0‖L∞([0,T ];L2(Ω)) ≤ C(Ω)‖f + ∆u0‖L∞([0,T ];L2(Ω))

+
√
T

2
‖f − u′0 + ∆u0‖L2(]0,T [;L2(Ω))

+
T

2
‖f ′ − u′′0 + ∆u′0‖L1(]0,T [;L2(Ω)), (62)

and :

‖u′ − u′0‖L∞([0,T ];L2(Ω)) ≤ 1√
T
‖f − u′0 + ∆u0‖L2(]0,T [;L2(Ω))

+ ‖f ′ − u′′0 + ∆u′0‖L1(]0,T [;L2(Ω)). (63)
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Proof : This time we consider the operator AD : D(AD) ⊂ L2(Ω)→ L2(Ω) given by :

D(AD) = {v ∈ H2(Ω) | v(x) = 0, ∀x ∈ ∂Ω},

and :

ADv = −∆v, ∀v ∈ D(AD).

As before AD is linear, monotone and symmetric and thus our problem reduces to the existence

for an elliptic equation :

−∆w =
1
T

∫ T

0

{f(t) + ∆u0(t)}dt,

with homogenous Dirichlet boundary condition w = 0 on ∂Ω. Since the previous problem has all

the time unique solution verifying :

‖w‖L2(Ω) ≤ C(Ω)‖ 1
T

∫ T

0

{f(t) + ∆u0(t)}dt‖L2(Ω) ≤ C(Ω)‖f + ∆u0‖L∞([0,T ];L2(Ω)), (64)

we prove the existence for (55), (56). Here we denote by C(Ω) the Poincaré’s constant :
(∫

Ω

|w(x)|2dx
)1/2

≤ C(Ω)
(∫

Ω

‖∇w(x)‖2dx
)1/2

, ∀w ∈ H1
0 (Ω).

Moreover in this case the operator AD is strictly monotone. Indeed, by using the Poincaré’s

inequality we have :
(∫

Ω

|v(x)|2dx
)1/2

≤ C(Ω)
(∫

Ω

‖∇v(x)‖2dx
)1/2

= C(Ω)(ADv, v)1/2, ∀v ∈ D(AD),

and hence if (ADv, v) = 0 we deduce that v = 0. Therefore, by the Proposition 12 we deduce the

uniqueness of the periodic solution for (55), (56). The estimates of the solution follow immediately

from (64) and Theorem 5.

3.4 Non-linear case

Throughout this section we will consider evolution equations associated to subdifferential operators.

Let ϕ : H →]−∞,+∞] be a lower-semicontinuous proper convex function on a real Hilbert space

H. Denote by ∂ϕ ⊂ H ×H the subdifferential of ϕ :

∂ϕ(x) = {y ∈ H; ϕ(x)− ϕ(u) ≤ (y, x− u), ∀u ∈ H}, (65)

and denote by D(ϕ) the effective domain of ϕ :

D(ϕ) = {x ∈ H; ϕ(x) < +∞}. (66)

Under the previous assumptions on ϕ we recall that A = ∂ϕ is maximal monotone in H ×H and

D(A) = D(ϕ). Consider the equation :

x′(t) + ∂ϕx(t) 3 f(t), 0 < t < T. (67)
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We say that x is solution for (67) if x ∈ C([0, T ];H), x is absolutely continuous on every compact

of ]0, T [ (and therefore a.e. differentiable on ]0, T [) and satisfies x(t) ∈ D(∂ϕ) a.e. on ]0, T [ and

x′(t) + ∂ϕx(t) 3 f(t) a.e. on ]0, T [. We have the following main result (see [1]) :

Theorem 8 Let f be given in L2(]0, T [;H) and x0 ∈ D(∂ϕ). Then the Cauchy problem (67) with

the initial condition x(0) = x0 has a unique solution x ∈ C([0, T ];H) which satisfies :

x ∈W 1,2(]δ, T [;H) ∀ 0 < δ < T,
√
t · x′ ∈ L2(]0, T [;H), ϕ ◦ x ∈ L1(0, T ).

Moreover, if x0 ∈ D(ϕ) then :

x′ ∈ L2(]0, T [;H), ϕ ◦ x ∈ L∞(0, T ).

We are interested in finding sufficient conditions on A = ∂ϕ and f such that equation (67) has

unique T -periodic solution, i.e. x(0) = x(T ). Obviously, if such a solution exists, by periodicity

we deduce that it is absolutely continuous on [0, T ] and belongs to W 1,2(]0, T [;H).

It is well known that if ϕ is strictly convex then ∂ϕ is strictly monotone and therefore the uniqueness

holds :

Proposition 17 Assume that ϕ : H →] − ∞,+∞] is a lower-semicontinuous proper, strictly

convex function. Then equation (67) has at most one periodic solution.

Proof : By using the Proposition 12 it is sufficient to prove that ∂ϕ is strictly monotone. Suppose

that there are u1, u2 ∈ D(∂ϕ), u1 6= u2 such that :

(∂ϕ(u1)− ∂ϕ(u2), u1 − u2) = 0.

We have :

ϕ(u2)− ϕ(u1) ≥ (∂ϕ(u1), u2 − u1)

= −(∂ϕ(u2), u1 − u2)

≥ ϕ(u2)− ϕ(u1),

and hence :

ϕ(u2)− ϕ(u1) = (∂ϕ(u1), u2 − u1).

We can also write for λ ∈]0, 1[ :

ϕ((1− λ)u1 + λu2) = ϕ(u1 + λ(u2 − u1))

≥ ϕ(u1) + (∂ϕ(u1), λ(u2 − u1))

= ϕ(u1) + λ(∂ϕ(u1), u2 − u1)

= ϕ(u1) + λ(ϕ(u2)− ϕ(u1))

= (1− λ)ϕ(u1) + λϕ(u2).
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Since ϕ is strictly convex we have also :

ϕ((1− λ)u1 + λu2) < (1− λ)ϕ(u1) + λϕ(u2),

which is in contradiction with the previous inequality. Thus u1 = u2 and hence ∂ϕ is strictly

monotone.

We state now the result concerning the existence of periodic solutions :

Theorem 9 Suppose that ϕ : H →] −∞,+∞] is a lower-semicontinuous proper convex function

and f ∈ L2(]0, T [;H) such that :

lim
‖x‖→∞

{ϕ(x)− (x,< f >)} = +∞, (68)

and every level subset {x ∈ H; ϕ(x) + ‖x‖2 ≤M} is compact. Then equation (67) has T -periodic

solutions x ∈ C([0, T ];H) ∩W 1,2(]0, T [;H) which satisfy :

‖x′‖L2(]0,T [;H) ≤ ‖f‖L2(]0,T [;H), x(t) ∈ D(ϕ) ∀ t ∈ [0, T ], ϕ ◦ x ∈ L∞(0, T ).

Before showing this result, notice that the condition (68) implies that the lower-semicontinuous

proper convex function ψ : H →] −∞,+∞] given by ψ(x) = ϕ(x) − (x,< f >) has a minimum

point x0 ∈ H and therefore < f >∈ Range(∂ϕ) since 0 = ∂ψ(x0) = ∂ϕ(x0)− < f >.

Proof : As previous for every α > 0 we consider the unique periodic solution xα for :

αxα(t) + x′α(t) + ∂ϕxα(t) = f(t), 0 < t < T. (69)

(In order to prove the existence and uniqueness of the periodic solution for (69) consider the appli-

cation Sα : D(∂ϕ) → D(∂ϕ) defined by Sα(x0) = x(T ; 0, x0), where x(·; 0, x0) denote the unique

solution of (69) with the initial condition x0 and apply the Banach’s fixed point theorem. By the

previous theorem it follows that the periodic solution xα is absolutely continuous on [0, T ] and

belongs to C([0, T ];H) ∩W 1,2(]0, T [;H)).

First of all we will show that (x′α)α>0 is uniformly bounded in L2(]0, T [;H). Indeed, after multi-

plication by x′α(t) we obtain :

∫ T

0

‖x′α(t)‖2dt+
∫ T

0

{α(xα(t), x′α(t)) + (∂ϕxα(t), x′α(t))}dt =
∫ T

0

(f(t), x′α(t))dt.

Since xα is T -periodic we deduce that :
∫ T

0

{α(xα(t), x′α(t)) + (∂ϕxα(t), x′α(t))}dt =
∫ T

0

d

dt
{α

2
‖xα(t)‖2 + ϕ(xα(t))}dt

=
α

2
‖xα(t)‖2 + ϕ(xα(t))|T0

= 0. (70)
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Therefore ‖x′α‖2L2(]0,T [;H) ≤ (f, x′α)L2(]0,T [;H) and thus :

‖x′α‖L2(]0,T [;H) ≤ ‖f‖L2(]0,T [;H), α > 0.

Before estimate (xα)α>0, let us check that (αxα)α>0 is bounded. By taking x0 ∈ D(∂ϕ), after

standard calculation we find that :

‖xα(t)− x0‖ ≤ e−αt‖xα(0)− x0‖+
∫ t

0

e−α(t−s)‖f(s)− αx0 − ∂ϕ(x0)‖ ds, t > 0, α > 0. (71)

Since xα is T -periodic we can write :

‖xα(t)− x0‖ = lim
n→∞

‖xα(nT + t)− x0‖

≤ lim
n→∞

{
e−α(nT+t)‖xα(0)− x0‖+

∫ nT+t

0

e−α(nT+t−s)‖f(s)− αx0 − ∂ϕ(x0)‖ ds
}

≤ 1
α
‖αx0 + ∂ϕ(x0)‖+ lim

n→∞

∫ nT+t

0

e−α(nT+t−s)‖f(s)‖ ds

≤ 1
α
‖αx0 + ∂ϕ(x0)‖+ lim

n→∞

{[
1 + e−αt(e−α(n−1)T + ...+ e−αT + 1)

]
· ‖f‖L1

}

=
1
α
‖αx0 + ∂ϕ(x0)‖+

(
1 +

e−αt

1− e−αT
)
· ‖f‖L1(]0,T [;H)

≤ C1(x0, T, ‖f‖L2(]0,T [;H))
(

1 +
1
α

)
, 0 ≤ t ≤ T, α > 0.

It follows that α‖xα(t)‖ ≤ C2(x0, T, ‖f‖L2(]0,T [;H)), 0 ≤ t ≤ T, 0 < α < 1. Now we can estimate

xα, α > 0. After multiplication by xα(t) and integration on [0, T ] we obtain :
∫ T

0

α‖xα(t)‖2dt+
∫ T

0

(∂ϕ(xα(t)), xα(t))dt =
∫ T

0

(f(t), xα(t))dt. (72)

We have :

ϕ(x0) ≥ ϕ(xα(t)) + (∂ϕ(xα(t)), x0 − xα(t)), t ∈ [0, T ], α > 0,

and thus we deduce that :
∫ T

0

(∂ϕ(xα(t)), xα(t))dt ≥
∫ T

0

ϕ(xα(t))dt+
∫ T

0

{(∂ϕ(xα(t)), x0)− ϕ(x0)}dt, α > 0.

On the other hand :
∫ T

0

(∂ϕ(xα(t)), x0) dt =
∫ T

0

(f(t)− αxα(t)− x′α(t), x0) dt

=

(∫ T

0

f(t) dt, x0

)
−
∫ T

0

(αxα(t), x0) dt

≥ −C3(x0, T, ‖f‖L2(]0,T [;H)), 0 < α < 1,

and therefore :
∫ T

0

(∂ϕ(xα(t)), xα(t))dt ≥
∫ T

0

ϕ(xα(t))dt− C4(x0, T, ‖f‖L2(]0,T [;H)), 0 < α < 1. (73)
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Now by combining (72) and (73) we deduce that :

∫ T

0

ϕ(xα(t))dt ≤ C4 +
∫ T

0

(∂ϕ(xα(t)), xα(t))dt

= C4 +
∫ T

0

(f(t), xα(t))dt−
∫ T

0

α‖xα(t)‖2dt

≤ C4 +
∫ T

0

(f(t), xα(t))dt, 0 < α < 1. (74)

On the other hand we have :
∫ T

0

(f(t), xα(t))dt =
∫ T

0

(f(t)− < f >, xα(t))dt+

(∫ T

0

xα(t)dt,< f >

)

=
∫ T

0

(f(t)− < f >, xα(0) +
∫ t

0

x′α(s) ds)dt+ T (< xα >,< f >)

=
∫ T

0

(f(t)− < f >,

∫ t

0

x′α(s) ds)dt+ T (< xα >,< f >)

≤
∫ T

0

‖f(t)− < f > ‖ ·
(∫ t

0

‖x′α(s)‖2 ds
)1/2

· t1/2 dt+ T (< xα >,< f >)

≤ ‖f− < f > ‖L2(]0,T [;H) · ‖f‖L2(]0,T [;H) ·
T√
2

+ T (< xα >,< f >).

Finally we deduce that :
∫ T

0

{ϕ(xα(t))− (xα(t), < f >)} dt ≤ C5(x0, T, ‖f‖L2(]0,T [;H)), 0 < α < 1, (75)

and thus there is tα ∈ [0, T ] such that :

ϕ(xα(t))− (xα(t), < f >) ≤ C5

T
, 0 < α < 1. (76)

By the hypothesis (68) we get that (xα(tα))0<α<1 is bounded and therefore from (71) :

‖xα(t)− x0‖ ≤ e−α(t−tα)‖xα(tα)− x0‖+
∫ t

tα

e−α(t−s)‖f(s)− αx0 − ∂ϕ(x0)‖ ds, t ∈ [tα, tα + T ],

we deduce that (xα)0<α<1 is bounded in L∞(]0, T [;H) and that there is x ∈ L∞(]0, T [;H) such that

xα(t) ⇀ x(t) when α goes to 0 for t ∈ [0, T ]. Moreover, from (76) it follows that (ϕ(xα(tα)))0<α<1

is bounded from above and we deduce that :

ϕ(xα(t)) = ϕ(xα(tα)) +
∫ t

tα

(∂ϕ(xα(s)), x′α(s)) ds

≤ ϕ(xα(tα)) +
∫ t

tα

(f(s)− αxα(s)− x′α(s), x′α(s)) ds

≤ C6(x0, T, ‖f‖L2(]0,T [;H)), 0 < α < 1.

On the other hand, by writting ϕ(xα(t)) ≥ ϕ(x0) + (∂ϕ(x0), xα(t) − x0), 0 ≤ t ≤ T, α > 0

we deduce that ϕ(xα(t)) is also bounded from below so that finally (ϕ ◦ xα)0<α<1 is bounded in

L∞(]0, T [;H).
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Now, by using the second hypothesis of the theorem (every level subset is compact) we deduce

that xα(0) → x(0) when α goes to 0 (at least for a subsequence αn ↘ 0). In fact we can easily

check that xα converges uniformly to x on [0, T ] since :

‖xα(t)− xβ(t)‖ ≤ ‖xα(0)− xβ(0)‖+ |α− β| · T · sup
0<γ<1

‖xγ‖L∞(]0,T [;H), 0 ≤ t ≤ T, 0 < α, β < 1.

Now, since limα↘0 dxα/dt = dx/dt in the sense of H-valued vectorial distribution on ]0, T [ and

(x′α)α>0 is bounded in L2(]0, T [;H) it follows that x′ belongs to L2(]0, T [;H) and in particular x is

absolutely continuous on every compact of ]0, T [ and therefore a.e. differentiable on ]0, T [. In order

to complete the proof we need to show that x(t) ∈ D(ϕ) a.e. on ]0, T [ and x′(t) + ∂ϕx(t) 3 f(t)

a.e. on ]0, T [. For arbitrarly [u, v] ∈ ∂ϕ we have :

1
2
e2αt‖xα(t)−u‖2 ≤ 1

2
e2αs‖xα(s)−u‖2+

∫ t

s

e2ατ (f(τ)−αu−v, xα(τ)−u) dτ, 0 ≤ s ≤ t ≤ T, α > 0.

By passing to the limit for α↘ 0 we get :

1
2
‖x(t)− u‖2 ≤ 1

2
‖x(s)− u‖2 +

∫ t

s

(f(τ)− v, x(τ)− u) dτ, 0 ≤ s ≤ t ≤ T,

and thus :

(x(t)− x(s), x(s)− u) ≤ 1
2
‖x(t)− u‖2 − 1

2
‖x(s)− u‖2 ≤

∫ t

s

(f(τ)− v, x(τ)− u) dτ, 0 ≤ s ≤ t ≤ T.

Since x is a.e. differentiable on ]0, T [ we find that :

(x′(t), x(t)− u) = lim
s↗t

1
t− s (x(t)− x(s), x(s)− u)

≤ lim
s↗t

1
t− s

∫ t

s

(f(τ)− v, x(τ)− u) dτ

= (f(t)− v, x(t)− u), a.e. t ∈]0, T [, ∀ [u, v] ∈ ∂ϕ. (77)

Finally, since ∂ϕ is maximal monotone and (f(t) − x′(t) − v, x(t) − u) ≥ 0 ∀ [u, v] ∈ ∂ϕ we

deduce that x(t) ∈ D(∂ϕ) a.e. on ]0, T [ and x′(t) + ∂ϕx(t) 3 f(t) a.e. on ]0, T [. Since ϕ is

lower-semicontinuous we also have :

ϕ(x(t)) ≤ lim
α↘0

inf ϕ(xα(t)) ≤ lim
α↘0

inf ‖ϕ ◦ xα‖L∞ ≤ sup
0<γ<1

‖ϕ ◦ xγ‖L∞ .

As previous, by writting :

ϕ(x(t)) ≥ ϕ(x0) + (∂ϕ(x0), x(t)− x0)

≥ ϕ(x0)− ‖∂ϕ(x0)‖ · (‖x0‖+ lim
α↘0

inf ‖xα(t)‖)
≥ ϕ(x0)− ‖∂ϕ(x0)‖ · (‖x0‖+ sup

0<γ<1
‖xγ‖L∞), 0 ≤ t ≤ T,

we deduce finally that ϕ ◦ x ∈ L∞(0, T ).
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Remark 8 If dimH < +∞ then the level subsets {x ∈ H ; ϕ(x) + ‖x‖2 ≤ M} are compact as

bounded sets.

Remark 9 Assume that ϕ : H →] −∞,+∞] is a lower-semicontinuous proper convex function

such that Range(∂ϕ) = H which is equivalent to :

lim
‖x‖→∞

{ϕ(x)− (x, y)} = +∞, ∀y ∈ H,

see [2], pp.41. In particular, by taking y =< f > we deduce that the hypothesis (68) is verified.

Remark 10 Assume that ϕ is coercive :

lim
‖x‖→∞

(∂ϕ(x), x− x0)
‖x‖ = +∞, ∀x0 ∈ D(ϕ),

which is equivalent to lim‖x‖→∞
ϕ(x)
‖x‖ = +∞ (see [2], pp.42). Then Range(ϕ) = H because the

previous condition is satisfied : lim‖x‖→∞{ϕ(x) − (x, y)} = +∞, ∀ y ∈ H and therefore (68) is

verified.

We state also the following result :

Theorem 10 Suppose that ϕ : H →]−∞,+∞] is a lower-semicontinuous proper convex function

and f ∈W 1,1(]0, T [;H) such that :

lim
‖x‖→∞

{ϕ(x)− (x,< f >)} = +∞, (78)

and every level subset {x ∈ H; ϕ(x) + ‖x‖2 ≤M} is compact. Then equation (67) has T -periodic

solutions x ∈ C([0, T ];H) ∩W 1,∞(]0, T [;H) which satisfy :

x(t) ∈ D(∂ϕ), ∀ t ∈ [0, T ],
d+

dt
x(t) + (∂ϕx(t)− f(t))◦ = 0, ∀ t ∈ [0, T ],

where (∂ϕ− f)◦ denote the minimal section of ∂ϕ− f .

Proof : Since W 1,1(]0, T [;H) ⊂ L2(]0, T [;H) the previous theorem applies. Consider x ∈
C([0, T ];H) ∩W 1,2(]0, T [;H) a T -periodic solution for (67). Since ‖x′‖L2(]0,T [;H) ≤ ‖f‖L2(]0,T [;H)

it follows that there is t? ∈]0, T [ such that x is differentiable in t? and ‖x′(t?)‖ ≤ 1√
T
‖f‖L2(]0,T [;H).

By standard calculation we find that :

‖ 1
h

(x(t+ h)− x(t))‖ ≤ ‖ 1
h

(x(t? + h)− x(t?))‖+
∫ t

t?
‖ 1
h

(f(τ + h)− f(τ)‖ dτ,

and therefore sup0≤t≤T, h>0 ‖ 1
h (x(t + h) − x(t))‖ ≤ C which implies that x ∈ W 1,∞(]0, T [;H).

Making use of the inequality :

1
h

(x(t+ h)− x(t), x(t)− u) ≤ 1
h

∫ t+h

t

(f(τ)− v, x(τ)− u) dτ, 0 ≤ t < t+ h ≤ T,
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which holds for every [u, v] ∈ ∂ϕ we deduce that x(t) ∈ D(∂ϕ), ∀t ∈ [0, T ] and the weak closure

of the set { 1
h (x(t+ h)− x(t)), h > 0} belongs to f(t)− ∂ϕx(t), ∀t ∈ [0, T ]. On the other hand by

writting :

‖x(t+ h)− u‖ ≤ ‖x(t)− u‖+
∫ t+h

t

‖f(τ)− v‖ dτ, 0 ≤ t < t+ h ≤ T,

for u = x(t) and v ∈ ∂ϕx(t) we find that :

‖(∂ϕx(t)−f(t))◦‖ ≤ ‖w− lim
h↘0

1
h

(x(t+h)−x(t)) ‖ ≤ lim sup
h↘0

‖ 1
h

(x(t+h)−x(t)) ‖ ≤ ‖(∂ϕx(t)−f(t))◦‖.

This shows that limh↘0
1
h (x(t + h) − x(t)) = d+

dt x(t) exists for every t ∈ [0, T ] and coincides with

−(∂ϕx(t)− f(t))◦.
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