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Abstract

The subject matter of this paper concerns the asymptotic regimes for trans-
port equations with advection fields having components of very disparate orders
of magnitude. The main purpose is to derive the limit models: we justify rig-
orously the convergence towards these limit models and we investigate the well-
posedness of them. Such asymptotic analysis arise in the magnetic confinement
context, where charged particles move under the action of strong magnetic fields.
In these situations we distinguish between a slow motion driven by the electric
field and a fast motion around the magnetic lines.
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1 Introduction

In this work we focus on linear transport problems, where a part of the transport
operator is highly penalized{

∂tu
ε + a(t, y) · ∇yu

ε +
b(y)

ε
· ∇yu

ε = 0, (t, y) ∈ R+ × Rm

uε(0, y) = uε0(y), y ∈ Rm.
(1)

Here a and b are given smooth fields and we also assume that b is divergence free.
Clearly we deal with multiple scales: slow advection along a and fast advection along
b. Formally, multiplying the transport equation in (1) by ε one gets b(y) ·∇yu

ε = O(ε),
saying that the variation of uε along the trajectories of b vanishes as ε goes to zero.
Following this observation it may seem reasonable to interpret the asymptotic ε ↘ 0
in (1) as homogenization procedure with respect to the flow of b. More precisely we
appeal here to the ergodic theory.
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By Hilbert’s method we have the formal expansion

uε = u+ εu1 + ε2u2 + ... (2)

and thus, plugging the ansatz (2) in (1) yields the equations

ε−1 : b(y) · ∇yu = 0 (3)

ε0 : ∂tu+ a(t, y) · ∇yu+ b(y) · ∇yu1 = 0 (4)

ε1 : ∂tu1 + a(t, y) · ∇yu1 + b(y) · ∇yu2 = 0 (5)

...

The operator T = b(y) · ∇y will play a crucial role in our analysis: the equation (3)
says that at any time t ∈ R+ the leading order term in the expansion (2) belongs to
the kernel of T . Certainly this information (which will be interpreted later on as a
constraint) is not sufficient for uniquely determining u. The use of (4) is mandatory,
despite the coupling with the next term u1 in the asymptotic expansion (2). Actually,
at least in a first step, we do not need all the information in (4), but only some
consequence of it, such that, supplemented by the constraint (3), it will allows us to
determine u. Since we need to eliminate u1 in (4), the idea is to projet (4) at any
time t ∈ R+ to the orthogonal complement of the range of T (which coincides with
the kernel of T , since divyb = 0), for example in L2(Rm). Indeed, we will see that this
consequence of (4) together with the constraint (3) provide a well-posed limit model for
u = limε↘0 u

ε. And the same procedure applies for computing u1, u2, ... For example,
once we have determined u, by (4) we know the image by T of u1

T u1 = −∂tu− a(t, y) · ∇yu. (6)

Projecting now (5) on the orthogonal complement of the range of T we eliminate u2

and one gets another equation for u1, which combined to (6) provides a well-posed
problem for u1. More precisely, if Y (s; y) is the characteristic flow associated to the
field b, we denote by 〈v〉 the average of any function v, let say in L2(Rm), over the flow

〈v〉(y) = lim
T→+∞

1

T

∫ T

0

v(Y (s; y)) ds, y ∈ Rm.

Certainly, the key point which allows us to define the average over the flow is that for
any s ∈ R, the map y → Y (s; y) is measure preserving. At least formally we have

〈b · ∇yu1〉(y) = lim
T→+∞

1

T

∫ T

0

(b · ∇yu1)(Y (s; y)) ds

= lim
T→+∞

1

T

∫ T

0

d

ds
{u1(Y (s; y))} ds

= lim
T→+∞

1

T
{u1(Y (T ; y))− u1(y)} ds = 0.

It is easily seen that the average function 〈v〉 is constant along the flow and satisfies
the variational formulation ∫

Rm
(v(y)− 〈v〉(y))ϕ(y) dy = 0 (7)
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for any function ϕ constant along the flow. In other words, the average 〈·〉 coincides
with the orthogonal projection over the kernel of T . Since the leading order term in (2)
is constant along the flow, we have 〈u〉 = u. Therefore applying the average operator
in (4) yields the limit model{

∂tu+ 〈a(t) · ∇yu〉 = 0, b(y) · ∇yu = 0, (t, y) ∈ R+ × Rm

u(0, y) = u0(y), y ∈ Rm (8)

where the average 〈a(t) · ∇yu〉 should be understood in the variational sense (7). We
develop a weak theory for (8) and justify the convergence of the solutions for (1) towards
(8) (see Proposition 3.1). A much difficult task is to identify a strong formulation for
(8). The key point here is to determine space derivatives commuting with the average
operator. This analysis leads naturally to the notion of fields in involution: a smooth
field c is said in involution with b iff [c·∇y, b·∇y] = (c·∇y)(b·∇y)−(b·∇y)(c·∇y) = 0. It
is well known that b, c are in involution iff their corresponding flows Y, Z are commuting

Y (s;Z(h; ·)) = Z(h;Y (s; ·)), s, h ∈ R

and we check that the average operator associated to b is commuting with the direc-
tional derivative along any field c in involution with b. For verifying that it si sufficient
to observe that the average operator is commuting with the translations along the flow
of c and the commutation property between 〈·〉 and c · ∇y follows immediately (see
Propositions 2.10, 2.11). When the field a is a linear combination of smooth fields in
involution with b

a(t, y) = α(t, y)b(y)+
r∑
i=1

αi(t, y)bi(y), (bi·∇y)(b·∇y)−(b·∇y)(b
i·∇y) = 0, i ∈ {1, ..., r}

it is shown (cf. Proposition 3.2, Corollary 3.1) that the limit model (8) is equivalent
to a linear transport problem which corresponds to the averaged transport operator∑r

i=1〈αi(t)〉 bi · ∇y{
∂tu+

∑r
i=1〈αi(t)〉 bi · ∇yu = 0, (t, y) ∈ R+ × Rm

u(0, y) = u0(y), y ∈ Rm.
(9)

In this framework we establish a strong convergence result justifying the asymptotic
behaviour as ε↘ 0 of the solutions in (1) towards the solution of the transport problem
(9).

Theorem 4.1 Assume that the field a is a linear combination of smooth fields bi ∈
W 1,∞(Rm) in involution with b where α, (αi)i∈{1,...,r} are smooth coefficients. Sup-
pose that u0 and (uε0)ε>0 are smooth initial conditions such that b(y) · ∇yu0 = 0,
limε↘0 u

ε
0 = u0 in L2(Rm) and let us denote by u, uε the solutions of (9) and (1)

respectively. Then we have the strong convergence

lim
ε↘0

uε = u, in L∞([0, T ];L2(Rm)), ∀ T > 0.

Our paper is organized as follows. In Section 2 we recall some notions of ergodic theory.
We introduce the average over a flow associated to a smooth field and we discuss the
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main properties of this operator. Section 3 is devoted to the study of the limit model.
We prove existence, uniqueness and regularity results. The main result (Theorem 4.1)
concerning the convergence towards the limit model is justified rigorously in Section 4.
In Section 5 we discuss some applications. It turns out that the asymptotic models for
strongly magnetized plasmas can be treated by using the general method previously
introduced. These limit models follow by applying the main convergence result in
Theorem 4.1. Some technical proofs are postponed to the Appendix A and B.

2 Ergodic theory and average over a flow

The main tool of our study is the average operator over a flow. In this section
we introduce rigorously this notion and investigate its properties. We assume that
b : Rm → Rm is a given field satisfying

b ∈ W 1,∞
loc (Rm) (10)

divyb = 0 (11)

and the growth condition

∃ C > 0 : |b(y)| ≤ C(1 + |y|), y ∈ Rm. (12)

Under the above hypotheses the characteristic flow Y = Y (s; y) is well defined

dY

ds
= b(Y (s; y)), (s, y) ∈ R× Rm (13)

Y (0; y) = y, y ∈ Rm, (14)

and has the regularity Y ∈ W 1,∞
loc (R×Rm). By (11) we deduce that for any s ∈ R, the

map y → Y (s; y) is measure preserving∫
Rm
θ(Y (s; y)) dy =

∫
Rm
θ(y) dy, ∀ θ ∈ L1(Rm).

We have the following standard result concerning the kernel of u→ T u = divy(b(y)u(y)).

Proposition 2.1 Let u ∈ L1
loc(Rm). Then divy(b(y)u(y)) = 0 in D ′(Rm) iff for any

s ∈ R we have u(Y (s; y)) = u(y) for a.a. y ∈ Rm.

Remark 2.1 Sometimes we will write u ∈ ker T meaning that u is constant along the
characteristics, i.e., u(Y (s; y)) = u(y) for all s ∈ R and a.a. y ∈ Rm.

For any q ∈ [1,+∞] we denote by Tq the linear operator defined by Tqu = divy(b(y)u(y))
for any u in the domain

Dq = {u ∈ Lq(Rm) : divy(b(y)u(y)) ∈ Lq(Rm)}.

Thanks to Proposition 2.1 we have for any q ∈ [1,+∞]

ker Tq = {u ∈ Lq(Rm) : u(Y (s; y)) = u(y), s ∈ R, a.e. y ∈ Rm}.
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For any continuous function h ∈ C([a, b];Lq(Rm)), with q ∈ [1,+∞], we denote by∫ b
a
h(t) dt ∈ Lq(Rm) the Riemann integral of the function t → h(t) ∈ Lq(Rm) on the

interval [a, b]. It is easily seen by the construction of the Riemann integral that for any
function ϕ ∈ Lq ′(Rm) (where 1/q + 1/q ′ = 1) we have∫

Rm

(∫ b

a

h(t) dt

)
(y)ϕ(y) dy =

∫ b

a

(∫
Rm
h(t, y)ϕ(y) dy

)
dt (15)

implying that ∥∥∥∥∫ b

a

h(t) dt

∥∥∥∥
Lq(Rm)

≤
∫ b

a

‖h(t)‖Lq(Rm) dt.

Moreover, by Fubini theorem we have∫ b

a

(∫
Rm
h(t, y)ϕ(y) dy

)
dt =

∫
Rm

(∫ b

a

h(t, y) dt

)
ϕ(y) dy

which together with (15) yields(∫ b

a

h(t) dt

)
(y) =

∫ b

a

h(t, y) dt, a.e. y ∈ Rm.

Consider now a function u ∈ Lq(Rm). Observing that for any q ∈ [1,+∞) the ap-
plication s → u(Y (s; ·)) belongs to C(R;Lq(Rm)), we deduce that for any T > 0

the function 〈u〉T := 1
T

∫ T
0
u(Y (s; ·)) ds is well defined as a element of Lq(Rm) and

‖〈u〉T‖Lq(Rm) ≤ ‖u‖Lq(Rm). Observe that for any function h ∈ L∞([a, b];L∞(Rm)),

the map ϕ ∈ L1(Rm) →
∫ b
a

∫
Rmh(t, y)ϕ(y) dy dt belongs to (L1(Rm)) ′ = L∞(Rm).

Therefore there is a unique function in L∞(Rm), denoted
∫ b
a
h(t) dt, such that for any

ϕ ∈ L1(Rm) we have∫
Rm

(∫ b

a

h(t) dt

)
(y)ϕ(y) dy =

∫ b

a

(∫
Rm
h(t, y)ϕ(y) dy

)
dt.

In particular we have ∥∥∥∥∫ b

a

h(t) dt

∥∥∥∥
L∞(Rm)

≤
∫ b

a

‖h(t)‖L∞(Rm) dt

and as before (∫ b

a

h(t) dt

)
(y) =

∫ b

a

h(t, y) dt, a.e. y ∈ Rm.

Notice that for any function u ∈ L∞(Rm), the map s→ u(Y (s; ·)) belongs to L∞(R;L∞(Rm))

and thus we deduce that for any T > 0 the function 〈u〉T := 1
T

∫ T
0
u(Y (s; ·)) ds is well

defined as a element of L∞(Rm) and ‖〈u〉T‖L∞(Rm) ≤ ‖u‖L∞(Rm).
Obviously, when u belongs to ker Tq we have 〈u〉T = u for any q ∈ [1,+∞] and

T > 0. Generally, when q ∈ (1,+∞) we prove the weak convergence of 〈u〉T as T goes
to +∞ towards some element in ker Tq. The arguments are standard and can be found
in Appendix A.
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Proposition 2.2 Assume that q ∈ (1,+∞) and u ∈ Lq(Rm). Then there is a unique
function 〈u〉 ∈ ker Tq such that for any ϕ ∈ ker Tq ′ we have∫

Rm
(u(y)− 〈u〉(y))ϕ(y) dy = 0. (16)

Moreover we have the weak convergences in Lq(Rm)

〈u〉 = lim
T→+∞

1

T

∫ T

0

u(Y (s; ·)) ds = lim
T→+∞

1

T

∫ 0

−T
u(Y (s; ·)) ds = lim

T→+∞

1

2T

∫ T

−T
u(Y (s; ·)) ds

and the inequality ‖〈u〉‖Lq(Rm) ≤ ‖u‖Lq(Rm). In particular the application u ∈ Lq(Rm)→
〈u〉 ∈ Lq(Rm) is linear, continuous and ‖〈·〉‖L(Lq(Rm),Lq(Rm)) ≤ 1.

It is easily seen that if m ≤ u ≤ M then m ≤ 〈u〉T ≤ M for any T > 0. In particular
the average operator preserves the order of R.

Corollary 2.1 Assume that q ∈ (1,+∞) and u ∈ Lq(Rm). Let us denote by 〈u〉 ∈
Lq(Rm) the function constructed in Proposition 2.2.
a) If u ≥ m for some real constant m then 〈u〉 ≥ m.
b) If u ≤M for some real constant M then 〈u〉 ≤M .

We can prove that the operator 〈·〉 is local with respect to the trajectories.

Corollary 2.2 Let A ⊂ Rm be a invariant set under the flow Y (i.e., Y (s;A) ⊂ A for
any s ∈ R). Then for any u ∈ Lq(Rm) with q ∈ (1,+∞) we have 〈1Au〉 = 1A〈u〉. In
particular if u1, u2 ∈ Lq(Rm) satisfy u1 = u2 on A, then 〈u1〉 = 〈u2〉 on A.

Proof. For any ϕ ∈ ker Tq ′ we have
∫

Rm(u− 〈u〉)ϕ dy = 0. Since A is invariant under
the flow, the function 1Aϕ belongs to ker Tq ′ and thus

∫
Rm(u− 〈u〉)1Aϕ dy = 0 which

says that 〈1Au〉 = 1A〈u〉. If u1, u2 ∈ Lq(Rm) coincide on A then 1A(u1 − u2) = 0.
Consequently we have 1A〈u1 − u2〉 = 〈1A(u1 − u2)〉 = 0 saying that 〈u1〉 = 〈u2〉 on A.

During our analysis we will use the average operator in different settings Lq(Rm),
1 < q < +∞. A natural question is what happens for functions u ∈ Lq1(Rm)∩Lq2(Rm);
it is true that the averages coincide? The answer to this question is affirmative.

Corollary 2.3 Assume that 1 < q1 < q2 < +∞ and u ∈ Lq1(Rm) ∩ Lq2(Rm). We
denote by 〈u〉(q) the function of Lq(Rm) constructed in Proposition 2.2 for q ∈ {q1, q2}.
Then we have 〈u〉(q1) = 〈u〉(q2) ∈ ker Tq1 ∩ ker Tq2.

Proof. For any T > 0 and ϕ ∈ Cc(Rm) we have∫
Rm

(
1

T

∫ T

0

u(Y (s; ·)) ds

)
(y)ϕ(y) dy =

1

T

∫ T

0

(∫
Rm
u(Y (s; y))ϕ(y) dy

)
ds. (17)

lim
T→+∞

1

T

∫ T

0

u(Y (s; ·)) ds = 〈u〉(q1) weakly in Lq1(Rm)

lim
T→+∞

1

T

∫ T

0

u(Y (s; ·)) ds = 〈u〉(q2) weakly in Lq2(Rm).

Therefore, passing to the limit for T → +∞ in (17) yields∫
Rm
〈u〉(q1)ϕ(y) dy = lim

T→+∞

1

T

∫ T

0

∫
Rm
u(Y (s; y))ϕ(y) dy ds =

∫
Rm
〈u〉(q2)ϕ(y) dy

implying that 〈u〉(q1) = 〈u〉(q2) ∈ ker Tq1 ∩ ker Tq2 .
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It is possible to prove that the convergences in Proposition 2.2 are strong. This is
the object of the next proposition. Actually the case q = 2 corresponds to the mean
ergodic theorem, or von Neumann’s ergodic theorem (see [15], pp. 57). For the sake of
completeness, proof details can be found in Appendix A.

Proposition 2.3 Assume that q ∈ (1,+∞) and u ∈ Lq(Rm). Then

lim
T→+∞

1

T

∫ T

0

u(Y (s; ·)) ds = lim
T→+∞

1

T

∫ 0

−T
u(Y (s; ·)) ds = 〈u〉 strongly in Lq(Rm).

It is also possible to define the operator 〈·〉 for functions in L1(Rm) and L∞(Rm). These
constructions are a little bit more delicate and require some additional hypotheses on
the flow. As usual we introduce the relation on Rm × Rm given by

y1 ∼ y2 iff ∃ s ∈ R such that y2 = Y (s; y1).

Using the properties of the flow it is immediate that the above relation is an equivalence
relation. The classes of Rm with respect to ∼ are the orbits. For any measurable set
A ⊂ Rm observe that 1A is constant along the flow iff A is the union of a certain subset
of orbits. We will also write 1A ∈ ker T for such sets A ⊂ Rm. Let us denote by A the
family

A = {A measurable set of Rm : 1A ∈ ker T }.

We consider the family A0 of sets A ∈ A such that the only integrable function on A,
constant along the flow, is the trivial one. We make the following hypothesis: there
are a set O ∈ A0 and a function ξ : Rm \ O → (0,+∞) such that

ξ(y) = ξ(Y (s; y)), s ∈ R, y ∈ Rm \ O,
∫

Rm\O
ξ(y) dy < +∞. (18)

We check easily that if such a couple (O, ξ) exists, then the set O is unique up to a
negligible set. Let us analyze some examples.
Example 1 We consider m = 2, b(y) = (1, 0). In this case we have (Y1, Y2)(s; y) = (y1+
s, y2), s ∈ R, y ∈ R2 and thus the constant functions along the flow are the functions
depending only on y2. We claim that O = R2. Indeed, let f = f(y2) ∈ L1(R2).
Therefore we have ∫

R2

|f(y2)| dy =

∫
R

(∫
R
|f(y2)| dy2

)
dy1 < +∞

implying that
∫

R |f(y2)|dy2 = 0 which says that f = 0. In this case (18) is trivially
satisfied.
Example 2 We consider m = 2, b(y) = ⊥y = (y2,−y1). The flow is given by

Y (s; y) =

(
cos s sin s
− sin s cos s

)
y, s ∈ R, y ∈ R2

and the functions constant along the trajectories are f = f(|y|). In particular y → e−|y|

belongs to L1(R2) implying that O = ∅ and that (18) holds true (with ξ(y) = e−|y| > 0
on R2).
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Example 3 We consider m = 2 and b(y) = (y2,− sin y1). It is easily seen that
ψ(y) = 1

2
(y2)

2 − cos y1 is constant along the flow. Actually the constant functions
along the trajectories are the functions depending only on 1

2
(y2)

2 − cos y1 = ψ. We
claim that O = {y ∈ R2 : ψ(y) > 1} = O1 ∪ O2 where

O1 = {y ∈ R2 : y2 > 2 |cos (y1/2)|}, O2 = {y ∈ R2 : y2 < −2 |cos (y1/2)|}.

Indeed, let f((y2)
2/2− cos y1) be a function in L1(O). In particular we have∫

O1

|f((y2)
2/2− cos y1)| dy < +∞.

Performing the change of variable x1 = y1 ∈ R, x2 = (y2)
2/2− cos y1 > 1 we obtain∫

O1

|f((y2)
2/2− cos y1)| dy =

∫
R

(∫ +∞

1

|f(x2)|√
2(x2 + cosx1)

dx2

)
dx1

≥
∫

R

(∫ +∞

1

|f(x2)|√
2(x2 + 1)

dx2

)
dx1.

Therefore
∫ +∞

1
|f(x2)|√
2(x2+1)

dx2 = 0 saying that f((y2)
2/2 − cos y1) = 0 on O1. Similarly

we obtain f((y2)
2/2− cos y1) = 0 on O2. Observe also that (18) holds true. Indeed we

have

R2 \ O = {y ∈ R2 : −1 ≤ ψ(y) ≤ 1} = {y ∈ R2 : |y2| ≤ 2| cos(y1/2)|} = ∪k∈ZAk

where
Ak = A+ (2πk, 0), A = {y ∈ [−π, π)× R : |y2| ≤ 2| cos(y1/2)|}

and
∫
A

dy = 16. Therefore we can consider the function

ξ(y) =
∑
k∈Z

1

2|k|
1Ak(y)

which is strictly positive on R2 \ O, is constant along the flow and∫
R2\O

ξ(y) dy =
∑
k∈Z

1

2|k|
· 16 = 48 < +∞.

Under the hypothesis (18) we have, for q = 1, a similar result as those in Proposition
2.2. The proof follows by approximating L1 norm with Lq norms when q ↘ 1 (see
Appendix A for details).

Proposition 2.4 Assume that (18) holds and u ∈ L1(Rm). Then there is a unique
function 〈u〉 ∈ ker T1 such that 〈u〉|O = 0 and for any ϕ ∈ ker T∞ we have∫

Rm\O
(u(y)− 〈u〉(y))ϕ(y) dy = 0. (19)

Moreover we have the inequality ‖〈u〉‖L1(Rm) ≤ ‖u‖L1(Rm). In particular the application
u ∈ L1(Rm)→ 〈u〉 ∈ L1(Rm) is linear, continuous and ‖〈·〉‖L(L1(Rm),L1(Rm)) ≤ 1.
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Employing similar arguments as those in the proof of Proposition 2.2 we analyze the
operator 〈·〉 in the L∞(Rm) setting (see Appendix A).

Proposition 2.5 Assume that (18) holds and u ∈ L∞(Rm). Then there is a unique
function 〈u〉 ∈ ker T∞ such that 〈u〉 = 0 on O and for any ϕ ∈ ker T1 we have∫

Rm\O
(u(y)− 〈u〉(y))ϕ(y) dy = 0.

Moreover we have the weak ? convergence in L∞(Rm \ O)

〈u〉 = lim
T→+∞

1

T

∫ T

0

u(Y (s; ·)) ds

and the inequality ‖〈u〉‖L∞(Rm) ≤ ‖u‖L∞(Rm). In particular the application u ∈ L∞(Rm)→
〈u〉 ∈ L∞(Rm) is linear, continuous and ‖〈·〉‖L(L∞(Rm),L∞(Rm)) ≤ 1.

We inquire now about the symmetry between the operators 〈·〉(q), 〈·〉(q ′) when q, q ′ are
conjugate exponents. We have the natural duality result.

Proposition 2.6 a) Assume that q, q ′ ∈ (1,+∞), 1/q + 1/q ′ = 1, u ∈ Lq(Rm),
ϕ ∈ Lq ′(Rm). Then ∫

Rm
u 〈ϕ〉(q ′) dy =

∫
Rm
〈u〉(q)ϕ dy.

b) In particular 〈·〉(2) is symmetric on L2(Rm) and coincides with the orthogonal pro-
jection on ker T2. Moreover we have the orthogonal decomposition L2(Rm) = ker T2 ⊕
ker〈·〉(2).
c) Assume that (18) holds and that u ∈ L1(Rm), ϕ ∈ L∞(Rm). We denote by 〈u〉(1),
〈ϕ〉(∞) the functions constructed in Propositions 2.4, 2.5 respectively. Then∫

Rm
u 〈ϕ〉(∞) dy =

∫
Rm
〈u〉(1)ϕ dy.

Proof. a) The function 〈ϕ〉(q ′) belongs to ker Tq ′ and therefore∫
Rm
(u− 〈u〉(q))〈ϕ〉(q ′) dy = 0. (20)

Similarly 〈u〉(q) belongs to ker Tq and thus∫
Rm
(ϕ− 〈ϕ〉(q ′))〈u〉(q) dy = 0. (21)

Combining (20), (21) yields∫
Rm
u 〈ϕ〉(q ′) dy =

∫
Rm
〈u〉(q)〈ϕ〉(q ′) dy =

∫
Rm
〈u〉(q)ϕ dy.

b) When q = 2 we obtain∫
Rm
u 〈ϕ〉(2) dy =

∫
Rm
〈u〉(2)ϕ dy, ∀ u, ϕ ∈ L2(Rm).
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By the characterization in Proposition 2.2 we deduce that 〈·〉(2) = Projker T2 . Since
ker T2 is closed we have the orthogonal decomposition

L2(Rm) = ker T2 ⊕ (ker T2)⊥ = ker T2 ⊕ ker〈·〉(2).

c) By Proposition 2.4 we know that∫
Rm\O

(u− 〈u〉(1))〈ϕ〉(∞) dy = 0.

By construction we have 〈ϕ〉(∞) = 0 on O and thus we have also∫
Rm
(u− 〈u〉(1))〈ϕ〉(∞) dy = 0.

By Proposition 2.5 we deduce that∫
Rm\O

(ϕ− 〈ϕ〉(∞))〈u〉(1) dy = 0.

Since 〈u〉(1) = 0 on O, the above equality can be written∫
Rm
(ϕ− 〈ϕ〉(∞))〈u〉(1) dy = 0.

Finally we obtain∫
Rm
u 〈ϕ〉(∞) dy =

∫
Rm
〈u〉(1)〈ϕ〉(∞) dy =

∫
Rm
〈u〉(1)ϕ dy.

The following result is a straightforward consequence of the characterizations for 〈·〉(r)
with r ∈ [1,+∞].

Corollary 2.4 Let u ∈ Lp(Rm), v ∈ Lq(Rm) and 1/r = 1/p + 1/q with p, q, r ∈
[1,+∞]. Assume that u is constant along the flow. Then 〈uv〉(r) = u 〈v〉(q).
Proof. We distinguish several cases.
a) p, q, r ∈ (1,+∞). Take any function ϕ ∈ ker Tr ′ (with 1/r + 1/r ′ = 1) and observe
that ϕu ∈ ker Tq ′ (with 1/q + 1/q ′ = 1). Therefore we know that∫

Rm
(v − 〈v〉(q))ϕu dy = 0

saying that 〈uv〉(r) = u 〈v〉(q).
b) r ∈ (1,+∞), p = r, q = +∞ (we assume that (18) holds). For any function ϕ ∈
ker Tr ′ we have ϕu ∈ ker T1 and thus∫

Rm\O
(v − 〈v〉(∞))ϕu dy = 0.

Since ϕu = 0 on O (as function in ker T1) we deduce that∫
Rm
(v − 〈v〉(∞))ϕu dy = 0

implying that 〈uv〉(r) = u 〈v〉(∞).
The other cases are: c) r ∈ (1,+∞), p = +∞, q = r, d) r = 1, p, q ∈ (1,+∞), e)
r = p = 1, q = +∞, f) r = q = 1, p = +∞, g) r = p = q = +∞. They follow in
similar way and are left to the reader.
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Recall that our main motivation when constructing the average operator was that the
equality 〈b ·∇yu1〉 = 0 holds true for any function u1, making thus possible to eliminate
the first order correction term in (4) after applying the average operator. In the sequel
we justify rigorously this property. By the orthogonal decomposition in Proposition
2.6 we deduce that ker〈·〉(2) = (ker T2)⊥ = (ker T ?2 )⊥ = rangeT2. We have the general
result.

Proposition 2.7 Assume that q ∈ (1,+∞). Then ker〈·〉(q) = rangeTq.

Proof. For any v = Tqu ∈ rangeTq and ϕ ∈ ker Tq ′ we have∫
Rm
(v − 0)ϕ dy =

∫
Rm
Tqu ϕ dy = −

∫
Rm
uTq ′ϕ dy = 0

saying that 〈v〉(q) = 0. Therefore rangeTq ⊂ ker〈·〉(q) and also rangeTq ⊂ ker〈·〉(q).
Consider now a linear form h on Lq(Rm) vanishing on rangeTq. There is v ∈ Lq ′(Rm)
such that h(w) =

∫
Rmwv dy for any w ∈ Lq(Rm). In particular∫

Rm
Tqu v dy = 0, ∀ u ∈ Dq

saying that v ∈ ker Tq ′ . For any ϕ ∈ ker〈·〉(q) we can write by Proposition 2.6

h(ϕ) =

∫
Rm
vϕ dy =

∫
Rm
〈v〉(q ′)ϕ dy =

∫
Rm
v 〈ϕ〉(q) dy = 0

and thus h vanishes on ker〈·〉(q) implying that ker〈·〉(q) ⊂ rangeTq. Consequently we
have rangeTq = ker〈·〉(q).
At this stage let us point out that if rangeTq is closed, then ker〈·〉(q) = rangeTq saying
that the equation Tqu = f ∈ Lq(Rm) is solvable iff 〈f〉(q) = 0. Let us indicate a simple
situation where the above characterization for the range of Tq occurs.

Proposition 2.8 Assume that all the trajectories are closed, uniformly in time i.e.,

∃ T > 0 : ∀ y ∈ Rm, ∃ Ty ∈ [0, T ] such that Y (Ty; y) = y.

Then for any q ∈ (1,+∞) the range of Tq is closed and we have rangeTq = ker〈·〉(q).

Proof. By Proposition 2.7 we have rangeTq ⊂ rangeTq = ker〈·〉(q). Conversely, assume
that f ∈ ker〈·〉(q) and let us check that f ∈ rangeTq. For any µ > 0 let uµ ∈ Lq(Rm)
solving

µuµ + Tquµ = f. (22)

It is easily seen that the unique solution of the above equation is

uµ =

∫ 0

−∞
eµsf(Y (s; ·)) ds. (23)

Observe that we are done if we prove that (‖uµ‖Lq(Rm))µ>0 is bounded. Indeed, in this
case we can extract a sequence (µn)n converging towards 0 such that limn→+∞ uµn = u
weakly in Lq(Rm). Passing to the limit in the weak formulation of (22) we deduce
that u ∈ Dq and f = Tqu ∈ rangeTq. In order to estimate (‖uµ‖Lq(Rm))µ>0 we use the
immediate lemma, whose proof is left to the reader.
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Lemma 2.1 Let g : R → R be a locally integrable T periodic function. Then for any
t ∈ R? we have ∣∣∣∣1t

∫ t

0

g(s) ds− 1

T

∫ T

0

g(s) ds

∣∣∣∣ ≤ 2

|t|

∫ T

0

|g(s)| ds.

By Proposition 2.3 we know that

lim
s→−∞

(
−1

s

∫ 0

s

f(Y (τ ; ·)) dτ

)
= 〈f〉(q) = 0, strongly in Lq(Rm).

In particular we have the pointwise convergence

lim
k→+∞

(
− 1

sk

∫ 0

sk

f(Y (τ ; y)) dτ

)
= 0, a.e. y ∈ Rm

for some sequence (sk)k verifying limk→+∞ sk = −∞. Observe that∥∥∥∥∫ T

0

|f(Y (τ ; ·))| dτ
∥∥∥∥
Lq(Rm)

≤ T‖f‖Lq(Rm) < +∞

and thus, for a.a. y ∈ Rm the function τ → f(Y (τ ; y)) is locally integrable. Since the
function τ → f(Y (τ ; y)) is Ty periodic, we have by Lemma 2.1

1

Ty

∫ Ty

0

f(Y (τ ; y)) dτ = lim
k→+∞

(
− 1

sk

∫ 0

sk

f(Y (τ ; y)) dτ

)
= 0, a.e. y ∈ Rm

and ∥∥∥∥−1

s

∫ 0

s

f(Y (τ ; ·)) dτ

∥∥∥∥
Lq(Rm)

≤
∥∥∥∥ 2

|s|

∫ Ty

0

|f(Y (τ ; y))| dτ
∥∥∥∥
Lq(Rm)

≤
∥∥∥∥ 2

|s|

∫ T

0

|f(Y (τ ; y))| dτ
∥∥∥∥
Lq(Rm)

≤ 2T

|s|
‖f‖Lq(Rm)

implying that ∥∥∥∥∫ 0

s

f(Y (τ ; ·))dτ
∥∥∥∥
Lq(Rm)

≤ 2T‖f‖Lq(Rm). (24)

Coming back to (23) one gets after integration by parts

uµ = −
∫ 0

−∞
eµs

d

ds

{∫ 0

s

f(Y (τ ; ·))dτ
}

ds =

∫ 0

−∞
µeµs

∫ 0

s

f(Y (τ ; ·))dτ ds

and therefore, combining with (24) yields

‖uµ‖Lq(Rm) ≤ 2T‖f‖Lq(Rm), ∀ µ > 0.
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Remark 2.2 The hypothesis that all trajectories are closed, uniformly in time, implies
a Poincaré inequality. Indeed, taking the weak limit of the previous uniform inequal-
ity yields ‖u‖Lq(Rm) ≤ 2T‖f‖Lq(Rm). Taking the average of (22) it is easily seen that
〈uµ〉(q) = 0, µ > 0 and therefore 〈u〉(q) = 0. Finally we obtain

‖u‖Lq(Rm) ≤ 2T‖Tqu‖Lq(Rm), 〈u〉 = 0.

Remark 2.3 The hypotheses in Proposition 2.8 are verified in the case of a periodic
flow, with uniformly bounded periods. This happens to be true for the guiding-center
approximation (see Lemma 5.1) and for the finite Larmor radius regime with constant
magnetic field.

Generally the flow is not uniformly periodic. For later use we establish here a charac-
terization for ker〈·〉(q) = rangeTq in the general case (not necessarily periodic). This
result will be useful when justifying the asymptotic behaviour of (1) when ε↘ 0.

Proposition 2.9 Let f be a function in Lq(Rm) for some q ∈ (1,+∞). For any
µ > 0 we denote by uµ the unique solution of (22). Then the following statements are
equivalet
a) 〈f〉(q) = 0.
b) limµ↘0(µuµ) = 0 in Lq(Rm).

Proof. Assume that b) holds true. Applying the operator 〈·〉(q) in (22) one gets

〈f〉(q) = 〈µuµ〉(q) + 〈Tquµ〉(q) = 〈µuµ〉(q), ∀ µ > 0

and therefore
〈f〉(q) = lim

µ↘0
〈µuµ〉(q) = 〈lim

µ↘0
(µuµ)〉(q) = 0.

Conversely, suppose that a) holds true. Considering the functionG(s; y) =
∫ 0

s
f(Y (τ ; y)) dτ

we obtain by the formula (23) (use the inequality ‖G(s; ·)‖Lq(Rm) ≤ |s|‖f‖Lq(Rm) in order
to justify the integration by parts)

uµ = −
∫ 0

−∞
eµs

∂G

∂s
(s; ·) ds =

∫ 0

−∞
µs eµs

G(s; ·)
s

ds =
1

µ

∫ 0

−∞
t et

G(tµ−1; ·)
tµ−1

dt.

We know that ‖G(tµ−1)/(tµ−1)‖Lq(Rm) ≤ ‖f‖Lq(Rm) and by Proposition 2.3 we have for
any t < 0

lim
µ↘0

G(tµ−1; ·)
tµ−1

= lim
µ↘0

∫ 0

t/µ
f(Y (s; ·)) ds

t/µ
= −〈f〉(q) = 0, strongly in Lq(Rm).

Consequently, by the dominated convergence theorem, one gets

‖µuµ‖Lq(Rm) ≤
∫ 0

−∞
|t|et

∥∥∥∥G(tµ−1; ·)
tµ−1

∥∥∥∥
Lq(Rm)

dt→ 0 as µ↘ 0.

Remark 2.4 With the above notations we have ‖µuµ‖Lq(Rm) ≤ ‖f‖Lq(Rm), ∀ µ > 0.
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2.1 Average operator commutator with time/space deriva-
tives

Up to this point we have investigated the properties of 〈·〉(q) operating from Lq(Rm)
to Lq(Rm) with q ∈ [1,+∞]. In view of further regularity results for the transport equa-
tions (1) we investigate now how 〈·〉(q) acts on some particular subspaces of smooth
functions. These regularity results will be crucial when justifying the strong con-
vergence of the solutions of (1) when ε ↘ 0. For this purpose we recall here the
following basic results concerning the derivation operators along fields in Rm. For any
ξ = (ξ1(y), ..., ξm(y)), where y ∈ Rm, we denote by Lξ the operator ξ · ∇y. A direct
computation shows that for any smooth fields ξ, η, the commutator between Lξ, Lη is
still a first order operator, given by [Lξ, Lη] := LξLη − LηLξ = Lχ, where χ is the
Poisson bracket of ξ and η

χ = [ξ, η], [ξ, η]i = (ξ · ∇y)ηi − (η · ∇y)ξi = Lξ(ηi)− Lη(ξi), i ∈ {1, ...,m}.

It is well known (see [3], pp. 93) that Lξ, Lη commute (or equivalently the Poisson
bracket [ξ, η] vanishes) iff the flows corresponding to ξ, η, let say Z1, Z2, commute

Z1(s1;Z2(s2; y)) = Z2(s2;Z1(s1; y)), s1, s2 ∈ R, y ∈ Rm.

Consider a smooth field c in involution with b and having bounded divergence

c ∈ W 1,∞
loc (Rm), divyc ∈ L∞(Rm), [c, b] = 0

and let us denote by Z the flow associated to c (we assume that Z is well defined for
any (s, y) ∈ R× Rm). We claim that the following commutation property holds true.

Proposition 2.10 Assume that c is a smooth field in involution with b, with bounded
divergence and well defined flow. Then for any q ∈ (1,+∞) the operator 〈·〉(q) commutes
with the translations along the flow of c

〈u ◦ Z(h; ·)〉(q) = 〈u〉(q) ◦ Z(h; ·), u ∈ Lq(Rm), h ∈ R.

Moreover, under the hypothesis (18) the above conclusion holds true when q ∈ {1,+∞}.

Proof. Assume that q ∈ (1,+∞). The commutation property of the flows Y, Z and
Proposition 2.3 allow us to write the strong convergences in Lq(Rm)

〈u ◦ Z(h; ·)〉(q) = lim
T→+∞

1

T

∫ T

0

u ◦ Z(h;Y (s; ·)) ds

= lim
T→+∞

1

T

∫ T

0

u ◦ Y (s;Z(h; ·)) ds (25)

=

(
lim

T→+∞

1

T

∫ T

0

u(Y (s; ·)) ds

)
◦ Z(h; ·) (26)

= 〈u〉(q) ◦ Z(h; ·). (27)

Notice that the third equality in the above computations follows by changing the
variable along the flow Z and by using the boundedness of divyc. The cases q ∈ {1,+∞}
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require more careful analysis. The idea is to appeal to the variational characterization
of the average operator in Propositions 2.4, 2.5 by choosing appropriate test functions
invariant along the flow of b and then performing changes of variable along the flow of
c. The main point here is that the divergence of any smooth field in involution with b
(in particular divyc) is invariant along the flow of b. The details are left to the reader.

Remark 2.5 In particular we have [b, b] = 0 and therefore 〈·〉(q) commutes with the
translations along the flow of b. We have for any h ∈ R, u ∈ Lq(Rm), q ∈ [1,+∞]

〈u(Y (h; ·))〉(q) = 〈u〉(q)(Y (h; ·)) = 〈u〉(q).

We will show that for any smooth field c in involution with b, the operator 〈·〉(q)
commutes with c · ∇y. We denote by T cq the operator given by

D(T cq ) = {u ∈ Lq(Rm) : divy(cu) ∈ Lq(Rm)}, T cq u = divy(cu)−(divyc)u, u ∈ D(T cq ).

We have the standard result (see [6], Proposition IX.3, pp. 153 for similar results).

Lemma 2.2 Assume that q ∈ (1,+∞) and let u be a function in Lq(Rm). Then the
following statements are equivalent
a) u ∈ D(T cq ).
b) (h−1(u(Z(h; ·))− u))h is bounded in Lq(Rm).
Moreover, for any u ∈ D(T cq ) we have the convergence

lim
h→0

u(Z(h; ·))− u
h

= T cq u, strongly in Lq(Rm).

The next result is a straightforward consequence of Proposition 2.10 and Lemma 2.2.

Proposition 2.11 Under the hypotheses of Proposition 2.10, assume that u ∈ D(T cq )

for some q ∈ (1,+∞). Then 〈u〉(q) ∈ D(T cq ) and T cq 〈u〉(q) = 〈T cq u〉(q).

Remark 2.6 In particular Proposition 2.11 applies for c = b. Actually, for any u ∈
D(Tq), q ∈ [1,+∞] we have Tq〈u〉(q) = 〈Tqu〉(q) = 0.

Remark 2.7 Under the hypotheses of Proposition 2.10 we check immediately thanks
to Lemma 2.2 that if u ∈ D(T cq ), then for any s ∈ R, u ◦ Y (s; ·) ∈ D(T cq ) and

T cq (u ◦ Y (s; ·)) = (T cq u) ◦ Y (s; ·).

In particular if u ∈ ker Tq ∩D(T cq ) then T cq u ∈ ker Tq.

The last result in this section states that 〈·〉(q) commutes with the time derivation. The
proof is standard and comes easily by observing that

〈u(t+ h)〉(q) − 〈u(t)〉(q)

h
=

〈
u(t+ h)− u(t)

h

〉(q)

and by adapting the arguments in Lemma 2.2.

Proposition 2.12 Assume that u ∈ W 1,p([0, T ];Lq(Rm)) for some p, q ∈ (1,+∞).
Then the application (t, y)→ 〈u(t, ·)〉(q)(y) belongs to W 1,p([0, T ];Lq(Rm)) and we have
∂t〈u〉(q) = 〈∂tu〉(q).
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3 Well-posedness of the limit model

We continue our mathematical analysis by studying the well posedness of the limit
model and surely, one of the key point will be to justify rigorously the asymptotic
behaviour towards this limit model. These items will be carried out in the next sections.
This section is devoted to the study of the limit model, when ε↘ 0, for the transport
problems (1). Recall that b is a given smooth field satisfying (10), (11), (12). We
assume that a satisfies the conditions

a ∈ L1([0, T ];W 1,∞(Rm)), divya = 0. (28)

Based on Hilbert’s expansion method we have obtained (see (3), (4)) the formula
uε = u+ εu1 +O(ε2) where

b(y) · ∇yu = 0, ∂tu+ a(t, y) · ∇yu+ b(y) · ∇yu1 = 0.

Projecting the second equation on the kernel of T leads to the model

∂t〈u〉+ 〈a(t) · ∇yu(t)〉 = 0, (t, y) ∈ (0, T )× Rm.

Notice that T u = 0 and thus 〈u〉 = u. Finally we obtain{
∂tu+ 〈a(t) · ∇yu(t)〉 = 0, b(y) · ∇yu = 0, (t, y) ∈ (0, T )× Rm

u(0, y) = u0(y), y ∈ Rm.
(29)

We work in the Lq(Rm) setting, with q ∈ (1,+∞). For any ϕ ∈ ker Tq ′ we have∫
Rm
(a(t, y) · ∇yu− 〈a(t) · ∇yu(t)〉(q))ϕ(y) dy = 0

and we introduce the notion of weak solution for (29) as follows.

Definition 3.1 Assume that u0 ∈ ker Tq, f ∈ L1([0, T ]; ker Tq) (i.e., f ∈ L1([0, T ];Lq(Rm))
and f(t) ∈ ker Tq, t ∈ [0, T ]). We say that u ∈ L∞([0, T ]; ker Tq) is a weak solution for{

∂tu+ 〈a(t) · ∇yu(t)〉(q) = f(t, y), Tqu = 0, (t, y) ∈ (0, T )× Rm

u(0, y) = u0(y), y ∈ Rm (30)

iff for any ϕ ∈ C1
c ([0, T )× Rm) satisfying T ϕ = 0 we have∫ T

0

∫
Rm
u(t, y)(∂tϕ+ divy(ϕa)) dydt+

∫
Rm
u0(y)ϕ(0, y) dy +

∫ T

0

∫
Rm
f(t, y)ϕ(t, y) dydt = 0.

(31)

We start by establishing existence and regularity results for the solution of (30).

Proposition 3.1 Assume that u0 ∈ ker Tq, f ∈ L1([0, T ]; ker Tq) for some q ∈ (1,+∞).
Then there is at least a weak solution u ∈ L∞([0, T ]; ker Tq) of (30) satisfying

‖u(t)‖Lq(Rm) ≤ ‖u0‖Lq(Rm) +

∫ t

0

‖f(s)‖Lq(Rm), t ∈ [0, T ].

Moreover, if u0 ≥ 0 and f ≥ 0 then u ≥ 0.
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Proof. For any ε > 0 there is a unique weak solution uε of{
∂tu

ε + a(t, y) · ∇yu
ε +

b(y)

ε
· ∇yu

ε = f(t, y), (t, y) ∈ (0, T )× Rm

uε(0, y) = u0(y), y ∈ Rm.
(32)

The solution is given by

uε(t, y) = u0(Z
ε(0; t, y)) +

∫ t

0

f(s, Zε(s; t, y)) ds, (t, y) ∈ [0, T ]× Rm

where Zε are the characteristics corresponding to the field a + ε−1b. Multiplying by
uε(t, y)|uε(t, y)|q−2 and integrating with respect to y ∈ Rm, we obtain thanks to Hölder’s
inequality

‖uε‖Lq(Rm) ≤ ‖u0‖Lq(Rm) +

∫ t

0

‖f(s)‖Lq(Rm), t ∈ [0, T ].

We extract a sequence (εk)k converging towards 0 such that uεk ⇀ u weakly ?
in L∞([0, T ];Lq(Rm)) for some function u ∈ L∞([0, T ];Lq(Rm)) satisfying

‖u‖L∞([0,T ];Lq(Rm)) ≤ ‖u0‖Lq(Rm) + ‖f‖L1([0,T ];Lq(Rm)).

By the weak formulation of (32) with a function ϕ ∈ C1
c ([0, T )× Rm) we deduce that∫ T

0

∫
Rm
uεk
(
∂tϕ+

(
a+

b

εk

)
· ∇yϕ

)
dydt+

∫
Rm
u0ϕ(0, y) dy +

∫ T

0

∫
Rm
fϕ dydt = 0. (33)

Multiplying by εk and passing to the limit as k → +∞ one gets easily by Proposition
2.1 that u(t) ∈ ker Tq, t ∈ [0, T ). If the test function verifies T ϕ = 0 we get rid of the
singular term in (33) and by passing to the limit for k → +∞ we deduce that the weak
? limit u satisfies the weak formulation of (30). If u0 ≥ 0, f ≥ 0 then uε ≥ 0 for any
ε > 0 and thus the solution constructed above is non negative.

At this stage we mention that the numerical approximation of the limit model (30)
remains a difficult problem. The main drawback of the weak formulation (31) is the
particular form of the trial functions ϕ ∈ ker T ∩C1

c ([0, T )×Rm). Generally, the choice
of such test functions could be a difficult task. Accordingly, we are looking for a strong
formulation of (30). Therefore we inquire about the smoothness of the solution. We
also mention that the regularity results will allow us to prove strong convergence results
for the solutions of (1) towards the solution of (30) as ε ↘ 0. A complete regularity
analysis can be carried out under the following hypothesis: we will assume that the
field a is a linear combination of fields in involution with b0 := b

a(t, y) =
r∑
i=0

αi(t, y)bi(y), bi ∈ W 1,∞(Rm), [bi, b] = 0, i ∈ {1, ..., r} (34)

where (αi)i are smooth coefficients verifying

αi ∈ L1([0, T ];L∞(Rm)), bj · ∇yαi ∈ L1([0, T ];L∞(Rm)), i, j ∈ {0, 1, ..., r}. (35)

For any i ∈ {1, ..., r} we denote by T iq : D(T iq ) ⊂ Lq(Rm)→ Lq(Rm) the operator

D(T iq ) = {u ∈ Lq(Rm) : divy(b
iu) ∈ Lq(Rm)}, T iq u = divy(b

iu)−(divyb
i)u, u ∈ D(T iq )
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and by Y i the flow associated to bi. Since [bi, b] = 0 then Y i commutes with Y for any
i ∈ {1, ..., r}. Under the previous hypotheses it can be shown that the weak solution
constructed in Proposition 3.1 propagates the regularity of the initial condition. The
proof is rather technical and it is postponed to Appendix B.

Proposition 3.2 Assume that (34), (35) hold, u0 ∈ ker Tq∩(∩ri=1D(T iq )), f ∈ L1([0, T ]; ker Tq∩
(∩ri=1D(T iq ))) (i.e., f ∈ L1([0, T ];Lq(Rm)), Tqf = 0 and T iq f ∈ L1([0, T ];Lq(Rm)),
i ∈ {1, ..., r}) and let us denote by u the weak solution of (30) constructed in Proposi-
tion 3.1. Then we have u(t) ∈ ker Tq ∩ (∩ri=1D(T iq )), t ∈ [0, T ] and

‖∂tu‖L1([0,T ];Lq(Rm)) +
r∑
i=1

‖T iq u‖L∞([0,T ];Lq(Rm)) ≤ C(‖f‖L1([0,T ];Lq(Rm))

+
r∑
i=1

‖T iq f‖L1([0,T ];Lq(Rm)) +
r∑
i=1

‖T iq u0‖Lq(Rm))

for some constant depending on
∑

0≤i,j≤r ‖bi·∇yαj‖L1([0,T ];L∞(Rm)),
∑r

i=0 ‖αi‖L1([0,T ];L∞(Rm)).
Moreover, if f ∈ L∞([0, T ];Lq(Rm)), αi ∈ L∞([0, T ];L∞(Rm)) for any i ∈ {1, ..., r}
then ∂tu ∈ L∞([0, T ];Lq(Rm)).

Thanks to the previous regularity result we are able to establish the existence of strong
solution for (30).

Definition 3.2 Under the hypotheses (34), (35), (18) we say that u is a strong solution
of (30) iff u ∈ L∞([0, T ];Lq(Rm)), ∂tu ∈ L1([0, T ];Lq(Rm)), T iq u ∈ L∞([0, T ];Lq(Rm))
for any i ∈ {1, ..., r} and{

∂tu+
∑r

i=1〈αi(t)〉(∞)T iq u(t) = f(t), Tqu(t) = 0 t ∈ (0, T )
u(0) = u0.

(36)

Corollary 3.1 Assume that (34), (35), (18) hold. Then for any u0 ∈ (∩ri=1D(T iq )) ∩
ker Tq and f ∈ L1([0, T ]; (∩ri=1D(T iq )) ∩ ker Tq), there is a strong solution u for (30)
verifying

‖∂tu‖L1([0,T ];Lq(Rm)) +
r∑
i=1

‖T iq u‖L∞([0,T ];Lq(Rm)) ≤ C‖f‖L1([0,T ];Lq(Rm))

+ C

r∑
i=1

{‖T iq f‖L1([0,T ];Lq(Rm)) + ‖T iq u0‖Lq(Rm)}. (37)

Proof. Let u be the solution constructed in Proposition 3.2. This function has the
regularity in (37), satisfies Tqu = 0 and∫ T

0

∫
Rm
u(∂tϕ+ divy(ϕa)) dydt+

∫
Rm
u0ϕ(0, y) dy +

∫ T

0

∫
Rm
fϕ dydt = 0 (38)

for any function ϕ ∈ C1
c ([0, T ) × Rm) verifying T ϕ = 0. Since a =

∑r
i=0 αib

i and
Tqu = 0 one gets∫ T

0

∫
Rm
u divy(aϕ) dydt =

∫ T

0

∫
Rm
u divy

(
ϕ

r∑
i=0

αib
i

)
dydt

= −
r∑
i=1

∫ T

0

∫
Rm
αiϕT iq u dydt
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implying that ∫ T

0

∫
Rm
(∂tu+

r∑
i=1

αiT iq u)ϕ dydt =

∫ T

0

∫
Rm
fϕ dydt. (39)

Using now the properties of the operators 〈·〉(q), 〈·〉(q ′) we obtain for any t ∈ [0, T ]∫
Rm
ϕ(t)

r∑
i=1

αi(t)T iq u(t) dy =

∫
Rm
〈ϕ(t)〉(q ′)

r∑
i=1

αi(t)T iq u(t) dy

=
r∑
i=1

∫
Rm
ϕ(t) 〈αi(t)T iq u(t)〉(q) dy (40)

(we have used the equality 〈ϕ(t)〉(q ′) = ϕ(t) which is valid since Tq ′ϕ = 0). Combining
(39), (40) yields ∫ T

0

∫
Rm

(
∂tu+

r∑
i=1

〈
αiT iq u

〉(q) − f)ϕ dydt = 0.

Observe that the function ∂tu +
∑r

i=1

〈
αiT iq u

〉(q) − f belongs to ker Tq and thus we
obtain

∂tu+
r∑
i=1

〈
αiT iq u(t)

〉(q)
= f(t), t ∈ (0, T ).

Since for any i ∈ {1, ..., r} we have u(t) ∈ ker Tq ∩ D(T iq ), we deduce by Remark 2.7
that T iq u(t) ∈ ker Tq. Therefore, by Corollary 2.4 we obtain

〈αi(t)T iq u(t)〉(q) = 〈αi(t)〉(∞)T iq u(t).

Finally u solves {
∂tu+

∑r
i=1〈αi(t)〉(∞)T iq u(t) = f(t), t ∈ (0, T )

u(0) = u0.
(41)

Remark 3.1 Notice that if u is a strong solution of (41) whose initial condition belongs
to ker Tq then the constraint Tqu = 0 is automatically satisfied. Indeed, we have

r∑
i=1

〈αi(t)〉(∞)T iq u(t) ∈ ker Tq, t ∈ [0, T ]

and therefore ∂tu ∈ ker Tq. We deduce that ∂tTqu = 0 implying that Tqu(t) = Tqu0 = 0
for t ∈ [0, T ].

Remark 3.2 It is easily seen that any strong solution of (30) is also weak solution for
the same problem.

Remark 3.3 The strong formulation is a transport problem corresponding to the av-
eraged advection field

∑r
i=1〈αi(t)〉(∞)bi and thus very easy to solve numerically.
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As usual, the existence of strong solution for the adjoint problem implies the uniqueness
of weak solution.

Proposition 3.3 Assume that (34), (35) hold. Then for any u0 ∈ ker Tq and f ∈
L1([0, T ]; ker Tq), with q ∈ (1,+∞), there is at most one weak solution of (30).

Proof. Let u ∈ L∞([0, T ]; ker Tq) be any weak solution of (30) with vanishing initial
condition and source term. We will show that u = 0. We know that∫ T

0

∫
Rm
u(∂tθ + a · ∇yθ) dydt = 0 (42)

for any function θ ∈ C1
c ([0, T )×Rm) satisfying T θ = 0. Consider a function η = η(t) ∈

C([0, T ]) and ψ = ψ(y) ∈ (∩ri=1D(T iq ′)) ∩ ker Tq ′ . By Corollary 3.1 there is a strong
solution ϕ̃ of{

∂tϕ̃− 〈a(T − t) · ∇yϕ̃〉(q
′) = η(T − t)ψ(y), (t, y) ∈ (0, T )× Rm

ϕ̃(0, y) = 0. y ∈ Rm

satisfying ϕ̃, T iq ′ϕ̃ ∈ L∞([0, T ];Lq
′
(Rm)), ∂tϕ̃ ∈ L1([0, T ];Lq

′
(Rm)). It is easily seen

that ϕ(t, y) = ϕ̃(T − t, y) has the same regularity as ϕ̃, ϕ(t) ∈ ker Tq ′ and{
−∂tϕ− 〈a(t) · ∇yϕ〉(q

′) = η(t)ψ(y), (t, y) ∈ (0, T )× Rm

ϕ(T, y) = 0, y ∈ Rm.

We use now (42) with the function ϕ (observe that the formulation (42) still holds true
for trial functions having the regularity of ϕ)

0 =

∫ T

0

∫
Rm
u(∂tϕ+ a · ∇yϕ) dydt

=

∫ T

0

∫
Rm
u∂tϕ dydt+

∫ T

0

∫
Rm
〈u(t)〉(q)a · ∇yϕ dydt

=

∫ T

0

∫
Rm
u(∂tϕ+ 〈a(t) · ∇yϕ〉(q

′)) dydt

= −
∫ T

0

η(t)

∫
Rm
u(t, y)ψ(y) dy dt.

We deduce that
∫

Rm u(t, y)ψ(y) dy = 0 for any t ∈ [0, T ] and any ψ ∈ (∩ri=1D(T iq ′)) ∩
ker Tq ′ . Since u(t) ∈ ker Tq it follows that u(t) = 0, t ∈ [0, T ].

Remark 3.4 The uniqueness of the weak solution for (30) guarantees the uniqueness
of the strong solution in Corollary 3.1.

For further use we establish the conservation of the Lq norm for weak solutions without
source term. We need the easy lemma.

Lemma 3.1 Let β ∈ W 1,∞(Rm) be a smooth function and c(y) a smooth field with
bounded divergence. Assume that v ∈ D(c ·∇y) ⊂ Lq(Rm) for some q ∈ (1,+∞). Then
we have ∫

Rm
β(y)(c · ∇y)v |v|q−2v dy = −1

q

∫
Rm
|v|q divy(βc) dy.
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Corollary 3.2 Assume that (34), (35) hold and that u0 ∈ ker Tq, f ∈ L1([0, T ]; ker Tq)
for some q ∈ (1,+∞). Then the weak solution of (30) satisfies for any t ∈ [0, T ]

1

q

∫
Rm
|u(t, y)|q dy =

1

q

∫
Rm
|u0(y)|q dy +

∫ t

0

∫
Rm
f(s, y)|u(s, y)|q−2u(s, y) dy ds.

In particular, when f = 0 the Lq norm is preserved.

Proof. Consider the sequences of smooth functions (u0n)n and (fn)n such that limn→+∞ u0n =
u0 in Lq(Rm), limn→+∞ fn = f in L1([0, T ];Lq(Rm)). Let us denote by u, un the unique
solutions associated to (u0, f), (u0n, fn) respectively. Thanks to the uniqueness result
of Proposition 3.3 we deduce by Proposition 3.1 that

‖un − u‖L∞([0,T ];Lq(Rm)) ≤ ‖u0n − u0‖Lq(Rm) + ‖fn − f‖L1([0,T ];Lq(Rm))

and therefore it is sufficient to analyze the case of strong solutions (un)n. Taking into
account that |un|q−2un ∈ ker Tq ′ we have by Lemma 3.1∫

Rm
〈a(t) · ∇yun(t)〉(q)|un|q−2un dy =

∫
Rm
a(t) · ∇yun(t)〈|un(t)|q−2un(t)〉(q ′) dy

=

∫
Rm
a(t) · ∇yun(t)|un(t)|q−2un(t) dy

=

∫
Rm
a(t) · ∇y

|un(t)|q

q
dy

= −1

q

∫
Rm
|un|qdivya dy = 0.

Our conclusion follows immediately by multiplying the equation ∂tun+〈a(t)·∇yun(t)〉(q) =
fn(t) by |un(t)|q−2un(t) and integrating with respect to y ∈ Rm.

Naturally we can obtain more smoothness for the solution provided that the data are
more regular. We present here a simplified version for the homogeneous problem.
The proof is a direct consequence of Propositions 3.2, 2.11 and follows by taking the
directional derivatives bi · ∇y to the problem (30) (with f = 0). The proof is left to
the reader.

Proposition 3.4 Assume that (34), (35) hold and let us denote by u the solution of
(30) with f = 0 and the initial condition u0 satisfying for some q ∈ (1,+∞)

u0 ∈ (∩ri=1D(T iq )) ∩ ker Tq, T jq u0 ∈ ∩ri=1D(T iq ), ∀ j ∈ {1, ..., r}.

Then we have
r∑
i=1

r∑
j=1

‖T iq T jq u‖L∞([0,T ];Lq(Rm)) ≤ C

(
r∑
i=1

r∑
j=1

‖T iq T jq u0‖Lq(Rm) +
r∑
i=1

‖T iq u0‖Lq(Rm)

)
with C depending on

∑
1≤i,j,k≤r ‖T iq T jq αk‖L1([0,T ];L∞(Rm)),

∑
1≤i,j≤r ‖T iq αj‖L1([0,T ];L∞(Rm))

and

‖∂2
t u‖L1([0,T ];Lq) +

r∑
i=1

‖∂tT iq u‖L1([0,T ];Lq) ≤ C

(
r∑
i=1

r∑
j=1

‖T iq T jq u0‖Lq +
r∑
i=1

‖T iq u0‖Lq
)

with C depending on
∑

1≤i,j,k≤r ‖T iq T jq αk‖L1([0,T ];L∞(Rm)),
∑

1≤i,j≤r ‖T iq αj‖L1([0,T ];L∞(Rm)),∑r
i=1 ‖αi‖L1([0,T ];L∞(Rm)) and

∑r
i=1 ‖∂tαi‖L1([0,T ];L∞(Rm)).
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3.1 The limit model in terms of prime integrals

As seen before, the limit model for transport equations like (1) is given by

∂tu+ 〈a(t) · ∇yu(t)〉 = 0, (t, y) ∈ (0, T )× Rm.

When the field a is a linear combination of fields in involution with b, the above limit
model can be reduced to a transport equation. Moreover the computations simplify
when the prime integrals are employed. We detail here this approach, based on prime
integral concept. We assume that there are m−1 prime integrals, independent on Rm,
associated to the field b

b · ∇yψ
i = 0, i ∈ {1, ...,m− 1} (43)

rank

(
∂ψi

∂yj
(y)

)
(m−1)×m

= m− 1, y ∈ Rm. (44)

Let us recall, that generally, around any non singular point y0 of b (i.e., b(y0) 6=
0) there are (m − 1) independent prime integrals, defined only locally, in a small
enough neighborhood of y0 (see [3], pp. 95). For any y ∈ Rm we denote by M(y)
the matrix whose lines are ∇yψ

1, ...,∇yψ
m−1 and b. The hypotheses (43), (44) imply

that detM(y) 6= 0 for any y ∈ Rm. The idea is to search for fields c = c(y) such that
c(y) · ∇yu remains constant along the flow of b for any function u which is constant
along the same flow. If u is constant on the characteristics of b, there is a function
v = v(z) : Rm−1 → R such that

u(y) = v(ψ1(y), ..., ψm−1(y)), y ∈ Rm.

Therefore one gets

∂u

∂yj
=

m−1∑
k=1

∂v

∂zk
(ψ1(y), ..., ψm−1(y))

∂ψk

∂yj

implying that

c · ∇yu =
m−1∑
k=1

∂v

∂zk
(ψ1(y), ..., ψm−1(y))

m∑
j=1

∂ψk

∂yj
cj = (∇zv)(ψ(y)) · ∂ψ

∂y
c(y).

In particular, if
∂ψ

∂y
c(y) do not depend on y, the directional derivative c · ∇yu remains

constant along the trajectories of b. For any i ∈ {1, ...,m − 1} let us denote by ci(y)
the unique solution of the linear system

M(y)ci(y) = ei := (δij)1≤j≤m

where δij are the Kronecker’s symbols. Notice that M(y) b(y)
|b(y)|2 = em and thus the

vectors c1(y), ..., cm−1(y), b(y) are linearly independent at any y ∈ Rm. According to the
previous computations, for any function u constant along the flow of b, the directional
derivative ci · ∇yu remains constant along the same flow for any i ∈ {1, ...,m − 1}.
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We denote by β0, β1, ..., βm−1 the coordinates of a with respect to b, c1, ..., cm−1 and we
assume that (βi)i are smooth and bounded

a(t, y) = β0(t, y)b(y) +
m−1∑
i=1

βi(t, y)ci(y), (t, y) ∈ [0, T ]× Rm. (45)

Thanks to Corollary 2.4, one gets for any function u ∈ (∩m−1
i=1 D(T ciq )) ∩ ker Tq

〈a(t) · ∇yu(t)〉(q) =

〈
m−1∑
i=1

βi(t)c
i(y) · ∇yu(t)

〉(q)

=
m−1∑
i=1

〈βi(t)〉(∞)ci(y) · ∇yu(t).

It remains to compute (βi)i. Multiplying (45) by M(y) yields

M(y)a(t, y) = β0(t, y)|b(y)|2em +
m−1∑
i=1

βi(t, y)ei

implying that

βi(t, y) = M(y)a(t, y) · ei, i ∈ {1, ...,m− 1}, β0(t, y)|b(y)|2 = M(y)a(t, y) · em

or equivalently to

βi(t, y) = a(t, y) · ∇yψ
i, i ∈ {1, ...,m− 1}, β0(t, y) =

a(t, y) · b(y)

|b(y)|2
.

Finally one gets the following form of the limit model

∂tu+
m−1∑
i=1

〈a(t) · ∇yψ
i〉(∞)M−1(y)ei · ∇yu = 0. (46)

4 Convergence towards the limit model

This section is devoted to the asymptotic behaviour of the solutions (uε)ε>0 of (1).
We assume that b, a satisfy the hypotheses (10), (11), (12), (34) and we work in the
L2(Rm) setting (q = 2). Motivated by Hilbert’s expansion method, we intend to show
the convergence of (uε)ε>0 as ε ↘ 0 towards the solution u of (29). As usual such
kind of result is available provided that the solution of the limit model has enough
regularity. Therefore we assume that (29) has strong solution. Our main convergence
result is the following.

Theorem 4.1 Assume that (αi)i∈{1,...,r} are smooth (let us say C2([0, T ] × Rm)) and
satisfy

r∑
i=1

‖αi‖L1([0,T ];L∞(Rm)) +
r∑
i=1

‖∂tαi‖L1([0,T ];L∞(Rm)) < +∞

r∑
i=1

r∑
j=1

‖T i2αj‖L1([0,T ];L∞(Rm)) +
r∑
i=1

r∑
j=1

r∑
k=1

‖T i2 T
j

2 αk‖L1([0,T ];L∞(Rm)) < +∞.
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Suppose that

u0 ∈ (∩ri=1D(T i2 )) ∩ ker T2, T j2 u0 ∈ ∩ri=1D(T i2 ), ∀ j ∈ {1, ..., r}

and that (uε0)ε>0 are smooth initial conditions (let us say C1(Rm)) such that limε↘0 u
ε
0 =

u0 in L2(Rm). We denote by uε, u the solutions of (1), (29) respectively. Then we have
limε↘0 u

ε = u, in L∞([0, T ];L2(Rm)).

Proof. By the Propositions 3.2, 3.3 and Corollary 3.2 there is a unique strong solution
u for (29), satisfying ‖u(t)‖L2(Rm) = ‖u0‖L2(Rm) for any t ∈ [0, T ] and

‖∂tu‖L∞([0,T ];L2(Rm)) +
r∑
i=1

‖T i2 u‖L∞([0,T ];L2(Rm)) ≤ C

r∑
i=1

‖T i2 u0‖L2(Rm).

Since u(t) ∈ ker T2, t ∈ [0, T ], we have

〈∂tu+ a(t) · ∇yu(t)〉(2) = ∂t〈u〉(2) + 〈a(t) · ∇yu(t)〉(2) = ∂tu+ 〈a(t) · ∇yu(t)〉(2) = 0

and thus by Proposition 2.9 there are (vµ)µ>0 such that

∂tu+a(t, y) ·∇yu+µvµ(t, y)+T2vµ = 0, lim
µ↘0

(µvµ(t)) = 0 in L2(Rm), t ∈ [0, T ]. (47)

Moreover, by Remark 2.4 we know that

‖µvµ‖L∞([0,T ];L2(Rm)) ≤ ‖∂tu+ a(t) · ∇yu‖L∞([0,T ];L2(Rm))

≤ ‖∂tu‖L∞([0,T ];L2(Rm))

+ C
r∑
i=1

‖αi‖W 1,1([0,T ];L∞(Rm))‖T i2 u‖L∞([0,T ];L2(Rm))

≤ C
r∑
i=1

‖T i2 u0‖L2(Rm). (48)

Combining (1), (29) and the equation T2u = 0 yields(
∂t + a(t, y) · ∇y +

b(y)

ε
· ∇y

)
(uε − u− εvµ) = µvµ − ε(∂tvµ + a(t, y) · ∇yvµ). (49)

We investigate now the regularity of vµ. By Remark 2.4 we have

µ‖∂tvµ(t)‖L2(Rm) ≤

∥∥∥∥∥∂2
t u+

r∑
i=1

∂tαiT i2 u+
r∑
i=1

αi(t)∂tT i2 u

∥∥∥∥∥
L2(Rm)

and thus Proposition 3.4 implies

µ‖∂tvµ‖L1([0,T ];L2(Rm)) ≤ C

(
r∑
i=1

r∑
j=1

‖T i2 T
j

2 u0‖L2(Rm) +
r∑
i=1

‖T i2 u0‖L2(Rm)

)
. (50)

Applying now the operator T i2 , i ∈ {0, 1, ..., r}, in (47), yields

∂tT i2 u+
r∑
j=1

{(T i2αj)(T
j

2 u) + αj(T i2 T
j

2 u)}+ µT i2 vµ + T2T i2 vµ = 0.

24



By Remark 2.4 and Proposition 3.4 we obtain as before

µ‖T i2 vµ(t)‖L2(Rm) ≤ ‖∂tT i2 u(t) +
r∑
j=1

{(T i2αj(t))(T
j

2 u(t)) + αj(t)(T i2 T
j

2 u(t))}‖L2(Rm)

implying that

µ

r∑
i=0

‖T i2 vµ‖L1([0,T ];L2(Rm)) ≤ C

(
r∑
i=1

r∑
j=1

‖T i2 T
j

2 u0‖L2(Rm) +
r∑
i=1

‖T i2 u0‖L2(Rm)

)
. (51)

Multiplying (49) by uε − u− εvµ and integrating over Rm yields

1

2

d

dt
‖(uε − u− εvµ)(t)‖2L2(Rm) ≤ ‖µvµ(t)‖L2(Rm)‖(uε − u− εvµ)(t)‖L2(Rm)

+ ε

∥∥∥∥∥∂tvµ(t) +
r∑
i=0

αi(t)T i2 vµ(t)

∥∥∥∥∥
L2(Rm)

× ‖(uε − u− εvµ)(t)‖L2(Rm)

and we deduce that

d

dt
‖(uε−u−εvµ)(t)‖L2(Rm) ≤ ‖µvµ(t)‖L2(Rm)+Cε(‖∂tvµ(t)‖L2(Rm)+

r∑
i=0

‖T i2 vµ(t)‖L2(Rm)).

Combining with (50), (51), we obtain for any t ∈ [0, T ]

‖(uε − u− εvµ)(t)‖L2(Rm) ≤ ‖uε0 − u0 − εvµ(0)‖L2(Rm) +

∫ T

0

‖µvµ(s)‖L2(Rm) ds

+ C
ε

µ
(‖µ∂tvµ‖L1([0,T ];L2(Rm)) +

r∑
i=0

‖µT i2 vµ‖L1([0,T ];L2(Rm)))

≤ ‖uε0 − u0 − εvµ(0)‖L2(Rm) +

∫ T

0

‖µvµ(s)‖L2(Rm) ds+ C
ε

µ
.

Consequently one gets by (48) for any t ∈ [0, T ]

‖(uε − u)(t)‖L2(Rm) ≤ ‖uε0 − u0‖L2(Rm) +
ε

µ
(‖µvµ(t)‖L2(Rm) + ‖µvµ(0)‖L2(Rm))

+ C
ε

µ
+ ‖µvµ‖L1([0,T ];L2(Rm))

≤ ‖uε0 − u0‖L2(Rm) + C
ε

µ
+ ‖µvµ‖L1([0,T ];L2(Rm)).

Since the functions t→ ‖µvµ(t)‖L2(Rm) converge pointwise to 0 as µ↘ 0 (cf. (47)) and
they are uniformly bounded on [0, T ] (cf. (48)) we deduce by dominated convergence
theorem that

lim
µ↘0
‖µvµ‖L1([0,T ];L2(Rm)) = 0.

In particular, for µ = εδ, with δ ∈ (0, 1) we have

‖uε−u‖L∞([0,T ];L2(Rm)) ≤ ‖uε0−u0‖L2(Rm) +Cε1−δ+‖εδvεδ‖L1([0,T ];L2(Rm)) → 0, as ε↘ 0.
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5 Applications

In this section we present some applications of the results obtained before. It
mainly concerns the effects of strong magnetic fields. Nevertheless, the method applies
in many other situations, each time we need to separate multiple scales. Motivated
by the magnetic confinement fusion, which is one of the main applications in plasma
physics today, we chose to analyse the dynamics of a population of charged particles
(electrons) under the action of strong magnetic fields Bε = B/ε, 0 < ε << 1. Using
the kinetic description, the evolution of the particle population is given in terms of a
probability density f = f(t, x, p) ≥ 0 depending on time t, position x, momentum p.
When neglecting the collisions this particle density satisfies the Vlasov equation

∂tf +
p

me

· ∇xf − e
(
E(t, x) +

p

me

∧Bε(t, x)

)
· ∇pf = 0

where−e < 0 is the electron charge andme > 0 is the electron mass. The time evolution
of the electro-magnetic field (E,B) comes by the Maxwell equations. For simplicity we
restrict ourselves to the linear Vlasov equation by considering that B = B(x) is a given
stationary external magnetic field and that the electric field derives from a potential
E = ∇xφ. The asymptotic regimes we wish to address here are the guiding-center
approximation and the finite Larmor radius regime. Certainly, these regimes are now
well understood cf. [5], [9], [11], [10]. Nevertheless our approach allows us to analyse
both models by the same method, to treat more general situations, to compute the
drift velocities in the orthogonal directions with respect to the magnetic field, etc.

The numerical approximation of the gyrokinetic models has been performed in [12]
using semi-Lagrangian schemes. Other methods are based on the water bag representa-
tion of the distribution function: the full kinetic Vlasov equation is reduced to a set of
hydrodynamic equations. This technique has been successfully applied to gyrokinetic
models [13]. We also mention that the drift approximation of strongly magnetized
plasmas is analogous to the geostrophic flow in the theory of a shallow rotating fluid
[1], [2], [7], [16], [17].

We consider here only the two dimensional setting, i.e.,

f = f(t, x, p), (E,B) = (E1(t, x), E2(t, x), 0, 0, 0, B3(x)), (t, x, p) ∈ R+ × R2 × R2

leading to the Vlasov equation

∂tf
ε +

p

me

· ∇xf
ε − e

(
E(t, x) +

B3(x)

ε

⊥p

me

)
· ∇pf

ε = 0 (52)

where the notation ⊥p stands for (p2,−p1) for any p = (p1, p2) ∈ R2. We only indicate
the main steps but we clearly identify the average operators involved in the analysis.
The reader can easily adapt to the Vlasov equation the rigorous arguments detalied
in the general linear transport framework in order to justify the asymptotic behaviour
towards the limit model (cf. Theorem 4.1). We concentrate on the derivation of these
limit models by applying the properties of the average operators.

5.1 Guiding-center approximation

The asymptotic regime obtained for ε↘ 0 in (52) is known as the guiding-center ap-
proximation, since the Larmor radius corresponding to the typical momentum vanishes
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as the magnetic field becomes very large. The Vlasov equation (52) can be written

∂tf
ε +Af ε +

1

ε
T f ε = 0, (t, x, p) ∈ R+ × R2 × R2 (53)

where A = p
me
·∇x− eE(t, x) ·∇p and T = −ωc(x) ⊥p ·∇p. Here ωc(x) = eB3(x)

me
stands

for the (rescaled) cyclotronic frequency. We complete the above model with the initial
condition

f ε(0, x, p) = f in(x, p), (x, p) ∈ R2 × R2. (54)

Notice that (53) can be recast in the form (1) by taking m = 4, y = (x, p) ∈ R2 × R2,

uε(t, y) = f ε(t, x, p), a(t, y) = ( p
me
,−eE(t, x)), b(y) = (0, 0,−eB3(x)

⊥p
me

). It is easily
seen that the characteristic flow associated to the (dominant) transport operator T is
given by

X(s;x, p) = x, P (s;x, p) = R(ωc(x)s)p, R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

The motion is Tc(x) = 2π
|ωc(x)| periodic and thus the average operator has the form

〈u〉(x, p) =
1

Tc(x)

∫ Tc(x)

0

u(X(s;x, p), P (s;x, p)) ds

=
1

2π

∫
S1

u(x, |p|ω) dω. (55)

The operators A, T , 〈·〉 satisfy

Lemma 5.1 i) If infx∈R2 |B3(x)| > 0 then the range of T is closed and we have
range T = ker〈·〉.
ii) For any f ∈ ker T then Af ∈ range T and Af = 1

ωc(x)
T
(
⊥p
me
· ∇xf + e ⊥E(t) · ∇pf

)
.

Proof. The first statement follows by Proposition 2.8 with T = 2π
ω

, ω = |e|
me

infx∈R2 |B3(x)|.
For the second one observe that for any u = (u1, u2) ∈ (ker T )2 we have (⊥p · ∇p)(p ·
u) =⊥ p · u. Notice also that if f ∈ ker T then ∇xf ∈ (ker T )2. Consequently one gets

p

me

· ∇xf =
⊥p

me

· ⊥∇xf = (⊥p · ∇p)

(
p

me

· ⊥∇xf

)
.

In order to transform the second term in A observe that any function in ker T is radial
with respect to p i.e., f(x, p) = g(x, r = |p|). Therefore eE(t)·∇pf = (⊥p·∇p)(e

⊥E(t)·
∇pf) and finally we obtain ωc(x)Af = T

(
⊥p
me
· ∇xf + e ⊥E(t) · ∇pf

)
.

Remark 5.1 A straightforward computation shows that for any f ∈ ker T we have〈⊥p
me

· ∇xf

〉
= 〈e ⊥E(t) · ∇pf〉 = 0.
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Plugging the ansatz f ε = f + εf 1 + ε2f 2 + ... into (53) we deduce that

T f = 0, ∂tf +Af + T f 1 = 0, ∂tf
1 +Af 1 + T f 2 = 0, ... (56)

In order to identify the limit model satisfied by f = limε↘0 f
ε we apply, as before,

the average operator to the second equation in (56) and one gets ∂tf + 〈Af(t)〉 = 0.
By Lemma 5.1 we know that Af(t) ∈ range T and thus 〈Af(t)〉 = 0. Finally the
dominant term satisfies ∂tf = 0. For identifying the initial condition multiply (53) by
a test function η(t)ϕ(x, p) with η ∈ C1

c (R+) and ϕ ∈ C1
c (R2 × R2) ∩ ker T . Passing to

the limit as ε↘ 0 yields

−
∫

R+

η ′(t)

∫
R2

∫
R2

f(t, x, p)ϕ(x, p) dpdxdt− η(0)

∫
R2

∫
R2

f in(x, p)ϕ(x, p) dpdx = 0.

Taking into account that
∫

R2

∫
R2 f

in(x, p)ϕ(x, p) dpdx =
∫

R2

∫
R2〈f in〉ϕ(x, p) dpdx one

gets that f(t) = 〈f in〉, t ∈ R+. At the lowest order the particle density is stationary
and has radial symmetry with respect to p

lim
ε↘0

f ε(t) = 〈f in〉, t ∈ R+.

Consequently, at this order, there is no current

j(t, x) = −e
∫

R2

f(t, x, p)
p

me

dp = 0, (t, x) ∈ R+ × R2.

In the sequel we intend to compute the first order drift velocities which are very im-
portant for the analysis of the confinement properties. In order to compute f 1 we use
the decomposition f 1 = g1 + h1, g1 = 〈f 1〉, h1 = f 1 − 〈f 1〉. Notice that T g1 = 0 and
〈h1〉 = 0. The second equation in (56) combined with Lemma 5.1 and Remark 5.1 lead
to

1

ωc(x)

(⊥p
me

· ∇xf + e⊥E(t) · ∇pf

)
+ h1 ∈ ker T ∩ ker〈·〉 = {0}

and therefore h1(t) = − 1
ωc(x)

(
⊥p
me
· ∇xf + e⊥E(t) · ∇pf

)
. For determining g1 we use

the third equation in (56) after eliminating f 2 by applying the average operator. Since
〈∂th1〉 = ∂t〈h1〉 = 0 and 〈∂tg1〉 = ∂t〈g1〉 = ∂tg

1, 〈Ag1〉 = 0 (by Lemma 5.1) one gets
∂tg

1 + 〈Ah1〉 = 0. Actually the radial symmetric density g1 gives no current and thus
we do not need to compute it explicitly. We have

j1 = −e
∫

R2

f 1 p

me

dp = −e
∫

R2

h1 p

me

dp =
e

ωc(x)m2
e

∫
R2

divx(p⊗ ⊥pf) dp− e2⊥E

meωc(x)

∫
R2

f dp.

We introduce the charge density and cyclotronic velocity given by

ρin(x) = −e
∫

R2

f in(x, p) dp,
me(V

in
c (x))2

2
=

∫
R2

|p|2
2me

f in(x, p) dp∫
R2 f in(x, p) dp

.

Notice that we have by symmetry
∫

R2 f dp =
∫

R2 f
in dp and divx

∫
R2(p ⊗⊥ p)f dp =

−⊥∇x

∫
R2

|p|2
2
f in dp. By direct computations one gets

j1(t, x) =⊥ ∇x

(
ρin(x)

(V in
c (x))2

2ωc(x)

)
+ ρin(x)

(V in
c (x))2

2ωc(x)

⊥∇xB3

B3(x)
+ ρin(x)

⊥E(t, x)

B3(x)
.
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We recognize here the cross electric field drift and the magnetic gradient drift given by
the standard formula used by physicists (cf. [14] pp. 162)

v∧ =
⊥E

B3

=
E ∧B
|B|2

, vGD =
(V in

c (x))2

2ωc(x)

⊥∇xB3

B3(x)
= −(V in

c (x))2

2ωc(x)

B ∧∇xB3

|B|2
.

The previous results are summarized in

Proposition 5.1 Under the hypothesis in Lemma 5.1 we have

f ε = 〈f in〉+ o(ε)

jε := −e
∫

R2

f ε
p

me

dp = ε

[
⊥∇x

(
ρin(x)

(V in
c (x))2

2ωc(x)

)
+ ρin(x) vGD + ρin(x) v∧

]
+ εo(ε).

5.2 Finite Larmor radius regime

In this case we assume that the (scaled) typical momentum in the plane orthogonal
to the magnetic field is very large, remaining of the same order as the magnetic field.
Note that in this case the Larmor radius corresponding to the typical velocity and
cyclotronic frequency doesn’t vanish anymore. We obtain the Vlasov equation (see [8],
[4])

∂tf
ε +

p

meε
· ∇xf

ε − e
(
E(t, x) +B3(x)

⊥p

meε

)
· ∇pf

ε = 0 (57)

and the corresponding asymptotic regime for ε ↘ 0 is called the finite Larmor radius
regime. Observe that (57) can be recast in the form (1) by taking m = 4, y = (x, p) ∈
R2 ×R2, uε(t, y) = f ε(t, x, p), ã(t, y) = −(0, 0, eE(t, x)), b̃(y) = ( p

me
,−ωc(x)⊥p), where

ωc(x) = eB3(x)/me. The characteristic flow Y = (X,P ) associated to b̃ satisfies

dX

ds
=
P (s;x, p)

me

,
dP

ds
= −ωc(X(s;x, p)) ⊥P (s;x, p).

When B3 is constant it is easily seen that a set of independent prime integrals are given
by

ψ̃1(x, p) = eB3x2 + p1, ψ̃2(x, p) = −eB3x1 + p2, ψ̃3(p) =
1

2
|p|2.

We intend to derive the limit model using the arguments in Section 3.1 and thus we
need to invert the matrix

M̃(p) =


0 eB3 1 0

−eB3 0 0 1
0 0 p1 p2
p1
me

p2
me
−ωcp2 ωcp1

 .

In order to simplify our computations it is very convenient to introduce the new variable

z = x − ⊥p
eB3

= (−ψ̃2, ψ̃1)/(eB3) and the new unknown gε(t, z, p) = f ε(t, x, p). The
equation for gε becomes

∂tg
ε +

1

B3

⊥E

(
t, z +

⊥p

eB3

)
· ∇zg

ε − eE
(
t, z +

⊥p

eB3

)
· ∇pg

ε − ωc
ε
⊥p · ∇pg

ε = 0
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and thus the fields to analyze in this case are

a(t, z, p) =

(
1

B3

⊥E

(
t, z +

⊥p

eB3

)
,−eE

(
t, z +

⊥p

eB3

))
, b(p) = (0, 0,−ωc⊥p).

A set of independent prime integrals is given by

ψ1 = z1, ψ2 = z2, ψ3 =
1

2
|p|2.

The matrix M(p) and its inverse are given by

M(p) =


1 0 0 0
0 1 0 0
0 0 p1 p2

0 0 −ωcp2 ωcp1

 , M−1(p) =


1 0 0 0
0 1 0 0
0 0 p1

|p|2 −
p2

ωc|p|2

0 0 p2
|p|2

p1
ωc|p|2

 .

In view of (46) we need to compute 〈a(t) · ∇(z,p)ψ
i〉(∞), i ∈ {1, 2, 3}. A direct compu-

tation shows that the flow (Z, P )(s; z, p) associated to b is given by

Z(s; z, p) = z, P (s; z, p) = R(sωc)p, R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Consequently the constant functions along the flow are the functions with radial sym-
metry with respect to p. Observe also that the hypothesis (18) holds true with O = ∅
and ξ(z, p) = e−|z|

2−|p|2 , (z, p) ∈ R4. Since all the trajectories are 2π/ωc periodic, we
have

〈u〉(∞)(z, p) =
ωc
2π

∫ 2π
ωc

0

u(z,R(sωc)p) ds =
1

2π

∫ 2π

0

u(z,R(θ)p) dθ

for any bounded function u ∈ L∞(R4). We have

〈a(t) ·∇(z,p)ψ
1〉(∞) =

〈
1

B3

E2

(
t, z +

⊥p

eB3

)〉(∞)

=
1

2πB3

∫ 2π

0

E2

(
t, z +

⊥(R(θ)p)

eB3

)
dθ

〈a(t)·∇(z,p)ψ
2〉(∞) = −

〈
1

B3

E1

(
t, z +

⊥p

eB3

)〉(∞)

= − 1

2πB3

∫ 2π

0

E1

(
t, z +

⊥(R(θ)p)

eB3

)
dθ.

We claim that the coefficient 〈a(t) · ∇(z,p)ψ
3〉(∞) vanishes. Indeed

〈a(t) · ∇(z,p)ψ
3〉(∞) = −eωc

2π

∫ 2π
ωc

0

E

(
t, z +

⊥P (s; z, p)

eB3

)
· P (s; z, p) ds.

Taking into account that E(t) derives from a potential φ(t) i.e., E = ∇xφ and that

d

ds
φ

(
t, z +

⊥P (s; z, p)

eB3

)
= E

(
t, z +

⊥P (s; z, p)

eB3

)
· P (s; z, p)

me

we deduce that

〈a(t) · ∇(z,p)ψ
3〉(∞) = −emeωc

2π

∫ 2π
ωc

0

d

ds
φ

(
t, z +

⊥P (s; z, p)

eB3

)
ds = 0.
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Plugging into (46) all these computations yields the limit model

∂tg +
1

2πB3

∫ 2π

0

⊥E

(
t, z +

⊥(R(θ)p)

eB3

)
dθ · ∇zg = 0

leading to a transport equation for the particle density f , whose advection field is given
by a gyroaverage type operator

Proposition 5.2 If the magnetic field is constant B3 6= 0 then the limit model of (57)
when ε↘ 0 is given by

∂tf +
1

2πB3

∫ 2π

0

⊥E

(
t, x−

⊥p

eB3

+
⊥(R(θ)p)

eB3

)
dθ · ∇xf = 0.

For more details, the reader can refer to [4] where a complete analysis of the coupled
Vlasov-Poisson equations (with finite Larmor radius) was performed.

6 Appendix A

We present here the proofs of Propositions 2.2, 2.3 concerning the convergence of the
averages over a flow and the proofs of Propositions 2.4, 2.5 which state the properties
of the average operator in the L1/L∞ setting.

Proof. (of Proposition 2.2) We start by checking the uniqueness. Consider two func-
tions u1, u2 ∈ ker Tq satisfying∫

Rm
(u(y)− u1(y))ϕ(y) dy =

∫
Rm
(u(y)− u2(y))ϕ(y) dy = 0

for any ϕ ∈ ker Tq ′ . We deduce that∫
Rm
(u1(y)− u2(y))ϕ(y) dy = 0, ∀ ϕ ∈ ker Tq ′ .

Taking ϕ = |u1 − u2|q−2(u1 − u2) ∈ ker Tq ′ we deduce that
∫

Rm|u1 − u2|q dy = 0
saying that u1 = u2. In order to justify the existence of 〈u〉 consider a sequence (Tn)n
such that limn→+∞ Tn = +∞ and (〈u〉Tn)n converges weakly in Lq(Rm) towards some
function ũ ∈ Lq(Rm). Observe that ũ ∈ ker Tq. For this it is sufficient to prove that for
any t ∈ R and ψ ∈ Lq ′(Rm) we have∫

Rm
ũ(y)ψ(Y (−t; y)) dy =

∫
Rm
ũ(y)ψ(y) dy. (58)
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Indeed, by using the weak convergence limn→+∞〈u〉Tn = ũ we deduce∫
Rm
ũ(y)ψ(Y (−t; y)) dy = lim

n→+∞

∫
Rm
〈u〉Tn(y)ψ(Y (−t; y)) dy

= lim
n→+∞

1

Tn

∫ Tn

0

∫
Rm
u(Y (s; y))ψ(Y (−t; y)) dy ds

= lim
n→+∞

1

Tn

∫ Tn

0

∫
Rm
u(Y (s+ t; y))ψ(y) dy ds

= lim
n→+∞

1

Tn

∫ t+Tn

t

∫
Rm
u(Y (s; y))ψ(y) dy ds

= lim
n→+∞

1

Tn

∫ t+Tn

Tn

∫
Rm
u(Y (s; y))ψ(y) dy ds

− lim
n→+∞

1

Tn

∫ t

0

∫
Rm
u(Y (s; y))ψ(y) dy ds

+ lim
n→+∞

∫
Rm
〈u〉Tn(y)ψ(y) dy. (59)

It is easily seen that

1

Tn

∣∣∣∣∫ t+Tn

Tn

∫
Rm
u(Y (s; y))ψ(y) dy ds

∣∣∣∣ ≤ |t|Tn‖u‖Lq(Rm)‖ψ‖Lq ′ (Rm) (60)

and

1

Tn

∣∣∣∣∫ t

0

∫
Rm
u(Y (s; y))ψ(y) dy ds

∣∣∣∣ ≤ |t|Tn‖u‖Lq(Rm)‖ψ‖Lq ′ (Rm). (61)

Combining (59), (60), (61) yields (58), implying that

ũ(Y (s; y)) = ũ(y), s ∈ R, a.e. y ∈ Rm.

We claim that ũ satisfies (16). For any ϕ ∈ ker Tq ′ and s ∈ R we have uϕ ∈ L1(Rm)
and thus by change of variable along the characteristics we obtain∫

Rm
u(y)ϕ(y) dy =

∫
Rm
u(Y (s; y))ϕ(Y (s; y)) dy =

∫
Rm
u(Y (s; y))ϕ(y) dy.

Taking the average on [0, Tn] one gets∫
Rm
u(y)ϕ(y) dy =

∫
Rm

(
1

Tn

∫ Tn

0

u(Y (s; ·)) ds

)
(y)ϕ(y) dy =

∫
Rm
〈u〉Tn(y)ϕ(y) dy.

Since ϕ ∈ Lq ′(Rm) we obtain thanks to the weak convergence limn→+∞〈u〉Tn = ũ in
Lq(Rm) that ∫

Rm
(u(y)− ũ(y))ϕ(y) dy = 0, ∀ ϕ ∈ ker Tq ′ .

Therefore the existence of the element 〈u〉 in (16) is guaranteed, and by the uniqueness

of such element we deduce also the convergence limT→+∞
1
T

∫ T
0
u(Y (s; ·)) ds = 〈u〉

weakly in Lq(Rm). Similarly one gets

lim
T→+∞

1

T

∫ 0

−T
u(Y (s; ·)) ds = lim

T→+∞

1

2T

∫ T

−T
u(Y (s; ·)) ds = 〈u〉 weakly in Lq(Rm).
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Since for any T > 0 we have ‖〈u〉T‖Lq(Rm) ≤ ‖u‖Lq(Rm) we deduce that ‖〈u〉‖Lq(Rm) ≤
‖u‖Lq(Rm). The linearity of 〈·〉 follows immediately and we have ‖〈·〉‖L(Lq(Rm),Lq(Rm)) ≤
1.

Proof. (of Proposition 2.3) We analyze first the case q = 2. Recall that the adjoint of
T2 satisfies

D(T ?2 ) = D(T2), T ?2 u = −T2u, ∀ u ∈ D(T2).
Therefore we have ker T2 = ker T ?2 = (rangeT2)⊥, implying the orthogonal decomposi-
tion of L2(Rm)

ker T2 ⊕ rangeT2 = (rangeT2)⊥ ⊕
(
(rangeT2)⊥

)⊥
= L2(Rm).

By Proposition 2.2 we know that for any u ∈ L2(Rm), the function 〈u〉(2) is the orthog-
onal projection of u on the closed subspace ker T2 and thus we have the decomposition
u = 〈u〉(2) + (u− 〈u〉(2)) with 〈u〉(2) ∈ ker T2 and u− 〈u〉(2) ∈ rangeT2. As seen before,
for any T > 0 we have

〈〈u〉(2)〉T =
1

T

∫ T

0

〈u〉(2)(Y (s; ·)) ds = 〈u〉(2)

and thus

lim
T→+∞

〈u〉T = 〈u〉(2) + lim
T→+∞

〈u− 〈u〉(2)〉T , strongly in L2(Rm).

In order to prove that limT→+∞〈u〉T = 〈u〉(2) strongly in L2(Rm) it remains to check
that limT→+∞〈v〉T = 0, strongly in L2(Rm) for any v ∈ rangeT2. Consider first
v = T2w for some w ∈ D2. Let us consider a sequence (wn)n ⊂ C1

c (Rm) such that

lim
n→+∞

(wn, T2wn) = (w, T2w), strongly in L2(Rm).

We have for any y ∈ Rm

〈T2wn〉T (y) =
1

T

∫ T

0

(T2wn)(Y (s; y)) ds

=
1

T

∫ T

0

d

ds
{wn(Y (s; y))} ds

=
1

T
(wn(Y (T ; y))− wn(y))

and therefore

‖〈T2wn〉T‖L2(Rm) ≤
2

T
‖wn‖L2(Rm).

Passing to the limit for n → +∞ one gets ‖〈v〉T‖L2(Rm) ≤ 2
T
‖w‖L2(Rm), implying that

limT→+∞〈v〉T = 0 strongly in L2(Rm). Consider now a function v ∈ rangeT2. For any
δ > 0 there exists vδ ∈ rangeT2 such that ‖v − vδ‖L2(Rm) < δ. We have

‖〈v〉T‖L2(Rm) ≤ ‖〈v − vδ〉T‖L2(Rm) + ‖〈vδ〉T‖L2(Rm)

≤ ‖v − vδ‖L2(Rm) + ‖〈vδ〉T‖L2(Rm)

≤ δ + ‖〈vδ〉T‖L2(Rm).
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Passing to the limit for T → +∞ we obtain

lim sup
T→+∞

‖〈v〉T‖L2(Rm) ≤ δ, ∀ δ > 0

and consequently limT→+∞ ‖〈v〉T‖L2(Rm) = 0 for any v ∈ rangeT2.
Consider now the general case q ∈ (1,+∞). By density arguments it is sufficient to

treat the case of functions u ∈ Cc(Rm). Since Cc(Rm) ⊂ Lr(Rm) for any r ∈ (1,+∞)
we deduce thanks to Corollary 2.3 that 〈u〉 ∈ Lr(Rm) and ‖〈u〉‖Lr(Rm) ≤ ‖u‖Lr(Rm) for
any r ∈ (1,+∞). By the previous step we know that limT→+∞〈u〉T = 〈u〉 strongly in
L2(Rm) and it is easily seen that 〈u〉 ∈ L1(Rm) ∩ L∞(Rm) and satisfies ‖〈u〉‖L1(Rm) ≤
‖u‖L1(Rm), ‖〈u〉‖L∞(Rm) ≤ ‖u‖L∞(Rm) (use for example the convergence limT→+∞〈u〉T =
〈u〉 in D ′(Rm) and the bounds ‖〈u〉T‖L1(Rm) ≤ ‖u‖L1(Rm), ‖〈u〉T‖L∞(Rm) ≤ ‖u‖L∞(Rm)

for any T > 0). If q ∈ (1, 2) we have by interpolation inequalities

‖〈u〉T − 〈u〉‖Lq(Rm) ≤ ‖〈u〉T − 〈u〉‖
2
q
−1

L1(Rm)‖〈u〉T − 〈u〉‖
2− 2

q

L2(Rm)

≤
(
2‖u‖L1(Rm)

) 2
q
−1 ‖〈u〉T − 〈u〉‖

2− 2
q

L2(Rm) → 0 as T → +∞.

If q ∈ (2,+∞) we have

‖〈u〉T − 〈u〉‖Lq(Rm) ≤ ‖〈u〉T − 〈u〉‖
2
q

L2(Rm)‖〈u〉T − 〈u〉‖
1− 2

q

L∞(Rm)

≤
(
2‖u‖L∞(Rm)

)1− 2
q ‖〈u〉T − 〈u〉‖

2
q

L2(Rm) → 0 as T → +∞.

Proof. (of Proposition 2.4) Consider a sequence (un)n ⊂ Cc(Rm) satisfying limn→+∞ un =
u in L1(Rm). For any n ∈ N, q ∈ (1,+∞) the function un belongs to Lq(Rm) and by
Proposition 2.2 and Corollary 2.3 we know that there is 〈un〉 ∈ ker Tq, ∀ q ∈ (1,+∞)
satisfying ∫

Rm
(un(y)− 〈un〉(y))ϕ(y) dy = 0, ∀ ϕ ∈ ker Tq ′ , q ∈ (1,+∞). (62)

In particular since ‖〈·〉‖L(Lq(Rm),Lq(Rm)) ≤ 1 we have∫
Rm
|〈un〉 − 〈ul〉|q dy ≤

∫
Rm
|un − ul|q dy, n, l ∈ N. (63)

By Fatou’s lemma we deduce that∫
Rm
|〈un〉 − 〈ul〉| dy ≤ lim inf

q↘1

∫
Rm
|〈un〉 − 〈ul〉|q dy

and by dominated convergence theorem we have

lim
q↘1

∫
Rm
|un − ul|q dy =

∫
Rm
|un − ul| dy.

Therefore, passing to the limit for q ↘ 1 in (63) yields∫
Rm
|〈un〉 − 〈ul〉| dy ≤

∫
Rm
|un − ul| dy
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saying that (〈un〉)n is a Cauchy sequence in L1(Rm). Let us denote by 〈u〉 the limit of
(〈un〉)n in L1(Rm). Since (〈un〉)n are constant along the flow we check easily that 〈u〉 is
also constant along the flow. Moreover, 〈u〉 belongs to L1(Rm) and by the construction
of O we deduce that 〈u〉 = 0 on O. Consider a function ϕ ∈ ker T∞. Applying (62)
with (

ξ1/q + |〈un〉|
)q−1

ϕ 1Rm\O ∈ ker Tq ′
(where ξ(·) is the function appearing in (18)) we deduce that∫

Rm\O
un
(
ξ1/q + |〈un〉|

)q−1
ϕ dy =

∫
Rm\O

〈un〉
(
ξ1/q + |〈un〉|

)q−1
ϕ dy. (64)

We keep n fixed for the moment and we intend to pass to the limit for q ↘ 1 in the
above equality. We use the trivial inequality xz ≤ 1 + x, for any x > 0, z ∈ (0, 1). One
gets for any q ∈ (1, 2)(

(ξ(y))1/q + |〈un〉(y)|
)q−1 ≤ 1 + (ξ(y))1/q + |〈un〉(y)| ≤ 2 + ξ(y) + |〈un〉(y)|

and thus∣∣∣un(y)
(
(ξ(y))1/q + |〈un〉(y)|

)q−1
ϕ(y)

∣∣∣ ≤ ‖ϕ‖L∞(Rm)‖un‖L∞(Rm)(ξ(y) + |〈un〉(y)|)

+ 2‖ϕ‖L∞(Rm)|un(y)| ∈ L1(Rm \ O).

Since ξ > 0 on Rm \ O we have the pointwise convergence

lim
q↘1

un(y)
(
(ξ(y))1/q + |〈un〉(y)|

)q−1
ϕ(y) = un(y)ϕ(y), y ∈ Rm \ O

and thus we deduce by Lebesgue’s theorem

lim
q↘1

∫
Rm\O

un(y)
(
(ξ(y))1/q + |〈un〉(y)|

)q−1
ϕ(y) dy =

∫
Rm\O

un(y)ϕ(y) dy. (65)

By similar arguments we can pass to the limit for q ↘ 1 in the right hand side of (64)
(for this observe also that, by Corollary 2.1, we have ‖〈un〉‖L∞(Rm) ≤ ‖un‖L∞(Rm))

lim
q↘1

∫
Rm\O

〈un〉(y)
(
(ξ(y))1/q + |〈un〉(y)|

)q−1
ϕ(y) dy =

∫
Rm\O

〈un〉(y)ϕ(y) dy. (66)

Combining (64), (65), (66) yields∫
Rm\O

(un(y)− 〈un〉(y))ϕ(y) dy = 0, ∀ ϕ ∈ ker T∞.

Passing now to the limit for n→ +∞ implies∫
Rm\O

(u(y)− 〈u〉(y))ϕ(y) dy = 0, ∀ ϕ ∈ ker T∞. (67)

We consider the function ϕ = sgn〈u〉. Since 〈u〉 is constant along the flow, we have
ϕ ∈ ker T∞ and therefore we deduce thanks to (67)∫

Rm
|〈u〉| dy =

∫
Rm\O

|〈u〉| dy =

∫
Rm\O

u sgn〈u〉 dy ≤
∫

Rm\O
|u| dy ≤

∫
Rm
|u| dy.
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The uniqueness of the function 〈u〉 constructed above is immediate. Indeed, let us
consider two functions u1, u2 ∈ ker T1 satisfying∫

Rm\O
(u− u1)ϕ dy =

∫
Rm\O

(u− u2)ϕ dy = 0, ∀ ϕ ∈ ker T∞.

By the definition of O we have u1 = u2 = 0 on O and taking ϕ = sgn(u1−u2) ∈ ker T∞
we deduce ∫

Rm\O
|u1 − u2| dy =

∫
Rm\O

(u1 − u2)ϕ dy = 0.

Finally u1 = u2 on Rm. The linearity of the application u ∈ L1(Rm) → 〈u〉 ∈ L1(Rm)
follows easily by using the characterization (19).

Proof. (of Proposition 2.5) In order to prove the uniqueness, consider u1, u2 ∈ ker T∞
satisfying u1 = u2 = 0 on O and

∫
Rm\O(u1 − u2)ϕ dy = 0 for any ϕ ∈ ker T1. By

Proposition 2.4 we know that for any ψ ∈ L1(Rm) there is 〈ψ〉 ∈ ker T1 such that∫
Rm\O

(ψ − 〈ψ〉)v dy = 0, ∀ v ∈ ker T∞.

In particular we have for v = u1 − u2 ∈ ker T∞∫
Rm
(u1 − u2)ψ dy =

∫
Rm\O

(u1 − u2)ψ dy =

∫
Rm\O

(u1 − u2)〈ψ〉 dy = 0, ∀ ψ ∈ L1(Rm)

implying that u1 = u2. The existence follows by considering (Tn)n such that limn→+∞ Tn =
+∞ and

〈u〉Tn ⇀ ũ weakly ? in L∞(Rm \ O)

for some function ũ ∈ L∞(Rm \ O). As in the proof of Proposition 2.2 we check that

ũ ∈ ker T∞,
∫

Rm\O
(u− ũ)ϕ dy = 0, ∀ ϕ ∈ ker T1, ‖ũ‖L∞(Rm\O) ≤ ‖u‖L∞(Rm\O).

We take 〈u〉 = ũ 1Rm\O.

7 Appendix B

This section contains the proof of the regularity result stated in Section 3.

Proof. (of Proposition 3.2) For any ε > 0 let uε be the solution of (32). We intend
to estimate ‖Tquε‖L∞([0,T ];Lq(Rm)) +

∑r
i=1 ‖T iq uε‖L∞([0,T ];Lq(Rm)) and ‖∂tuε‖L1([0,T ];Lq(Rm))

uniformly with respect to ε > 0. Consider the sequences of smooth functions (u0n)n,
(fn)n such that

lim
n→+∞

u0n = u0, lim
n→+∞

T iq u0n = T iq u0, i ∈ {0, 1, ..., r} in Lq(Rm)

lim
n→+∞

fn = f, lim
n→+∞

T iq fn = T iq f, i ∈ {0, 1, ..., r} in L1([0, T ];Lq(Rm))
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and let us denote by (uεn)n the solutions of (32) corresponding to the initial conditions
(u0n)n and the source terms (fn)n. Actually (uεn)n are strong solutions. It is easily seen
that

‖uεn(t)− uε(t)‖Lq(Rm) ≤ ‖u0n − u0‖Lq(Rm) +

∫ t

0

‖fn(s)− f(s)‖Lq(Rm) ds, t ∈ [0, T ]

and therefore limn→+∞ u
ε
n = uε in L∞([0, T ];Lq(Rm)). Assume for the moment that

ε, n are fixed and let us estimate
∑r

i=0 ‖T iq uεn‖L∞([0,T ];Lq(Rm)) and ‖∂tuεn‖L1([0,T ];Lq(Rm)).
Take h ∈ R, i ∈ {1, ..., r} and consider the functions

uεnh(t, y) = uεn(t, Y i(h; y)), ah(t, y) =
∂Y i

∂y
(−h;Y i(h; y))a(t, Y i(h; y))

bh(y) =
∂Y i

∂y
(−h;Y i(h; y))b(Y i(h; y)), u0nh(y) = u0n(Y i(h; y)), fnh(t, y) = fn(t, Y i(h; y)).

A direct computation shows that{
∂tu

ε
nh + ah(t, y) · ∇yu

ε
nh + bh(y)

ε
· ∇yu

ε
nh = fnh(t, y), (t, y) ∈ (0, T )× Rm

uεnh(0, y) = u0nh(y), y ∈ Rm.
(68)

Combining with the formulation (32) of uεn one gets
∂t

(
uεnh−u

ε
n

h

)
+ ah−a

h
· ∇yu

ε
nh + a(t, y) · ∇y

(
uεnh−u

ε
n

h

)
+ bh−b

εh
· ∇yu

ε
nh + b(y)

ε
· ∇y

(
uεnh−u

ε
n

h

)
= fnh−fn

h
, (t, y) ∈ (0, T )× Rm

uεnh(0,y)−uεn(0,y)

h
= u0nh(y)−u0n(y)

h
, y ∈ Rm.

(69)

Obviously we have

lim
h→0

uεnh − uεn
h

= lim
h→0

uεn(t, Y i(h; y))− uεn(t, y)

h
= bi(y) · ∇yu

ε
n(t, y) = T iq uεn

lim
h→0

fnh − fn
h

= lim
h→0

fn(t, Y i(h; y))− fn(t, y)

h
= bi(y) · ∇yfn(t, y) = T iq fn

lim
h→0

u0nh − u0n

h
= lim

h→0

u0n(Y i(h; y))− u0n(y)

h
= bi(y) · ∇yu0n(y) = T iq u0n.

Taking the derivatives with respect to y and then with respect to h in the equality
Y i(−h;Y i(h; y)) = y, we deduce after some easy manipulations that

lim
h→0

1

h

{
∂Y i

∂y
(−h;Y i(h; y))− Im

}
= −∂b

i

∂y
(y).

By direct computations we obtain immediately

lim
h→0

ah − a
h

= (bi · ∇y)a− (a · ∇y)b
i = [bi, a]

lim
h→0

bh − b
h

= (bi · ∇y)b− (b · ∇y)b
i = [bi, b] = 0.
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By passing to the limit for h → 0 in (69) we deduce that T iq uεn solves weakly the
problem{

∂t(T iq uεn) + a · ∇y(T iq uεn) +
b

ε
· ∇y(T iq uεn) = T iq fn − [bi, a] · ∇yu

ε
n

T iq uεn(0, ·) = T iq u0n.
(70)

As in the proof of Proposition 3.1 we obtain for any t ∈ [0, T ] and i ∈ {1, ..., r}

‖T iq uεn(t)‖Lq(Rm) ≤ ‖T iq u0n‖Lq(Rm) +

∫ t

0

‖T iq fn(s)− [bi, a(s)] · ∇yu
ε
n(s)‖Lq(Rm) ds. (71)

Since a =
∑r

k=0 αkb
k we obtain by direct computation, with the notation T 0

q := Tq

[bi, a] =
r∑

k=0

(T iq αk)bk

and therefore

[bi, a] · ∇yu
ε
n =

r∑
k=0

(T iq αk)(T kq uεn).

Consequently (71) implies

‖T iq uεn(t)‖Lq(Rm) ≤ ‖T iq u0n‖Lq(Rm) +

∫ t

0

‖T iq fn(s)‖Lq(Rm) ds

+

∫ t

0

r∑
k=0

‖bi · ∇yαk(s)‖L∞(Rm)‖T kq uεn(s)‖Lq(Rm) ds. (72)

Actually (72) holds also for bi replaced by b0 = b since [b, b] = 0

‖T 0
q u

ε
n(t)‖Lq(Rm) ≤ ‖T 0

q u0n‖Lq(Rm) +

∫ t

0

‖T 0
q fn(s)‖Lq(Rm) ds

+

∫ t

0

r∑
k=0

‖b0 · ∇yαk(s)‖L∞(Rm)‖T kq uεn(s)‖Lq(Rm) ds. (73)

Summing up the above inequalities one gets

r∑
i=0

‖T iq uεn(t)‖Lq(Rm) ≤
r∑
i=0

‖T iq u0n‖Lq(Rm) +

∫ t

0

r∑
i=0

‖T iq fn(s)‖Lq(Rm) ds

+
r∑
i=0

r∑
k=0

∫ t

0

‖bi · ∇yαk(s)‖L∞(Rm)‖T kq uεn(s)‖Lq(Rm). (74)

By Gronwall’s lemma we deduce that for any t ∈ [0, T ]

r∑
i=0

‖T iq uεn‖L∞([0,T ];Lq(Rm)) ≤ C
r∑
i=0

{
‖T iq u0n‖Lq(Rm) + ‖T iq fn‖L1([0,T ];Lq(Rm))

}
(75)

38



for some constant depending on
∑

0≤i,j≤r ‖bi · ∇yαj‖L1([0,T ];L∞(Rm)). After extraction

eventually we can assume that (T iq uεn)n converges weakly ? in L∞([0, T ];Lq(Rm)) to-
wards some function wi ∈ L∞([0, T ];Lq(Rm)) for any i ∈ {0, 1, ..., r}. Since we know
that limn→+∞ u

ε
n = uε in L∞([0, T ];Lq(Rm)) it is easily seen that

uε(t) ∈ ∩ri=0D(T iq ), T iq uε(t) = wi(t), t ∈ [0, T ].

Moreover, passing to the limit with respect to n in (75) and taking into account that
limn→+∞ Tqu0n = Tqu0 = 0 in Lq(Rm) and limn→+∞ Tqfn = Tqf = 0 in L1([0, T ];Lq(Rm))
we obtain

r∑
i=1

‖T iq uε‖L∞([0,T ];Lq(Rm)) ≤ C
r∑
i=1

{‖T iq u0‖Lq(Rm) + ‖T iq f‖L1([0,T ];Lq(Rm))}. (76)

Recall that the weak solution u constructed in Proposition 3.1 has been obtained by
taking a weak ? limit point of the family (uε)ε>0 in L∞([0, T ];Lq(Rm)). Therefore we
deduce by passing to the limit for ε↘ 0 in (76) that u(t) ∈ ∩ri=1D(T iq ), t ∈ [0, T ] and

r∑
i=1

‖T iq u‖L∞([0,T ];Lq(Rm)) ≤ C
r∑
i=1

{‖T iq u0‖Lq(Rm) + ‖T iq f‖L1([0,T ];Lq(Rm))}. (77)

Since Tqu = 0, observe also that

‖a(t) · ∇yu(t)‖Lq(Rm) = ‖
r∑
i=1

αi(t)b
i · ∇yu(t)‖Lq(Rm) ≤

r∑
i=1

‖αi(t)‖L∞(Rm)‖T iq u(t)‖Lq(Rm)

and thus

‖∂tu‖L1([0,T ];Lq(Rm)) = ‖f − 〈a · ∇yu〉(q)‖L1([0,T ];Lq(Rm))

≤ ‖f‖L1([0,T ];Lq(Rm)) +
r∑
i=1

‖T iq u‖L∞([0,T ];Lq(Rm))‖αi‖L1([0,T ];L∞(Rm))

≤ ‖f‖L1([0,T ];Lq(Rm)) + C
r∑
i=1

{‖T iq f‖L1([0,T ];Lq(Rm)) + ‖T iq u0‖Lq(Rm)}.

When f belongs to L∞([0, T ];Lq(Rm)) and αi ∈ L∞([0, T ];L∞(Rm)) for any i ∈
{1, ..., r} we obtain

‖∂tu‖L∞([0,T ];Lq(Rm)) ≤ ‖f‖L∞([0,T ];Lq(Rm)) +
r∑
i=1

‖αi‖L∞([0,T ];L∞(Rm))‖T iq u‖L∞([0,T ];Lq(Rm))

≤ ‖f‖L∞([0,T ];Lq(Rm)) + C
r∑
i=1

{‖T iq f‖L1([0,T ];Lq(Rm)) + ‖T iq u0‖Lq(Rm)}.
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[10] E. Frénod, E. Sonnendrücker, The finite Larmor radius approximation, SIAM J.
Math. Anal. 32(2001) 1227-1247.

[11] F. Golse, L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic
field, J. Math. Pures Appl. 78(1999) 791-817.

[12] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih,
G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, L. Villard, A
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