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Abstract

The subject matter of this paper concerns the existence of permanent regimes
(i.e., stationary or time periodic solutions) for the Vlasov-Maxwell system in
a bounded domain. We are looking for equilibrium configurations by impos-
ing specular boundary conditions. The main difficulty is the treatment of such
boundary conditions. Our analysis relies on perturbative techniques, based on

uniform a priori estimates.
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1 Introduction

In this paper we construct weak solutions for the Vlasov-Maxwell equations in a
bounded domain. Our main interest focus on permanent regimes: stationary or time
periodic solutions satisfying specular boundary conditions.

The Vlasov equation describes the dynamics of a population of charged particles,

in terms of a particle density f = f(t,z,p) > 0 depending on time ¢ € R, position
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x €  and momentum p € R3. Here  is a bounded open subset of R? with regular

boundary 0f). We introduce the standard notations
Y =00 xR ¥*={(x,p) €% : £(v(p)-n(z)) >0}

where n(z) is the unit outward normal to 02 at x and v(p) is the velocity function
associated to the kinetic energy function £(p) by v(p) = V,E(p), p € R3. These

functions are given in the classical case by

)= P )= 2 0

om’ m

and in the relativistic case by

e@:ma<0+££)m—g,wm=%(u¢ﬁ§4m 2)

where m is the particle mass, ¢ is the light speed in the vacuum. If the collisions are

neglected, the motion of the particle population, with charge ¢ and number density
f, under the action of the electro-magnetic field (E(t,z), B(t,z)) is described at the

microscopic level by the Vlasov equation
Ouf +v(p) - Vof +a(E(t,2) +v(p) A B(t,)) - Vo f =0, (ta,p) €Rx QxR (3)

In many cases we assume that the particle density is known on the incoming bound-
ary %~. It is also possible to impose specular boundary conditions, i.e., all particles
are reflected on the boundary. In particular this boundary condition guarantees the
conservation of the total number of particles. We are looking for densities f satisfying

specular boundary conditions

ft,z,p) = f(t, 2, R(x)p), (t,z,p) € Rx ™ (4)

where R(x) = I — 2n(z) ® n(x) is the symmetry with respect to the plane orthogonal
to n(z)
R(z)p=p = 2(p-n(x)) n(z), (,p) €.
The self-consistent electro-magnetic field obeys the Maxwell equations
OE — Fcurl,B = —i, OB+ curl,E =0, (t,z) e RxQ (5)
€0



div, E = gﬁ, div,B =0, (t,z) €RxQ (6)
0

and we impose the Silver-Miiler boundary condition
n(x) N E(t,x) + cn(x) A (n(z) A B(t,z)) = h(z), (t,x) € R x IQ (7)

where g is the permittivity of the vacuum, p(t,z) = ¢ [gs f(t,z,p) dp is the charge
density, j(t,x) = q [z v(p)f(t,x,p) dp is the current density and h is a given tan-
gential field on the boundary 09 i.e., (n(z)- h(z)) = 0, z € 0L, such that H =
Joq |R(x)]? do < +o0. The system (3), (4), (5), (6), (7) is called the Vlasov-Maxwell
problem. In many situations (plasma physics, gaz dynamics, etc.) we have not enough
information about the initial conditions ; in that cases the Cauchy problem is not rel-
evant. Nevertheless we may investigate the permanent regimes, expecting that long
time asymptotics occur towards such an equilibrium. Here we study the time periodic
solutions for the Vlasov-Maxwell problem and therefore there are no initial conditions

to be imposed. By weak solution we understand solution in the distribution sense.

Definition 1.1 Assume that h € L*(0Q)3, (n - h)|aso = 0. We say that (f,E,B) €
Li (R LN x R?)) x L (R; L*()3)? is a T periodic weak solution for the Viasov-

loc loc

Mazxwell problem iff

/ / [ F20)(00 +0(p) - V2 + a(B(t.2) + 0(p) A Blt,2)) - V,0) dpdrdt =0

for any T periodic function § € C*(R x Q x R?) satisfying 0(t,z,p) = 0(t, z, R(x)p),
(t,z,p) € R x I and

T
//{E(t, x) - Opp + EB(t,x) - Opp + A (B(t, x) - curl,p — E(t, ) - curl,y)} dadt
0Ja

+ C/OT/aQ(n(as) A @) - h(z) dodt — = // /R3 f(t,z,p)dpdxdt =0  (8)

for all T periodic fields o, € CH(R x Q) satisfying n(z) A o(t,x) — cn(z) A (n(z) A
W(t,x)) =0, (t,x) € R x 09Q.

Remark 1.1 In order to also satisfy the divergence constraint (6) it is convenient

to solve the perturbed periodic problem (which is obtained by replacing all the time



derivatives 0y by o + 0;)

a f(t,x,p) + Ouf +v(p) - Vaf +q(E(t,x) +v(p) A B(t,2)) - Vo f =0

a E(t,z) + 0,F — c*eurl, B = —‘@ 9)
0

a B(t,z) + 0B+ curl, E =0

for any a > 0 and then to pass to the limit when o goes to 0. Indeed, in this case it is

easily seen that
o div,B + 0,div,B =0
and therefore, by time periodicity one gets div,B = 0. Similarly, using the continuity

equation

ap(t,r)+ Op+div,j =0

o (divxE — ﬁ) + O, (divacE — ﬁ) =0
o €0

which tmplies by time periodicity that div,F = %. For simplifying our computations

we deduce that

we skip these details: we perform the computations with o = 0, assuming that the
divergence constraints hold true (the reader can convince himself that similar results

hold when keeping o > 0 in the equations).

The existence of global weak solution for the free space Vlasov-Maxwell system
in three dimensions was obtained by DiPerna and Lions [8]. The global existence of
strong solutions is still an open problem. Results for the relativistic case were obtained
by Glassey and Schaeffer [10], [11], Glassey and Strauss [12], [13], Klainerman and
Staffilani [16], Bouchut, Golse and Pallard [6].

Neglecting the relativistic corrections and the magnetic field leads to the Vlasov-
Poisson problem. This model is justified by studying the asymptotic behaviour of the
relativistic Vlasov-Maxwell problem when the particle velocities are small with respect
to the light speed [7], [4].

The Cauchy problem for the free space Vlasov-Poisson system is now well under-
stood, see Arseneev [1] for weak solutions, Ukai and Okabe [22], Pfaffelmoser [19],
Bardos and Degond [2], Schaeffer [21], Lions and Perthame [17] for strong solutions.

For real life applications (vacuum diodes, tube discharges, satellite ionization, thrusters,

etc.) we consider boundary value problems [15]. The stationary problems were studied

4



by Greengard and Raviart [14], Poupaud [20]. Results for the time periodic case can
be found in [3], [5].

Our main result states the existence of weak T periodic solution for the Vlasov-
Maxwell problem with specular boundary condition. Actually we construct such a

solution for any given incoming mass flux over a time period.

Theorem 1.1 Assume that Q0 is a bounded open set of R® with smooth boundary,
strictly star-shaped. Let g = g(t,z,p) be a T periodic non negative bounded function
on R x X~ and h = h(x) be a tangential field on O verifying

M~ // z))| g(t,z,p) dpdodt < +o0 (10)

//_ x))| E(p)g(t, z,p) dpdedt < +o00 (11)

H = |h(z)|* do < +oo0.
o9

Then there is a weak T periodic solution (f, E, B) for the Viasov-Mazwell problem (3),
(4), (5), (6), (7), with traces v=f on R x ¥*, tangential traces (n A E,n A B) and
normal traces (n- E,n - B) on R x 09 satisfying

//gi )" f dpdodt = // z))|g dpdodt = M~ (12)

€o 2 21 P12
/O/Q RgE(P)f(t,x,p) dpdxdt+§/o/g(\E| + A B?) dzdt < ¢4 (13)
/ / [(v(p) - n(x))| E@)Vf(t, 2,p) dpdodt < Cy (14)

—// |n/\E|2+02|n/\B|)dadt—|——// n-E)?+c*(n-B)?dodt < C)
o0N o0N

for some constant Cy depending on Q,T, H, ||g|| Lo mxs—y, M ™, K.

We also study the Vlasov-Maxwell problem with perfect conducting boundary condi-
tions

nANE=0, n-B=0, (t,x) € R x 0. (15)

The second perfect conducting boundary condition in (15) is a consequence of the first
perfect conducting boundary condition in (15) and the time periodicity. Indeed, as

before, replacing 0; by a + 0; leads to
aB+ 0B+ cur, E =0, (t,x) € R x Q.
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Multiplying by V., for any test function ¢ € C'(Q) and taking into account that
div,B = 0,n A E = 0 yield after integration by parts

a/ (n(x) - B(t,z))p do + % (n(z) - B(t,z))yp do = 0.
00 00

Since t — [, (n(z)-B(t,z))p do is T periodic, one gets [, (n(x)- B(t,z))p(x) do =0,
t € R, for any ¢ € C*(Q), saying that n- B = 0 on R x 9. As said before, we perform
our computations only for o = 0, assuming that the perfect conducting boundary

condition n - B = 0 holds true. We establish the existence result

Theorem 1.2 Assume that Q0 is a bounded open set of R® with smooth boundary,
strictly star-shaped. Let g = g(t,z,p) be a T periodic non negative bounded function
on R x X7 werifying (10), (11). Then there is a weak T periodic solution (f, E, B) for
the Viasov-Mazwell problem (3), (4), (5), (6), (15) satisfying (12), (13), (14) and

T
@// (PIn A B2 + (n- E)?) dodt < C
2 JoJoa
for some constant Cy depending on Q. T, ||g|| Leomxs-y, M, K.

Our paper is organized as follows. We start by constructing 7' periodic solutions
(f-, Ec, B) for the Vlasov-Maxwell system with the boundary condition (4) replaced
by

ft,z,p) =eg(t,z,p) + (1 — &) f(t,z, R(x)p), (t,2,p) e RX X" (16)

where £ €]0, 1] is a small parameter and g is a T’ periodic bounded non negative function
on R x ¥~ such that M~ (g) < 400, K~ (g) < +00. The existence of such solutions has
been established in [5], pp. 660. The key point here is that the boundary condition
(16) is of the form

f(t,z,p) =g(t,z,p) + af(t,z, R(z)p), (t,z,p) ERXE"

where 0 < a < 1. Section 2 is devoted to uniform estimates with respect to the small
parameter €. In the last section we appeal to compactness arguments, in order to con-
struct T periodic weak solutions for the Vlasov-Maxwell system with specular boundary
condition for particles and Silver-Miiler or perfect conducting boundary condition for

the electro-magnetic field.



2 A priori estimates

In this section we establish uniform estimates with respect to € €]0, 1] for the peri-
odic solutions (fe, E., B:).~0 of (3), (16), (5), (6), (7). We perform these computations
only for smooth solutions, compactly supported in momentum. The general case fol-
lows by standard arguments using regularization and weak stability, see [5]. We skip
these details. We appeal to the conservation of the mass, momentum and total energy.

We need the following easy lemma.

Lemma 2.1 Let f = f(z,p) : ¥ — R, g = g(z,p) : ¥~ — R be non negative functions
satisfying
f(z,p) =eg(z,p) + (1 — ) f(z, R(x)p), (z,p) € X",

We assume that F' = F(z,|p|) is a non negative function such that

| 10) - nla ) F s 5) dpedor < -+
ONJR3

/89/%(”0(10) n(@))- F(z, |p|)g(z,p) dpdo < +oo.

Then for a.a. x € 0X) we have
/Rg(v(p) -n(z))F(z,|p) f(z.p) dp = 8/}1@(0(29) n(z))+ F(z, |p|)f(z,p) dp
- = [ 00) n@)- Pla. ool dp

where (+)+ stands for the positive/negative part.

Proof. Pick any function ¢ € C(0f2) and observe that
/89/ﬂ§3(v~n)g0Ffdpda = /69
- / / (v(p) - n(2))- (@) F(z, p|)f dpdo
ONJR3
_ / ) / (w(p) () @), Ipf dpdo
e / ) / (@p) - n())- @l@)F(, o dpdo
~ 1o /a ) / (0p) () @F f(z, R(z)p) dpdo (17)

Notice that we have |R(x)p| = |pl|, (v(p) - n(x)) = —(v(R(x)p) - n(z)) implying that

(v(p) - n(@))+ () F(z,|p|)f dpdo

T



Performing the change of variable ¢ = R(x)p yields the equality

/m/m(v(p) -n(z))_ o(x)F(z, |p|) f(z, R(x)p) dpdo

/ / (v(q) - n(x))+ (@) F(z, |g]) f(z,q) dgdo. (18)
oNJR3
Combining (17), (18) implies
| [ mertame = < [ [ (@) nt@) o@F e p) dpio
-/ / 3 _ o(e) (. [p)g(x. p) dpdo (19)

and therefore one gets for a.a. x € 052

[0 @) Fe s dp = < Fz, o)) (2. ) dp

/R () - nl2))+
~ e / (v(p) - n(x))- F(z, [p)g(z.p) dp.

[

The first uniform estimate comes by the mass conservation. Actually we determine the

total outgoing/incoming mass fluxes over a period.

Proposition 2.1 For any € €]0,1], the T periodic particle density f. satisfies

/ /aQ/Ra y fo(t,z,p) dpdodt = M~

Proof. Integrating the Vlasov equation (3) on [0,7] x © x R? yields

//aQ/Rg z)) f-(t,z,p) dpdodt = 0.

Applying Lemma 2.1 with F' = 1 implies

/ /6/ )Jetp) dploat = < /a [ @) n@). f62,p) dpaot

T
< [ [ ] 0w n@)- gtt..p) dpoa.
0J8QJR3
We deduce that

//89/]Rg 4 fe(t,x,p) dpdodt = /OT/(?Q/[RS(U(p).n(:E))_ g(t, z, p) dpdodt =



Using the boundary condition (16) we obtain also

/OT/m/R3(v-n)fedpdadt = //m/mv n)_ (g + (1 — &) f.(t, z, R(z)p) dpdodt

= eM™ + 1—5/// x))y fe(t,z,q) dgdodt
o0 JRr3
= M~

The second uniform estimate is obtained by the conservation of the total energy

Wity =5 [ [ E@rttap) dpdet T [(BP + B d

Since we intend to impose the Silver-Miiler boundary condition (7) or the perfect
conducting boundary condition (15) we perform the total energy balance for solutions

satisfying the boundary condition
nAE.+dcnA(nAB.)=h(z), (t,z) € R x . (20)

Thus, when analyzing the Vlasov-Maxwell problem with the Silver-Miiler boundary
condition (7) we take 6 = 1 and when studying the Vlasov-Maxwell problem with
perfect conducting boundary condition (15) we assume that A = 0 and let § ™\, 0.

Proposition 2.2 For any € €]0,1] the T periodic solution (f., E., B:) satisfies
T T
5// /(vn Ef. dpdadt—i—— /(\n/\E€|2+(5202|n/\B€\ ) dodt = e K~ + %y
0JOOJR3 26 25

In particular we have for any € €]0, 1]

500// (In A E.] + 82n A B.]?) dodt < K~ + 2S1H.

Proof. Multiplying (3) by £(p), (5) by (E.(t,z),*B.(t,x)) yields after integration

//Rg fadpdx—l—/ /R3 )E(p) f- dpdo — ¢ //Rg E.)f. dpdz =0

1
22/(|E5|2—|—62|B£|2) dZB—CQ/ (n(z) A B:) - E- da———// E.)f. dpdz.
G9) R3



Putting together the balances for the kinetic and electro-magnetic energies implies

d
—/ E(p)f- dpdx + fd (|E > + | B.%) d:z:—l—// v-n)&(p)f. dpdo
dt Jo Jrs 90JR3
— cso/ (nA\B.)-E.do=0.
o9

After integration with respect to ¢t € [0, 7] one gets by time periodicity

//aQ/RS )E(p) f- dpdodt — goc? //aQn/\B) E. dodt =0 (21)

By the Silver-Miiler boundary condition (20) we deduce

T T
(50// (nAB.)-E.dodt = (50// (nA(nAB))-(nAE;)dodt (22)
0Jog 0Jo0
1 T
= —// (|h]? = |n A B> = 822 n A (n A B.)|?) dodt.
2 JoJon

Using now Lemma 2.1 with the function F' = £ we obtain

/ /aQ/Rs ©)Ef dpdodt = e /0 T/m /R (v(p) - n(2))+ E(p)fe dpdodt
- 5/0789/@(?1(19) -n(x))-E(p)g dpdodt. (23)

Finally combining (21), (22), (23) yields

8/0T/89/Rg(v(p)'n(x))+ Ep)f- dpdodt + 500//8Q In A B2+ 6n A B.?) dodt
_ //aQ/R )_ E(p)g dpdodt

600 2
h|* dodt
+ o5 ] |* do
EoC

= ¢eK +—TH 24
€ —1—25 ( )

saying that the tangential traces of the electro-magnetic field are uniformly bounded

in L2 (R; L?(09Q)3) with respect to € €]0, 1]. O

loc

We need also a uniform bound for the outgoing kinetic energy

/oT/m/Ra(U(p) -n(x))4 E(p)fe dpdodt.

Notice that, for the moment, the equality (24) gives only a bound in 1/e (if 6 > 0 is
kept fixed). Actually we will see that (24) provides a uniform bound for the outgoing

10



kinetic energy, but this requires the orthogonal decomposition of the tangential field
h € L?(09Q)? into irrotational and rotational parts. These result is analogous to the
well-known orthogonal decompsition result for fields of L*(2)? (see [9] pp. 22). For
the sake of the presentation we give here some details cf. [4]. We assume that 2 is
bounded and smooth (generally C*'). For any function u € C*(952) we denote by V., u
the tangential gradient of u. We also define curl,u := n A V,u if u € C1(99Q). Tt is
easily seen that n - V,u = 0, n - curl,u = 0 and a direct computation shows that V,

and curl, are orthogonal in L?(99)3

Vou-(nAVw)do =0, uveCHN).
20

Moreover, by density we have

V.o (nAVp)do =0, 9 € H(09Q).
o

For the definition of Sobolev spaces on 052 the reader can refer to [18]. We introduce the
notations : X = {u € L20Q)* | n-u(zx) =0 ae. z € 00}, Y = {V, ¢ | p € HY(0Q)},
Z={nAV,¢|eH ()}

Proposition 2.3 (¢f. [4], Proposition A.5, pp. 487) Assume that O is bounded,
simply connected and reqular (C*). Then'Y and Z are closed orthogonal subspaces of

X and we have the decomposition
X=Y+7Z (25)
By the previous result we deduce that there are hy, ho € H'(92) such that
h=V.hi+nAV; hs.

Actually the functions hq, he are unique up to a constant. Without loss of generality

we assume that [, hy do = [,, ho do = 0. By the orthogonality we have

|M%m:i/]VTMFdJ+/‘MAVTMFda::/|VTMdef/|VT@Fda
o9 o9 o9 o9 o9
and by Poincaré inequality one gets

1]l 00 + [1h2ll a1 00) < CE) A L200) -

We recall now the divergence equations verified on the boundary R x 02 by T periodic
solutions of the Maxwell equations cf. [4]. We denote by Vi, »divy,.) the gradient

and divergence operators on R x 0f).

11



Proposition 2.4 Assume that Q is reqular and consider (E, B) € L2 (R; L*(Q)°)? a

T periodic weak solution for the Mazxwell equations

(¢ t
M, OB + curl,E =0, div,FE = AGED)
€0 €0
with tangential and normal traces (n AN E,n A B) € L% _(R; L2(09)*)?2, respectively
((n-E),(n-B)) e L (R; L*(0))*. We assume also that the charge density p belongs

to LL (R; LX(Q)), the current density belongs to L (R; L*(Q)*) and that the continuity

loc

OE — eurl,B = — , div,B=0 (26)

equation O;p + div,j = 0 holds true in D’ (R x Q)

per

T T
// POy dxdt—i—//jvgcgp dxdt:// (n-j)p dodt, Yo € C*(RxQ), T periodic
0Ja 0Ja 0Jaq

for some function (n - j) € Li (R; L*(00Q)). Then the traces of the electro-magnetic

field verify the following divergence equations in D, (R x 0%)

per

divgry ((n- E),c*(n A B)) = _(716_;)3')7 divgy ((n-B),—(nAE)) =0

1.€.,

T T T
—// (n-E)@twdadt—CQ// (nAB>.szpdadt:—i// (n- ) dodt
0J9Q 0J00 €o JoJao
and
// n- B@twdadt+// (nAE)- -V dodt =0,
o9 o9

for all function ¢ € CY(R x 9Q), T periodic.

Proof. Consider the test function n(t)V,p, where n € C'(R) is T periodic and
¢ € CY(Q). By using the first equation of (26) with this test function, we deduce

1 T
// E(t,x)-V,p dedt—c // )(nAB)-V o dodt = —// n(t)j-Vae dadt.
a0 €0 JoJo (

27)

By using now the third equation of (26) with the test function —n'(t)¢(x) we deduce
that

- /0 T/mn’(t)(n- r) dodt+ / / V. dadt = / / (b )1 (£)p(z) drdt.

(28)
By adding the equations (27), (28), by observing that (n A B) - Vo = (n AB) - V.o

and by using the continuity equation finally we obtain that

— /OT/aQ(n - E)opp dodt — ¢ /Ozg(n A B) -V ¢ dodt = —% /Ozg(n - )¢ dodt,

12



for all ¢¥(t,x) = n(t)¢(x). By density we deduce that the previous equality holds for
all test function ¢ € CY(R x 9Q), T periodic, or div ((n-E),(nAB)) = -2 in

€0

D! (R x 09). In order to establish the second divergence equation on the boundary

per

we use the second equation of (26) with the test function 7(¢)V ¢ which gives

// godxdt+// Y(nAE)-Vypdodt =0.
o0

By using also the fourth equation of (26) one gets finally :

// n- B@twdodt+// (nAE)- -V dodt =0,
a0 a0

or divyr) ((n-B),—(n AE)) =01in D] (R x 0Q).

per
]

Based on the previous divergence equations satisfied by the electro-magnetic traces, we

derive the following representation for the electro-magnetic energy flux gyc? fOTf a0 (M A

B.) - E. dodt

Lemma 2.2 For any ¢ €0, 1] the T periodic solution (f., E., B:) satisfies

T I
—/ dc (nAB.)-E.dodt = —/ InAE. —n AV, hyl? dodt
o) 2 JoJoa

1 T
i _/ 6en A (nABL) — V, hf? dod

- // n - je)hy dodt (29)
€oC a0

where h = VYV, hy +n A V. hy is the orthogonal decomposition of the tangential field

h € L2(89)3 into irrotational and rotational parts.

Proof. By the Silver-Miiler boundary condition (20) we have
nAE:—nAV, hy=—(cnA(nAB.)—V; h)
and therefore we can write
—dc(nAN(nAB.) - mANE:) = —(dc(nAN(nAB.))—V, h +V, h)
(MANE.—nAV,; hy+nAV, hy)
1 1
= §|n/\E5—n/\VT hol? + §|5cn/\ (n A B.) =V, hy|?
- VT hl(n/\VT hg)—(n/\Ee—n/\VT h2)~VT hl
— (denAN(nAB:) =V, h) - (nAV, hs). (30)
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We will transform the last three terms. By the orthogonality of V. and n AV, we

have
V,hi-(nAV,; hy)do=0
o0
/(n/\Ea—n/\VThg)-VThldU:/ (nNE.) -V, hydo
o0 o0
/(5cn/\(n/\B€)—VTh1)-(n/\VThg)da — [ SeAmABY) - (nAV. hy) do
[2)9] o0

= / dc (n A B.) -V, hydo
o0N

implying that

T 1 T
—5c// (nAB.)-E.dodt = —/ InAE. —n AV, hyl* dodt
0Jo 2 JoJoa

1 T
n _/ Gen A (A B -V, b dodt

— // (nAE;)-V, hy dodt
oN

— 50// (n A B:) -V, hy dodt. (31)
0J0Q2

Applying now the divergence equations in the conclusion of Proposition 2.4 with the

test function hy(x), hi(x) yields

T 1 T
—c? // (Tl A BE) -V, hy dodt = —— // (n 'jg)hg dodt
0Jon €0 JoJon

T
// (nAE.)-V; hy dodt = 0.
0Jag

and

Finally one gets by (31)

T 1 T
—56// (nAB:)- E.dodt = —/ InAE.—n AV, hy* dodt
20 2 JoJoa

1 T
n _/ e A (A B -V, by dodt

— // n - je)he dodt.
EonC 90
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We derive now a uniform estimate for the outgoing/incoming kinetic energy fluxes
fOTf o0 Jrs (V(p) - n(x))+ E(p) fe dpdodt. This bound is a consequence of the total energy
balance in Proposition 2.2 and the representation formula in Lemma 2.2. First we

establish a uniform L*> bound for (f.)..

Proposition 2.5 Assume that g € L®(R x X7) is non negative. Then we have for
any € €0, 1]

maX{”fs||L°°(R><Q><R3)7 erHLoo(szi)} < ||g||L°o(Rx2—)~

Proof. For any fixed v > 0, ¢ €]0, 1] and given electro-magnetic field (E., B.) the
solution of the Vlasov equation in (9) with the boundary condition (16) is obtained by

the iterative scheme

af® +9,fO 4+ u(p) - Vof O + g(E.+v(p) AB.) - Vo f @ =0, (t,z,p) €Rx QxR
f(O)(tazvp) :59(t7$7p)> (t,l’,p) eERx XY™

and for any n € N

aft ) 4 0, f0+) 4y W f0) 4 g(E. + v A B.) -V f) =0, (t,2,p) €R x Q x R?
foO(t, @, p) = eg(t,z,p) + (1 — ) f® (¢, 2, R(2)p), (t,2,p) €R X E7.

Indeed, we have 0 < £ < f) on R x ¥~ and thus, by comparison principle (which
holds true for time periodic solutions and any o > 0) one gets 0 < f(© < f() on
R x QxR3 and on R x £*. Assuming that 0 < f™ < f®+1) on R x Q x R? and Rx 2+
we deduce that ft) < f+2) on R x ¥~ which implies by comparison principle
that ftD < f+2) on R x © x R? and on R x ¥*. Finally we check easily that
the monotonous sequence ( f (”))n converges to a 1" periodic solution f. , of the Vlasov

equation in (9) satisfying the boundary condition
fealt,z,p) =cg(t,z,p) + (1 — ) feult,z, R(x)p), (t,z,p) € R XX,
Obviously we have
maX{||f(0)||L°°(R><Q><R3)7 ||f(0)||Loo(Rx2i)} < gl e @xz-)-
Assuming that

max{ || | oo mxaxrs), || e @)} < N9l n sy

15



implies that ||| pe@xs-) < |g]lz®xz-) and therefore

max{|| "] pomxaxrey, | fOT | oo @xsty < 9]l @xs-)-

Passing to the limit with respect to n one gets

maX{l|fa,a||L°°(R><Q><R3)a Hfa,aHLoo(szi)} < HgHLOO(RxE*)-

In order to pass to the limit for o ™\, 0 observe that if 0 < o« < 3 then f., > f.3
(actually this inequality holds true for any elements fc(,n), f[gn) in the iterative schemes
associated to the parameters «, 3). Finally it is easily seen that for any € €]0, 1] the

function f. = lim,~ g f:.o solves the problem (3), (16) and satisfies
maX{”fa||L°°(R><Q><R3)7 HfaHLOC(]RXZi)} < ||g||L°°(]R><E*)-

[

The estimate for the kinetic energy fluxes follows by combining the representation

formula in Lemma 2.2 and standard interpolation and Sobolev inequalities.

Proposition 2.6 There is a constant C' depending on T, Q, [|h||r200), ||9]lz@xs-),
M~, K~ such that for any € €]0,1] the T periodic solution (f., E-, B:) satisfies

/OT/aQ/RS (v(p) - n(x))+ E(p) fe(t, . p) dpdodt < C

€oC
2§
Proof. Combining (21), (23), (29) yields

T
// InAE. —n AV, ho)® +|dc (n A (n A B.)) =V, hy|* dodt < Ce.
0J0Q

T T
8// / (v(p) - n(z))s E(p)f- dpdodt + %// InAE. —n AV, hyl* dodt
0Joa rs 20 Jo Joo

gpC T 2
+ —// |0c (n A (n A B.)) — V, hy|* dodt
20 JoJog

= [ [ 0t nw)- 0y amoat
4 / T/ (n - j.)hs dodt. (32)

0J00Q

Using now Lemma 2.1 with F' = 1 implies
@) gdta) = [ @) @i dp = < [ @) (@) fap
- o[ @) n@)-gdp 3

16



and therefore

/OT/aQ(n - Je)ho dodt = €/OT/8§2/R3(U(p) (@) haf. dpdodt

~ /0 T/m /R (v(p) - n())- hog dpdodt, (34)

Putting together (32), (34) one gets

T T
// / (v(p) - n(x))4 E(p) f- dpdodt + cof InAE. —n AV, hyl* dodt
o0JRrs 2¢0 Jo Ja

EpC

T
+ —// |6c (n A (n A B.)) =V, hy|? dodt
2e0 0J80

= [ [ @ ne)- €~ bt apoat
N / /m /R 3 \hof. dpdodt.  (35)

We estimate now fﬂmng(v(p)n(x))Jr ha f- dpdodt and fﬂangg(v(p)-n(x))_ heg dpdodt

by using Sobolev and interpolation inequalities. Since (f:)o<c<1 is uniformly bounded

we have for a.a. (t,z) € [0,T] x 0

[ @) foap = [ @) 0l Sl grem dp
[ 00 nl@)s Flgen dp

IN

CRYgllz~ + =5 (U(P) ()4 (1+E(p)) fe dp.

CR
By taking the optimal value for R one gets

4/5
[ 6w n@. £ ap < Clal [ 06 n(e 0+ o). ap)

implying that

4/5

/RS(U ' n)-f— fa('a '7p> dp

<Clgll Y ( / / [ wn 1+5)fgdpdadt)
L3 (0,T[x09) 90JR3
4/5

<Cl\gll% (/O/aQ/R@ ‘n); Ef. dpdodt + M>(36)

Notice that in the last inequality we have used Proposition 2.1. Similarly one gets

<Cllgl 2 (/// ven)_ 1+5)gdpdadt>
L3 (0,T[x89) o0JR3

<Cllglly2 (M~ + K™)"5. (37)

4/5

[ oen)- gt dp

17



Using now the Sobolev inclusion H'(9Q) — L5(99Q) and the Holder inequality we

[ s

R3 L% (]0,T[x89Q)
[ wnrap
R?)

1/5
< OO, T)h 2 e0llgll i
4/5

(M + /O T/m /R () D)L dpdadt> . (38)

(v-n)- hag dpdadt‘ < C(Q,T)|hll2oe llgll 2 (M~ + K7)*5. (39)

obtain

T
/ / (v 1)y hof. dpdadt' < Nhallzsqorpeon
0JONJR3

IN

C(, T)|[hall o0

L3 (0,7[x09)

X

In the same manner we have

0JoaJrs
Combining (35), (38), (39) clearly gives a uniform bound for the outgoing kinetic
energies
T

ow [ [ [ (o) 0t €@ o < QT [l gl 21 560

0<e<1Jo Joa rs
Using now the boundary condition f. =eg + (1 — ¢e) f.(¢, z, R(z)p), (t,z,p) € R x ¥~
also gives a uniform bound for the incoming kinetic energies on R x 7. Notice also

that (35) implies

£oC

T
% / INAE. —n AV, hol® +|5cnA(nAB)—V, h*dodt <Ce, 0<e<1.
o0

[

Once we have estimated the tangential traces of the electro-magnetic field, cf. Proposi-
tion 2.2 and the kinetic energy flux, c¢f. Proposition 2.6 it is possible to obtain uniform
bounds for the total kinetic and electro-magnetic energy by appealing to the multiplier

method [3], [4]. Using the momentum conservation yields

Proposition 2.7 Assume that Q2 is bounded and strictly star-shaped. Then for any

e €]0,1] we have

// Sfedpdxdt+—//|E ? + | B.)?) dxdt+—// (n- B.)* dodt
o0
{// / |(v z))| |plfe dpdadt—i——/ In A E.|> + *|n A B.|? dadt}.
o0

18
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Moreover, if 6 = 1, then there is a constant C' depending on U, T, ||kl 2, ||g]lL=,
M~, K~ such that

T T
/// E(p)fe dpda:dt+@//(|Ea|2~|—02|35|2) dzdt < C (41)
0Ja Jrs 2 JoJa

T
@// (n- B2+ (n- B.) dodt < C. (42)
o0

Proof. Without loss of generality we assume that 02 is strictly star-shaped with
respect to the origin 0 € Q d.e., 3r >0 : r < (x-n(x)), = € I We consider R > 0

such that  C B(0, R). The momentum conservation reads
o [ ot dpdiv, [ povp)fdp— (puB.+ oA B) =0 (43)
R3 R3
and direct computations with the Maxwell equations yield

pE. +j. NB. = ¢eo(E.div,E. — E. Acurl,E.) + goc*(B.div,B. — B. A curl, B.)

— e00{(E: N\ Be). (44)
Using the identity

, 1< <3

3
8
U’Zdlvmu - (u AN Curl ’LL = Z _ u uj)
= O, 20

and the decomposition
(Ee,B)=(n-En—nAnANE:),(n-B)n—nA(nAB.))

one gets after integration by parts

//pEE + je A\ B:) :—60/ {n EJnAnAE))+cE(n-B)(nA(nAB))}-x
/ {(n-E.)*+c(n-B)*}(n-x) dadt—EO 0/8£]n/\E5|2 +n A B)*}(n - x) dodt
5/()/(){@1%8\34?}@@. (45)

Multiplying the momentum conservation (43) by x and integrating over [0, 7] x Q we

obtain

/OT/m/RS(U(P) -n(x))(p-z)f. dpdodt // /IRB p)f. dpdadt

+ / / (p-E- + j- A B.) - x dzdt  (46)
0/
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Combining (45), (46) and observing that £(p) < (v(p) - p) yield

// fEdpdxdtJr—//E ? 4+ 2| B.]? dudt + =2 // (n- B.)* dodt
o0

//| )| Iplf dpdadt+R€0/ {In A B2 + n A B2} dodt
00
+ Rgo/ {((n-E)|-InA Bl +|(n-B.)| - |n A B.|} dodt. (47)
0J00

We obtain (40) by writing

T T
50/ (n- B.)] |n/\E€|dadt<M€0// n- B)? dodt + 0/ In A |2 dodt
0Jo0 o0 2p Jo Joa

T ueo [T e [T
50// & |(n-B.)| InAB.| dodt < — // ¢ (n-B.)? dodt+— // ¢ InAB.|* dodt
0JoQ 2 JoJoa 21 Jo Joe

with g > 0 small enough. The estimates (41), (42) follow easily since by Propositions
2.1, 2.6 we have

//m | 1) n()] ol dpdode < c//m [ 0@ @)+ dpdods < €

and by Proposition 2.2 we know that

500/ n A B>+ n A B. |2dadt§K‘+%TH.
oN

3 Existence results

We are ready now to prove the existence of T periodic weak solutions for the
Vlasov-Maxwell problem (3), (4), (5), (6), (7): it is a straightforward consequence of

the uniform estimates for 7" periodic solutions (f:, E., B:)o<e<1 With § = 1.

Proof. (of Theorem 1.1) The arguments are standard and are left to the reader. We
construct our 7" periodic solution by taking a weak limit point of (f., E., B:)o<e<1. We
only justify that the limit solution satisfies the specular boundary condition (4) and the
mass constraints (12). Take (e;)x a sequence of positive numbers converging towards
0 such that

feo = f weakly % in L®(R x © x R?)

20



(E.,,B.,) — (E,B) weakly in L;

- (R; L*()°)

loc

(nAE.,,nAB.,)— (nAE,nAB) weakly in L7 (R;L*(9Q)°)

(n-E.,,n-B.,)— (n-En-B) weakly in L{ (R;L*(9Q)?).

Here nA is the tangential trace and n - is the normal trace over 9€). For any T periodic
function § € C1(R x Q x R®) satisfying 0(¢, z, p) = 0(t, x, R(x)p), (t,7,p) € R x T we

have

T T
// /(@9 +v-V0+q(E.,, +vAB:,)- - V,0)f., dpdxdt = // /(v -n)0f., dpdodt.(48)
0J0 JRr3 0JooJrs

But as in the proof of Lemma 2.1 we can write

/// x))0f., dpdodt = 5k/// + 0f., dpdodt
NJR3 90 JR3
— 5k// / _ 09 dpdodt
a0JRr3

lim // / x))0f., dpdodt = 0.
k—-4o00 00 JR3

We intend to pass to the limit for & — +o0 in (48). As usual we use the compactness

and therefore

average result of DiPerna and Lions [8] (which adapts easily in the time periodic case
and for bounded domains) in order to treat the non linear terms f;, (E., +vAB;,)- V0.

Finally one gets

/T/ /3(@9 +v(p) - Vo 4+ q(E +v(p) A B) - V,0) f dpdadt =0

for any T periodic function # € C1(R x Q x R?) satisfying 0(¢, z, p) = 0(t, 2, R(z)p),
(t,x,p) € R x 7. We have by Propositions 2.1, 2.6

/ / 2))|yE f., dpdodt = M~
»+

sup// 2))|E(p)y*= f-, dpdodt < +o0.
»+

keN
After extraction eventually, we can assume that

and

Vifgk — 7% f weakly * in L*®(R x Ei)

and we obtain easily that

/ / )|y f dpdodt = M.
»+
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Actually it is possible to identify the tangential trace of the electro-magnetic field.

Corollary 3.1 Under the hypotheses of Theorem 1.1 (with 6 = 1), the tangential traces
of the electro-magnetic field (E, B) satisfies

nANE=nAV,hy, cnAN(nAB)=V,Mh
where h =V, h1 +n AV, hs,

Proof. With the notations in the proof of Theorem 1.1 we know by Proposition 2.6
that

sup— mAE., —nAV; hof*+|cnA(nAB.,) -V, h|* dodt < +oo
keN €k o0

which implies that

lim (nAE.,,cnA(nAB.))=(nAV, hy,V, hy) strongly in L (R; L2(8§2)6).

ko0 loc

Therefore we have (n A E;cnA(nAB))=(nAV, hy,V, hy). O

We investigate now the Vlasov-Maxwell problem (3), (4), (5), (6) with the perfect
conducting boundary condition (15). In order to construct 7" periodic solutions for this

problem we replace (4) by (16) and (15) by (20) with 6 =€ €]0,1] and h =0
nANE+enA(nAB)=0, (t,z)€ R x 0. (49)

Proof. (of Theorem 1.2) For any ¢ €]0, 1] we denote by (f, E., B:) a T periodic weak
solution for (3), (16), (5), (6), (49). By Proposition 2.1 we know that

//m/Rd )+ fe(t,x,p) dpdodt = M~, € €]0,1]. (50)

Notice also that by Proposition 2.2 we have

T
5// / (v(p)-n(z))y Ep)fe dpdadt—l——/ InAE|*+e*FnAB.|* dodt = e K~
0JooJr3 o0

implying that .
L[ ) nw). e6)s. apana < 5 51

T
coe / n A B2+ e23|n A B.|? dodt < 2K~ (52)
0J0Q

and

2
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From the above inequality we deduce that (nAE.). converges towards 0 in L2 _(R; L*(09Q)?).

Combining (16) and (51) yields for any ¢ €]0, 1]

/OT/m/Rg<U -n)_ Ef. dpdodt = /OT/aQ/R?)(U ‘) E(eg+ (1 — &) f.(t, z, R(x)p)) dpdodt

< 5/T/ /3(v-n)_ E(p)g dpdodt + (1 —e) K~
P (53)

At this stage let us mention that (41), (42) still hold true uniformly with respect to
e €]0,1]. Indeed, this is a direct consequence of (40) (which is valid for any 6 = ¢ €]0, 1])

since we already know that

/oT/aQ/Rs«”(p) -n(x)))[p| f- dpdodt

IN

e[| [ ) nt)s 0+ @ amo
< O(M 1K)

and

goC T

—/ In A B> + n A B.|* dodt < 2K~

2 JoJoa

Therefore we obtain uniform bounds for the total energy and the normal traces of the
electro-magnetic field. From now on the arguments are similar to those in the proof of
Theorem 1.1. Taking (ex)x a sequence of positive numbers converging towards 0 such
that

feo = f weakly % in L®(R x © x R?)

(E.,,B.,) — (B, B) weakly in L{ (R;L*(Q2)°)

loc

(nAE

€k

nAB.)— (nAEnAB) weakly in L;

loc

(R; L*(09)°)

(n-E.,n-B.,)— (n-E,n-B) weakly in L{_(R; L*(052)?).

loc

it is easily seen that (f, F, B) is a T periodic weak solution of (3), (4), (5), (6). Notice
also that by (52) we have limy_ o n A E., = 0 strongly in L (R; L*(0Q)%), saying

that the electric field E satisfies the perfect conducting boundary condition n A E = 0
on R x 992. J
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