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Abstract. This paper discusses viscosity solutions of general Hamilton-Jacobi

equations in the time periodic case. Existence results are presented under usual

hypotheses. The main idea is to reduce the study of time periodic problems to
the study of stationary problems obtained by averaging the source term over

a period. These results hold also for almost-periodic viscosity solutions.

1. Introduction. In this paper, we will be interested in time periodic solutions of
first order Hamilton-Jacobi equations of the form

∂tu + H(x, u, Du) = f(t), (x, t) ∈ RN × R, (1)

i.e., we will look for viscosity solutions of (1) which satisfy u(x, t) = u(x, t +
T ), (x, t) ∈ RN × R, where the hamiltonian H and f are continuous functions, f
is T periodic in t and Du = (∂x1u, ∂x2u, ..., ∂xN

u) denotes the gradient of u.
Clearly the conditions ensuring the existence and uniqueness of such solutions

will be closely related to those giving the existence and uniqueness results of the
initial value problem

{
∂tu + H(x, u, Du) = f(t), (x, t) ∈ RN×]0, T [,

u(x, 0) = u0(x), x ∈ RN .
(2)

For this latter purpose, one may refer to the series of papers by Crandall and
Lions where the notion of viscosity solution was introduced, cf. [8], [9], [10], [13].
They proved the uniqueness and stability of this type of solutions for a large class
of equations, in particular for the initial value problem

{
∂tu + H(x, t, u,Du) = 0, (x, t) ∈ RN×]0, T [,

u(x, 0) = u0(x), x ∈ RN ,
(3)
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and also for the stationary problem

H(x, u, Du) = 0, x ∈ RN . (4)

These results were extended by several papers. We just mention the one by Sougani-
dis [19] where general existence results are discussed and the book by Barles [1] for
a clear presentation of viscosity solutions.

Let us start by listing the usual hypotheses used for the existence and uniqueness
results. We formulate them for time dependent hamiltonians, whereas when dealing
with hamiltonians not depending on time, stationary variants have to be considered.

∀ 0 < R < +∞, ∃γR > 0 : H(x, t, u, p)−H(x, t, v, p) ≥ γR(u− v), (5)

for all x ∈ RN , 0 ≤ t ≤ T, −R ≤ v ≤ u ≤ R, p ∈ RN ;

∀R > 0, ∃mR : |H(x, t, u, p)−H(y, t, u, p)| ≤ mR( |x− y| · (1 + |p|) ), (6)

for all x, y ∈ RN , t ∈ [0, T ], −R ≤ u ≤ R, p ∈ RN , where limz→0 mR(z) = 0 ;

∀R > 0, lim
|p|→∞

H(x, t, u, p) = ∞, uniformly for (x, t, u) ∈ RN × [0, T ]× [−R, R] ;

(7)
∀ 0 < R < +∞, H is uniformly continuous on RN × [0, T ]× [−R, R]×BR ; (8)

∃M > 0 : H(x, t,−M, 0) ≤ 0 ≤ H(x, t, M, 0), ∀ x ∈ RN , t ∈ [0, T ]. (9)
Recall that hypotheses (5), (6 or 7), (8), (9) ensure the existence of a unique solution
for the stationary equation (4). It is well known that the condition (5) is crucial for
the uniqueness result. For example if (5) is replaced by

H(x, u, p)−H(x, v, p) ≥ 0, ∀x ∈ RN , v ≤ u, p ∈ RN , (10)

(which comes to taking γR = 0 in (5)), then uniqueness fails even if under the
hypotheses (10), (7), (8) and (9) one still has the existence of a solution u ∈
W 1,∞(RN ). The regularity of the solution is in fact a consequence of the coer-
civity condition (7). Thus without (7), for example under the hypotheses (10), (6),
(8) and (9), one can just ensure the existence of a bounded semi continuous viscosity
solution of (4). And finally note that a further weakening of the above hypotheses,
for example that of (9), may not guarantee even the existence of a viscosity solution.
The hypotheses (5) (with γR ∈ R, ∀R > 0), (6), (8), (9) ensure existence and
uniqueness results for the Cauchy problem (3). An easy consequence is the existence
of a unique periodic solution for

∂tu + H(x, t, u,Du) = 0, (x, t) ∈ RN × R, (11)

(start with an arbitrary data u0 and use the fixed point method, see Section 3).
As mentioned before, in the above results, the monotonicity of H with respect to

u happens to be crucial notably for the uniqueness results. A much more difficult
situation arises when the hamiltonian is just nondecreasing with respect to u. In
this case we consider the particular problem (1) where f is a periodic continuous
function. The main idea is to observe that there is a close relation between the
existence of time periodic solutions of (1) and that of stationary solutions for the
time averaged problem

H(x, u, Du) = 〈f〉 :=
1
T

∫ T

0

f(t) dt, x ∈ RN . (12)

A very easy example is given by the following ode

x′(t) + g(x(t)) = f(t), t ∈ R, (13)
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where f, g : R → R are continuous functions and for which we have the following
result (see [6])

Proposition 1. Assume that f : R → R is continuous, T periodic and g : R → R
is continuous, nondecreasing. Then (13) admits a T periodic (classical) solution iff
there exists x0 which solves g(x) = 〈f〉.

We will now give our main results for Hamilton-Jacobi equations in the case
where the hamiltonian is nondecreasing in u, i.e., satisfies (10).
Theorem 4.1 Let H = H(x, z, p) be a hamiltonian verifying (10), (7), (8) and
sup{|H(x, 0, 0)| : x ∈ RN} = C < +∞ and f ∈ C(R) be a continuous time periodic
function. Then there is a bounded lipschitz time periodic viscosity solution of (1) iff
there is a bounded continuous viscosity solution of (12).

Another interesting problem is the long time behaviour for the viscosity solution
of the Cauchy problem (2). For some classes of initial conditions we show the con-
vergence towards a time periodic viscosity solution of (1), see Proposition 7. The
proof relies on monotonicity and stability arguments. At this stage let us point out
that asymptotic behaviours of Hamilton-Jacobi equations in periodic settings have
been studied essentially for hamiltonians independent on u and which are periodic
in the x variable, cf. [3], [11], [15], [16], notably since the paper of Lions, Papanico-
laou, Varadhan [14] concerning the homogenization of such equations. These space
periodic solutions are generally shown to converge, as t → +∞, to steady solutions
or to travelling waves. We note here the relationship with ergodic problems as
the speed of the underlying waves appears as the ergodic constant related to the
solvability of

H(x,Du) = λ, x ∈ RN .

In the space-time periodic case, one may expect the existence of space-time periodic
solutions ϕ of (1) and then the convergence of the solution of the initial value
problem towards ϕ when t → +∞. We mention here the paper by Roquejoffre
[17] where this programme is carried out under appropriate assumptions including
the strict convexity of the hamiltonian. His results, whose proofs essentially come
from the dynamical system theory and which call for the Aubry-Mather set, may
be viewed as an extension, to the time dependent case, of Fathi’s result [11], where
convergence to travelling fronts are proved for strictly convex hamiltonians.

However it is worth noting that in general, convergence to space-time periodic
solutions fails i.e., the results of [17] cannot be extended to more general hamiltoni-
ans, see counterexamples in [2], [12]. Coming back to this work, in this setting, our
results roughly say that for some classes of initial conditions, we have convergence
towards periodic solutions iff λ = 〈f〉. Moreover no convexity argument is required.
We study also the asymptotic behaviour of time periodic viscosity solutions for high
frequencies. Let us analyze our model equation (13), with f a T periodic function.
Introduce also fn(t) = f(nt),∀t ∈ R, n ≥ 1, which is T

n periodic and has the same
average as f . Suppose that 〈f〉 ∈ g(R) and let xn be a T

n periodic solution of

x′n(t) + g(xn(t)) = fn(t), t ∈ R,

such that supn ‖xn‖∞ < +∞. We are interested in the limit of (xn)n when the
period goes to 0.

After the change of variable yn(t) = xn( t
n ) we deduce that yn are T periodic and

solves n · y′n(t) + g(yn(t)) = f(t), t ∈ R, n ≥ 1. We can guess that (yn)n converges
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uniformly to a constant y0 and since
∫ T

0
g(yn(t)) dt =

∫ T

0
f(t) dt, ∀ n ≥ 1 we de-

duce that g(y0) = 〈f〉. Thus we obtain that (xn)n converges towards a solution of
g(x) = 〈f〉. The same result holds in the context of minimal l.s.c. viscosity super-
solutions, resp. maximal u.s.c. viscosity subsolutions for equations (1), (12) (see
Section 5 for the definitions of minimal l.s.c. supersolution, resp. maximal u.s.c.
subsolution). We have the theorem

Theorem 5.1 Let H = H(x, z, p) satisfy (10), (6), (8), H(x,−M, 0) ≤ f(t),
∀ (x, t) ∈ RN × R for some M > 0, where f is a T periodic continuous func-
tion. Suppose also that there is a bounded l.s.c. viscosity supersolution Ṽ ≥ −M of
(12) and denote by V , vn the minimal l.s.c. viscosity supersolutions of (12), resp.
∂tvn + H(x, vn, Dvn) = fn(t), in RN × R. Then the sequence (vn)n converges uni-
formly on RN ×R towards V and ‖vn−V ‖L∞(RN×R) ≤ 1

n‖f−〈f〉‖L1(0,T ), ∀n ≥ 1.
The above result may be assimilated to a homogenization process where the

period goes to zero. Note also that we have a ’more regular’ version of this theorem
when the hamiltonian satisfies the coercivity condition (7), see Remark 7.

The paper is organized as follows. In Section 2, after recalling a few basic results
on viscosity solutions we give a comparison result which will be one of the key points
in our proofs. Section 3 is devoted to the case where the hamiltonian satisfies the
strong monotonicity condition (5). We show the existence of a unique time periodic
solution which is the limit of any corresponding initial value problem’s solution. In
Section 4 we deal with the case where the hamiltonian satisfies the weaker condition
(10) and prove Theorem 5 for coercif hamiltonians. Moreover we analyze the long
time behaviour of the solutions as well as the relation with ergodic problems. In
the next section we look at the asymptotic behaviour of time periodic solutions
for large frequencies. We end up with some generalizations for the case of time
almost-periodic solutions.

2. Preliminaries. In this section we recall some basic properties of viscosity solu-
tions. We present also a slightly improved version of comparison result. Let H be a
T periodic continuous function and u a viscosity subsolution (resp. supersolution)
of the equation

∂tu + H(x, t, u, Du) = 0, (x, t) ∈ RN×]0, T [. (14)

Note that if u is a T periodic viscosity subsolution (resp. supersolution) of (14),
then u is a viscosity subsolution (resp. supersolution) of ∂tu+H(x, t, u,Du) = 0 in
RN × R. This is essentially due to the following classical result (see [1]).

Lemma 1. Assume that H ∈ C(RN×]0, T ]×R×RN ) and u ∈ C(RN×]0, T ]) is a vis-
cosity subsolution (resp. supersolution) of ∂tu+H(x, t, u, Du)=0, (x, t) ∈ RN×]0, T [.
Then u is a viscosity subsolution (resp. supersolution) of ∂tu+H(x, t, u,Du) =
0, (x, t) ∈ RN×]0, T ].

Now by time periodicity one gets

Proposition 2. Assume that H ∈ C(RN × R × R × RN ) and u ∈ C(RN × R)
are T periodic such that u is a viscosity subsolution (resp. supersolution) of ∂tu +
H(x, t, u,Du) = 0, (x, t) ∈ RN×]0, T [. Then u is a viscosity subsolution (resp.
supersolution) of ∂tu + H(x, t, u,Du) = 0, (x, t) ∈ RN × R.

Let us recall a few results concerning the stationary equation (4). We have the
following comparison result (see [1]).
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Theorem 1. Let u, v be bounded u.s.c. (upper semi continuous) subsolution, resp.
l.s.c. (lower semi continuous) supersolution of (4). We assume that (5), (6), (8)
hold. Then we have u(x) ≤ v(x), ∀ x ∈ RN . Moreover the hypothesis (6) can be
replaced by u ∈ W 1,∞(RN ) or v ∈ W 1,∞(RN ).

The main existence result for (4) is given by the following theorem (see [1]). We
use the notation BUC(X)={v ∈ C(X) : v is bounded, uniformly continuous on X}.
Theorem 2. Assume that (5), (6), (8), (9) hold. Then there is a unique viscosity
solution u ∈ BUC(RN ) of (4).

For the time dependent case we have the following comparison result (see [1]).

Theorem 3. Let u, v be bounded u.s.c. subsolution, resp. l.s.c. supersolution of
(14). We assume that (5), (6), (8) hold (with γR ∈ R not necessarily positive),

lim
t↘0

(u(x, t)− u(x, 0))+ = lim
t↘0

(v(x, t)− v(x, 0))− = 0, uniformly for x ∈ RN , (15)

(here (·)± denotes the positive/negative part a± = max(±a, 0), ∀ a ∈ R) and

u(·, 0) ∈ BUC(RN ) or v(·, 0) ∈ BUC(RN ). (16)

Then we have eγt supx∈RN (u(x, t) − v(x, t))+ ≤ supx∈RN (u(x, 0) − v(x, 0))+, ∀ t ∈
[0, T ], where γ = γR0 , R0 = max(supRN×[0,T ] u,− infRN×[0,T ] v). If the hypotheses
(15), (16) are not verified, we have

eγt sup
x∈RN

(u(x, t)− v(x, t))+ ≤ ( sup
RN×[0,T ]

u− inf
RN×[0,T ]

v)+ ≤ 2R0.

Moreover, the hypothesis (6) can be replaced by u ∈ W 1,∞(RN×]0, T [) or v ∈
W 1,∞(RN×]0, T [).

Corollary 1. Let u, v be bounded u.s.c. subsolution of ∂tu+H(x, t, u,Du) = f(x, t)
in RN×]0, T [, resp. l.s.c. supersolution of ∂tv+H(x, t, v,Dv) = g(x, t) in RN×]0, T [
where f, g ∈ BUC(RN × [0, T ]). Then under the assumptions of Theorem 3 we have
for all t ∈ [0, T ]

eγt‖(u(·, t)− v(·, t))+‖L∞(RN ) ≤ ‖(u(·, 0)− v(·, 0))+‖L∞(RN )

+
∫ t

0

eγs‖(f(·, s)− g(·, s))+‖L∞(RN )ds,(17)

where γ = γR0 , R0 = max(supRN×[0,T ] u,− infRN×[0,T ] v).

The main existence result for (3) is given by the following theorem (see [19], [1]).

Theorem 4. Assume that (5), (6), (8), (9) hold (with γR ∈ R, ∀ R > 0). Then for
every u0 ∈ BUC(RN ) there is a unique viscosity solution u ∈ BUC(RN × [0, T ]) of
(3), ∀ T > 0.

We end this section with the following comparison result for semi continuous
viscosity solutions.

Proposition 3. Let u a bounded viscosity u.s.c subsolution of ∂tu+H(x, t, u, Du)=
f(x, t) in RN×]0, T [ and v a bounded viscosity l.s.c. supersolution of ∂tv+H(x, t, v,Dv)
= g(x, t) in RN×]0, T [, where f, g ∈ BUC(RN × [0, T ]). We assume that (5), (6),
(8), (15), (16) hold (with γR ≥ 0,∀ 0 < R < +∞). Then we have for all t ∈ [0, T ]

sup
x∈RN

(u(x, t)−v(x, t)) ≤ e−γt sup
x∈RN

(u(x, 0)−v(x, 0))++sup
0≤s≤t

∫ t

s

sup
x∈RN

(f(x, σ)−g(x, σ)) dσ,

(18)
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where γ = γR0 , R0 = max(supRN×[0,T ] u,− infRN×[0,T ] v). If the hypotheses (15),
(16) are not verified, we have

sup
x∈RN

(u(x, t)− v(x, t)) ≤ 2R0 · e−γt + sup
0≤s≤t

∫ t

s

sup
x∈RN

(f(x, σ)− g(x, σ)) dσ.

Moreover, the hypothesis (6) can be replaced by u ∈ W 1,∞(RN×]0, T [) or v ∈
W 1,∞(RN×]0, T [).

Remark 1. Note that the main difference between (17) and (18) is that in the right
hand side term of (18) we have now supRN (f(·, σ)−g(·, σ)) and not supRN (f(·, σ)−
g(·, σ))+.

Proof. Let us fix t ∈ [0, T ]. We denote by h : [0, T ] → R the function h(s) =
supx∈RN (f(x, s) − g(x, s)), s ∈ [0, T ]. Consider the function w : RN × [0, t] → R
given by

w(x, s) = v(x, s) +
∫ s

0

h(σ) dσ + sup
0≤τ≤t

(
−

∫ τ

0

h(σ) dσ

)
, (x, s) ∈ RN × [0, t].

It is easily seen that w is a bounded viscosity l.s.c. supersolution of ∂sw + H = f ,
(x, s) ∈ RN×]0, t[, since w ≥ v on RN × [0, t] and H is nondecreasing with respect
to the third variable (we use here γR ≥ 0,∀ R > 0). We have

R0 ≥ max( sup
RN×[0,t]

u,− inf
RN×[0,t]

v) ≥ max( sup
RN×[0,t]

u,− inf
RN×[0,t]

w),

and by Theorem 3 we deduce that for any (x, s) ∈ RN × [0, t]

eγs(u(x, s)− w(x, s)) ≤ sup
y∈RN

(u(y, 0)− w(y, 0))+ ≤ sup
y∈RN

(u(y, 0)− v(y, 0))+,

implying that

u(x, s)−v(x, s) ≤ e−γs sup
y∈RN

(u(y, 0)−v(y, 0))++
∫ s

0

h(σ) dσ+ sup
0≤τ≤t

(
−

∫ τ

0

h(σ) dσ

)
.

In particular for s = t one gets

u(x, t)− v(x, t) ≤ e−γt sup
y∈RN

(u(y, 0)− v(y, 0))+ + sup
0≤τ≤t

(∫ t

τ

h(σ) dσ

)
, ∀ x ∈ RN .

If (15), (16) are not verified we have by Theorem 3

eγs(u(x, s)−w(x, s)) ≤ ( sup
RN×[0,t]

u− inf
RN×[0,t]

w)+ ≤ ( sup
RN×[0,t]

u− inf
RN×[0,t]

v)+ ≤ 2R0,

and therefore

u(x, s)− v(x, s) ≤ 2R0e
−γs +

∫ s

0

h(σ) dσ + sup
0≤τ≤t

(
−

∫ τ

0

h(σ) dσ

)
, ∀ x ∈ RN .

Our conclusion follows by taking s = t.

Corollary 2. Let u be a bounded time periodic viscosity u.s.c subsolution of ∂tu +
H(x, t, u,Du) = f(x, t) in RN × R and v a bounded time periodic viscosity l.s.c.
supersolution of ∂tv+H(x, t, v,Dv) = g(x, t) in RN×R, where f, g ∈ BUC(RN×R)
and H are T periodic such that (5), (6), (8) hold (with γR > 0, ∀ R > 0). Then we
have

sup
x∈RN

(u(x, t)− v(x, t)) ≤ sup
s≤t

∫ t

s

sup
x∈RN

(f(x, σ)− g(x, σ)) dσ.
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Moreover, the hypothesis (6) can be replaced by u ∈ W 1,∞(RN×R) or v ∈ W 1,∞(RN×
R).

Proof. By using the time periodicity and Proposition 3 we have

sup
x∈RN

(u(x, t)− v(x, t)) = sup
x∈RN

(u(x, t + nT )− v(x, t + nT ))

≤ e−γ(t+nT )(‖u‖L∞ + ‖v‖L∞)

+ sup
0≤s≤t+nT

∫ t+nT

s

sup
x∈RN

(f(x, σ)− g(x, σ)) dσ. (19)

Observe that∫ t+nT

s

sup
x∈RN

(f(x, σ)− g(x, σ)) dσ =
∫ t+nT

s

sup
x∈RN

(f(x, σ − nT )− g(x, σ − nT )) dσ

=
∫ t

s−nT

sup
x∈RN

(f(x, σ)− g(x, σ)) dσ

≤ sup
r≤t

∫ t

r

sup
x∈RN

(f(x, σ)− g(x, σ)) dσ.

The conclusion follows by letting n → +∞ in (19).

Remark 2. Assume that the hypotheses of Corollary 2 hold. If u, v are bounded
time periodic viscosity solutions of ∂tu + H(x, t, u,Du) = f(x, t) in RN × R, resp.
∂tv + H(x, t, v,Dv) = g(x, t) in RN × R, then we have for all (x, t) ∈ RN × R

inf
s≤t

∫ t

s

inf
y∈RN

(f(y, σ)−g(y, σ))dσ≤u(x, t)−v(x, t) ≤ sup
s≤t

∫ t

s

sup
y∈RN

(f(y, σ)−g(y, σ))dσ.

Remark 3. Note that under the hypotheses of Corollary 2 we have a strong com-
parison result for discontinuous time periodic sub/supersolutions, i.e., if u, v are
bounded time periodic viscosity u.s.c. subsolution, resp. l.s.c. supersolution of
(11), then we have u(x, t) ≤ v(x, t), ∀ (x, t) ∈ RN × R.

3. Time periodic viscosity solution when γR > 0. In this section we study the
existence and uniqueness of time periodic viscosity solution of (11) when hypothesis
(5) holds. This is a direct consequence of the results given in Section 2.

Proposition 4. Let u, v ∈ BUC(RN ×R) be bounded time periodic viscosity subso-
lution, resp. supersolution of (11) where H ∈ C(RN ×R×R×RN ) is time periodic.
We assume that (5), (6), (8) hold (with γR > 0, ∀ R > 0). Then we have

u(x, t) ≤ v(x, t), ∀(x, t) ∈ RN × R.

Moreover, the hypothesis (6) can be replaced by u ∈ W 1,∞(RN×R) or v ∈ W 1,∞(RN×
R).

Proof. By Theorem 3 we have

eγT ‖(u(·, T )− v(·, T ))+‖L∞(RN ) ≤ ‖(u(·, 0)− v(·, 0))+‖L∞(RN ),

where γ = γR0 > 0, R0 = max(‖u‖L∞(RN×R), ‖v‖L∞(RN×R)). By periodicity we
have u(·, T )− v(·, T ) = u(·, 0)− v(·, 0) and since eγT > 1 we deduce that (u(x, 0)−
v(x, 0))+ ≤ 0, ∀x ∈ RN . The conclusion follows by Theorem 3.

Corollary 3. Under the assumptions of Proposition 4 there is at most one time
periodic viscosity solution of (11).
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For the existence part we solve the problem (3) with arbitrary initial condition
u0 ∈ BUC(RN ) and we pass to the limit for t → +∞.

Proposition 5. Let u0 ∈ BUC(RN ) and assume that (5), (6), (8), (9) hold (with
γR > 0, ∀ R > 0). Denote by u ∈ C(RN × [0,+∞[) the unique viscosity solution
of (3) and let un(x, t) = u(x, t + nT ), (x, t) ∈ RN × [0, T ] for n ≥ 0. Then (un)n

converges uniformly on RN × [0, T ] to a time periodic viscosity solution of (11).

Proof. By hypothesis (9) we deduce that −M (resp. M ) is subsolution (resp.
supersolution ) of (3) and by Theorem 3 we have

−M − ‖(−u0 −M)+‖∞ ≤ u(x, t) ≤ ‖(u0 −M)+‖∞ + M, ∀(x, t) ∈ RN × [0,+∞[.

Let γ = γR0 > 0 where R0 = ‖u‖L∞(RN×]0,+∞[). Consider v(x, t) = u(x, t + T ),
∀(x, t) ∈ RN × [0,+∞[. By the periodicity of H we deduce that v is viscosity
solution of ∂tv +H(x, t, v,Dv) = 0, (x, t) ∈ RN × [0,+∞[. By using Theorem 3 we
have

‖u(·, t + T )− u(·, t)‖L∞(RN ) = ‖v(·, t)− u(·, t)‖L∞(RN )

≤ e−γt‖v(·, 0)− u(·, 0)‖L∞(RN )

≤ 2e−γt‖u‖L∞(RN×]0,+∞[).

In particular, by taking t = s + nT , s ∈ [0, T ] we deduce that

‖un+1(·, s)− un(·, s)‖L∞(RN ) ≤ 2e−nTγ‖u‖L∞(RN×]0,+∞[),

and therefore there is w ∈ C(RN × R), T periodic such that un → w|RN×[0,T ]

uniformly on RN × [0, T ]. Now by using the stability result for continuous viscosity
solutions (see [9], [1]) we deduce that w is viscosity solution of (11) in RN×]0, T [.
Therefore by Proposition 2 w is periodic viscosity solution of (11) in RN ×R. Note
also that w ∈ BUC(RN × R), since un ∈ BUC(RN × [0, T ]), ∀ n.

Since we have uniqueness of the time periodic viscosity solution of (11), the
solution constructed above does not depend on the initial condition u0.

4. Time periodic viscosity solution when γR = 0. In this section we study
the time periodic viscosity solutions of

∂tu + H(x, u, Du) = f(t), (x, t) ∈ RN × R, (20)

for hamiltonians satisfying (10). We introduce also the stationary equation

H(x, u, Du) = 〈f〉 :=
1
T

∫ T

0

f(t) dt, x ∈ RN . (21)

4.1. Existence of time periodic viscosity solution. For coercif hamiltonians
i.e., hamiltonians verifying (7), we have the following necessary and sufficient con-
dition for the existence of time periodic viscosity solution.

Theorem 5. Let H = H(x, z, p) be a hamiltonian verifying (10), (7), (8) and
sup{|H(x, 0, 0)| : x ∈ RN} = C < +∞ and f ∈ C(R) be a continuous time periodic
function. Then there is a bounded lipschitz time periodic viscosity solution of (20)
iff there is a bounded continuous viscosity solution of (21).
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Proof. Assume that there is a bounded viscosity solution V of (21). Since the
hamiltonian satisfies (7) we can prove as usual that V is a lipschitz function. For
any α > 0 take Mα = ‖V ‖L∞(RN ) + 1

α (C + ‖f‖L∞(R)) and observe that

α(−Mα−V (x))+H(x,−Mα, 0)≤f(t)≤α(Mα−V (x))+H(x,Mα, 0), ∀ (x, t) ∈ RN×R.

Therefore we can construct the stationary viscosity solution Vα of

α(Vα − V (x)) + H(x, Vα, DVα) = 〈f〉, x ∈ RN ,

and the time periodic viscosity solution vα of

α(vα − V (x)) + ∂tvα + H(x, vα, Dvα) = f(t), (x, t) ∈ RN × R. (22)

In fact we have Vα = V , ∀α > 0 and by using Corollary 2 we obtain

|vα(x, t)− V (x)| = |vα(x, t)− Vα(x)| ≤ ‖f −〈f〉‖L1(0,T ), ∀(x, t) ∈ RN ×R,∀α > 0,
(23)

which implies that (vα)α is uniformly bounded

‖vα‖L∞(RN×R) ≤ ‖V ‖L∞(RN ) + ‖f − 〈f〉‖L1(0,T ), ∀α > 0.

In order to extract a subsequence which converges uniformly on compact sets we
prove that (vα)α are uniformly lipschitz on RN × R. For this note that wα(x, t) =
vα(x, t + h), (x, t) ∈ RN × R is time periodic viscosity solution of

α · (wα − V (x)) + ∂twα + H(x,wα, Dwα) = f(t + h), (x, t) ∈ RN × R. (24)

By using Corollary 2 we have

vα(x, t + h)− vα(x, t) ≤ sup
s≤t

∫ t

s

(f(σ + h)− f(σ)) dσ

= sup
s≤t

{∫ t+h

t

f(σ) dσ −
∫ s+h

s

f(σ) dσ

}

≤ 2|h| · ‖f‖L∞(R), ∀ (x, t) ∈ RN × R, h ∈ R. (25)

Let us prove now that vα are uniformly lipschitz with respect to x. Take K > 0
such that H(x, z, p) ≥ 3 · ‖f‖L∞(R) + 1, for x ∈ RN , z ∈ R, |z| ≤ supα>0 ‖vα‖L∞ ,
p ∈ RN , |p| ≥ K. For ε > 0, (y, τ) ∈ RN × R fixed we consider the function
ψ(x, t) = vα(x, t)−K · |x− y| − |t−τ |2

ε2 and let (x0, t0) = (x0(α, ε, y, τ), t0(α, ε, y, τ))
a maximum point of ψ. The inequality ψ(x0, t) ≤ ψ(x0, t0), ∀t ∈ R implies

vα(x0, t)− |t− τ |2
ε2

≤ vα(x0, t0)− |t0 − τ |2
ε2

, ∀t ∈ R,

and therefore by (25) we find 2 · |t0−τ |
ε2 ≤ 2 · ‖f‖L∞(R). Suppose now that x0 6= y

and thus we have the viscosity inequality

α · (vα(x0, t0)− V (x0)) + 2 · t0 − τ

ε2
+ H

(
x0, vα(x0, t0),K · x0 − y

|x0 − y|
)
≤ f(t0),

which implies

1+3·‖f‖L∞(R)≤H

(
x0, vα(x0, t0),K · x0 − y

|x0 − y|
)
≤3·‖f‖L∞(R)+α(‖vα‖L∞+‖V ‖L∞).

This clearly gives a contradiction for α small and therefore we deduce that

ψ(x, t0) = vα(x, t0)−K · |x− y| − |t0 − τ |2
ε2

≤ vα(y, t0)− |t0 − τ |2
ε2

= ψ(y, t0),
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which implies vα(x, t0) ≤ vα(y, t0)+K · |x−y| for all x, y ∈ RN , τ ∈ R, α, ε > 0. By
passing to the limit for ε ↘ 0 (note that |t0−τ | ≤ ε2 ·‖f‖L∞(R) and thus t0 → τ) we
obtain vα(x, τ) ≤ vα(y, τ) + K · |x− y|, ∀x, y ∈ RN , τ ∈ R. Therefore the functions
(vα)α>0 are uniformly lipschitz and we can extract a subsequence which converges
uniformly on compact sets of RN × R to a bounded lipschitz function v. By using
the stability result for continuous viscosity solutions we deduce that v is a viscosity
solution of (20).

Assume now that there is a bounded lipschitz time periodic viscosity solution v
of (20). For any α > 0 take M̃α = 1

α (C + ‖f‖L∞(R)) and observe that

−αM̃α + H(x,−M̃α, 0) ≤ f(t) ≤ αM̃α + H(x, M̃α, 0), ∀ (x, t) ∈ RN × R.

Therefore we can construct the time periodic viscosity solution vα of

αvα + ∂tvα + H(x, vα, Dvα) = f(t), (x, t) ∈ RN × R,

and the stationary viscosity solution Vα of

αVα + H(x, Vα, DVα) = 〈f〉, x ∈ RN .

Since v is bounded, lipschitz and time periodic, it is also time periodic viscosity
solution of αv + ∂tv + H(x, v, Dv) = f(t) + α v(x, t), (x, t) ∈ RN × R. By using
Corollary 1 we deduce that for all t ≥ t0, α > 0 we have

‖vα(·, t)− v(·, t)‖L∞(RN ) ≤ e−α(t−t0)‖vα(·, t0)− v(·, t0)‖L∞(RN )

+e−αt

∫ t

t0

eαsα ‖v(·, s)‖L∞(RN ) ds

≤ e−α(t−t0)(‖vα‖L∞(RN×R) + ‖v‖L∞(RN×R))
+‖v‖L∞(RN×R).

By passing to the limit for t0 → −∞ we obtain

‖vα(·, t)− v(·, t)‖L∞(RN ) ≤ ‖v‖L∞(RN×R), ∀t ∈ R, α > 0,

and therefore supα>0 ‖vα‖L∞(RN×R) ≤ 2‖v‖L∞(RN×R). By using Corollary 2 one
gets

|Vα(x)− vα(x, t)| ≤ ‖f − 〈f〉‖L1(0,T ), ∀(x, t) ∈ RN × R,∀α > 0,

and therefore (Vα)α is uniformly bounded

sup
α>0

‖Vα‖L∞(RN ) ≤ 2‖v‖L∞(RN×R) + ‖f − 〈f〉‖L1(0,T ).

The conclusion follows easily by observing that (Vα)α are uniformly lipschitz (use
hypothesis (7)) and by extracting a subsequence convergent on compact sets of RN

(use also the stability result for continuous viscosity solutions).

Remark 4. Note that in the above result we do not need hypothesis (6) which
is replaced by (7) just as in the stationary case. In fact, the uniform bound on
∂tu comes from the autonomous character of the hamiltonian H and of the use of
Corollary 2. The coercivity condition (7) then allows to obtain the lipschitz estimate
in x.

In the above computations we have used several times Corollary 2. Actually,
similar conclusions can be obtained by using standard comparison results. For
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example, we check easily that V (x) +
∫ t

0
{f(s) − 〈f〉} ds ∓ ‖f − 〈f〉‖L1(0,T ) is a

sub/supersolution of (22) and therefore we deduce for any (x, t) ∈ RN × R, α > 0
∫ t

0

{f(s)−〈f〉} ds−‖f−〈f〉‖L1(0,T )≤vα(x, t)−V (x)≤
∫ t

0

{f(s)−〈f〉} ds+‖f−〈f〉‖L1(0,T ).

We obtain the inequality

|vα(x, t)−V (x)| ≤ 2 ‖f−〈f〉‖L1(0,T ), ∀ (x, t) ∈ RN × R, ∀ α > 0,

which is similar to (23). In the same manner, by observing that vα +
∫ t

0
{f(s + h)−

f(s)} ds∓ 2 |h| ‖f‖L∞(R) is a sub/supersolution of (24), we deduce that
∫ t

0

{f(s + h)− f(s)}ds− 2|h|‖f‖L∞ ≤ vα(x, t + h)− vα(x, t)

≤
∫ t

0

{f(s + h)− f(s)}ds + 2|h|‖f‖L∞ .

One gets the inequality

|vα(x, t + h)− vα(x, t)| ≤ 4 |h| ‖f‖L∞(R), (x, t) ∈ RN × R, h ∈ R, α > 0,

which is similar to (25). Let us mention that the above alternative proof was pointed
to us by the referee to whom we are thankful.

The Theorem 5 establishes the equivalence between the solvability of (20) and
(21). Therefore one gets existence of time periodic viscosity solution for (20) by
imposing sufficient conditions for the existence of stationary viscosity solution for
(21).

Theorem 6. Let H = H(x, z, p) be a hamiltonian verifying (10), (7), (8) and f be
a continuous time periodic function. Assume that there is M > 0 such that

H(x,−M, 0) ≤ 〈f〉 ≤ H(x,M, 0), ∀x ∈ RN . (26)

Then there is a bounded lipschitz time periodic viscosity solution v of (20) satisfying

−M − ‖f − 〈f〉‖L1(0,T ) ≤ v(x, t) ≤ M + ‖f − 〈f〉‖L1(0,T ), ∀(x, t) ∈ RN × R.

Proof. For any α > 0 consider the stationary viscosity solution of

α(Vα + M) + H(x, Vα, DVα) = 〈f〉, x ∈ RN .

By (26) we have −M ≤ Vα(x) ≤ M, x ∈ RN , α > 0. For any α > 0 take
Mα = M + 2

α‖f‖L∞(R) and observe that

α(−Mα+M)+H(x,−Mα, 0) ≤ f(t) ≤ α(Mα+M)+H(x,Mα, 0), ∀ (x, t) ∈ RN×R.

Therefore we can construct for all α > 0 the time periodic viscosity solution of

α(vα + M) + ∂tvα + H(x, vα, Dvα) = f(t), (x, t) ∈ RN × R.

By using Corollary 2 we obtain

|vα(x, t)| ≤ |Vα(x)|+ ‖f − 〈f〉‖L1(0,T ), ∀ (x, t) ∈ RN × R, ∀ α > 0.

As before we check that (vα)α are uniformly lipschitz and we can extract a subse-
quence which converges uniformly on compact sets of RN × R towards a lipschitz
time periodic viscosity solution v of (20) satisfying

−M − ‖f − 〈f〉‖L1(0,T ) ≤ v(x, t) ≤ M + ‖f − 〈f〉‖L1(0,T ), ∀ (x, t) ∈ RN × R.
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4.2. Relation with ergodic problems and long time behaviour. The Theo-
rem 5 makes clear the central role played by the solvability of H(x, u, Du) = 〈f〉.
We may in fact reformulate the problem in terms of ergodic constants. Indeed let
us suppose that

∃ ! λ ∈ R : H(x, u, Du) = λ, x ∈ RN is solvable. (27)

In this context, under hypothesis (27) the Theorem 5 says that (20) admits a time
periodic solution iff the ergodic constant is λ = 〈f〉. Let us mention a rather widely
studied case where (27) is known to hold. It concerns coercif hamiltonians of the
form H = H(x, p), periodic in the x variable. The first classical result in this
direction is due to Lions, Papanicolaou, Varadhan [14], where (27) appears as the
cell problem in a homogenization process. Of course, our result remains valid in
this case i.e., a time periodic solution exists iff λ = 〈f〉. This space periodic setting,
which ensures a compactness property of the domain, has been a privileged ground
for the steady of long time behaviour of solutions of Hamilton-Jacobi equations,
whether H depends on t or not. In this context, the ergodic constant often appears
as the speed of the underlying travelling wave solution or of the periodic front, see
for example [15], [3], [16], [11] for H independent of t and the recent papers by
Roquejoffre [18], [17], Fathi and Mather [12] for hamiltonians which are also time
periodic. We mention also the paper by Barles and Souganidis [4] where a similar
analysis is carried out for quasi-linear parabolic equations.

Globally speaking, the results for time periodic hamiltonians state that there
exists a unique µ ∈ R such that

∂tφ + H(x, t, Dφ) + µ = 0, (x, t) ∈ RN×]0,+∞[ (28)

has space-time periodic solutions. Then under some ”appropriate hypotheses” on
the hamiltonian H notably its convexity with respect to p, they show convergence
results of the type limt→+∞{u(x, t) − µt − φ(x, t)} = 0, uniformly for x ∈ RN ,
where φ is a space-time periodic solution of (28) and u is the solution of the initial
value problem {

∂tu + H(x, t, Du) = 0, (x, t) ∈ RN×]0,+∞[,

u(x, 0) = u0(x), x ∈ RN .

It is worth mentioning here that generally there is no convergence. For example
consider the problem (borrowed from [2]){

∂tu + |1− ∂xu| = 1, (x, t) ∈ R×]0,+∞[,

u(x, 0) = sinx, x ∈ R,
(29)

whose solution is u(x, t) = sin(x + t), ∀ (x, t) ∈ R× [0,+∞[. Observe that for any
x ∈ R there is no limit of u(x, t) as t goes to infinity. We have the following result
for hamiltonians non depending on u.

Proposition 6. Let H = H(x, p) be a hamiltonian which belongs to BUC(RN ×
BR) ∀ R > 0 and satisfies lim|p|→+∞H(x, p) = +∞ uniformly with respect to
x ∈ RN , f a time periodic continuous function and u a viscosity solution of

∂tu + H(x,Du) = f(t), (x, t) ∈ RN×]0,+∞[,

with a bounded lipschitz initial condition u0. If there is a bounded viscosity solution
U for H(x,DU) = λ, x ∈ RN for some λ ∈ R then we have

|u(x, t)−(〈f〉−λ)t| ≤ ‖u0‖L∞(RN )+2‖U‖L∞(RN )+‖f−〈f〉‖L1(0,T ), (x, t) ∈ RN×[0,∞[.
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In particular if λ < 〈f〉 then limt→+∞ u(x, t) = +∞, uniformly with respect to x ∈
RN and if λ > 〈f〉 then limt→+∞ u(x, t) = −∞, uniformly with respect to x ∈ RN .

Proof. By the comparison result we obtain for any (x, t) ∈ RN × [0,+∞[

U(x) +
∫ t

0

{f(s)− λ} ds−M ≤ u(x, t) ≤ U(x) +
∫ t

0

{f(s)− λ} ds + M,

with M = ‖U − u0‖L∞(RN ). We deduce that

|u(x, t)− (〈f〉 − λ)t| ≤ ‖U‖L∞(RN ) + M +
∣∣∣∣
∫ t

0

{f(s)− 〈f〉} ds

∣∣∣∣
≤ ‖u0‖L∞(RN ) + 2‖U‖L∞(RN ) + ‖f − 〈f〉‖L1(0,T ).

We examine now the situation λ = 〈f〉. In this case we can consider hamiltonians
which depend on u. We investigate the long time behaviour of viscosity solutions
for the initial value problem{

∂tu + H(x, u, Du) = f(t), (x, t) ∈ RN×]0,+∞[,

u(x, 0) = u0(x), x ∈ RN ,
(30)

when the hamiltonian H satisfies (10), (7), (8) and f is a continuous time periodic
function. The case when the hamiltonian verifies (5) instead of (10) is much easier :
as shown in Proposition 5 we have convergence towards the unique time periodic
viscosity solution of (20), with exponential decay.

Proposition 7. Let H = H(x, z, p) be a hamiltonian verifying (10), (7), (8), f a
continuous time periodic function and u0 ∈ W 1,∞(RN ). We assume that there is a
bounded viscosity solution U for H(x,U,DU) = 〈f〉, x ∈ RN .
1) Then there is a unique viscosity solution u of (30) which belongs to
W 1,∞(RN×]0,+∞[) ;
2) If the initial condition is such that u0(x) ≤ u(x, T ), ∀ x ∈ RN then we have

lim
k→+∞

u(x, t + kT ) = ϕ(x, t), uniformly for x in compact sets of RN , t ≥ 0,

where ϕ is the minimal time periodic viscosity solution of (20) verifying ϕ(x, 0) ≥
u0(x), x ∈ RN ;
3) If the initial condition is such that u0(x) ≥ u(x, T ), ∀ x ∈ RN then we have

lim
k→+∞

u(x, t + kT ) = Φ(x, t), uniformly for x in compact sets of RN , t ≥ 0,

where Φ is the maximal time periodic viscosity solution of (20) verifying Φ(x, 0) ≤
u0(x), x ∈ RN .

Before giving the proof, let us illustrate the previous results by the following
example {

∂tu + |1 + ∂xu| − 1 = f(t), (x, t) ∈ R×]0,+∞[,

u(x, 0) = u0(x), x ∈ R,
(31)

where f ∈ C(R) is T periodic and u0 ∈ W 1,∞(R), such that ‖u′0‖L∞(R) ≤ 1. Then
the solution of (31) is given by u(x, t) = u0(x− t)+

∫ t

0
f(s) ds, (x, t) ∈ R× [0,+∞[.

Observe that the equation |1 + U ′(x)| − 1 = λ, x ∈ R has bounded solutions for
λ = 0. We can easily check that if 〈f〉 > 0 we have limt→+∞ u(x, t) = +∞
for any x ∈ R and if 〈f〉 < 0 we have limt→+∞ u(x, t) = −∞ for any x ∈ R.
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Assume now that 〈f〉 = 0. Take as initial condition u0(x) = − arctanx, x ∈ R
and observe that u0(x) ≤ u(x, T ), ∀ x ∈ R. In this case we have limk→+∞ u(x, t +
kT ) = π

2 +
∫ t

0
f(s) ds, ∀ (x, t) ∈ R × [0, T ]. Take now as initial condition u0(x) =

sinx, x ∈ R and assume that T
2π /∈ Z, implying that u0 doesn’t meet the hypotheses

of statements 2), 3) of Proposition 7. We check easily that in this case there is no
limk→+∞ u(x, t + kT ).

Proof. (of Proposition 7)
1) Take M = max{‖u0−U‖L∞(RN ), ‖f −〈f〉‖L1(0,T )}. We check easily that U(x)+∫ t

0
{f(s) − 〈f〉} ds ∓ M are viscosity sub/supersolutions of (30) and therefore we

deduce that there is a unique viscosity solution of (30) satisfying

U(x) +
∫ t

0

{f(s)− 〈f〉} ds−M ≤ u(x, t) ≤ U(x) +
∫ t

0

{f(s)− 〈f〉} ds + M.

Finally one gets for any (x, t) ∈ RN × [0,+∞[

|u(x, t)| ≤ ‖u0‖L∞(RN ) + 2‖U‖L∞(RN ) + 2‖f − 〈f〉‖L1(0,T ) =: C2. (32)

By using the results in [19] we have

|u(x, h)− u0(x)| ≤ C1h, ∀ (x, h) ∈ RN × [0,+∞[,

where C1 = sup{|f(s) − H(y, z, p)| : (y, s, z, p) ∈ RN × R × R × RN , |z| ≤
‖u0‖L∞(RN ), |p| ≤ ‖Du0‖L∞(RN )}. We obtain also for any (x, t, h) ∈ RN × [0,+∞[ 2

by comparison results

−2h‖f‖L∞(R)−C1h≤u(x, t+h)−u(x, t)−
∫ t

0

{f(s+h)−f(s)}ds≤2h‖f‖L∞(R)+C1h,

and therefore

|u(x, t + h)− u(x, t)| ≤ (4‖f‖L∞(R) + C1)h, ∀ (x, t, h) ∈ RN × [0,+∞[ 2. (33)

By the hypothesis (7) and using similar arguments as those in the proof of Theorem
5 we can prove that u is lipschitz with respect to x, uniformly for t ∈ [0,+∞[

|u(x, t)− u(y, t)| ≤ K · |x− y|, ∀ x, y ∈ RN , t ∈ [0,+∞[. (34)

We prove now the second statement, the last one following in a similar way.
2) Assume that

u0(x) ≤ u(x, T ), ∀ x ∈ RN . (35)
Consider the sequence of functions (uk)k≥0 given by uk(x, t) = u(x, t+kT ), ∀ (x, t) ∈
RN × [0, T ], k ≥ 0. Since f is T periodic in time we have for any k ≥ 0

∂tu
k + H(x, uk, Duk) = f(t), (x, t) ∈ RN × [0, T ]. (36)

Observe that the sequence (uk)k≥0 is nondecreasing. Indeed, by (36) it is sufficient
to check that

uk(x, 0) ≤ uk+1(x, 0), x ∈ RN , k ≥ 0. (37)
By (35) observe that the above inequality holds true for k = 0. Assume now that
(37) holds for some k ≥ 0 and let us prove that the same inequality is valid for k+1.
By the comparison result we have uk(x, t) ≤ uk+1(x, t), ∀ (x, t) ∈ RN × [0, T ]. In
particular, for t = T one gets for any x ∈ RN

uk+1(x, 0) = u(x, (k + 1)T ) = uk(x, T ) ≤ uk+1(x, T ) = u(x, (k + 2)T ) = uk+2(x, 0).

Using the estimates (32), (33), (34) we can extract a subsequence (ukr )r which
converges uniformly on compact sets of RN×[0, T ]. And by monotonicity we deduce
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that all the sequence (uk)k≥0 converges uniformly on compact sets of RN × [0, T ]
towards a bounded lipschitz function ϕ

lim
k→+∞

uk(x, t) = lim
k→+∞

u(x, t + kT ) = ϕ(x, t), ∀ (x, t) ∈ RN × [0, T ].

Observe that we have for any x ∈ RN

ϕ(x, 0) = lim
k→+∞

uk(x, 0) = lim
k→+∞

u(x, kT )

= lim
k→+∞

u(x, (k + 1)T ) = lim
k→+∞

uk(x, T ) = ϕ(x, T ),

and therefore we can extend ϕ by periodicity over RN × R. By passing to the
limit with respect to k in (36) we deduce by the stability result for continuous
viscosity solutions that ∂tϕ+H(x, ϕ, Dϕ) = f(t), (x, t) ∈ RN×]0, T [, and thus, by
Proposition 2, ϕ is a time periodic viscosity solution of (20). It remains to check
the minimality of the solution ϕ. Notice that uk(x, 0) ≥ u0(x), ∀ x ∈ RN , k ≥ 0,
and therefore we have ϕ(x, 0) ≥ u0(x), ∀ x ∈ RN . Consider now another time
periodic viscosity solution ψ of (20) such that ψ(x, 0) ≥ u0(x), ∀ x ∈ RN . By the
comparison result one then has ψ(x, t) ≥ u(x, t), ∀ (x, t) ∈ RN × [0,+∞[, implying
that

ψ(x, t) = ψ(x, t + kT ) ≥ u(x, t + kT ) = uk(x, t), ∀ (x, t) ∈ RN × [0, T ], ∀ k ≥ 0.

By passing to the limit with respect to k we obtain

ψ(x, t) ≥ lim
k→+∞

uk(x, t) = ϕ(x, t), ∀ (x, t) ∈ RN × [0, T ].

In the particular case of hamiltonians non depending on u the previous theorem
ensures the convergence towards periodic fronts. Indeed, let H = H(x, p) be a
hamiltonian which belongs to BUC(RN ×BR) ∀ R > 0 and satisfies
lim|p|→+∞H(x, p) = +∞ uniformly with respect to x ∈ RN , f a time periodic
continuous function and u a viscosity solution of

∂tu + H(x,Du) = f(t), (x, t) ∈ RN×]0,+∞[,

with a bounded lipschitz initial condition u0. Assume also that there is a bounded
viscosity solution of H(x,DU) = λ, x ∈ RN for some λ ∈ R. Take µ = 〈f〉 − λ
and consider uµ(x, t) = u(x, t)− µt, (x, t) ∈ RN × [0,+∞[, fµ(t) = f(t)− µ, t ∈ R.
Obviously we have{

∂tuµ + H(x,Duµ) = fµ(t), (x, t) ∈ RN×]0,+∞[,

uµ(x, 0) = u0(x), x ∈ RN .

By Proposition 7 we deduce that u(x, t) − µt − ϕ(x, t) converges to 0 when t →
+∞ if the initial condition is such that u0(x) ≤ u(x, T ) − µT, x ∈ RN (resp.
u0(x) ≥ u(x, T ) − µT, x ∈ RN ) and ϕ is the minimal (resp. maximal) time
periodic viscosity solution of ∂tϕ+H(x,Dϕ) = f(t)−µ, (x, t) ∈ RN ×R, satisfying
ϕ(x, 0) ≥ u0(x), x ∈ RN (resp. ϕ(x, 0) ≤ u0(x), x ∈ RN ).

We have the following analogous result concerning the convergence towards steady
states. The proof is left to the reader.

Proposition 8. Let H = H(x, z, p) be a hamiltonian verifying (10), (7), (8) and
u0 ∈ W 1,∞(RN ). We assume that there is a bounded viscosity solution U for

H(x,U,DU) = λ, x ∈ RN , (38)
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and we denote by u the unique viscosity solution of
{

∂tu + H(x, u, Du) = λ, (x, t) ∈ RN×]0,+∞[,

u(x, 0) = u0(x), x ∈ RN .
(39)

1) If the initial condition u0 is a viscosity subsolution of (38) then we have

lim
t→+∞

u(x, t) = ϕ(x), uniformly for x in compact sets of RN ,

where ϕ is the minimal viscosity solution of (38) verifying ϕ(x) ≥ u0(x), x ∈ RN ;
2) If the initial condition u0(x) is a viscosity supersolution of (38) then we have

lim
t→+∞

u(x, t) = Φ(x), uniformly for x in compact sets of RN ,

where Φ is the maximal viscosity solution of (38) verifying Φ(x) ≤ u0(x), x ∈ RN .

Remark 5. Observe that the initial condition of the counterexample (29) doesn’t
meet the hypotheses of the statements 1), 2) in Proposition 8.

5. Asymptotic behaviour for large frequencies. In this section we study the
asymptotic behaviour of time periodic viscosity solutions for high frequencies. Our
convergence result is a direct consequence of Corollary 2. We consider f : R → R
a T periodic continuous function and denote by fn the T

n periodic functions given
by fn(t) = f(nt), ∀t ∈ R. Suppose that for all n ≥ 1 there is a T

n periodic viscosity
solution of

∂tun + H(x, un, Dun) = fn(t), (x, t) ∈ RN × R. (40)

There are several natural questions arising in this context. Does the sequence (un)n

converge? What are the limits in the convergence case? An easy example is the
following. Consider H(u) = γ · u, γ ≥ 0, f(t) = cos t + sin t. Therefore the 2π

n
periodic solution of u′n + γ · un = fn(t), t ∈ R are given by

un(t) =
γ − n

γ2 + n2
cos(nt) +

γ + n

γ2 + n2
sin(nt), t ∈ R.

Observe that limn→+∞ un(t) = 0 uniformly with respect to t ∈ R for all γ ≥
0. Generally we will see that, under appropriate hypotheses the sequence (un)n

converges towards a viscosity solution of (21). This can be justified at least formally
by introducing the fast oscillating variable s = nt and by using the asymptotic
expansion

un(x, t) = u0(x) +
1
n

u1(x, nt) + ... (41)

which is one of the standard tools in homogenization problems, see [5]. Plugging
the ansatz (41) into (40) we obtain

∂su
1(x, s) + ... + H(x, u0(x) +

1
n

u1(x, s) + ..., Du0(x) +
1
n

Du1(x, s) + ...) = f(s),

(x, s) ∈ RN × R.

Since un is T
n periodic with respect to t, we are looking for a T periodic function

u1(x, s) with respect to s. After integration over [0, T ] one gets

1
T

∫ T

0

H(x, u0(x) +
1
n

u1(x, s) + ..., Du0(x) +
1
n

Du1(x, s) + ...) ds = 〈f〉, x ∈ RN .
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After passing to the limit for n → +∞ we deduce formally that limn→+∞ un = u0,
where u0 solves the cell problem (see [14])

H(x, u0, Du0) = 〈f〉, x ∈ RN .

Before formulating our statements let us introduce some notations. Assume that
the hamiltonian H satisfies (10), (6), (8) and that the following condition holds

∃M > 0 such that H(x,−M, 0) ≤ f(t), ∀(x, t) ∈ RN × R. (42)

Suppose also that there is a bounded l.s.c. viscosity supersolution Ṽ ≥ −M of (21).
We construct the viscosity solutions (Vα)α>0 of

α(Vα + M) + H(x, Vα, DVα) = 〈f〉, x ∈ RN .

By the comparison result we obtain easily that −M ≤ Vβ ≤ Vα ≤ Ṽ , 0 < α ≤ β,
and therefore V = supα>0 Vα is a bounded l.s.c. function. We introduce the semi
limits

lim inf?Vα(x) := lim inf
y→x,α↘0

Vα(y), lim sup?Vα(x) := lim sup
y→x,α↘0

Vα(y), ∀ x ∈ RN .

Notice that we have lim inf?Vα(x) = V (x), lim sup?Vα(x) = V ?(x), ∀ x ∈ RN ,
and by using the stability result for semi continuous viscosity solutions (see [1], p.
85) we deduce that V is a bounded l.s.c. viscosity supersolution of (21) and V ?

is a bounded u.s.c. viscosity subsolution of (21) (we say that V is a discontinuous
viscosity solution of (21)). Observe also that V = supα>0 Vα is the minimal bounded
l.s.c. viscosity supersolution of (21) satisfying V ≥ −M . Indeed, if W is a bounded
l.s.c. viscosity supersolution of (21) such that W ≥ −M then by the comparison
result we have W ≥ Vα for any α > 0, implying that W ≥ supα>0 Vα = V . Similarly
we construct the time periodic viscosity solutions (vα)α>0 of

α(vα + M) + ∂tvα + H(x, vα, Dvα) = f(t), (x, t) ∈ RN × R.

As before we obtain −M ≤ vβ ≤ vα, ∀ 0 < α ≤ β. By Corollary 2 we have

|vα(x, t)− Vα(x)| ≤ ‖f − 〈f〉‖L1(0,T ), ∀ (x, t) ∈ RN × R, ∀ α > 0

and we deduce that v = supα>0 vα is a bounded time periodic l.s.c. function. Using
the stability result for semi continuous viscosity solutions yields that lim inf?vα = v
is a bounded time periodic l.s.c. viscosity supersolution of (20) and lim sup?vα =
v? is a bounded time periodic u.s.c. viscosity subsolution of (20). Actually v is
the minimal bounded time periodic l.s.c. viscosity supersolution of (20) satisfying
v ≥ −M .

Theorem 7. Let H = H(x, z, p) be a hamiltonian satisfying (10), (6), (8), (42),
where f is a T periodic continuous function. Suppose also that there is a bounded
l.s.c. viscosity supersolution Ṽ ≥ −M of (21) and denote by V , vn the minimal
stationary, resp. time periodic l.s.c. viscosity supersolution of (21), resp. (40).
Then the sequence (vn)n converges uniformly on RN × R towards V and we have
‖vn − V ‖L∞(RN×R) ≤ 1

n‖f − 〈f〉‖L1(0,T ), ∀n ≥ 1.

Proof. Note that vn = supα>0 vn,α is T
n periodic. We introduce also wn,α(x, t) =

vn,α(x, t
n ), (x, t) ∈ RN × R, which is T periodic. As vn,α satisfies in the viscosity

sense α(vn,α +M)+∂tvn,α +H(x, vn,α, Dvn,α) = fn(t), (x, t) ∈ RN ×R, we deduce
that wn,α satisfies in the viscosity sense

α(wn,α + M) + n ∂twn,α + H(x,wn,α, Dwn,α) = f(t), (x, t) ∈ RN × R,
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which we can rewrite as

∂twn,α +
1
n

(αwn,α + H(x,wn,α, Dwn,α)) =
1
n

(f(t)− αM), (x, t) ∈ RN × R. (43)

Recall also that we have in the viscosity sense
1
n

(αVα + H(x, Vα, DVα)) =
1
n

(〈f〉 − αM), x ∈ RN . (44)

By using Corollary 2 we deduce that

wn,α(x, t)− Vα(x) ≤ sup
s≤t

1
n

∫ t

s

(f(σ)− 〈f〉) dσ ≤ 1
n
‖f − 〈f〉‖L1(0,T ),

and similarly Vα(x) − wn,α(x, t) ≤ 1
n‖f − 〈f〉‖L1(0,T ), ∀n ≥ 1. We obtain for all

n ≥ 1 ∣∣∣∣vn,α

(
x,

t

n

)
− Vα(x)

∣∣∣∣ ≤
1
n
‖f − 〈f〉‖L1(0,T ),

and after passing to the limit for α ↘ 0 one gets for all (x, t) ∈ RN × R
∣∣∣∣vn

(
x,

t

n

)
− V (x)

∣∣∣∣ ≤
1
n
‖f − 〈f〉‖L1(0,T ).

Finally we deduce that ‖vn − V ‖L∞(RN×R) ≤ 1
n‖f − 〈f〉‖L1(0,T ) for all n ≥ 1.

Remark 6. With the above notations we have for all n ≥ 1

|vn(x, t + h)− vn(x, t)| ≤ 2 · |h| · ‖f‖L∞(R), ∀ (x, t) ∈ RN × R, ∀ h ∈ R.

Proof. Note that zn,α(x, t) = wn,α(x, t+h) is T periodic and satisfies in the viscosity
sense

∂tzn,α +
1
n

(αzn,α +H(x, zn,α, Dzn,α)) =
1
n

(f(t+h)−αM), (x, t) ∈ RN ×R. (45)

Now by using (43), (45) and Corollary 2 we obtain

wn,α(x, t + h)− wn,α(x, t) ≤ sup
s≤t

1
n

∫ t

s

(f(σ + h)− f(σ)) dσ ≤ 2
n
· |h| · ‖f‖L∞(R).

We deduce that vn,α

(
x, t+h

n

) − vn,α

(
x, t

n

) ≤ 2
n · |h| · ‖f‖L∞(R), ∀ n ≥ 1, x ∈ RN ,

t, h ∈ R. Our conclusion follows easily after passing to the limit for α ↘ 0.

Remark 7. If hypothesis (6) is replaced by (7) we obtain that for α > 0, n ≥ 1
the functions Vα, V, vn,α, vn are uniformly lipschitz with respect to x ∈ RN , resp.
(x, t) ∈ RN × R. In particular V = V ? and vn = v?

n are continuous viscosity
solutions of (21), resp. (40).

6. Almost periodic viscosity solutions. In this section we generalize the results
obtained for time periodic viscosity solutions to the class of almost-periodic viscosity
solutions. We recall briefly the notion of almost-periodic function and some basic
properties. For more details on the theory of almost-periodic functions the reader
can refer to [7].

Proposition 9. Let f : R→ R be a continuous function. The following conditions
are equivalent
1) ∀ ε > 0, ∃ l(ε) > 0 such that ∀ a ∈ R, ∃ τ ∈ [a, a + l(ε)[ satisfying

|f(t + τ)− f(t)| < ε, ∀t ∈ R ; (46)
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2) ∀ε > 0, there is a trigonometric polynomial Tε(t) =
∑n

k=1{ak · cos(λkt) + bk ·
sin(λkt)} where ak, bk, λk ∈ R, 1 ≤ k ≤ n such that |f(t)− Tε(t)| < ε, ∀t ∈ R ;
3) for all real sequence (hn)n there is a subsequence (hnk

)k such that (f(·+ hnk
))k

converges uniformly on R.

Definition 1. We say that a continuous function f is almost-periodic iff f satisfies
one of the previous three conditions.

A number τ verifying (46) is called ε almost-period. By using Proposition 9 we
obtain easily the following properties of almost-periodic functions.

Proposition 10. Assume that f : R → R is almost-periodic. Then f is bounded
uniformly continuous function.

Another important property is the following.

Proposition 11. Assume that f : R→ R is almost-periodic. Then 1
T

∫ a+T

a
f(t) dt

converges as T → +∞ uniformly with respect to a ∈ R. Moreover the limit does not
depend on a and it is called the average of f

∃〈f〉 := lim
T→+∞

1
T

∫ a+T

a

f(t) dt, uniformly with respect to a ∈ R.

Note that if f is periodic then 〈f〉 coincides with the usual definition of the
mean of f over one period. We finish this brief introduction on the notion of
almost-periodicity with the following result concerning primitives of almost-periodic
functions.

Proposition 12. Assume that f : R → R is almost-periodic and denote by F a
primitive of f . Then F is almost-periodic iff F is bounded.

In the following we adapt the results of previous sections for almost-periodic
viscosity solutions.

Definition 2. We say that u : RN ×R→ R is almost-periodic in t uniformly with
respect to x if u is continuous in t uniformly with respect to x and ∀ ε > 0, ∃ l(ε) > 0
such that all interval of length l(ε) contains a number τ which is ε almost-period
for u(x, ·), ∀x ∈ RN

|u(x, t + τ)− u(x, t)| < ε, ∀(x, t) ∈ RN × R. (47)

We establish existence and uniqueness results for hamiltonians H = H(x, z, p)
satisfying (5). For the uniqueness we have the more general result.

Proposition 13. Let u a bounded u.s.c. viscosity subsolution of ∂tu+H(x, t, u, Du)=
f(x, t), in RN×R and v a bounded l.s.c. viscosity supersolution of ∂tv+H(x, t, v,Dv)=
g(x, t), in RN×R where f, g ∈ BUC(RN×R) and (5), (6), (8) hold uniformly for
t ∈ R. Then we have for all t ∈ R

sup
x∈RN

(u(x, t)− v(x, t))+ ≤ e−γt

∫ t

−∞
eγσ sup

x∈RN

(f(x, σ)− g(x, σ))+ dσ.

Moreover, the hypothesis (6) can be replaced by u ∈ W 1,∞(RN×R) or v ∈ W 1,∞(RN×
R).

Proof. Take t0, t ∈ R, t0 ≤ t and by using Corollary 1 write for all x ∈ RN

u(x, t)−v(x, t) ≤ e−γ(t−t0) ·(‖u‖∞+‖v‖∞)+e−γt

∫ t

t0

eγσ sup
y∈RN

(f(y, σ)−g(y, σ))+ dσ,
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where γ = γR0 , R0 = max(‖u‖∞, ‖v‖∞). The conclusion follows by passing t0 →
−∞.

We concentrate now on the existence part. We will see that the proof is a little
more complicated than in the periodic case.

Proposition 14. Assume that f : R → R is almost-periodic and that the hamil-
tonian H = H(x, z, p) satisfies the hypotheses (5), (6), (8) and ∃M > 0 such that
H(x,−M, 0) ≤ f(t) ≤ H(x,M, 0), ∀(x, t) ∈ RN × R. Then there is a time almost-
periodic viscosity solution in BUC(RN×R) of ∂tu+H(x, u, Du) = f(t), in RN×R.

Proof. For all n ≥ 1 we consider the unique viscosity solution of the problem{
∂tun + H(x, un, Dun) = f(t), (x, t) ∈ RN×]− n, +∞[,

un(x,−n) = 0, x ∈ RN .
(48)

Such a solution exists, cf. Theorem 4. We will prove that for all t ∈ R, (un(t))n≥−t

converges to an almost-periodic viscosity solution of ∂tu + H(x, u, Du) = f(t), in
RN × R. Since ∓M is sub/supersolution of ∂tu + H = f we deduce by Theorem 3
that −M ≤ un(x, t) ≤ M , ∀(x, t) ∈ RN × [−n, +∞[. Consider γ = γM > 0. Take
t ∈ R and for m ≥ n large enough, by Proposition 3 we can write for all x ∈ RN ,
∀t ≥ t0 ≥ −n

|un(x, t)− um(x, t)| ≤ e−γ(t−t0) · (‖un‖∞ + ‖um‖∞) ≤ e−γ(t−t0) · 2M.

For t0 = −n we deduce that |un(x, t)−um(x, t)| ≤ 2M ·e−γt ·e−γn and thus there is
limn→+∞ un(x, t) = u(x, t), ∀(x, t) ∈ RN ×R. Moreover (un)n converges uniformly
on RN × [a,+∞[, ∀a ∈ R. In particular we obtain that u ∈ BUC(RN × [a, b]),
∀a, b ∈ R, a ≤ b. By using the stability result for continuous viscosity solutions we
deduce that u verifies in the viscosity sense ∂tu+H(x, u, Du) = f(t), in RN×R. We
have to prove that u is almost-periodic. For all ε > 0 consider l(γ · ε) such that any
interval of length l(γ · ε) contains a γ · ε almost-period of f . We will show that any
interval of length l(γ ·ε) contains a number τ which is an ε almost-period for u(x, ·),
∀x ∈ RN . Indeed, consider an interval of length l(γ · ε), take τ a γ · ε almost-period
of f and let us fix t̃ ∈ R. Observe that the function vn : RN × [−n − τ, +∞[→ R,
vn(x, t) = un(x, t + τ) solves in the viscosity sense

∂tvn + H(x, vn, Dvn) = f(t + τ), (x, t) ∈ RN×]− n− τ, +∞[.

By Corollary 1 we have for all t ≥ tn = max{−n,−n− τ}

eγt|un(x, t)− vn(x, t)| ≤ eγtn · (‖un‖∞ + ‖vn‖∞) +
∫ t

tn

eγσ|f(σ + τ)− f(σ)| dσ.

In particular for t = t̃ and n large enough we deduce

|un(x, t̃)− un(x, t̃ + τ)| ≤ 2M · e−γ(t̃−tn) + e−γt̃

∫ t̃

tn

eγσγε dσ ≤ 2M · e−γ(t̃−tn) + ε.

By passing n → +∞ we have tn → −∞ and therefore

|u(x, t̃)− u(x, t̃ + τ)| ≤ ε, (x, t̃) ∈ RN × R.

Since we already know that u ∈ BUC(RN × [a, b]), ∀a, b ∈ R, a ≤ b, by time
almost-periodicity we deduce also that u ∈ BUC(RN × R).

Now we are ready to study the case of hamiltonians satisfying only (10). We
have the following theorem analogous to Theorem 5.
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Theorem 8. Let H = H(x, z, p) be a hamiltonian verifying the hypotheses (10),
(7), (8), sup{|H(x, 0, 0)| : x ∈ RN} = C < +∞ and f be a time almost-periodic
function such that t → F (t) =

∫ t

0
{f(σ) − 〈f〉} dσ is bounded on R. Then there

is a bounded lipschitz time almost-periodic viscosity solution of (20) iff there is a
bounded viscosity solution of (21).

Proof. Assume that there is a bounded viscosity solution V of (21). Since the
hamiltonian satisfies (7) we deduce that V is a lipschitz function. For any α > 0
take Mα = ‖V ‖L∞(RN ) + 1

α (C + ‖f‖L∞(R)) and observe that

α(−Mα−V (x))+H(x,−Mα, 0)≤f(t)≤α(Mα−V (x))+H(x,Mα, 0),∀ (x, t) ∈ RN×R.

Therefore we can construct the family of solutions Vα for

α(Vα − V (x)) + H(x, Vα, DVα) = 〈f〉, x ∈ RN ,

and, cf. Propositions 13, 14, the family of time almost-periodic solutions vα for

α(vα − V (x)) + ∂tvα + H(x, vα, Dvα) = f(t), (x, t) ∈ RN × R.

In fact we have Vα = V for any α > 0 and

vα(x, t)−V (x)=vα(x, t)−Vα(x)≤sup
s≤t

∫ t

s

{f(σ)−〈f〉}dσ=sup
s≤t

{F (t)−F (s)}≤2‖F‖∞.

Similarly one gets V (x)− vα(x, t) = Vα(x)− vα(x, t) ≤ 2‖F‖∞, which implies that
the family (vα)α is also bounded. As in the periodic case we deduce that (vα)α>0

are uniformly lipschitz and we can extract a sequence which converges uniformly
on compact sets of RN × R towards a bounded lipschitz solution v of (20). The
difficult thing to do is to check that v is almost-periodic. By the hypotheses and
Proposition 12 we deduce that F is almost-periodic and thus, for all ε > 0 there is
l( ε

2 ) such that any interval of length l( ε
2 ) contains an ε

2 almost-period of F . Take
an interval of length l( ε

2 ) and τ an ε
2 almost-period of F in this interval. We have

for all α > 0, (x, t) ∈ RN × R

vα(x, t + τ)− vα(x, t) ≤ sup
s≤t

∫ t

s

{f(σ + τ)− f(σ)} dσ

= sup
s≤t

{∫ t+τ

s+τ

(f(σ)− 〈f〉) dσ −
∫ t

s

(f(σ)− 〈f〉) dσ

}

= sup
s≤t

{(F (t + τ)− F (t))− (F (s + τ)− F (s))}

≤ ε. (49)

After passing to the limit for α ↘ 0 one gets v(x, t + τ)− v(x, t) ≤ ε and similarly
v(x, t) − v(x, t + τ) ≤ ε, ∀(x, t) ∈ RN × R. By using the uniform continuity of F ,
we can prove exactly in the same manner that v is continuous in t uniformly with
respect to x. The converse implication follows easily.

We focus now our attention to the asymptotic behaviour of the almost-periodic
solutions of (40) when f is almost-periodic function. Notice that for all n ≥ 1 the
function fn given by fn(t) = f(nt) is almost-periodic and has the same average as f .
The reader can easily adapt the proof of Theorem 7 to the case of almost-periodic
functions. We have the following result.
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Theorem 9. Let H = H(x, z, p) be a hamiltonian satisfying (10), (6), (8), (42)
where f is almost-periodic function. Suppose also that there is a bounded l.s.c.
viscosity supersolution Ṽ ≥ −M of (21), that t → F (t) =

∫ t

0
{f(s) − 〈f〉}ds is

bounded and denote by V , vn the minimal stationary, resp. time almost-periodic
l.s.c. viscosity supersolution of (21), resp. (40). Then the sequence (vn)n converges
uniformly on RN × R towards V and ‖vn − V ‖L∞(RN×R) ≤ 2

n‖F‖L∞(R), ∀n ≥ 1.

Acknowledgements. The authors are thankful to Prof. J.-M. Roquejoffre and to
the referees for helpful remarks and advices.

REFERENCES
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