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Abstract. We prove the existence of weak solutions for the Vlasov-Poisson problem with time periodic boundary
conditions in one dimension. We consider boundary data with finite charge and current. This analysis is based
upon the mild formulation for the regularized Vlasov-Poisson equations.
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1. Introduction. Many studies in physics and applied physics are modeled by the kinetic
equations (Vlasov, Boltzmann, etc.) coupled with the equations of electromagnetism (Poisson,
Maxwell). A few domains of application are semiconductors, particle accelerators, electron guns,
etc. Various results were shown for free space systems. Weak solutions of the Vlasov-Poisson
equations were constructed by Arseneev [2], Illner and Neunzert [16], Horst and Hunze [15]. The
existence of weak solutions of the Vlasov-Maxwell system was shown by DiPerna and Lions [11].

There are few mathematical works on boundary value problems. For the stationary case results
have been obtained by Greengard and Raviart [13] for the one dimensional Vlasov-Poisson system
and by Poupaud [17] for the multidimensional Vlasov-Maxwell system. An asymptotic analysis of
the Vlasov-Poisson system has been performed by Degond and Raviart in [10] in the case of the
plane diode. Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system
are obtained by Abdallah in [1]. The regularity of the solution for the Vlasov-Maxwell system in
a half line has been analysed by Guo in [14].

The periodic case has been studied as well (see [5], [6], [7]), but existence results are available
only under some restrictive hypothesis concerning the velocity support of the boundary incoming
particle distribution and the potential data. Basically the above model doesn’t handle charge flows
with small incoming velocities. The main idea was to keep only the particles which are travelling
through the domain in finite time, which makes possible to get estimates for the charge and current
densities.

In this paper we study the existence for the 1D Vlasov-Poisson problem with time periodic
boundary conditions :

∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv,

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0), t ∈ Rt

E(t, x) = −∂xU, −∂2
xU = ρ(t, x) :=

∫

Rv
f(t, x, v)dv, (t, x) ∈ Rt×]0, 1[,

U(t, x = 0) = ϕ0(t), U(t, x = 1) = ϕ1(t), t ∈ Rt.

The function f(t, x, v) denotes the particle distribution depending on the time t, the position x
and the velocity v. The electric field E(t, x) derives from an electrostatic potential U satisfying
the Poisson equation with charge density ρ. The boundary conditions g0, g1, ϕ0, ϕ1 are supposed
T -periodic in time, for some T > 0.

The main goal of this paper is to establish the existence in the general case, under minimal
hypothesis, say for incoming particle distribution with finite charge (as has been shown for the
stationary case in [13]). In this case we prove that the solution f belongs to L1. The major difficulty
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(33).(0)3.81.66.66.23, mbostan@descartes.univ-fcomte.fr

1



2 M. BOSTAN

when studying this problem is the lack of natural a-priori estimate of the solution. In fact, since we
are looking for permanent regimes, initial datas are not available and therefore applying directly
conservation laws like :

∫ 1

0

∫

Rv
f(t, x, v)dxdv ≤

∫ 1

0

∫

Rv
f(t0, x, v)dxdv +

∫ t

t0

∫

v>0

vg0(s, v)dsdv

−
∫ t

t0

∫

v<0

vg1(s, v)dsdv, t > t0,

doesn’t provide any estimate as long we don’t have any information on f(t0). By the other hand,
even if there is t0 ∈ R such that f(t0) ∈ L1, the previous inequality gives us only an estimate of
the charge in terms of the incoming current whereas the natural estimate would be in terms of the
incoming charge. In fact we can prove that if the incoming particle distribution has finite current
(resp. kinetic energy) then the solution verify |v|f ∈ L1 (resp. |v|2f ∈ L1).

This work begins with the study of linear time periodic Vlasov equation (the electric field is
assumed to be known and T -periodic). We introduce the weak and mild formulations and recall
some usual computations for such solutions. We introduce also a perturbed Vlasov equation. In
this section we present a very important lemma concerning bounds for the velocity change along
the characteristics (see Lemma 2.11) which states that along all characteristics associated to a
regular field the following inequality holds :

| V (s1)− V (s2) | ≤ C · ‖E‖1/2L∞ , ∀ s1, s2,

where C is a constant depending only on the diameter of the spatial domain Ω =]0, 1[ here.
In Section 3 the Vlasov-Poisson system is analysed. The existence of a T -periodic solution

will be obtained by the application of the Schauder fixed point theorem. The non uniqueness of
the solution for the Vlasov problem doesn’t allow to directly apply the fixed point method. We
need to introduce a perturbed problem by adding an absorption term αf in the Vlasov equation,
where α > 0 is a small parameter, and to regularize the electric field, which allows to use the mild
formulation. The perturbed problem writes :

αf(t, x, v) + ∂tf + v · ∂xf + Eε(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv,

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0), t ∈ Rt,

Eε(t, x) =
∫

R
ζε(t− s)ds

∫ 1

0

ζε(x− y)E(s, y)dy, (t, x) ∈ Rt×]0, 1[,

where E is the electric field given by the Poisson equation with source ρ(t, x) =
∫
Rv f(t, x, v)dv :

E(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[,

and ζε(·) = 1
εζ( ·ε ), ε > 0 is a mollifier sequence. Clearly, the perturbed Vlasov problem has unique

T -periodic weak solution and the existence for the non linear perturbed problem follows easily by
fixed point argument. Indeed, in this case (α > 0 fixed) we obtain immeadeately the following
estimate for the T -periodic weak solution of the perturbed Vlasov problem :

∫ 1

0

∫

Rv
f(t, x, v)dxdv ≤

(
1
αT

+ 1
)(∫ T

0

∫

v>0

vg0(t, v)dtdv −
∫ T

0

∫

v<0

vg1(t, v)dtdv

)
, t ∈ Rt,

which allows to define a fixed point application.
Obviously, the main difficulty consists of finding uniform estimates for the perturbed problems

with α > 0, ε > 0. In Section 4 we obtain estimates for the total charge and current and the electric
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field. The main tool is the Lemma 2.11 combined with the mild formulation. In fact the previous
lemma allows to get bounds on the particle lifetimes at least for particles with initial velocities v
large enough. Indeed, since along a characteristic we have | V (s)−v | ≤ C ·‖E‖1/2L∞ , sin ≤ s ≤ sout,
we deduce that |V (s)| is bounded from below |V (s)| ≥ |v| − C · ‖E‖1/2L∞ and therefore :

sout − sin ≤ 1

|v| − C · ‖E‖1/2L∞
, if |v| > C · ‖E‖1/2L∞ .

These arguments work for bounded spatial domains.
In Section 5 we prove the existence of the T -periodic weak solution for the Vlasov-Poisson

system by passing α → 0. In order to pass to the limit in the non linear term En · ∂vfn we can
combine the strong convergence in L1 of En with the weak ? convergence in L∞ of fn. Some
generalizations are analysed as well. Basically, for incoming datas satisfying |v|pg ∈ L1 for some
integer p ≥ 1 we prove that |v|pf ∈ L1.

We end this paper with several remarks and conclusions. We investigate the Vlasov-Poisson
system with several species of particles as well as the case of attractive (gravitational) potentials.

2. The Vlasov equation. The equation which governs the transport of charged particles is
called the Vlasov equation and in one dimension is given by :

∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv, (2.1)

where f(t, x, v) is the density of particles under the action of the electric field E(t, x) = −∂xU and
U(t, x) is the potential. Charged particles are injected through the boundary :

f(t, x, v) = g(t, x, v), (t, x, v) ∈ Rt × Σ−, (2.2)

where Σ− is the subset of the boundary of the phase space ]0, 1[×Rv corresponding to the incoming
velocities :

Σ− = {(0, v) | v > 0} ∪ {(1, v) | v < 0} = Σ−0 ∪ Σ−1 .

Similarly we define also Σ+ = {(0, v) | v < 0} ∪ {(1, v) | v > 0} = Σ+
0 ∪ Σ+

1 which corresponds
to the outgoing velocities and Σ0 = {(0, 0), (1, 0)}. With the notation g|Rt×Σ−0

= g0, g|Rt×Σ−1
= g1

the previous boundary condition (2.2) writes :

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0). (2.3)

The functions g0, g1 ≥ 0 which describe the emission profiles of the injected charged particles are
supposed T -periodic in time, T > 0. Now let us briefly recall the definition of weak and mild
solutions for the Vlasov problem (2.1), (2.3).

2.1. Weak solution for the Vlasov problem. We introduce the spaces L−i , L−i,loc of
incoming data with bounded or locally bounded fluxes :

L−i = {g(t, v) | v · g(t, v) ∈ L1(]0, T [×Σ−i )},

L−i,loc = {g(t, v) | v · g(t, v) ∈ L1
loc(]0, T [×Σ−i )},

where i = 0, 1. We shall use also the following notations :

Gp :=
1
T

∫ T

0

∫

v>0

|v|pg0(t, v)dtdv +
1
T

∫ T

0

∫

v<0

|v|pg1(t, v)dtdv, 0 ≤ p < +∞,

and :

G∞ := max{‖g0‖L∞(Rt×Σ−0 ), ‖g1‖L∞(Rt×Σ−1 )},
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when g0, g1 belong to the corresponding spaces.
Definition 2.1. Assume that E ∈ L∞(Rt×]0, 1[) and g0 ∈ L−0,loc, g1 ∈ L−1,loc are T -periodic

functions in time. We say that f ∈ L1
loc(]0, T [×]0, 1[×Rv) is a T -periodic weak solution for the

Vlasov problem (2.1), (2.3) iff :

−
∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)(∂tϕ+ v · ∂xϕ+ E(t, x) · ∂vϕ)dtdxdv=

∫ T

0

∫

v>0

vg0(t, v)ϕ(t, 0, v)dtdv

−
∫ T

0

∫

v<0

vg1(t, v)ϕ(t, 1, v)dtdv,

for all test function ϕ ∈ Tw where :

Tw = {ϕ ∈W 1,∞(Rt×]0, 1[×Rv) | ϕ is T -periodic in time , ϕ|Rt×Σ+ = 0,

∃R > 0 : supp(ϕ) ⊂ Rt × [0, 1]×BR}.

2.2. Mild solution for the Vlasov problem. Throughout this paper we need to consider
also some special solutions for (2.1), (2.3), which are called mild solutions or solutions by character-
istics. These solutions require more regularity for the electric field and they are particular case of
weak solutions. Assure that E ∈ L∞(Rt;W 1,∞(]0, 1[)) is T -periodic and for (t, x, v) ∈ Rt×]0, 1[×Rv
denote by (X(s; t, x, v), V (s; t, x, v)) the unique solution for the ordinary differential system of equa-
tions :

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s,X(s; t, x, v)), (2.4)

for s ∈ (sin, sout) which verify the condition :

X(s = t; t, x, v) = x, V (s = t; t, x, v) = v. (2.5)

Here sin = sin(t, x, v) (resp. sout = sout(t, x, v)) represents the incoming (resp. outgoing) time of
the particle in the domain ]0, 1[ defined by :

sin(t, x, v) = sup{s ≤ t : (X(s; t, x, v), V (s; t, x, v)) ∈ Σ−} ≥ −∞,
and :

sout(t, x, v) = inf{s ≥ t : (X(s; t, x, v), V (s; t, x, v)) ∈ Σ+ ∪ Σ0} ≤ +∞.
Using the previous notations, the total travel time through the domain (lifetime) writes τ(t, x, v) =
sout(t, x, v)− sin(t, x, v) ≤ +∞. Now we replace in the Definition 2.1 the function ∂tϕ+ v · ∂xϕ+
E(t, x) · ∂vϕ by ψ, which gives after integration along the characteristics curves :

ϕ(t, x, v) = −
∫ sout(t,x,v)

t

ψ(s,X(s; t, x, v), V (s; t, x, v)) ds,

and we define the mild solutions as follows :
Definition 2.2. Assume that E ∈ L∞(Rt;W 1,∞(]0, 1[)) and g0 ∈ L−0,loc, g1 ∈ L−1,loc are

T -periodic functions in time. We say that f ∈ L1
loc(]0, T [×]0, 1[×Rv) is a T -periodic mild solution

for the Vlasov problem (2.1), (2.3) iff :
∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)ψ(t, x, v)dtdxdv=

∫ T

0

∫

v>0

vg0(t, v)
∫ sout(t,0,v)

t

ψ(s,X(s; t, 0, v), V (s; t, 0, v))dsdtdv

−
∫ T

0

∫

v<0

vg1(t, v)
∫ sout(t,1,v)

t

ψ(s,X(s; t, 1, v), V (s; t, 1, v))dsdtdv,
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for all test function ψ ∈ Tm where :

Tm = {ψ ∈ L∞(Rt×]0, 1[×Rv) | ψ is T -periodic in time ,

∃R > 0 : supp(ψ) ⊂ Rt × [0, 1]×BR}.

Sometimes we shall use the notations :

(X(s), V (s)) = (X(s; t, x, v), V (s; t, x, v)),

(X0(s), V 0(s)) = (X(s; t, 0, v), V (s; t, 0, v)),

(X1(s), V 1(s)) = (X(s; t, 1, v), V (s; t, 1, v)),

and :

sout = sout(t, x, v), s0
out = sout(t, 0, v), s1

out = sout(t, 1, v),

sin = sin(t, x, v), s0
in = sin(t, 0, v), s1

in = sin(t, 1, v).

Remark 2.3. In fact the mild solution is given by f(t, x, v) = gi(sin, V (sin; t, x, v)) if
sin(t, x, v) > −∞ and X(sin; t, x, v) = i, where i = 0, 1 and f(t, x, v) = 0 otherwise.

Remark 2.4. Since E is T -periodic we have X(s+T ; t+T, x, v) = X(s; t, x, v), V (s+T ; t+
T, x, v) = V (s; t, x, v), sin(t+ T, x, v) = sin(t, x, v) + T for all (s, t, x, v) ∈ Rs × Rt×]0, 1[×Rv and
thus, by the periodicity of g0, g1 it follows that the mild solution is T -periodic.

Remark 2.5. There is in general no uniqueness for the weak solution because f can take
arbitrarily values on the characteristics such that sin = −∞. But it is possible to prove that
the mild solution is the unique minimal solution for the transport equation (see [17] and [4] for
definitions and proofs).

2.3. Weak and mild solutions for the perturbed Vlasov problem. We intend to apply
a fixed point procedure on the electric field. For example let us define the following map :

E → fE solution of the Vlasov problem → ρE charge density of fE

→ E1 solution of the Poisson problem whith source ρE .

Unfortunately the above map is not well defined since we have no uniqueness for the Vlasov
problem. In order to recover uniqueness property we need to introduce an absorption term αf, α >
0 . The perturbed Vlasov equation writes now :

αf(t, x, v) + ∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv. (2.6)

Obviously, the weak and mild formulations previously introduced for the Vlasov problem still hold
for the perturbed problem with the corresponding modifications due to the term αf (when α = 0
we recover the Definitions 2.1 and 2.2) :

Definition 2.6. Under the same hypothesis as in Definition 2.1 we say that f is a T -periodic
weak solution for the perturbed Vlasov problem (2.6), (2.3) iff :

−
∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)(−αϕ+ ∂tϕ+ v · ∂xϕ+ E(t, x) · ∂vϕ)dtdxdv=

∫ T

0

∫

v>0

vg0(t, v)ϕ(t, 0, v)dtdv

−
∫ T

0

∫

v<0

vg1(t, v)ϕ(t, 1, v)dtdv,
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for all test function ϕ ∈ Tw.
Remark 2.7. After multiplication by f and integration on ]0, T [×]0, 1[×Rv we can eas-

ily check that there is a unique weak solution for the perturbed Vlasov problem (see [6] pp. 657,
[3],[12]).

Definition 2.8. Under the same hypothesis as in Definition 2.2 we say that f is a T -periodic
mild solution for the perturbed Vlasov problem (2.6), (2.3) iff :

∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)ψ(t, x, v)dtdxdv=

∫ T

0

∫

v>0

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)ψ(s,X(s; t, 0, v), V (s; t, 0, v))ds

−
∫ T

0

∫

v<0

vg1(t, v)dtdv
∫ s1out

t

e−α(s−t)ψ(s,X(s; t, 1, v), V (s; t, 1, v))ds,

for all test function ψ ∈ Tm.
Remark 2.9. We can easily check that if g0 ∈ L−0 , g1 ∈ L−1 then the mild solution belongs

to L1(]0, T [×]0, 1[×Rv). Indeed, let us consider χ ∈ C1(R), 0 ≤ χ ≤ 1, supp(χ) ⊂ [−2, 2],
χ|[−1,1] = 1. By taking ψR(t, x, v) = χ(v/R) ∈ Tm as test function we have :

∫ T

0

∫ 1

0

∫

|v|<R
f(t, x, v)dtdxdv≤

∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)ψR(t, x, v)dtdxdv

=
∫ T

0

∫

v>0

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)χ(
V 0(s)
R

)ds

−
∫ T

0

∫

v<0

vg1(t, v)dtdv
∫ s1out

t

e−α(s−t)χ(
V 1(s)
R

)ds

≤1
α

(∫ T

0

∫

v>0

vg0(t, v)dtdv −
∫ T

0

∫

v<0

vg1(t, v)dtdv

)
, R > 0.

Thus by passing R→ +∞ we deduce that f belongs to L1(]0, T [×]0, 1[×Rv) and that :

1
T
‖f‖L1 ≤ G1

α
, α > 0. (2.7)

Remark 2.10. Moreover, under the same hypothesis as in the previous remark, if ψ ∈ L∞
is T -periodic with unbounded velocity support, then the mild formulation still holds.

For this let us formulate a lemma concerning bounds for the velocity change along the charac-
teristics. This result is the key point of our analysis and it will be used several times throughout
this paper :

Lemma 2.11. Assume that E ∈ L∞(Rt;W 1,∞(]0, 1[)) is a regular electric field. Then for all
characteristics (X(s), V (s)), sin ≤ s ≤ sout we have :

|V (s1)− V (s2)| ≤ 2
√

2 · ‖E‖1/2L∞ , sin ≤ s1 ≤ s2 ≤ sout.

Proof. If |V (s1,2)| ≤ √2 · ‖E‖1/2L∞ or ‖E‖L∞ = 0 the conclusion follows trivially. Suppose that
‖E‖L∞ > 0, |V (s1)| > √2 · ‖E‖1/2L∞ , for the other case the same argument applies. By integration
along the characteristics curves we find :

V (s) ≥ V (s1)− (s− s1)‖E‖L∞ , s ∈ [s1, s2],

V (s1) ≥ V (s)− (s− s1)‖E‖L∞ , s ∈ [s1, s2],

and also :

1 ≥ X(s)−X(s1) ≥ (s− s1)V (s1)− 1
2

(s− s1)2‖E‖L∞ , s ∈ [s1, s2],
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1 ≥ X(s1)−X(s) ≥ −(s− s1)V (s1)− 1
2

(s− s1)2‖E‖L∞ , s ∈ [s1, s2].

Therefore F (s) := 1
2 (s−s1)2‖E‖L∞−|V (s1)|(s−s1)+1 ≥ 0, s ∈ [s1, s2] and since the discriminant

∆ = |V (s1)|2 − 2‖E‖L∞ is positive it follows that the quadratic function F has two real roots
s1 < r1 < r2 given by :

r1,2 = s1 +
|V (s1)| ∓

√
|V (s1)|2 − 2‖E‖L∞
‖E‖L∞ .

By the other hand we have :

F (s2) =
‖E‖L∞

2

(
s2 − s1 − |V (s1)|

‖E‖L∞
)2

+ 1− |V (s1)|2
2‖E‖L∞ ≥ 0,

and therefore we deduce that :
∣∣∣∣s2 − s1 − |V (s1)|

‖E‖L∞
∣∣∣∣ >

√
∆

‖E‖L∞ .

If s2 − s1 − |V (s1)|/‖E‖L∞ < −√∆/‖E‖L∞ thus by using that |V (s1)| > √2 · ‖E‖1/2L∞ we have :

|V (s1)− V (s2)| ≤ (s2 − s1)‖E‖L∞ ≤ |V (s1)| −
√
|V (s1)|2 − 2‖E‖L∞ <

√
2 · ‖E‖1/2L∞ .

Now let us consider the case when s2 − s1 − |V (s1)|/‖E‖L∞ >
√

∆/‖E‖L∞ which implies that
s2 > s1 + (|V (s1)| + √∆)/‖E‖L∞ = r2. Therefore we have s1 < r1 < r2 < s2 which is in
contradiction with F (s) ≥ 0, s ∈ [s1, s2], since F (s) < 0 for s ∈ (r1, r2) ⊂ [s1, s2].

Now let us consider the mild test function ψR(t, x, v) = ψ(t, x, v) · χ(v/R) ∈ Tm. In order to
simplify the calculation we treat only the terms of the left boundary located in x = 0. Exactly the
same calculus apply for the right boundary in x = 1. We have :

∫ T

0

∫ 1

0

∫

|v|<R
fψdtdxdv+

∫ T

0

∫ 1

0

∫

|v|>R
fψχ(

v

R
)dtdxdv =

∫ T

0

∫

0<v<R1

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)ψχ(
V 0(s)
R

)ds

+
∫ T

0

∫

v>R1

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)ψχ(
V 0(s)
R

)ds+ {right boundary terms}

=I1(R) + I2(R) + I3(R) + I4(R), (2.8)

where R1 = R − 2
√

2 · ‖E‖1/2L∞ . By the previous lemma we deduce that for 0 < v < R1 we have
|V 0(s)| ≤ 2

√
2 · ‖E‖1/2L∞ + v ≤ R and therefore χ(V 0(s)/R) = 1 for s ∈ (t, s0

out) which implies that:

lim
R→+∞

I1(R) =
∫ T

0

∫

v>0

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)ψ(s,X0(s), V 0(s))ds.

On the other hand, since
∣∣∣
∫ s0out
t

e−α(s−t)ψχ(V 0(s)/R)ds
∣∣∣ ≤ ‖ψ‖L∞/α and g0 ∈ L−0 we have also

the convergence :

I2(R) ≤ 1
α
‖ψ‖L∞

∫ T

0

∫

v>R1

vg0(t, v)dtdv → 0,

when R → +∞. Since f belongs to L1(]0, T [×]0, 1[×Rv), ψ ∈ L∞, 0 ≤ χ ≤ 1 we can pass to the
limit in (2.8) for R → +∞ and the mild formulation holds. In particular for ψR = 1{|v|>R} we
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have:
∫ T

0

∫ 1

0

∫

|v|>R
f(t, x, v)dtdxdv=

∫ T

0

∫

v>0

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)1{|V 0(s)|>R}ds+ {...}

=
∫ T

0

∫

v>R1

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)1{|V 0(s)|>R}ds+ {...}

≤1
α

(∫ T

0

∫

v>R1

vg0(t, v)dtdv −
∫ T

0

∫

v<−R1

vg1(t, v)dtdv

)
.

Remark 2.12. If g0 ∈ L−0 , g1 ∈ L−1 and E ∈ L∞ then all T -periodic weak solution for (2.6),
(2.3) belongs to L1(]0, T [×]0, 1[×Rv) and verifies the same estimate (2.7).

Remark 2.13. If g0 ∈ L−0 , g1 ∈ L−1 and E ∈ L∞ then the weak formulation holds also for
test function ϕ ∈W 1,∞ with unbounded support in velocity (take as test function ϕR = ϕ · χ(v/R)
and pass R→ +∞).

3. The Vlasov-Poisson system. The electric field is due to the charge of particles (self-
consistent-field) :

∂xE = −∂2
xU = ρ(t, x) :=

∫

Rv
f(t, x, v)dv, (t, x) ∈ Rt×]0, 1[, (3.1)

and to the applied voltage on the boundary :

U(t, x = 0) = ϕ0(t), U(t, x = 1) = ϕ1(t), t ∈ Rt. (3.2)

As above, the electrostatic potentials ϕ0, ϕ1 are supposed T -periodic in time. The system formed by
the equations (2.1), (3.1) and the boundary conditions (2.3) and (3.2) is called the Vlasov-Poisson
problem (in one dimension). Obviously, in one dimension the Poisson electric field writes :

E(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[,

and therefore we can give the following definition :
Definition 3.1. Assume that g0 ∈ L−0,loc, g1 ∈ L−1,loc, ϕ1 − ϕ0 ∈ L∞(Rt) are T -periodic

functions. We say that (f,E) ∈ L1(]0, T [×]0, 1[×Rv)×L∞(Rt×]0, 1[) is a T -periodic weak solution
for the Vlasov-Poisson problem iff f is a T -periodic weak solution for the Vlasov problem (2.1),
(2.3) corresponding to the electric field E given by the Poisson problem :

E(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[,

with ρ(t, x) :=
∫
Rv f(t, x, v)dv, (t, x) ∈ Rt×]0, 1[.

As it was explained in the paragraph 2.3, we need to consider also a perturbed system. Let us
introduce the notion of T -periodic mild solution for the perturbed Vlasov-Poisson problem. For
this we have to regularize the electric field ; we consider mollifiers ζε(·) = 1

εζ( ·ε ), ε > 0, where
ζ ∈ C∞0 (R), ζ ≥ 0, supp(ζ) ⊂ [−1,+1],

∫
R ζ(u)du = 1.

Definition 3.2. Under the same hypothesis we say that (f,E) ∈ L1(]0, T [×]0, 1[×Rv) ×
L∞(Rt×]0, 1[) is a T -periodic mild solution for the perturbed Vlasov-Poisson problem iff f is the T -
periodic mild solution for the perturbed Vlasov problem (2.6), (2.3) corresponding to the regularized
electric field Eε(t, x) =

∫
R ζε(t−s)ds

∫ 1

0
ζε(x−y)E(s, y)dy and E is given by the Poisson problem :

E(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[.
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3.1. Existence for the perturbed Vlasov-Poisson problem. As a first step in the study
of periodic weak solutions for the Vlasov-Poisson problem we prove the existence for the perturbed
problem. In this section the parameters α, ε > 0 are fixed and we use the Schauder fixed point
theorem. For the moment consider that the electric field is given and let us deduce some bounds
for f in the L1 norm :

Proposition 3.3. Assume that E ∈ L∞(Rt×]0, 1[), g0 ∈ L−0 , g1 ∈ L−1 are T -periodic and
that f is the T -periodic weak solution for (2.1), (2.3). Then f ∈ L∞(Rt;L1(]0, 1[×Rv)) and :

‖f‖L∞(Rt;L1(]0,1[×Rv)) ≤
(

1
α

+ T

)
G1.

Proof. As we saw in the previous section, f ∈ L1(]0, T [×]0, 1[×Rv) and ‖f‖L1 ≤ T
αG1, α > 0.

Thus there is t1 ∈]0, T [ such that :

∫ 1

0

∫

Rv
f(t1, x, v)dxdv ≤ G1

α
.

Now by integration of the perturbated Vlasov equation on ]t1, t[×]0, 1[×Rv where t1 ≤ t ≤ t1 + T
we find :

‖f(t)‖L1 =
∫ 1

0

∫

Rv
f(t, x, v)dxdv ≤

∫ 1

0

∫

Rv
f(t1, x, v)dxdv +

∫ t

t1

∫

v>0

vg0(s, v)dsdv

−
∫ t

t1

∫

v<0

vg1(s, v)dsdv ≤
(

1
α

+ T

)
G1,

and therefore the conclusion follows by periodicity.
Theorem 3.4. Assume that ϕ1 − ϕ0 ∈ L∞(Rt), g0, g1 are T -periodic functions such that :

(H1) G1 =
1
T

∫ T

0

∫

v>0

vg0(t, v)dtdv − 1
T

∫ T

0

∫

v<0

vg1(t, v)dtdv < +∞,
(H∞) G∞=max{‖g0‖L∞(Rt×Σ−0 ), ‖g1‖L∞(Rt×Σ−1 )} < +∞.

Then, for every α, ε > 0 there is a T -periodic mild solution for the perturbed Vlasov-Poisson
problem.

Proof. Let us define Rα =
(
T + 1

α

)
G1 + ‖ϕ1 − ϕ0‖L∞ and consider the set :

Xα,ε = {E ∈ L∞(Rt×]0, 1[) | E(t, x) = E(t+ T, x), (t, x) ∈ Rt×]0, 1[, ‖E‖L∞ ≤ Rα},

which is convex and compact in respect to the weak ? topology of L∞. As fixed point application
we define Fα(E), E ∈ Xα,ε as follows :

Fα,ε(E)(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[, (3.3)

where f is the mild T -periodic solution of (2.6), (2.3) corresponding to the regularized field
Eε(t, x) =

∫
R ζε(t− s)ds

∫ 1

0
ζε(x− y)E(s, y)dy. By the previous Proposition 3.3 we deduce that ρ

belongs to L∞(Rt;L1(]0, 1[)) and from (3.3) it comes that ‖Fα,ε(E)‖L∞ ≤ Rα, E ∈ Xα,ε. Since
Fα,ε(E) is also T -periodic it follows that Fα,ε(Xα,ε) ⊂ Xα,ε. Now let us prove the continuity of
the application Fα,ε. For this, consider a sequence (En)n ⊂ Xα,ε such that En ⇀ E, weakly ? in
L∞(]0, T [×]0, 1[) which implies the pointwise convergence for (t, x) ∈ Rt×]0, 1[ :

En,ε(t, x) =
∫

R
ζε(t−s)ds

∫ 1

0

ζε(x−y)En(s, y)dy →
∫

R
ζε(t−s)ds

∫ 1

0

ζε(x−y)E(s, y)dy = Eε(t, x).
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Thus, by the dominated convergence theorem we obtain that (En,ε)n converges strongly to Eε
in L2(]0, T [×]0, 1[) when n → +∞. Denote by (fn)n the sequence of T -periodic mild solutions
associated to (En,ε)n. Since ‖fn‖L∞ ≤ ‖g‖L∞ we have, at least for a subsequence, that :

fn ⇀ f, weak ? in L∞(]0, T [×]0, 1[×Rv).
As (fn)n are mild solutions, they are also weak solutions and therefore we have for all ϕ ∈ Tw, n :

−
∫ T

0

∫ 1

0

∫

Rv
fn(−αϕ+ ∂tϕ+ v · ∂xϕ+ En,ε(t, x) · ∂vϕ)dtdxdv=

∫ T

0

∫

v>0

vg0(t, v)ϕ(t, 0, v)dtdv

−
∫ T

0

∫

v<0

vg1(t, v)ϕ(t, 1, v)dtdv.

Obviously the following convergence holds :

lim
n→+∞

∫ T

0

∫ 1

0

∫

Rv
fn(−αϕ+ ∂tϕ+ v · ∂xϕ)dtdxdv =

∫ T

0

∫ 1

0

∫

Rv
f(−αϕ+ ∂tϕ+ v · ∂xϕ)dtdxdv.

In order to pass to the limit the other term we remark that since (fn)n are uniformly bounded
in L∞ and ϕ has bounded support in velocity, we have that

∫
Rv fn(t, x, v)∂vϕdv converges to∫

Rv f(t, x, v)∂vϕdv weakly in L2(]0, T [×]0, 1[). Finally, by combining with the strong convergence
of (En,ε)n in L2(]0, T [×]0, 1[) we deduce that :

lim
n→+∞

∫ T

0

∫ 1

0

En,ε(t, x)
∫

Rv
fn(t, x, v)∂vϕdvdtdx =

∫ T

0

∫ 1

0

Eε(t, x)
∫

Rv
f(t, x, v)∂vϕdvdtdx,

and thus f is a T - periodic weak solution for :

αf + ∂tf + v · ∂xf + Eε(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv, f |Rt×Σ− = g.

Since for the perturbed Vlasov problem we have uniqueness for the T -periodic weak solution,
it follows that f is the T -periodic mild solution corresponding to Eε. Note also that, from the
uniqueness it comes also that the whole sequence (fn)n converges weakly ? in L∞. Let us analyse
now the term

∫ x
0
ρn(t, y)dy. We have :

∣∣∣∣
∫ x

0

ρn(t, y)dy
∣∣∣∣ ≤

∫ 1

0

∫

Rv
fn(t, x, v)dxdv ≤

(
1
α

+ T

)
G1, (t, x) ∈ Rt×]0, 1[, ∀n,

and thus (
∫ x

0
ρn(t, y)dy)n converges weakly ? in L∞(]0, T [×]0, 1[). In order to identify the weak ?

limit let us calculate for θ ∈ Cc(]0, T [×]0, 1[) :
∫ T

0

∫ 1

0

∫ x

0

dy

∫

Rv
fn(t, y, v)θ(t, x)dvdtdx =

∫ T

0

∫ 1

0

∫

Rv
fn(t, x, v)

∫ 1

x

θ(t, y)dydtdxdv

=
∫ T

0

∫ 1

0

∫

|v|<R
fn

∫ 1

x

θ(t, y)dydtdxdv +
∫ T

0

∫ 1

0

∫

|v|>R
fn

∫ 1

x

θ(t, y)dydtdxdv = In1 (R) + In2 (R).

Taking into account the remark 2.10 we deduce that limR→+∞ In2 (R) = 0 uniformly in respect to
n. On the other hand, since

∫ 1

x
θ(t, y)dy · 1{|v|<R} belongs to L1(]0, T [×]0, 1[×Rv) we have also the

convergence :

lim
n→+∞

In1 (R) = I1(R) =
∫ T

0

∫ 1

0

∫

|v|<R
f(t, x, v)

∫ 1

x

θ(t, y)dydtdxdv.

Finally, by combining the above convergences one gets that :
∫ x

0

ρn(t, y)dy ⇀
∫ x

0

ρ(t, y)dy, weak ? in L∞(]0, T [×]0, 1[),
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where ρ(t, x) =
∫
Rv f(t, x, v)dv. Exactly in the same manner we find that :

∫ 1

0

(1− y)ρn(t, y)dy ⇀
∫ 1

0

(1− y)ρ(t, y)dy, weak ? in L∞(]0, T [),

and therefore :

Fα,ε(En) =
∫ x

0

ρn(t, y)dy −
∫ 1

0

(1− y)ρn(t, y)dy − ϕ1(t) + ϕ0(t)

⇀

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t)

=Fα,ε(E), weak ? in L∞(]0, T [×]0, 1[),

which proves the continuity of the application Fα,ε.
By using the Schauder fixed point theorem we deduce that there is a T -periodic mild solution

for the perturbed Vlasov-Poisson problem.

4. Estimates for the perturbed T -periodic mild solutions. In order to simplify the
formulas, in this section we shall systematically skip the indexes α, ε. Generally (f,E) stands for
T -periodic mild solutions of the perturbed Vlasov-Poisson problem which writes :

αf(t, x, v) + ∂tf + v · ∂xf +
∼
E(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv,

f(t, x, v) = g(t, x, v), (t, x, v) ∈ Rt × Σ−,

∼
E(t, x) =

∫

R
ζε(t− s)ds

∫ 1

0

ζε(x− y)E(s, y)dy, (t, x) ∈ Rt×]0, 1[,

E(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[.

As usual we use the notations :

ρ(t, x) =
∫

Rv
f(t, x, v)dv, j(t, x) =

∫

Rv
vf(t, x, v)dv, (t, x) ∈ Rt×]0, 1[.

In this section we are looking for uniform estimates of the charge, current and electric field. It is
convenient to introduce also :

(Mρ,M|j|) := sup
α,ε>0

1
T

∫ T

0

∫ 1

0

∫

Rv
fα,ε(t, x, v)(1, |v|)dtdxdv,

(Cρ, C|j|) := sup
α,ε>0,t∈Rt

∫ 1

0

∫

Rv
fα,ε(t, x, v)(1, |v|)dxdv,

and :

CE := sup
α,ε>0

‖Eα,ε‖L∞ ,

with Mρ,M|j|, Cρ, C|j|, CE ∈ [0,+∞].
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At the begining we assume that :

(H ′0) G′0 :=
∫

v>0

sup
t∈Rt
{g0(t, v)}dv +

∫

v<0

sup
t∈Rt
{g1(t, v)}dv < +∞,

(H1) G1 :=
1
T

∫ T

0

∫

v>0

vg0(t, v)dtdv − 1
T

∫ T

0

∫

v<0

vg1(t, v)dtdv < +∞,
(H∞) G∞ := max{‖g0‖L∞(Rt×Σ−0 ), ‖g1‖L∞(Rt×Σ−1 )} < +∞,

which assure the existence of the T -periodic mild solutions (see Theorem 3.4), but later on we shall
see that only H ′0,H∞ are sufficient.

Remember that the T -periodic mild solutions satisfy :

∫ 1

0

∫

Rv
f(t, x, v)dxdv ≤

(
1
α

+ T

)
G1, t ∈ Rt,

and :

‖E‖L∞(Rt×]0,1[) ≤
(

1
α

+ T

)
G1 + ‖ϕ1 − ϕ0‖L∞ .

4.1. Estimate of the total charge. Let us consider as test function in the mild formulation
ψ(t, x, v) = 1{|v|>R2} with R2 = 6

√
2 · ‖E‖1/2L∞ . We have :

∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)dtdxdv=

∫ T

0

∫ 1

0

∫

|v|<R2

f(t, x, v)dtdxdv +
∫ T

0

∫ 1

0

∫

|v|>R2

f(t, x, v)dtdxdv

≤
∫ T

0

∫

v>0

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)1{|V 0(s)|>R2}ds

−
∫ T

0

∫

v<0

vg1(t, v)dtdv
∫ s1out

t

e−α(s−t)1{|V 1(s)|>R2}ds+ 2TR2G∞.

Now, by using Lemma 2.11 we deduce that if R3 = 4
√

2 · ‖E‖1/2L∞ we have :

∫ T

0

∫

v>0

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)1{|V 0(s)|>R2}ds=
∫ T

0

∫

v>R3

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)1{|V 0(s)|>R2}ds

≤
∫ T

0

∫

v>R3

vg0(t, v)
1

v − 2
√

2 · ‖E‖1/2L∞
dtdv

≤2
∫ T

0

∫

v>0

g0(t, v)dtdv.

Finally one gets that :

1
T

∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)dtdxdv ≤ 12

√
2 · ‖E‖1/2L∞G∞ + 2G0 ≤ 12

√
2 · ‖E‖1/2L∞G∞ + 2G′0.

We need also to estimate f in L∞(Rt;L1(]0, 1[×Rv)). First of all notice that from the previous
estimate it follows that there is t1 ∈]0, T [ such that :

∫ 1

0

∫

Rv
f(t1, x, v)dxdv ≤ 1

T

∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)dtdxdv ≤ 12

√
2 · ‖E‖1/2L∞G∞ + 2G′0.



Permanent Regimes for the 1D Vlasov-Poisson System 13

On the other way, by integration of the perturbed Vlasov equation on ]t1, t[×]0, 1[×Rv, t1 ≤ t ≤
t1 + T , we have :

eαt
∫ 1

0

∫

Rv
f(t, x, v)dxdv=eαt1

∫ 1

0

∫

Rv
f(t1, x, v)dxdv +

∫ t

t1

eατ
∫

Rv
v(f(τ, 0, v)− f(τ, 1, v))dτdv

≤eαt1(12
√

2 · ‖E‖1/2L∞G∞ + 2G′0) +
∫ t

t1

eατ
∫

|v|>R2

v(f(τ, 0, v)− f(τ, 1, v))dτdv

+
∫ t

t1

eατ
∫

0<v<R2

vg0(τ, v)dτdv −
∫ t

t1

eατ
∫

0>v>−R2

vg1(τ, v)dτdv. (4.1)

We need to estimate the integral I(t1, t2) =
∫ t2
t1
eατ
∫
|v|>R2

v(f(τ, 0, v) − f(τ, 1, v))dτdv, for 0 ≤
t2 − t1 ≤ T . We shall consider the applications :

F0 : Rt × [R3,+∞[→ R2, F0(t, v) = (sout(t, 0, v), V (sout(t, 0, v); t, 0, v)),

and :

F1 : Rt×]−∞,−R3]→ R2, F1(t, v) = (sout(t, 1, v), V (sout(t, 1, v); t, 1, v)).

By using one more time Lemma 2.11 it is clear that F0, F1 are well defined and we have :

s0
out ≤

1

v − 2
√

2 · ‖E‖1/2L∞
≤ 1

2
√

2 · ‖E‖1/2L∞
, v ≥ R3, X(s0

out; t, 0, v) = 1,

s1
out ≤

1

−v − 2
√

2 · ‖E‖1/2L∞
≤ 1

2
√

2 · ‖E‖1/2L∞
, v ≤ −R3, X(s1

out; t, 1, v) = 0.

Moreover F0, F1 are one to one maps since ‖
∼
E‖L∞(Rt;W 1,∞(]0,1[)) ≤ ‖E‖L∞(1 +

∫
R |ζ ′(u)|du/ε) and

therefore the uniqueness of the characteristics holds. By standard calculations we get :
∣∣∣∣
∂F0

∂(t, v)

∣∣∣∣ =
v

V 0(s0
out)

∈
[

2
3
, 2
]
, (t, v) ∈ Rt × [R3,+∞[,

∣∣∣∣
∂F1

∂(t, v)

∣∣∣∣ =
−v

V 1(s1
out)

∈
[

2
3
, 2
]
, (t, v) ∈ Rt×]−∞,−R3].

We have :

I(t1, t2)=
∫ t2

t1

eαt
∫

v>R2

vg0(t, v)dtdv −
∫ t2

t1

eατ
∫

u>R2

uf(τ, 1, u)dτdu

−
∫ t2

t1

eαt
∫

v<−R2

vg1(t, v)dtdv +
∫ t2

t1

eατ
∫

u<−R2

uf(τ, 0, u)dτdu

=I+(t1, t2) + I−(t1, t2).

But with the change of variables (τ, u) = (sout(t, 0, v), V (sout(t, 0, v); t, 0, v)) = F0(t, v) we have :
∫ t2

t1

eατ
∫

u>R2

uf(τ, 1, u)dτdu=
∫ ∫

F−1
0 (]t1,t2[×]R2,+∞[)

eαtvg0(t, v)dtdv.

If we denote by R4 = max{8√2 · ‖E‖1/2L∞ , 2
√

2 · ‖E‖1/2L∞ + 1/(t2 − t1)} we can easily check that
∪

v≥R4
([t1, t2 − δ(v)]× {v}) ⊂ F−1

0 ([t1, t2]× [R2,+∞[) with δ(v) = 1/(v−2
√

2 · ‖E‖1/2L∞). Therefore,
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by taking into account that v · δ(v) ≤ 4/3 for v ≥ R4 we get :

I+(t1, t2)≤
∫ t2

t1

eαt
∫

R2<v<R4

vg0(t, v)dtdv +
∫

v>R4

∫ t2

t2−δ(v)

eαtvg0(t, v)dvdt

≤eαt2
(∫ t2

t1

∫

R2<v<R4

vg0(t, v)dtdv +
4
3

∫

v>0

sup
t∈Rt
{g0(t, v)}dv

)
.

On the other hand since R4 ≤ 8
√

2 · ‖E‖1/2L∞ + 1/(t2 − t1) = R5 + 1/(t2 − t1) we have also :

∫ t2

t1

∫

R2<v<R4

vg0(t, v)dtdv=
∫ t2

t1

∫

R2<v<R5

vg0(t, v)dtdv +
∫ t2

t1

∫

R5<v<R5+1/(t2−t1)

vg0(t, v)dtdv

≤R5

∫ T

0

∫

v>0

g0(t, v)dtdv +
(
R5 +

1
t2 − t1

)∫ t2

t1

∫

v>0

g0(t, v)dtdv

≤16
√

2 · ‖E‖1/2L∞

∫ T

0

∫

v>0

g0(t, v)dtdv +
∫

v>0

sup
t∈Rt
{g0(t, v)}dv.

The right boundary term I−(t1, t2) can be estimated in the same manner and finally one gets :

I(t1, t2) ≤ eαt2
(

16
√

2 · ‖E‖1/2L∞TG0 +
7
3
G′0

)
,

and therefore we deduce from (4.1) that :

∫ 1

0

∫

Rv
f(t, x, v)dxdv ≤ (12 ·G∞ + 22 · TG0)

√
2 · ‖E‖1/2L∞ +

13
3
G′0, t ∈ Rt.

From the Poisson equation we deduce that :

‖E(t)‖L∞(]0,1[) ≤ |ϕ1(t)− ϕ0(t)|+
∫ 1

0

∫

Rv
f(t, x, v)dxdv, t ∈ Rt,

which combined with the previous inequality implies that ‖E‖L∞ ≤ A · ‖E‖1/2L∞ + B, with A =
12 · 21/2G∞ + 22 · 21/2TG0, B = ‖ϕ1 − ϕ0‖L∞ + 13

3 G
′
0, and therefore :

‖E‖L∞(Rt×]0,1[) ≤ A2 + 2B,

‖ρ‖L∞(Rt;L1(]0,1[)) ≤ A(A+B1/2) +
13
3
G′0,

1
T
‖f‖L1(]0,T [×]0,1[×Rv) ≤ 12

√
2(A+B1/2)G∞ + 2G′0,

which can be written :

Mρ ≤ 12 · 21/2(A+B1/2)G∞ + 2G′0, Cρ ≤ A(A+B1/2) +
13
3
G′0, CE ≤ A2 + 2B. (4.2)

4.2. Estimate of the rest of charge (
∫
|v|>R fdv). We shall need also to estimate integrals

like
∫ T

0

∫ 1

0

∫
|v|>R f(t, x, v)dtdxdv or

∫ 1

0

∫
|v|>R f(t, x, v)dxdv, t ∈ Rt. In fact, since we know that

CE < +∞, we have, by taking ψ = 1{|v|>R} as test function in the mild formulation, with R large
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enough, R6 = R− 2
√

2 · C1/2
E :

∫ T

0

∫ 1

0

∫

|v|>R
fdtdxdv=

∫ T

0

∫

v>0

vg0(t, v)dtdv
∫ s0out

t

e−α(s−t)1{|V 0(s)|>R}ds

−
∫ T

0

∫

v<0

vg1(t, v)dtdv
∫ s1out

t

e−α(s−t)1{|V 1(s)|>R}ds

≤
∫ T

0

∫

v>R6

vg0(t, v)(sout(t, 0, v)− t)dtdv −
∫ T

0

∫

v<−R6

vg1(t, v)(sout(t, 1, v)− t)dtdv

≤
∫ T

0

∫

v>R6

vg0(t, v)
1

v − 2
√

2 · C1/2
E

dtdv −
∫ T

0

∫

v<−R6

vg1(t, v)
1

−v − 2
√

2 · C1/2
E

dtdv

≤R− 2
√

2 · C1/2
E

R− 4
√

2 · C1/2
E

(∫ T

0

∫

v>R6

g0(t, v)dtdv −
∫ T

0

∫

v<−R6

g1(t, v)dtdv

)
, (4.3)

and thus :

lim
R→+∞

∫ T

0

∫ 1

0

∫

|v|>R
f(t, x, v)dtdxdv = 0,

uniformly in respect to α, ε > 0. Moreover, in order to estimate
∫ 1

0

∫
|v|>R f(t, x, v)dxdv, let us

remark that there is t1 ∈]0, T [ such that :
∫ 1

0

∫

|v|>R
f(t1, x, v)dxdv≤ 1

T

∫ T

0

∫ 1

0

∫

|v|>R
f(t, x, v)dtdxdv

≤R− 2
√

2 · C1/2
E

R− 4
√

2 · C1/2
E

· 1
T

(∫ T

0

∫

v>R6

g0(t, v)dtdv −
∫ T

0

∫

v<−R6

g1(t, v)dtdv

)
.(4.4)

After multiplication of the perturbed Vlasov equation by 1− χR(v) = 1− χ(v/R) we have :

∂t(eαtf(1− χR(v))) + v · ∂x(eαtf(1− χR(v))) +
∼
E(t, x) · ∂v(eαtf(1− χR(v))) = −eαt

∼
Efχ′(v/R)

1
R
,

and after integration on ]t1, t[×]0, 1[×Rv one gets :

eαt
∫ 1

0

∫

|v|>2R

f(t, x, v)dxdv≤eαt1
∫ 1

0

∫

|v|>R
f(t1, x, v)dxdv

+
∫ t

t1

eατ
∫

|v|>R
v(f(τ, 0, v)− f(τ, 1, v))(1− χR(v))dτdv

−
∫ t

t1

eατ
∫ 1

0

∫

R<|v|<2R

∼
Ef(τ, x, v)χ′(v/R)

1
R
dτdxdv, t ∈ [t1, t1 + T ]. (4.5)

The first term in the right hand side of the previous inequality can be estimated by using (4.4).
For the third one we have :∣∣∣∣∣

∫ t

t1

eατ
∫ 1

0

∫

R<|v|<2R

∼
Ef(τ, x, v)χ′(v/R)

1
R
dτdxdv

∣∣∣∣∣ ≤ e
αtCE‖χ′‖L∞ TMρ

R
→ 0, (4.6)

when R goes to +∞, uniformly in α, ε > 0. In order to estimate integrals like IR(t1, t2) =∫ t2
t1
eατ

∫
|v|>Rv(f(τ, 0, v)− f(τ, 1, v))(1− χR(v))dτdv as before, remark that :

IR(t1, t2)=
∫ t2

t1

eαt
∫

v>R

vg0(t, v)(1− χR(v))dtdv −
∫ t2

t1

eατ
∫

u>R

uf(τ, 1, u)(1− χR(u))dτdu

−
∫ t2

t1

eαt
∫

v<−R
vg1(t, v)(1− χR(v))dtdv +

∫ t2

t1

eατ
∫

u<−R
uf(τ, 0, u)(1− χR(u))dτdu

=I+
R (t1, t2) + I−R (t1, t2).
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Taking into account that for R large enough such that δ(R) ≤ t2 − t1 and η = CE · δ(R) we have :

∪
v≥R+η

([t1, t2 − δ(v)]× {v}) ⊂ F−1
0 ([t1, t2]× [R,+∞[),

where δ(v) = 1/(v − 2
√

2 · C1/2
E ), by the same change of variables it follows that :

I+
R (t1, t2)≤eαt2

∫ t2

t1

∫

R<v<R+η

vg0(t, v)(1− χR(v))dtdv

+eαt2
∫ t2

t2−δ(v)

∫

v>R+η

vg0(t, v)(χR(V (s0
out; t, 0, v))− χR(v))dtdv.

But for R < v < R+ η we have 1− χR(v) = |χR(R)− χR(v)| ≤ η
R‖χ′‖L∞ . We have also :

|χR(V (s0
out; t, 0, v))− χR(v)| ≤ |V

0(s0
out)− v|
R

‖χ′‖L∞ ≤ 2‖χ′‖L∞
√

2 · C1/2
E

R
,

and thus :

I+
R (t1, t2)≤eαt2 η(R+ η)

R
‖χ′‖L∞

∫ t2

t1

∫

v>R

g0(t, v)dtdv +
eαt2

R

∫

v>R

vδ(v)sup
t∈Rt
{g0(t, v)}‖χ′‖L∞2

√
2 · C1/2

E

≤eαt2‖χ′‖L∞const(CE)δ(R)

(∫ T

0

∫

v>0

g0(t, v)dtdv +
∫

v>0

sup
t∈Rt
{g0(t, v)}dv

)
, (4.7)

for R ≥ 2
√

2 ·C1/2
E +1/(t2− t1). The same arguments apply for the right boundary term I−R (t1, t2)

and therefore we have :

IR(t1, t2) = I+
R (t1, t2) + I−R (t1, t2) ≤ eαt2‖χ′‖L∞const(CE)δ(R)(TG0 +G′0), (4.8)

where R ≥ 2
√

2 ·C1/2
E + 1/(t2 − t1), 0 ≤ t2 − t1 ≤ T . Finally, by using (4.5), (4.4), (4.6) and (4.8)

we find that :

∫ 1

0

∫

|v|>2R

f(t, x, v)dxdv≤R− 2
√

2 · C1/2
E

R− 4
√

2 · C1/2
E

· 1
T

(∫ T

0

∫

v>R6

g0(t, v)dtdv −
∫ T

0

∫

v<−R6

g1(t, v)dtdv

)

+
1
R
CE‖χ′‖L∞TMρ + δ(R)‖χ′‖L∞const(CE)(TG0 +G′0), (4.9)

which implies that
∫ 1

0

∫
|v|>2R

f(t, x, v)dxdv → 0 when R → +∞, uniformly for α, ε > 0 and
|t2 − t1| ≥ β > 0. By periodicity, we deduce that the convergence is uniform for α, ε > 0, t ∈ Rt.
Notice that all these estimates don’t require any information about G1. As we shall see, the
hypothesis H1 is not necessary for the existence. In conclusion we proved the following proposition :

Proposition 4.1. Assume that g0, g1, ϕ0, ϕ1 are T -periodic functions satisfying ϕ1 − ϕ0 ∈
L∞(Rt) and the hypothesis H ′0, H1 and H∞. Denote by (fα,ε, Eα,ε) T -periodic mild solutions of
the perturbed Vlasov-Poisson problem with α > 0, ε > 0 (see Theorem 3.4). Then the following
estimates hold uniformly in respect to α > 0, ε > 0 :

‖fα,ε‖L1(]0,T [×]0,1[×Rv) ≤ C,

‖fα,ε‖L∞(Rt;L1(]0,1[×Rv)) = ‖ρα,ε‖L∞(Rt;L1(]0,1[)) ≤ C,

‖Eα,ε‖L∞(Rt×]0,1[) ≤ C,
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where the constant C depends only on T, ‖ϕ1−ϕ0‖L∞(Rt), G
′
0, G∞ (and not on G1). Moreover the

following convergences hold :

lim
R→+∞

∫ T

0

∫ 1

0

∫

|v|>R
fα,ε(t, x, v)dtdxdv = 0, uniformly in respect to α > 0, ε > 0, G1,

lim
R→+∞

∫ 1

0

∫

|v|>R
fα,ε(t, x, v)dxdv = 0, uniformly in respect to α > 0, ε > 0, t ∈ Rt, G1.

5. Existence for the Vlasov-Poisson problem. Now we can prove the following existence
result :

Theorem 5.1. Assume that ϕ1 − ϕ0 ∈ L∞(Rt), g0, g1 are T -periodic functions such that :

(H ′0) G′0 :=
∫

v>0

sup
t∈Rt
{g0(t, v)}dv +

∫

v<0

sup
t∈Rt
{g1(t, v)}dv < +∞,

(H∞) G∞ := max{‖g0‖L∞(Rt×Σ−0 ), ‖g1‖L∞(Rt×Σ−1 )} < +∞.

Then there is a T -periodic weak solution (f,E) for the Vlasov-Poisson problem such that :

f ∈ L1(]0, T [×]0, 1[×Rv), ρ ∈ L∞(Rt;L1(]0, 1[)), E ∈ L∞(Rt×]0, 1[).

Proof. For α > 0 we consider the perturbed boundary datas defined by :

gα0 (t, v) =
g0(t, v)
1 + αv

, t ∈ Rt, v > 0,

and :

gα1 (t, v) =
g1(t, v)
1− αv , t ∈ Rt, v < 0.

We have for α > 0 :

Gα0
′ :=

∫

v>0

sup
t∈Rt
{gα0 (t, v)}dv +

∫

v<0

sup
t∈Rt
{gα1 (t, v)}dv ≤ G′0 < +∞,

Gα1 :=
1
T

∫ T

0

∫

v>0

vgα0 (t, v)dtdv − 1
T

∫ T

0

∫

v<0

vgα1 (t, v)dtdv ≤ 1
α
G0 ≤ 1

α
G′0 < +∞.

and :

Gα∞ := max{‖gα0 ‖L∞(Rt×Σ−0 ), ‖gα1 ‖L∞(Rt×Σ−1 )} ≤ G∞,

and therefore there is a T -periodic mild solution for the perturbed Vlasov-Poisson problem with
α = ε > 0. Moreover, since Gα0

′ ≤ G′0, Gα∞ ≤ G∞ we have the following estimates for α > 0 :

1
T
‖fα‖L1(]0,T [×]0,1[×Rv) =

1
T

∫ T

0

∫ 1

0

∫

Rv
fα(t, x, v)dtdxdv ≤Mρ,

‖ρα‖L∞(Rt;L1(]0,1[)) = sup
t∈Rt

∫ 1

0

∫

Rv
fα(t, x, v)dxdv ≤ Cρ,

‖fα‖L∞ ≤ G∞, ‖Eα‖L∞(Rt×]0,1[) ≤ CE ,



18 M. BOSTAN

where Mρ, Cρ, CE verify the inequalities (4.2). Therefore there are f ∈ L∞(Rt×]0, 1[×Rv), E ∈
L∞(Rt×]0, 1[) T -periodic functions such that :

fαn ⇀ f, weak ? in L∞(Rt×]0, 1[×Rv),
Eαn ⇀ E, weak ? in L∞(Rt×]0, 1[),

where αn → 0 when n → +∞. Moreover we can easily check that we have also the convergence
∼
Eαn ⇀ E weakly ? in L∞(Rt×]0, 1[), when n → +∞. Since fαn are mild solutions, they are also
weak solutions and thus :

−
∫ T

0

∫ 1

0

∫

Rv
fαn(t, x, v)(−αnϕ(t, x, v) + ∂tϕ+ v · ∂xϕ+

∼
Eαn(t, x) · ∂vϕ)dtdxdv

=
∫ T

0

∫

v>0

vgαn0 (t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫

v<0

vgαn1 (t, v)ϕ(t, 1, v)dtdv,

for all ϕ ∈ Tw. Obviously we have :

lim
n→+∞

∫ T

0

∫ 1

0

∫

Rv
fαn(t, x, v)(−αnϕ+ ∂tϕ+ v · ∂xϕ)dtdxdv =

∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)(∂tϕ+ v · ∂xϕ)dtdxdv.

On the other hand, since ϕ has bounded support in velocity, by the dominated convergence theorem
we deduce that :

lim
n→+∞

∫ T

0

∫

v>0

vgαn0 (t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫

v<0

vgαn1 (t, v)ϕ(t, 1, v)dtdv

=
∫ T

0

∫

v>0

vg0(t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫

v<0

vg1(t, v)ϕ(t, 1, v)dtdv.

In order to pass to the limit the other term, we shall prove that (Eαn(t))n is relatively compact
in L1(]0, 1[), t ∈ Rt (see [9] pp. 73 for compactness results in L1). Indeed, first of all (Eαn(t))n is
bounded in L∞(]0, 1[) and thus in L1(]0, 1[). Moreover it is clear that for all ε > 0 there is ω open set
such that ω ⊂]0, 1[ and

∫
]0,1[−ω |Eαn(t, x)|dx < ε, ∀n. Let us consider now ε > 0, ω =]x1, x2[⊂]0, 1[

and |h| < min{x1, 1− x2}. We have :

∫ x2

x1

|Eαn(t, x+ h)− Eαn(t, x)|dx≤
∫ x2

x1

∣∣∣∣∣
∫ x+h

x

ραn(t, y)dy

∣∣∣∣∣ dx

≤|h|
∫ 1

0

ραn(t, x)dx

≤Cρ|h| → 0, h→ 0,

which implies that (Eαn(t))n is relatively compact in L1(]0, 1[). Since Eαn(t) ⇀ E(t) weakly ? in
L∞(]0, 1[) we deduce that all the sequence (Eαn(t))n converges to E(t) in L1(]0, 1[), t ∈ Rt and by
the dominated convergence theorem it follows that Eαn → E strongly in L1(]0, T [×]0, 1[). Now,
since ϕ has bounded support in velocity, we can write :
∣∣∣∣∣
∫ T

0

∫ 1

0

Eαn(t, x)
∫

Rv
fαn(t, x, v)∂vϕdvdtdx−

∫ T

0

∫ 1

0

E(t, x)
∫

Rv
f(t, x, v)∂vϕdvdtdx

∣∣∣∣∣

≤
∣∣∣∣∣
∫ T

0

∫ 1

0

(Eαn −E)
∫

Rv
fαn(t, x, v)∂vϕdvdtdx

∣∣∣∣∣+

∣∣∣∣∣
∫ T

0

∫ 1

0

∫

Rv
(fαn(t, x, v)− f(t, x, v))E∂vϕdtdxdv

∣∣∣∣∣→ 0,

and thus f is a T -periodic weak solution for the Vlasov problem corresponding to the field E.
Moreover, since fαn ⇀ f weakly ? in L∞(Rt×]0, 1[×Rv) we have that fαn ⇀ f weakly in
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L1(]0, T [×]0, 1[×BR), R > 0 and therefore :

1
T

∫ T

0

∫ 1

0

∫

|v|<R
f(t, x, v)dtdxdv≤ 1

T
lim inf
n→+∞

∫ T

0

∫ 1

0

∫

|v|<R
fαn(t, x, v)dtdxdv

≤ 1
T

lim inf
n→+∞

∫ T

0

∫ 1

0

∫

Rv
fαndtdxdv ≤Mρ, R > 0,

which implies that f ∈ L1(]0, T [×]0, 1[×Rv) and 1
T

∫ T
0

∫ 1

0

∫
Rvf(t, x, v)dtdxdv ≤ Mρ. We can prove

that fαn ⇀ f weakly in L1(]0, T [×]0, 1[×Rv). Indeed, for θ ∈ L∞(]0, T [×]0, 1[×Rv) we can write :
∣∣∣∣∣
∫ T

0

∫ 1

0

∫

Rv
(fαn − f)θ(t, x, v)dtdxdv

∣∣∣∣∣≤
∣∣∣∣∣
∫ T

0

∫ 1

0

∫

|v|<R
(fαn − f)θ(t, x, v)dtdxdv

∣∣∣∣∣

+‖θ‖L∞
(∫ T

0

∫ 1

0

∫

|v|>R
fαndtdxdv +

∫ T

0

∫ 1

0

∫

|v|>R
fdtdxdv

)
.

From (4.3) it follows that we can take R = R(ε) large enough such that :
∫ T

0

∫ 1

0

∫

|v|>R
fαn(t, x, v)dtdxdv ≤ ε

4‖θ‖L∞ , n > 0,

∫ T

0

∫ 1

0

∫

|v|>R
f(t, x, v)dtdxdv ≤ ε

4‖θ‖L∞ ,

and since fαn ⇀ f weakly ? in L∞(]0, T [×]0, 1[×Rv) we have also :
∣∣∣∣∣
∫ T

0

∫ 1

0

∫

|v|<R
(fαn − f)θ(t, x, v)dtdxdv

∣∣∣∣∣ <
ε

2
, n ≥ nε,

which allows to conclude. In particular ραn ⇀ ρ weakly in L1(]0, T [×]0, 1[). Now, for all t ∈ Rt
we have also the convergence fαn(t) ⇀ f(t) weakly ? in L∞(]0, 1[×Rv). In particular we have
fαn(t) ⇀ f(t) weakly in L1(]0, 1[×BR), R > 0, and therefore :

∫ 1

0

∫

|v|<R
f(t, x, v)dxdv≤lim inf

n→+∞

∫ 1

0

∫

|v|<R
fαn(t, x, v)dxdv

≤lim inf
n→+∞

∫ 1

0

∫

Rv
fαn(t, x, v)dxdv ≤ Cρ, t ∈ Rt,

which implies that f(t) ∈ L1(]0, 1[×Rv) and ‖f‖L∞(Rt;L1(]0,1[×Rv)) = ‖ρ‖L∞(Rt;L1(]0,1[)) ≤ Cρ. By
using (4.9), we can prove that fαn(t) ⇀ f(t) weakly in L1(]0, 1[×Rv), t ∈ Rt. We have also the
convergence ραn(t) ⇀ ρ(t) weakly in L1(]0, 1[) for all t ∈ Rt and therefore :

∫ x

0

ραn(t, y)dy →
∫ x

0

ρ(t, y)dy, (t, x) ∈ Rt × [0, 1],

and :
∫ 1

0

(1− y)ραn(t, y)dy →
∫ 1

0

(1− y)ρ(t, y)dy, t ∈ Rt.

Now, by using the Poisson equation we deduce that there is E1 such that :

E1(t, x)= lim
n→+∞

Eαn(t, x)

= lim
n→+∞

(∫ x

0

ραn(t, y)dy −
∫ 1

0

(1− y)ραn(t, y)dy − ϕ1(t) + ϕ0(t)
)

=
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt × [0, 1],
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with ‖E1‖L∞ ≤ CE which implies also that Eαn → E1 in L1(]0, T [×]0, 1[) and therefore the field
E = E1 verifies also the Poisson equation :

E(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[.

Let us state now another existence result. This time we suppose that H1 and H∞ hold, but
not H ′0 and we shall prove that the solution has more regularity.

Theorem 5.2. Assume that ϕ1 − ϕ0 ∈ L∞(Rt), g0, g1 are T -periodic functions such that :

(H1) G1 :=
1
T

∫ T

0

∫

v>0

vg0(t, v)dtdv − 1
T

∫ T

0

∫

v<0

vg1(t, v)dtdv < +∞,
(H∞) G∞ := max{‖g0‖L∞(Rt×Σ−0 ), ‖g1‖L∞(Rt×Σ−1 )} < +∞.

Then there is a T -periodic weak solution (f,E) for the Vlasov-Poisson problem which verifies :

f ∈ L1(]0, T [×]0, 1[×Rv), ρ ∈ L∞(Rt;L1(]0, 1[)), |v|f ∈ L1(]0, T [×]0, 1[×Rv), E ∈ L∞(Rt×]0, 1[).

Moreover, if H ′1 holds :

(H ′1) G′1 :=
∫

v>0

v · sup
t∈Rt
{g0(t, v)}dv −

∫

v<0

v · sup
t∈Rt
{g1(t, v)}dv < +∞,

then |v|f belongs to L∞(Rt;L1(]0, 1[×Rv)); in particular j =
∫
Rv vf(t, x, v)dv ∈ L∞(Rt;L1(]0, 1[)).

The proof is quite similar with the previous one. We don’t go into details, but we only sketch
below the different arguments. This time, since H1,H∞ are verified, we can apply the Theorem
3.4 with α = ε > 0 for the boundary datas g0, g1. Exactly as in Section 4.1 we have :

1
T

∫ T

0

∫ 1

0

∫

Rv
fαn(t, x, v)dtdxdv ≤ 12

√
2 · ‖Eαn‖1/2L∞G∞ + 2G0,

and there is t1 = tα1 ∈]0, T [ such that :

∫ 1

0

∫

Rv
fαn(t1, x, v)dxdv ≤ 12

√
2 · ‖Eαn‖1/2L∞G∞ + 2G0.

By integration of the perturbed Vlasov equation on ]t1, t[×]0, 1[×Rv, t ∈ [t1, t1 + T ] we have :

∫ 1

0

∫

Rv
fαn(t, x, v)dxdv≤

∫ 1

0

∫

Rv
fαn(t1, x, v)dxdv

+
∫ t

t1

∫

v>0

vg0(τ, v)dτdv −
∫ t

t1

∫

v<0

vg1(τ, v)dτdv

≤12
√

2 · ‖Eαn‖1/2L∞G∞ + 2G0 + TG1.

From the Poisson equation we have :

‖Eαn‖L∞ ≤ ‖ϕ1 − ϕ0‖L∞ + ‖ραn‖L∞(Rt;L1(]0,1[)),

and therefore we obtain that :

‖Eαn‖L∞ ≤ C · ‖Eαn‖L∞ +D, α > 0,
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with C = 12 · 21/2G∞ , D = ‖ϕ1 − ϕ0‖L∞ + 2G0 + TG1. Finally one gets for α > 0 :

‖Eαn‖L∞≤CE ≤ C2 + 2D,
‖ραn‖L∞(Rt;L1(]0,1[))≤Cρ ≤ C(C +D1/2) + 2G0 + TG1,

1
T
‖f‖L1(]0,T [×]0,1[×Rv)≤Mρ ≤ C(C +D1/2) + 2G0.

In order to estimate the charge outside a ball BR in Rv this time it is easy to calculate integrals
like IR(t1, t2) by :

IR(t1, t2)=
∫ t2

t1

eαt
∫

|v|>R
v(f(t, 0, v)− f(t, 1, v))(1− χR(v))dtdv

≤eαt2
(∫ t2

t1

∫

v>R

vg0(t, v)dtdv −
∫ t2

t1

∫

v<−R
vg1(t, v)dtdv

)

≤eαt2
(∫ T

0

∫

v>R

vg0(t, v)dtdv −
∫ T

0

∫

v<−R
vg1(t, v)dtdv

)
, 0 ≤ t2 − t1 ≤ T,

and the proof follows exactly as before.
Now, in order to prove that |v|fαn ∈ L1(]0, T [×]0, 1[×Rv), let us multiply the perturbed Vlasov

equation by |v| :

α(|v|fαn)+∂t(|v|fαn)+v ·∂x(|v|fαn)+
∼
Eαn(t, x) ·∂v(|v|fαn) =

∼
Eαn

v

|v|fαn , (t, x, v) ∈ Rt×]0, 1[×Rv.

The mild formulation writes this time :
∫ T

0

∫ 1

0

∫

Rv
|v|fαnψdtdxdv=

∫ T

0

∫ 1

0

∫

Rv

∼
Eαn

v

|v|fαn
∫ sout

t

e−α(s−t)ψ(s,X(s), V (s))dsdtdxdv

+
∫ T

0

∫

v>0

|v|2g0(t, v)
∫ s0out

t

e−α(s−t)ψ(s,X0(s), V 0(s))dsdtdv

+
∫ T

0

∫

v<0

|v|2g1(t, v)
∫ s1out

t

e−α(s−t)ψ(s,X1(s), V 1(s))dsdtdv,

for all ψ ∈ Tm, and thus, for ψ = 1{|v|>R} (in fact take ψ = χR′ −χR ∈ Tm with R′ > 2R and pass
R′ → +∞), R large enough such that R1 = R− 2

√
2 · C1/2

E > 0 we get :
∫ T

0

∫ 1

0

∫

|v|>R
|v|fαndtdxdv ≤ CE

∫ T

0

∫ 1

0

∫

|v|>R1

fαn(t, x, v)
1

|v| − 2
√

2 · C1/2
E

dtdxdv

+
∫ T

0

∫

v>R1

vg0(t, v)
v

v − 2
√

2 · C1/2
E

dtdv +
∫ T

0

∫

v<−R1

vg1(t, v)
v

−v − 2
√

2 · C1/2
E

dtdv → 0,

when R→ +∞, uniformly in respect to α > 0. By taking for example R = 6
√

2 · C1/2
E one gets :

1
T

∫ T

0

∫ 1

0

∫

Rv
|v|fαndtdxdv=

1
T

∫ T

0

∫ 1

0

∫

|v|<R
|v|fαndtdxdv +

1
T

∫ T

0

∫ 1

0

∫

|v|>R
|v|fαndtdxdv

≤M|j| ≤ (6 · 21/2 +
1

2 · 21/2
) · C1/2

E Mρ + 2G1,

and thus |v|fαn ∈ L1(]0, T [×]0, 1[×Rv). Now, if fαn ⇀ f weakly ? in L∞(]0, T [×]0, 1[×Rv) we
have also that |v|fαn ⇀ |v|f weakly in L1(]0, T [×]0, 1[×BR), R > 0 and thus :

1
T

∫ T

0

∫ 1

0

∫

|v|<R
|v|f(t, x, v)dtdxdv≤ 1

T
lim inf
n→+∞

∫ T

0

∫ 1

0

∫

|v|<R
|v|fαn(t, x, v)dtdxdv

≤ 1
T

lim inf
n→+∞

∫ T

0

∫ 1

0

∫

Rv
|v|fαn(t, x, v)dtdxdv ≤M|j|, R > 0.
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It comes that |v|f ∈ L1(]0, T [×]0, 1[×Rv) and 1
T

∫ T
0

∫ 1

0

∫
Rv |v|f(t, x, v)dtdxdv ≤M|j|. In fact we can

prove that |v|fαn ⇀ |v|f weakly in L1(]0, T [×]0, 1[×Rv) and jαn ⇀ j weakly in L1(]0, T [×]0, 1[).
Assume now that H ′1 holds. In order to estimate jαn and j in L∞(Rt;L1(]0, 1[)) we can apply the
same arguments as for the estimates of ραn , ρ in L∞(Rt;L1(]0, 1[)). This time we have an extra
term which writes :

∣∣∣∣
∫ t2

t1

eαt
∫ 1

0

∫

Rv

∼
Eαn

v

|v|fαndtdxdv
∣∣∣∣ ≤ eαt2‖Eαn‖L∞

∫ T

0

∫ 1

0

∫

Rv
fαn(t, x, v)dtdxdv, 0 ≤ t2 − t1 ≤ T.

In order to estimate the rest of the current, remark that we have :
∣∣∣∣∣
∫ t2

t1

eαt
∫ 1

0

∫

|v|>R

∼
Eαn

v

|v|fαn(1− χR(v))dtdxdv

∣∣∣∣∣ ≤ e
αt2‖Eαn‖L∞

∫ T

0

∫ 1

0

∫

|v|>R
fαn(t, x, v)dtdxdv,

for 0 ≤ t2 − t1 ≤ T and therefore
∫ 1

0

∫
|v|>R |v|fαn(t, x, v)dxdv → 0 when R → +∞, uniformly for

α > 0, t ∈ Rt. Finally we prove that there is C|j| < +∞ (which depends on G′1) such that :

∫ 1

0

∫

Rv
|v|fαn(t, x, v)dxdv≤C|j|, t ∈ Rt, α > 0,

∫ 1

0

∫

Rv
|v|f(t, x, v)dxdv≤C|j|, t ∈ Rt,

|v|fαn(t) ⇀ |v|f(t),weak in L1(]0, 1[×Rv),
jαn(t) ⇀ j(t),weak in L1(]0, 1[).

Obviously this result can be generalized as follows :
Theorem 5.3. Assume that ϕ1 − ϕ0 ∈ L∞(Rt), g0, g1 are T -periodic functions such that :

(Hp) Gp :=
1
T

∫ T

0

∫

v>0

|v|pg0(t, v)dtdv +
1
T

∫ T

0

∫

v<0

|v|pg1(t, v)dtdv < +∞,
(H∞) G∞ := max{‖g0‖L∞(Rt×Σ−0 ), ‖g1‖L∞(Rt×Σ−1 )} < +∞,

for some integer p ≥ 1. Then there is a T -periodic weak solution (f,E) for the Vlasov-Poisson
problem which verifies :

|v|pf ∈ L1(]0, T [×]0, 1[×Rv), |v|p−1f ∈ L∞(Rt;L1(]0, 1[×Rv)), E ∈ L∞(Rt×]0, 1[).

Moreover, if H ′p holds :

(H ′p) G′p :=
∫

v>0

|v|p sup
t∈Rt
{g0(t, v)}dv +

∫

v<0

|v|p sup
t∈Rt
{g1(t, v)}dv < +∞,

then |v|pf belongs to L∞(Rt;L1(]0, 1[×Rv)).

6. Remarks. First of all notice that the estimates of f on the outgoing boundary follows
immeadeately. For example, under the hypothesis of the last theorem, after multiplication by
|v|p−1, p ≥ 1 ( in fact |v|p−1χR(v), with R → +∞) and integration of the Vlasov equation we
deduce that :

1
T

∫ T

0

∫

v>0

|v|pf(t, 1, v)dtdv+
1
T

∫ T

0

∫

v<0

|v|pf(t, 0, v)dtdv ≤ Gp +
1
T

∫ T

0

∫ 1

0

∫

Rv
|E|f(p− 1)|v|p−2dtdxdv

≤Gp + (p− 1) · ‖E‖L∞ 1
T

∫ T

0

∫ 1

0

∫

Rv
f(t, x, v)|v|p−2dtdxdv.
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On the other way, it is possible to pass to the limit the non linear term Eαn · ∂vfαn in the
perturbed Vlasov equation by using the velocity average lemma of Diperna and Lions (see [11]). In
fact once that we have proved that (fαn)n, (Eαn)n are uniformly bounded in L1(]0, T [×]0, 1[×Rv),
respectively L∞(Rt×]0, 1[) we deduce that ∂tfαn + v · ∂xfαn = −αnfαn −

∼
Eαn(t, x) · ∂vfαn are

uniformly bounded in L2(]0, T [×]0, 1[×H−1(Rv)). This implies that
(∫
Rv fαn(t, x, v)∂vϕdv

)
n

are

uniformly bounded in H1/4(]0, T [×]0, 1[) and therefore converges to
∫
Rv f(t, x, v)∂vϕdv strongly in

L2(]0, T [×]0, 1[). The conclusion follows by combining with the weak convergence of (Eαn)n.
All these results are easily adapted for the Vlasov-Poisson problem (in one dimension) involving

several densities fe, fi where for example fe represents the density of electrons, fi the density of
ions.

Obviously, let us remark that changing the sign of the right hand side of the Poisson equation
−∂2U/∂x2 = −ρ(t, x), which corresponds to an attractive (gravitational) potential doesn’t affect
any argument, so that all the previous results still hold in this case.

It would be interesting to see if the same kind of arguments apply for studying the multidimen-
sional case. This analysis will be the topic of future related works, [8]. We point out that Lemma
2.11 can be easily generalized for a bounded domain Ω ⊂ RN . Indeed, if (X(s), V (s)), sin ≤ s ≤
sout is an arbitrary characteristic associated to a regular field and u ∈ RN with ‖u‖ = 1, then we
have :

d

ds
x(s) = v(s),

d

ds
v(s) = e(s), sin ≤ s ≤ sout,

where x(s) = (X(s), u), v(s) = (V (s), u), e(s) = (E(s,X(s)), u) for sin ≤ s ≤ sout. Obviously,
x(s) belongs to a bounded interval ω ⊂ R of length diam(ω) ≤ diam(Ω) and ‖e‖L∞ ≤ ‖E‖L∞ .
After performing the same computations as in Section 2 we get :

| v(s1)− v(s2) | ≤ 2 · (2 · diam(ω))1/2 · ‖e‖1/2L∞ , sin ≤ s1 ≤ s2 ≤ sout,
which writes also :

|(V (s1)− V (s2), u)| ≤ 2 · (2 · diam(Ω))1/2 · ‖E‖1/2L∞ , sin ≤ s1 ≤ s2 ≤ sout,∀ u ∈ RN , ‖u‖ = 1,

and the conclusion follows.
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