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Abstract

The Nordstrom-Vlasov system describes the evolution of self-gravitating
collisionless particles. We prove the existence of stationary solutions in one
dimension. We show also the propagation of impulsion moments and perform

an asymptotic analysis.
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1 Introduction

We consider a population of particles interacting by fields created collectively and we
neglect the collisions. Examples of such collisionless gases occur in plasma physics

and in astrophysics. If the particles interact by electro-magnetic forces we deal with
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the Vlasov-Maxwell equations, see [4], [8], [10], [11], [12], [13], [14], [15], [17]. If
the particles interact by gravitational forces the evolution of the system is given
by the Einstein-Vlasov equations, see [1], [20], [21], [22]. Recently Calogero and
Rein studied in [6], [7] a different relativistic model obtained by coupling the Vlasov
equation to the Nordstrom scalar gravitation theory [18].

Let F' = F(t,z,p) > 0 denote the density of particles in phase-space. Here t € R
represents time, x € RY position and p € RY impulsion, with N € {1,2,3}. This

density satisfies the Vlasov equation
OF +0(p) - VoF — (016 + v(p) - Vad)p + (14 [p) 3V.0) - V,F =0,

coupled to the wave equation

02— Ay = —e(N+D0(0) / RAGE 0N,

RY (14 [p[*)2
We assume that the physical constants (the mass of particles, the gravitational
constant and the speed of the light) are all equal to unity and v(p) = W
denotes the relativistic velocity of a particle with impulsion p (see [5] for more details

on this model). After introducing the new unknown f (¢, z, p) = eV TG0 B¢ 2, p)

the system becomes

0f +0(0)- Vof = ((SOp+ L+ ) 5Va0) - Vof = (N + 1f(S0), (1)

8152¢ — A9 = _M(tv l’), (2)
2 — ft.z.p) 5
) = [T ®)

where S = 0;4+v(p) -V, is the free-transport operator. We add the initial conditions

f(oa ) ) = fo, ¢(0> ) = %o, at¢(07 ) = ¥1. (4)

The Nordstrom-Vlasov system (1), (2), (3), (4) was studied by Calogero and Rein.
They proved in [6] the existence of local in time classical solutions in the three di-

mensional case. The existence of global weak solutions has been analyzed in [7].



The aim of this paper is to prove the existence of stationary solutions for the Nord-

strom-Vlasov equations in one dimension

v(P)Ouf — (14 P2 ()8, f = 2f (z, p)v(p)d (x), (z,p) €0, 1[xR,  (5)

" f(z.p)
0w = [ e el (©)
with the boundary conditions
f(x:O>p>O):gO(p)7 f(x:17p<0):gl(p)7 (7)
¢(0) = w0, (1) = ¢1. (8)

The proof follows by using the Schauder fixed point theorem. One of the key points
is to establish a priori estimates. For results on permanent regimes for the Vlasov-
Poisson system and Vlasov-Maxwell system the reader can refer to [2], [3], [9], [16],
[19].

Our main result is the following

Theorem 1.1 Assume that pg, 01 € R, g9, 91 > 0 such that

Go=e " / Ov(p)go(p) dp — e %1 / v(p)gi(p) dp < +o0,

p<0

Goo = maX{||90||L°°(]0,+oo[)a ||91||L°°(}—oo70[)} < +00.

Then there is a mild solution (f > 0,¢) € L*>(]0,1[; L*(]0,1[)) N L>=(]0, 1[xR) x
W2>(]0, 1[) for the stationary one dimensional Nordstrom-Viasov problem (5), (6),
(7), (8). Moreover we have
e ) / v(p)f(z,p) dp = e / v(p)go(p) dp + e~ / v(p)gi(p) dp, x €10,1],
R P>po p<p1

where

po = (2mBacon 8@=60) _ )7 | o (oRmasicon de)—01) _ 1)



We perform also an asymptotic analysis of the stationary one dimensional Nord-
strom-Vlasov problem for singular boundary conditions g-(p) = %g(%), V p > 0
where € > 0 is a small parameter. For any ¢ > 0 we consider a solution (f., ¢.) for

(5), (6), (8) and

fe(x=0,p>0) = g:(p), fe(x=1,p<0)=0.

We denote by M;([0,1] x R) the space of bounded measures on [0, 1] x R and by §

the Dirac measure. We prove the following result

Theorem 1.2 Assume that oy > 1,0 < g € L>(]0,4+00[) such thaty = fp>0pg(p) dp <

+00. Then we have the convergences
lim ¢ = ¢, in C*([0, 1]),
lim /2 = f, weakly  in My ([0, 1] x R),
where ¢ € C1([0,1]) N C?(]0,1]) is the unique solution of

¢ (x) = ! z €]0,1],

@‘PO_¢($)\/€2W0_2¢($) — ]_’
¢(0) = o, ¢(1) = ¥1,

and

f(z,p) = ] 5 (p— V20 =)

e2p0—20(x) — 1
Our paper is organized as follows. In Section 2 we introduce the notions of weak
and mild solutions for the stationary one dimensional Vlasov problem. We study
the properties of the characteristics. Some technical proofs are postponed to the
Appendix. We give also estimates for the impulsion moments. In Section 3 we
show the existence of mild solution for the stationary one dimensional Nordstrom-
Vlasov problem. We use the fixed point method. In the last section we perform the

asymptotic analysis for singular boundary conditions.



2 The stationary Vlasov problem

In this section we assume that ¢ = ¢(z) is a given smooth function and we introduce
the notions of weak solution and mild solution for the stationary one dimensional

Vlasov problem (5), (7). Notice that (5) can be written

0, (v(p)f () ) = 0, (1 +5)20/ (@) (. p) ) =0,
and therefore we have the usual definition

Definition 2.1 Assume that ¢ € W>(]0,1]), go € Li.([0,4+0]), g1 € L. (] —
00, 0]). We say that f € L _(]0,1] x R) is a weak solution for the stationary Viasov

problem (5), (7) iff
[ 10 (w00 - 1+ 0 @000) e = O s0nr)o0.0)
p>0
- e‘q“ly v(p)gr(p)0(1,p) dp,
p<0
for any test function 6 € C1([0,1] x R) satisfying 6(0,p < 0) = 6(1,p > 0) = 0.

Assume now that ¢ € W%(]0, 1) and consider the system of characteristics asso-

ciated to (5)

B v, O =~ PEPIX (), )

with the conditions

X(0) =z, P(0)=p. (10)

0, 1[xR) U ({0} x [0; +-00[) U ({1} x] — 00, 0]) there

Observe that for any (z,p) € (
is a unique solution for (9), (10) denoted

(X(S)a P(S>) = (X(57 x7p)7 P(57 xap))v v s & [Sin<xap)7 Sout(x7p)]7
where the entry/exit times are given by

Sin(z,p) = inf{r <0 : X(s;x,p) €]0,1], V s €]7,0[},



respectively
SOUt(x7p> = Sup{T 2 0 : X(vavp) 6]07 1[7 v S 6]077[}
After multiplication of (5) by e~2¢(®) we obtain

v(P)d, (f(z,p)e @) — (1 + p*)2¢' ()9, (f(x,p)e @) =0, (z,p) €]0,1[xR,
saying that f(z, p)e2#(®) is constant along any characteristic. We have the definition

Definition 2.2 Assume that ¢ € W>°°(]0,1[). The mild solution of the stationary

Viasov problem (5), (7) is given by
f(a,p) = /2 W g (P(sin(w, p); 2, p)), if sin(,p) > —00, X (s (@, p); x,p) = k, k € {0,1},

and

f(z,p) =0if sp(x,p) = —o0.

By definition the mild solution is unique. Unfortunately in general there is no
uniqueness for the weak solution because f can take arbitrary values on the charac-

teristics such that s, = —o0.

2.1 Properties of characteristics

In this paragraph we establish several important properties of the characteristics.
Some of them hold also true in the time dependent case. Therefore, for the sake of
generality we work with smooth functions ¢ = ¢(t, z). In this case, in one dimension,

the equation (1) can be written

O e )+ u(p)Da(fe 20 — (S + (1+ %) F0,0) Gy(fe 24) =0,

and thus the characteristics to be considered are given by

W —ops). 2 =~ (00 +u(P()0,0) (5 K() Pls) - 2EZED

(1+1P(s)2)"

2

(11)



If ¢ € CH([-T, T|x[0,1)NL>(]=T, T[]0, 1]), 0,9, 0xp € L>(|=T, T[; W*>(]0, 1])),
VT > 0, then for any (¢, z,p) € (Rx]0, 1[xR)U(R x {0} x [0; +oo])JU(R x {1}x] — 00,0])
there is a unique solution (X (s), P(s)) for (11) satisfying

X(s=t)=xz, P(s=t)=p. (12)
For any s € [8in(t, x, p), Sout (¢, , p)] we use the notation
(X(s), P(s)) = (X(s;t,2,p), P(s;t,2,p)),

where the entry/exit times are given by

Sin(t, 2,p) = inf{r <1 X(s;t,2,p) €]0,1], Vs €]7, [},

respectively

Sout(t, x,p) =sup{r >t : X(s;t,z,p) €]0,1], V s €]t, [}
Note that we have
diviep) (v(p), —(SO)p — (1 + p*)"20,0) = — 59, (13)

and since L¢(s, X(s)) = 0ié(s, X(s)) + v(P(s))9u(s, X(s)) we deduce that the

O(X (s;t,z,p),P(s;t,z,p
d(z,p)

jacobian matrix J(s;t,x,p) = D has the determinant given by

det J(s;t,z,p) = o~ (s X (sit,x.p))+o(t,x) £ 0. (14)

Consider now the change of variables Rx]0, +o00[> (t,p) — (X (s;¢,0,p), P(s;t,0,p)).

A(X (5t,0,p),P(st,0,p))

By computations we check that the jacobian matrix jo(s; t,p) = B00)

has the determinant given by
det Jo(s; t, p) = —e Y XSO0 (). (15)

A similar result holds for the change Rx|—o00,0[> (¢,p) — (f((s; t,1,p), P(s;t, 1,p)).

_ 9(X(sit,Lp),P(sit,1,p))

We obtain that the jacobian matrix .J;(s;, p) = B00) has the determi-

nant given by

det Jy(si1,p) = —e # KLy ), (16)

7



Let us interpret the equalities (15), (16) in the stationary case. Observe that in this

case we have

(X(s;t,2,p), P(sit,z,p)) = (X(s —t:0,2,p), P(s — ;0,2,p))
= (X(s —t;z,p), P(s — t;z,p)).
Consider the change of variables g > (s,p) — (X(s;0,p), P(s;0,p)) where

Q0 = Up>0 (]0, $0ut (0, ) [x{p}) ,

and denote by Jy(s,p) the jacobian matrix Jy(s,p) = a(X(s%@’S(S;O’p)). We have
(X(Sv 07p>7 P(57 Oap)) = (X(Ov -S, Oap)7 ﬁ(ov -5, Oap))v

and therefore

det Jo(s,p) = —det Jy(0; —s,p)
= e ¢EO=s02)+0(0)y ()

— e*¢>(X(S;0,p))+¢(0)U(p). (17)
Similarly for the change € > (s,p) — (X(s;1,p), P(s;1,p)) where

Q1 = Up<0 (]07 Sout(lap)[x{p}) )

we obtain

det Jy(s,p) = det<8(X(s;1é2’£(8;1’p)))

e~ ¢ X (5L +oM) g, (1), (18)

Another important property in the stationary case is the conservation of W(z,p) =

(14 p?)e**@ along characteristics.

Proposition 2.1 Assume that ¢ € W*>(]0,1[). Then for any solution of (9) we
have

d

E{W(X(s),P(s))} =0, V $in < S < Sout-
Proof. Compute the derivative of W (X (s), P(s)) with respect to s and use (9).

]



The previous conservation allows us to study the geometry of characteristics (for
a similar result on the one dimensional Vlasov-Poisson equations see [16]). We

introduce the critical impulsions

=

Do = (eQ(maxze[o’l] d(x)—9(0)) _ 1) , (19)
1
py = — (2mseenn #@)=6() _1)2 (20)

The proof of the following proposition can be found in Appendix.

Proposition 2.2 Assume that ¢ € W*>(]0, 1]).

1) For any 0 < p < po there are xo €]0,1[, 0 < so < Sou(0,p) < 400 such that
0< X(s;0,p) <xg, P(s;0,p) >0, V0 <s< sy,

lim X (s;0,p) = o, lim P(s;0,p) = 0.
Jim X(5;0,p) = %o, lim P(s;0,p)

Moreover, if ¢'(xg) # 0 then $pu(0,p) = 259 < 400 and
X(s;0,p) = X (250 — s;0,p), P(s;0,p) = —P(2s9 — s;0,p), Vs € [0, 2s0].

In particular X (S0u:(0,p);0,p) = 0.

2) For any p > po we have Sy (0,p) < 400, P(s;0,p) >0, V0 < 5 < $5,(0,p) and
X (Sout(0,p);0,p) = 1.

3) For any p1 < p < 0 there are x1 €]0,1[, 0 < 51 < Sput(1,p) < 400 such that

1> X(s;1,p) >z, P(s;1,p) <0, V0<s<sy,

lim X (s;1,p) =1, lim P(s;1,p)=0.
Jim X(s;1,p) = 21, lim P(s;1,p)

Moreover, if ¢'(x1) # 0 then Sy (1,p) = 251 < 400 and
X(s;1,p) = X(281 — 5;1,p), P(s;1,p) = —P(2s1 — 571,p),Vs € [0,251].

In particular X (seu(1,p);1,p) = 1.
4) For any p < p1 we have Sy, (1,p) < 400, P(s;1,p) <0, V0 < s < sou(1,p) and
X(Sout(lap); 1ap) =0.



When ¢ is convex we can show that the exit time is finite for all characteristics (see

the Appendix for the proof).

Corollary 2.1 Assume that ¢ is convex and belongs to W**(]0,1[). With the pre-

vious notations we have

Sout(0,p) < 400, Vp >0, and Suu(1,p) < +00V p < 0.

2.2 Properties of the mild solution

In this paragraph we give several properties of the mild solution of (5), (7).

Proposition 2.3 Assume that ¢ belongs to W*>(]0,1[), go € L2.([0,4+00[), 91 €
L2 (] — 00,0]). Denote by f the mild solution of (5), (7). Then

loc

1) if go, g1 are nonnegative, f is nonnegative;
2) [ belongs to L2.([0, 1] x R); moreover, if go € L*(]0, +00[), g1 € L®(] — 00, 0]),

loc

then f € L>(]0,1[xR) and
£l < e2maxzeo,1] ¢(x)—2min{¢(0),¢(1)} maX{HgoHoo, ||g1||oo};

3) for any test function ¢ € C2(]0,1] x R) we have

Sout (0,]9)

1
| [roands = 0 [ smaie) [ 00X (s50.0), Plsi 050 ds dp
0 JR p>0

0
Sout (1 ,P)

— 6_‘“”/ v(P)gi(p) | (X (s;1,p), P(s;1,p))e?XELP) ds dp ;
p<0 0

(21)
4) f is a weak solution for (5), (7).

Proof. The first statement and the last part of the second one follow immediately
by the definition of the mild solution. Take now R > 0 and consider C' > 0 such
that

96(0)| < C, |g1(—p)| < C, Y0 <p< (1+ Rzl

10



For any (x,p) € [0,1] x [=R, R] consider (X (s),P(s)) = (X(s;z,p), P(s;z,p)),

V sin(z,p) < s < Sout(z,p). By Proposition 2.1 we have
(1+|P(s)[})e??XE) = (1 4 p?)e2¢@),
and therefore we obtain for any s € [si,(, D), Sout(Z, P)]
|P(s)| < (1 + R?)z 2%l
By the definition of the mild solution one gets
£ (z,p)] < emao-2minaOH0IC, Y (3,p) € [0,1] x [—R, ),

saying that f € L2 ([0,1] x R). Let us prove 3). From the previous point we know
that f is locally bounded and therefore is locally integrable. Observe that |f] is
the mild solution of (5) with the boundary conditions |gol|, |g1]| and therefore it is
sufficient to prove (21) when gg,g; > 0 and ¢ € C?([0,1] x R), ¥» > 0. Combining

the definition of the mild solution and (17), (18) yields
1
/ /fw dp de = f(X(s;0,p), P(s;0,p)0(X(s;0,p), P(s;0,p))| det Jo(s,p)| ds dp
0 JR Qo

+ F(X(s;1,p), P(s; L,p) (X (s;1,p), P(s;1,p))| det Ji(s,p)| ds dp
951
Sout(ovp)

= 0 / v(P)go(p) | Y(X(5;0,p), P(s;0,p))e? X0 ds dp
p>0 0

Sout(l’p)

€_¢(1)/ vP)gi(p) | G(X(s;1,p), P(s;1,p))e? WD ds dp. (22)
p<0 0

In order to prove 4) use the mild formulation (21) with the test function
bl p) = —e P (p)0:0 — (1+5)20"(2)9,6), ¥ (x,p) € [0.1] x R,

where 6 € C1(]0, 1] x R) satisfying 6(0,p < 0) = 6(1,p > 0) = 0.

(|

We intend now to estimate the moments p(z) = e~ [L f(z,p) dp and j(z) =
e=*@ [Lu(p)f(z,p) dp, € [0,1]. We introduce also j* given by

(@) = e / o (p)f(2.p) dp, € [0,1],

where vE(p) = max{0, +v(p)}, Vp € R.

11



Proposition 2.4 Assume that ¢ € W**°(]0, 1) (not necessarily convez), go, g1 > 0
such that

Go =0 / v(p)go(p) dp — e~ / v(p)gi(p) dp < +oc.
p>0 p<0

Denote by f the mild solution of (5), (7). Then we have

17% + 57 lzeqoap = /|v WG, < 2G,,
Le(]o,1])
and for any R > e?l®llL=
O [ o) f (- p) dp <26,
b= L (0,1

where

Gy = e#O / v(p)go(p) dp — e~V / v(p)g1(p) dp,
p p

>r <-r

and r = =219l (14 R? — o)’

Proof. We use the mild formulation (21) with the test function 1(x, p) = e~ ?@uv*(p)f(x)
where 6 € L'(]0,1]), & > 0 (actually we need to apply first (21) with the test func-

tion ¢r(z,p) = ¥(z,p)xr(p) where x € Ci(R), x(u) = 1if [u] <1, x(u) = 0 if
lul > 2, x > 0, xr(-) = x(5), and then let R — 400 ; we skip these standard

arguments). We obtain
1 1
/0 FH@)() de = / / £, p)b(z, p) dp de
Sout(OP)
= O / o(0)90(p) / o+ (P(s:0, p))0(X (5,0, p)) ds dp
0

Sout(1,p)
e~ / ()01 (») / o*(P(s:1,p))0(X (s: 1,p)) ds dp
= Iy+1,. (23)

We analyze the term Iy. Consider the critical impulsion py given by (19). For any
p > po we know by Proposition 2.2 that s, (0,p) < +oo, P(s;0,p) > 0 for any

12



s € [0750ut(07p)]? X(Sout(07p>; Oap) = 1. We have
sout(07p) Sout (Ovp)
/ v (P(s;0,p)0(X(s;0,p)) ds = / v(P(s;0,p)0(X(s;0,p)) ds
0 0

sout(ozp) dX
- / S (X (5:0,p)) ds
0 ds

= 0llz1qoap- (24)
Take now 0 < p < po. If sou(0,p) = 400 we know by Proposition 2.2 that there is
xo €0, 1] such that lim,_. o X(s;0,p) = x9, P(s;0,p) >0, ¥s > 0. We find

Sout(OJJ) SOUt(OJJ) dX
[ s mcesomas = [T oo ds
0 0

_ AmﬂMdu

< 0]l gop- (25)

Consider now 0 < p < pg with S0 (0,p) < +oo. In this case there is zg €
10, 1] such that X(sou(0,p)/2;0,p) = zo, P(s;0,p) > 0V s € [0, Sout(0,p)/2],
P(50ut(0,p)/2;0,p) = 0 and P(s;0,p) < 0V s €|sout(0,0)/2, Sout(0,p)]. We ob-
tain

sout (0.p)

sout (0,p) 2 dX
[ s ppcesomas = [T Saxsiop) ds
0 0

= /0500 0(u) du

101 L1 qo,1p- (26)

IN

Combining (24), (25), (26) yields

Iy < e=40) / o(9)90(p) dp 1112101
p>0

Similarly we deduce that

I < _€_¢(1)/ v(p)g1 () dp 0] L1 qo.1p,
p<0

and therefore (23) implies

1
/jﬂ@ﬂ@dxﬁGﬂwﬂmw7
0

13



for any nonnegative function § € L'(]0,1[), saying that ||| z=qo1y < Go. By
similar computations we obtain |57 | z~qoa1p < Go and thus the first statement of
our proposition follows. Take now R > e?I?lz> and let us use (21) with the test

function ¢ (x, p) = e~*@uv*(p)d(x) 1> ry, where 6 € L*(]0,1[), & > 0. We obtain

1 Sout (0,p)
/0 b()e / ) f(ep) dpde = 0O / ) / o*(P(s:0,p))

[p|>R
0(X(5:0,p))1{p(s0p)>R} ds dp

Sout(]-vp)
_ e¢(1)/ v(p)gl(p)/ vt (P(s;1,p))
p<0 0
X 0(X(s;1,p))1{p(ss1p)>ry ds dp

X

= I+ I (27)
1
Observe that for any 0 < p < e~ 2l#llze (1 + R? — e4H¢’||L°°) ? =:r we have

LHP(s0,p) = (1 pt)etdt20x000)

< 1+ R* V0 <5< 5u(0,p), (28)

and thus |P(s;0,p)] < R,V 0 < s < Sout(0,p). We deduce that

Sout(O,P)
/ vt (P(s;0,p))0(X(5;0,p))1(ps0p)>ry ds =0, (29)
0

for any 0 < p < r. By the previous computations we know also that

A

Sout(ovp) Sout(oap)
/U+(P(S;0,p))0(X(S;0,p))1{|p(3;0,p)>R} ds < /v+(P(s;0,p))0(X(s;0,p)) ds
0 0

< |19lLrqoaps Y2 > 0,p # po. (30)

Combining (29), (30) we obtain for any p > 0,p # po

5011':(0717)
/U+(P(8; 0,0))0(X(5:0,0) 1 ps0p) 8y 45 < Lipsril|OllLrgo1p- (31)
0

and therefore one gets for any nonnegative function 6 € L*(]0, 1])

I < =90 / o(p)go(p) dp 191|100, (32)
p

>r

14



Similarly we obtain

I < —e¢(1)/v(p)gl(p) dp (10| go,1p- (33)
p

<-r

From (27), (32), (33) one gets for any nonnegative function 6 € L'(]0, 1])

1
/ 9(90)6_¢($)/ v (p)f(z,p) dpde < =0 /U(P)QO(P) dp 110]| 1 o,1p)
0 p

p|>R -
Rty / ()91 (p) dp 0]l qop, (34)
p<—r

saying that

e=0) / v (p)f(op) dp|| < e O / v(p)go(p) dp — eV / v(p)gi(p) dp. (35)

[p|>R Lo > —r

In the same manner we obtain

0 [ ot 2 [ooa)do- e [ o) o, (0

[p|>R >r <—r

and the second statement of our proposition follows from (35), (36). O

Remark 2.1 In the previous proof we obtain the inequality

Sout([)p)
/ o (P(5:0,p))0(X(5:0,0)) ds < [16]] 1100,
0

for any nonnegative function 6 € L*(]0,1[) and p > 0,p # po. If ¢ is conver we
check easily (see Corollary 2.1) that for p = py > 0 we have the equality

sout(o p)
/ o (P(5:0,p))0(X (5:0,p)) ds = |0l 210.1p.
0

Corollary 2.2 Assume that ¢ € W»*°(]0,1]), go,91 > 0, go € L*>(]0, +0]), g1 €
L>(] — 00,0[) such

Go=e %0 / v(p)go(p) dp — e~V / v(p)gi(p) dp < +o0.
p>0 p<0

Denote by f the mild solution of (5 ) (7). Then p(-) = eV [Lf(-,p) dp, j(-) =
e?0 [Lo(p)f(-,p) dp, p fR(1 23 dp belong to L>(]0,1[) and we have

max{||j| o, | pll=} < 27190 G + 2v2G,,
||M||Loo < 262maxxe[01 o(x)—2min{4(0 }G + 2\/_6maxgc601]¢ Go,

where Goy = maX{HgOHLOOv ||91||L°°}-
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Proof. We already know by Proposition 2.3 that f € L*°(]0, 1[xR) and || f]|=~ <

e2maxzeio,1) #(2)=2min{¢(0).¢W} G We can write

max{|j(z)|, p(z)} = p(x)=e " ||<1f(x’p) dp + e~ . 1f(ﬂw) dp
16lloc y (2) [v(p)]
< 2l ke [ T ) dp

IN

26518l G _ 4 v/2e=¢@ / lv(p)| f(z,p) dp
R
< 28°Ml=G 4+ 2v2G,, =€ 0,1].

For the density u we have

pwlz) < ||<1f(96710) dp + . 1f(ﬂf,p) dp

()]
2 flloe + /| L )

262max¢—2min{¢(0),¢(1)}Goo + \/Eeqﬁ(x)(]-i-(l.) +]_(x))

262max¢—2min{¢(0),¢(1)}Goo + 2\/§€max¢G0’ = [0, ”

IA

IN

IN

1

Observe also that the current j is constant with respect to z. Indeed, if ¢ is

convex, by Corollary 2.1 we know that s, (0,p) < 4+00, V p > 0, Seus(1,p) < 00,
V p < 0 and thus for any function § € C1(]0, 1]) we have

/Olj(w)Q'(x) dr = /Ol/Rf(i'?ap)e_d’(x)v(p)O’(x) ip de
—¢(0)

Sout (0,p) adx )
= / o(p)g0(p) / X /(X (30, p)) ds dp
p>0

0 ds
Sout(lvp) dX

- e‘¢(1)/ “(p)gl(p)/ a0 (X(sidp)) dsdp
p<0 0 5

= 0.
When ¢ is convex the current j depends only on ¢(0), ¢(1), go, g1-

Proposition 2.5 Assume that ¢ is conver and belongs to W*>°(]0,1[), go,g1 > 0
such that

Gy = e¢’(0)/ v(p)go(p) dp — e¢’(1)/ v(p)g1(p) dp < +o0.
p>0

p<0

16



Denote by f the mild solution of (5), (7). Then we have

o~ 9(@) /R o(p)f(z,p) dp = e O / v(p)go(p) dp+e= / v(p)gi(p) dp, ¥ x € [0,1],

p<p1

where po,p1 are given by (19), (20).

Proof. Since the current is constant, it is sufficient to check the above equality for

x = 0. In order to fix the ideas assume that ¢(0) < ¢(1) and therefore
po = (2OM=00) _1)7 > p =0,

We can write

Po

j0) = O / o(p)£(0,p) dp + =4O / v(p)£(0,p) dp + =4O / o(p)o(p) dp

<—=po —Do >po

= L+ 1+ Is.

Observe that I, = 0. Indeed, this is obvious when py = 0 and if pg > 0 it follows

immediately since by Proposition 2.2 and the definition of the mild solution we have

£(0,p) = go(—p), V —po < p < 0.

In order to prove our statement it remains to verify that

I, = @—¢(0)/ ) v(p)f(0,p) dp = 6_¢(1)/ v(p)g1(p) dp.

p<0

Note that for any p < —py we have

F(0,p)e™*"0 = gi(g)e W),

where p(q) = —/(1 + ¢2)e2?(V-26(0) — 1. By change of variable we have

L = O / o(p)gn(g(p))e D dp
p

<—=po

= 0 / o(@)91(q) da.

<0

17



Consider also the moment j;(-) = [3pf(-,p) dp. We can prove

Proposition 2.6 Assume that ¢ € W**°(]0, 1) (not necessarily convez), go, g1 > 0
such that

Gy ::/ Pgo(p) dp—/ pg1(p) dp < +o0.
p>0 p<0

Denote by f the mild solution of (5), (7). Then we have

If ¢ is convex we have %jl =0, z €]0,1[ and

< 2Gh.
Le2(]0,1])

/Rlplf(-,p) dp

/Rpf(w?p) dp:/ pgo(p) dp+/ pgi(p) dp, ¥ x € [0,1].

p<p1

Proof. It is very similar to those of Propositions 2.4, 2.5. For any nonnegative

function 6 € L'(]0, 1]) we have
1 sout(O,p)
//H(x)lplf(%p) dp dx = 6““”/ v(p)go(p)/ X0 P(s;0,p)
0 JR p>0 0
x 0(X(s;0,p))| ds dp

Sout(lvp)
= 0 [ upantp) [T A P 1)
p<0 0

X 0(X(s;1,p))| ds dp. (37)

By the computations in the proof of Proposition 2.4 we know that for & € {0,1} we

have
Sout(kvp) &
/ [v(P(s; k, p))| O(X (s;k, p)) ds < 2[|0][rgo,1p, ¥V (=1)"p > 0,p # pr. (38)
0
Using also Proposition 2.1 one gets for k € {0,1}, (=1)¥p > 0,p # px

Sout(kyp) Sout(kvp)
/ eS| P(s k., p)| O(X (s:k,p)) ds = / 0 (1 4 p2) 3 |o(P (s k, )]
0 0

X 0(X(s;k,p))ds

< 201+ p") 20l gory.  (39)
Combining (37), (38), (39) yields
1
/ 0(x) /|p|f($,p) dp dz < 2||0||L1q0,1pG 1,
0 R

18



saying that

< 2Gh.
Leo(]0,1)

Suppose now that ¢ is convex. Take 6 € C}(]0, 1[) and let us compute

Awwmw

/Oljl(x)Ql(x) de = /Ol/Rf(5U>p)p9'(:1:) dp da

Sout(k'vp)
= > (~Dfe?® / v(p)gr(p) / PRI P (s &, p)
0

k=0 (=1)kp>0

x (X (s;k,p)) ds dp
: sout(k:2) X (g: k D

= Z(—U’“/ pgk(p)/ %e'o{(s; k,p)) ds dp
50 (=1)kp>0 0 S

= 0.
Therefore 4+ = 0, z €0, 1[. Assume for example that ¢(0) < ¢(1). Thus
po = (260D _1)7 > p =0,
For any x € [0, 1] we can write

M@ZMWZ“/M@mwfﬁh@M@+ﬁm®@

<—=Ppo —Po >Ppo

— /ppf(O,p) dp+/ppgo(p) dp.

<—po >po

By change of variable we check as before that

/p pf(0,p) dp = /p <0p91(p) dp.

<—=po

The reader can check easily the following generalizations

Proposition 2.7 Assume that ¢ € W**°(]0, 1) (not necessarily convez), go, g1 > 0

such that for some m € R

G, = 6(m—1)¢(0)/ v(p)(1+p2)%go(p) dp_e(m—1)¢(1)/ U(p)(l—l-pQ)%gl(p) dp < +o0.
p>0 p

<0
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Denote by f the mild solution of (5), (7). Then we have

< 2G,.
Lee(]0,1])

L(m=1)6() /R|U(p)|(1 +p°)% f(-,p) dp

If ¢ is convex then <L j,, = 0, x €]0, 1] where j,(-) = e™=D0) [Lo(p)(1+p*) 2 f(-, p) dp,

and we have for any z € [0, 1]

() = elm 900 / o(0)(1 4+ 1%)% go(p) dp + elm Do) / o)1+ )% 1(p) dp.
P P

>Ppo <p1

3 Existence of stationary solution for the one di-
mensional Nordstrom-Vlasov equations
Suppose that ¢g, 1 € R, go, g1 are nonnegative functions such that

Gy = e / o(p)golp) dp — ¢ / o(p)on(p) dp < +oo,
p>0 p<0

Goo = max{||gol| o 10,400 191 | L2 g—c0,0p } < +00.

In this section we prove the existence of solution (f, ¢) for the stationary Nordstrom-

Vlasov system

v(p)Ouf — (L4226 ()0, f = 2f (2w, p)o(p)o"(x), (x,p) €]0,1[xR,  (40)

" f(z,p)
with the boundary conditions
flx=0,p>0)=go(p), flx=1p<0)=glp), (42)
d(0) = @0, (1) = ¢, (43)

where ¢ is smooth and f is solution by characteristics of (40), (42). We call such so-
lution (f, ¢) a mild solution for the Nordstrom-Vlasov system. We use the Schauder

fixed point theorem. We consider the set

D = {peW>>(0,1]) : ¢" 20,6(0) = o, 6(1) = ¢1,
@]l < max{|gol, [o1]} + M, (¢l < 01 = o| + M, [|¢"[|1~ < M},
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where M = 2e2l¢1=#0l@G 4 24/2emax{vo1} G, Note that D is convex and compact
in C'([0,1]). For any ¢ € D we define F¢ = ¢ where ¢ solves (41), (43) with
p(-) = [of(p)(1 +p2)_% dp and f is the mild solution of (40), (42) corresponding
to ¢.

Proposition 3.1 Assume that pg, 01 € R, go,91 > 0 such that Gy < 400, Gy <
+00. Then the set D 1is left invariant by the application F.

Proof. Take ¢ € D and denote by f the mild solution of (40), (42) corresponding
to ¢ and let p = [(1 +p?)~2 f dp. By Corollary 2.2 we have

2] oo < 2e2mectoa d@)=2min{poet} Gy 9\/9emeea @) Gy

Since ¢ is convex, we have maxgcp 1 ¢(x) = max{po, 1} and thus the previous
inequality implies

lpell e < M.

Observe that é = F ¢ can be written é = (1 —2)po + xp1 + <Z where

() = p(x), « €)0,1], $(0) = (1) = 0.

Obviously ¢ is convex and verifies ||¢”||,~ < M. Since (Z(O) = ¢(1) = 0, there is
c €0, 1] such that QZS’(C) = 0 and therefore |¢:>’(x)| =|[F gzzﬁ”(y) dy‘ <M, Vzel0,1].
We deduce that

16" ()] < |1 — ol + M, ¥z € [0,1].

Observe also that |gz:5(x)| =

Ji &'(9) dy| < M, ¥z € [0,1] and thus

[é(2)] < max{|gol, lpu]} + M, ¥z € [0,1].

Proposition 3.2 Assume that po, o1 € R, go, g1 > 0 such Gy < 400, G5 < +00.
Then the application F is continuous on D with respect to the topology of C1([0,1]).
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Proof. The arguments are standard. Take (¢,),, C D such that lim,,_, ¢, = ¢ in
C*([0,1]). Denote by f, the mild solution of (40), (42) corresponding to ¢, and let
= 1+ p2)_%fn dp, VYn. By Proposition 2.3 and Corollary 2.2 we have

| full o qoapxry < €29791G o il qoap < M, Vn,

and we can extract a subsequence (f,, ), converging weakly x in L>(]0,1[xR) to-
wards some function f satisfying 0 < f < el¥1=#lG_. By elementary but te-
dious arguments (which we omit) we can check that f is the mild solution of (40),
(42) corresponding to ¢. We use here the geometry of characteristics (see Sec-
tion 4 for this kind of computations). In fact all the sequence (f,), converges
weakly x in L>°(]0, 1[xR) towards f. By using the uniform bound sup, ||¢y| L~ <
max{|@o|, |¢1|} + M and the second statement of Proposition 2.4 we can show that
(ftn)n converges weakly % in L>°(]0, 1[) towards pu = [(1 + p?)"2 f dp. Observe also
that we can extract a subsequence (¢, ) such that (¢n, )x = (Fen, )r converges in
C*([0,1]) towards some function w € D. By passing to the limit in distributions
sense in the equation %&nk = fin, (), x €0, 1], one gets that w = F¢. We deduce
that lim,, . o F¢, = F¢ in C*([0, 1]). O

By applying the Schauder fixed point theorem we obtain our existence result stated
in Theorem 1.1.
Consider also the moment k(-) = [cv(p)pf(-,p) dp. We have the following

conservation for the total energy

Proposition 3.3 Under the hypotheses of Theorem 1.1 let (f, ¢) be the mild solution

constructed above. Assume also that

K= / Ov(p)pgo(p) dp + / v(p)pg1(p) dp < +oc.

p<0

Then [qv(p)pf(-,p) dp € L>(]0,1]) and

% {/Rv(p)??f(x,p) dp + %]¢’($)|2} =0, x€0,1[.
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Proof. Since gy, g1 are bounded, the hypothesis K < 400 implies that

Gy :=/ Pgo(p) dp—/ pg1(p) dp < 400,
p>0 p<0

and by Proposition 2.6 we know that [o|p|f(-,p) dp € L>(]0,1[). Since f is bounded
we deduce that k(-) = [qu(p p) dp € L>(]0,1[). For any 6 € CL(]0,1]) we can

write

/9 (2)k(z dx—//fxp o(p)p dp da (44)

1 Sout( )
Z(—l)k6_¢(k)/ v(p)gk(p)/ eox sk L —{0(X(5:k,p))} P(s; k. p) ds dp.
k=0 ( 0

—1)kp>0

After integration by parts we have for k € {0,1}

ot sout ()
/O #(X (sikop) {9( (si k,p))}P(s; k,p) ds :/0 0(X (s;k,p)) (45)

 dX(sikpy @ (X(57k,D))
(1+|P(sik,p)[2)2

Combining (44), (45) and by using one more time the mild formulation one gets

[ownaa =[] a0 =2 00)
= / ()6 (@)p() da, o

where 1 = [(1 + p?)"2f dp. We deduce that Lk = —¢'(z)u(x), = €]0,1[. From
(41) we have

S 0@ = ¢ @le), = €0, 1], (a7)

and therefore L {k(z) + 1[¢’'(z)]’} =0, z €]0,1]. O

4 An asymptotic analysis of the one dimensional
Nordstrom-Vlasov system

We end this paper with an asymptotic analysis for the stationary Nordstrom-Vlasov

equations similar to those performed in [9] for the Vlasov-Poisson equations, when
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studying the Child-Langmuir law. Assume that ¢o,1 € R, ©9 > ¢1, g > 0,
g € L>(]0,+o0[) such that [;pg(p) dp < 4oco. For any ¢ > 0 we consider the

Nordstrom-Vlasov system

v(P)D,fe — (1+ 7). (2)0, f. = 2f-(z, p)v(p)¢.(x), (z,p) €]0,1[xR,  (48)

/! f5<x7p>
= [ ———=d
ol () /R(l —|—p2)% p, x €]0,1], (49)
with the boundary conditions
fe(x:07p>0):ga(p)7 fs(I:17p<0):07 (50)
¢€(0) = %o, ¢6(1) = ¥1, (51)

where g.(p) = 6%9 (f), V p > 0. The choice of the particular scaling for the bound-
ary condition g. is motivated by the following computation involving the incoming
current density
e“"o/ v(p)g:(p) dp = e“”o/ M)l du < e #y, Ve>0, (52)
p>0 u>0 (1 + 2u?)2
with v = fu>0 ug(u) du < +00. By Theorem 1.1 we know that for any € > 0 there is
(at least) one mild solution (f. > 0, ¢.) for (48), (49), (50), (51). Notice that under

the assumption ¢g > ¢y, the critical impulsions are given by

[N

Poe = 0, Pire = — <€2(<po—cp1) — 1) =.p1, Ve>0.

Actually the condition ¢y > ¢; ensures that all particles injected by the left bound-
ary x = 0 leave the interval ]0,1[ by the right boundary x = 1. We intend to
investigate the behavior of solutions ( f., ¢.) when e goes to 0. We establish uniform

estimates with respect to ¢ > 0.

Proposition 4.1 Assume that 0 < g € L>(]0,+o00[) such that [,pg(p) dp < +oo.

Then there is a constant C' such that

+ 10l Loy + 162 Nl oeqoap < C, Ve > 0.
L2 (0,1])

/va(p)fs(-,p) dp
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Proof. By Proposition 3.3 we know that k.(-) = [opv(p)f-(-,p) dp € L>°(]0,1[) for
any € > 0. Actually the L*> bound is uniform with respect to € > 0. Indeed, for

any nonnegative function 6 € L'(]0, 1[) we have

/Olka(x)O(x) dr = /Ol/va(p)fa(g;,p)g(x) dp dz

Sout (0,p)

— %0 />Ov(p)gs<p) /0 e (XX (s))P.(s)v(P.(s)) ds dp
’ Sout(0,p)
— />0pge(p)/0 0(X€(3>>|U(PE(3))|2 ds dp

Sout(0,p)
< [ ) [ 0P ds dp (53)

In the above computation we have used the conservation

1

= e (14 p*)2, Vs € [0, sous (0, p)],

NI

e%e(Xe(5)) (1 + |p6(8)|2)

where (X, P.) are the characteristics associated to ¢.. Now by using the inequality

SOU@(OJJ)
/ O0(X:(s))[v(Fe(s))] ds < 2[|0]| Lrgoap, V>0,
0

one gets
1
/ b (2)0(2) dz < 2/|6] / ug(u) du,
0 u>0
and therefore

koo qoap < 2/

u>

By Proposition 3.3 we know also that L{k.(z) + 1|¢/(z)]*} = 0, = €]0,1[. Take

ug(u) du =27, Ve > 0.
0

xe €]0,1] such that ¢/(x.) = ¢1 — 9. Therefore we obtain for any x €]0, 1] and
e>0

SO/@F < klw) + I8l = kula) +

X 10! )l

2

1
< 29+ 5(901 — ©0)?,

which implies that ||¢/||~ < 272 + o — ¢1. By taking into account that |¢.(z) —
wol < 116! |lse < 272 + o — @1 for any z € [0,1] and € > 0, our conclusion follows
with C' = 2y + [go| +2(27% + @0 — 1). -
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Proposition 4.2 Assume that oo > ¢1,0 < g € L>(]0, +00l) such that [ _ ug(u) du <

+00. Then we have

du
0<¢l(x) < f“>0 9(v) , V€], 1], Ve >0.
220 — 1)
In particular we have
\/_f ug 1
¢(z) — ¢y = —ylz, Va,ye0,1], Ve > 0.
|02 (x) — o2 (y)| < m | | [0,1]

Proof. The density f.(z,p) is given by

o) = 2o, ((J e peotn 1) 1

for any (z,p) € [0,1] x R, ¢ > 0. In order to estimate ¢”(z) we perform for any

fixed = €]0, 1] the change of variable

\/(1 + p?)e2te(@)=2¢0 — 1 = cu, u > 0.
We obtain for any = €]0,1[, £ > 0
0<0e) = peo) < [ o) dp
= /Rewg(m)_w“g—gg (6_1\/(1 + p?)e2¢=(2)=200 — 1> 1{p>\/m} dp

= / ug(u) du. (54)
u>0 \/(1 + 52u2)62¢0—2¢e(x) —1

Since ¢. is convex, we have also the inequality

— ¢(x) > x(po — 1), Y2 €10,1], ¢ >0, (55)
and therefore
(1 + e2u?)e¥0=20:(@) _ 1 > 2ele0=91) _ 1> 92(py — 1), Yz €[0,1], € > 0. (56)

Combining (54), (56) yields

fu>0 ug(u) du
2$(800 - 901)7

0<¢!(z) < vV z €]0,1], € > 0. (57)

26



For any 0 < x <y <1 we obtain

0 < gbs’ /(;5" dz</
22800—901

V2 V2
o ——(y — V) < o —sol\/y_—$

[

By using Arzela-Ascoli theorem we deduce from Propositions 4.1, 4.2 that there

is a sequence (gx); converging towards 0 such that limy_4.¢., = ¢ in C*([0,1]).

Obviously we have
(0) = o, ¢(1) =1,
o — ¢(x) > x(po — 1), Vo €l0,1],
(r) > o1 — 297, Yo €0,1],

and

0<¢'(y)—o'(x) < %

By the computations of (54), (56) we have

1
V2
fe(z,p) dp de < ——, Ve > 0.
/O/R ( ) VYo — P1

After extraction of a subsequence (still denoted (e)x) we have

(Vy—+vx),Vo<z<y<l.

fer, = f, weakly * in M,(]0, 1] x R),
where M, ([0, 1] x R) is the space of bounded measures on [0, 1] x R.
Proposition 4.3 Assume that o > ¢1, 0 < g € L>(]0, +-00[) such that [, _

+00. Then the limit (f, ¢) = limy_ oo (fz,, Pe,,) satisfies

fu>0 ug(u) du
624P0—2¢(x) —1

flz,p) =

(5(p — e2v0—2¢(z) _ 1)7

and
fu>0 ug(u) du

ePo—9(x) \/e2¢0—24(z) _ ]
¢(0) = o, ¢(1) = Y1,

where & denotes the Dirac measure.

¢ () = . V2 €0, 1],
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Proof. For any function ¢ € C?([0,1] x R) we have

/ / fale.ne) dods = 5 | / 260, (0)-2 (621\/(1 +p2)62¢5k(z)_2“"0—1)

. {p>\/W} ( 7p) dp dz (58)
ug(u (1 + e2u2) 2P0 200 (@) _
- (/m/r du dx.

1 + e2u?)e 200—2¢¢;, () _ 1

By using inequality (56) we obtain for any (J?, u) €]0,1[x]0, +oo[ and k > 1

ug(u)(x, \/(1 + eu?)e2p0 2@ 1 - ug(u)
\/(1 + e2u?)err0 =20 (@) 1 a 22(po — 1)

[l € L*(]0, 1[x]0, +o00]).

By using the dominated convergence theorem one gets

62900—2(25(1) — 1>
kETw//fEk z,p)Y(x,p) dp dx // ug(u e du dzx,

and therefore

f)/
1 - ( _Je2en—20(a) _ 1)
Jm fe, = e 15 p e :

weakly * in M, ([0, 1] x R). Take now 6 € C}(]0,1[). We have

- [oite = [ o) da
_ //f "), )) dp dz. (59)

By using one more time the dominated convergence theorem we obtain as before

that

: ' u)f(z)
lim uak( du dz. (60)
k—+o0 u>0€e¥Po~ Pz 62900 245(1")

From (59), (60) one gets
1
6
o ero—6()\/e2e0—20(@) — |

/! ’y
= 0,1].
¢ (:C) @‘PO_¢($) 624P0_2¢(x) — ]_’ . 6] ’ [

saying that
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Remark 4.1 Since ¢ is convex we have gy — ¢(x) > x(pg — 1), ¥ x € [0,1] and

therefore
8

22(¢0 — 1)

0<¢"(z) < c L'(]o, 1]).

In the following proposition we study the limit problem

v

¢ (z) = TN x €]0, 1], (61)
#(0) = o, o(1) = 1, (62)

where ¢y > ¢ and v > 0.

Proposition 4.4 Assume that po > @1, v > 0. Then there is a unique solution
¢ € C1([0,1])NC?(]0,1]) for (61), (62) satisfying po—(x) > z(wo—p1), ¥V x € [0, 1].

Proof. Denote by h :] — 0o, ¢g|— R the function

gl

h(gp) = e(po_¢\/ma VSO < ¢o-
Take ¢1, ¢, € C*([0,1]) N C%(]0,1]) two solutions for (61), (62). We have for any

O<n<l

1

/M@MM—MM@M%U @(»M—/<%m 1)) (1) — ola)) da
= (61(x) — 80 (1) — bala))]} — b/°|¢1 (@) de. (63)

Observe that h is strictly increasing and therefore we obtain

t/wl )P dr < —(61(n) — d3(m) (n(n) — balm)), ¥ > 0.

Letting n \, 0 yields ¢ = ¢4 and thus h(¢1(z)) = h(p2(x)) for any = €]0, 1],
implying that ¢; = ¢9.
In order to prove the existence consider the fixed point application F¢ = gz~5 where

6 solves

¢"(x) = h(¢(x)), = €0,1],
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$(0) = ¢o, (1) = ¢,

for any ¢ € D where D is the set of functions ¢ € C'([0,1]) satisfying

$(0) = wo, d(1) = p1, o — B(x) > x(po — 1), H(x) — 1 > —272, Yz € [0,1],

o< -t o e 1]
and
0<¢'(y) —¢'(z) < \/%(\/g—\/@ Vo<z<y<l.

We check easily that D is convex and compact in C*([0,1]). Moreover D is left
invariant by F and F is continuous on D with respect to the C1([0, 1]) topology. By
using the Schauder fixed point theorem we deduce that there is ¢ € D such that

¢H(x) = h(¢($)), z E]Ov 1[
$(0) = o, d(1) = ¢@1.

Combining Propositions 4.3, 4.4 one gets Theorem 1.2.

5 Appendix

Proof (of Proposition 2.2) We justify only the first two statements. Similar argu-
ments apply for the other ones.

1) Assume that py > 0 and consider p €]0, po[. Therefore we can take Z €]0, 1] such
that W(0,p) < W(z,0). We claim that X(s;0,p) € [0, %] for any s € [0, sout (0, p)[.
Indeed, if there is § such that X (5;0,p) > % > 0 = X(0;0,p), then there is 5 €]0, 3]

such that X (§;0,p) = &. By Proposition 2.1 we can write
W(z, P(5)) = W(X(5), P(5)) = W(0,p) < W(z,0) < W(z, P(5)),
and thus one gets a contradiction. Let us consider
S0 = sup{0 < 7 < Sout(0,p) : P(s;0,p) >0, Vs e|0,7]},
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and consider zg = lim; 5, X (s;0,p). Since for any s €]0, so[ we have 0 < X(s;0,p) <
Z and X (+;0,p) is strictly increasing on [0, so[ we deduce that 0 < zp < & < 1 and
X(s;0,p) < z9V s €[0,s]. By construction we have P(s;0,p) >0V s € [0, so[ and

by Proposition 2.1 we have
(14 |P(s)[})eX*XE) = (1 4 p?)e® ¥ 5 € 0, 5],
and therefore P(s;0,p) has a finite limit as s goes to sg

lim P(s;0,p) =n > 0.
s,/'so

We claim that 7 = 0. Indeed, in the case sg = 400, if n > 0, then for s large enough
we have P(s;0,p) > 2, Vs > s;. Taking into account that v(P(s;0,p)) > v (g) =

(@)

/2
, Vs > s; , we obtain a contradiction since
1> X(s)— X(s1) >v (g) (s —s1), Vs> s1.

In the case sy < 400 if n > 0 then P(sy) = lim, »,, P(5;0,p) = n > 0 and there is
5o > s such that P(7) > 0 for any 7 € [sg, o] which is in contradiction with the
definition of sg. Therefore in both cases lim, ~5, P(s;0,p) = 0. Notice also that in the
case sg < +00, (X*E(s), P£(s)) := (X(so+£s), £P(so+s)) verify (9) and the condition
(X*(0), P*(0)) = (x0,0). By the uniqueness of the characteristics we deduce that
(XT,PT) = (X, P7) saying that s, = 2sp and X(s;0,p) = X (259 — s;0,p),
P(s;0,p) = —P(2s9 — s;0,p) for any s € [0,2s0]. Therefore it remains to prove
that the condition ¢'(z() # 0 ensures that sy < +00. Suppose that sy = +00. By

Proposition 2.1 we have for any s € [0, so]
XX < (14| P(5)[})e** X)) = W (X(s), P(s)) = W(x,0) = e2¢@0),

and thus
(X (s)) < (o), V5 € [0, 0. (64)

Since X (s) < xy V¥ s € [0, so[ we deduce that ¢'(xg) > 0. We have
P(s) = (e2r0)=20(X() 1) 1y 5 € [0, s9). (65)
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We obtain for any s € [0, so|

1
dX (€2¢(9E0)—2¢(X(5)) — 1)5
s~ VPs) = @) —a(X(s)
which implies
X(s)

_ — X9 > o2l 5 e [0, 50
(e26(20)=26(X(s) _ 1)3

After integration with respect to s one gets for any 0 < s5 < s3 < s

X (s3) d
/ L > el (s — sy), (66)
X(s2) (e20(z0)=26(x) — 1)z

Observe that

(e20@0)-20() _ 1)

> (¢ (wo))2.

N[

= V2(¢(20))

lim
z /' z0 (xo — )

N|= |

Since lim, »5, X (s) = ¢ we deduce that for s, < s3 large enough we have

(62¢(£0)_2¢(x) ; 1)§ > (¢/(1’0))%, V€ [X(s2), X(s3)]- (67)

(o — )
Combining (66), (67) yields for sy, s3 large enough

1

1 X(s3) dx x2
“2blloe (g, — 55) < — - <2 0 __ < 400, 68
e s = o) <¢f<x0>>z/x<52> oot ot T @

and therefore we obtain a contradiction. Thus we have sy < +o0.

2) Take now p > py and denote § = (p? — p3)e?¢0)~2maxec. 9@ > (. We have

(1+|P(s)[)e* ™ = W(X(s), P(s)) = W(0,p) = (1+p?)e*”
= (14 p2)e*® 4+ (p? — p2)e*©

Z 62¢(X(3)) -+ 5€2¢(X(S))7 Y s € [O, Sout(oap)[7

and therefore |P(s)|? > § > 0 for any s € [0, Sout (0, p)[. In particular we deduce that
Sout (0, p) < 400, P(s) > 0 for any s € [0, Sout(0, p)] and X (Sout(0,p); 0,p) = 1.
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Proof (of Corollary 2.1) Let us prove for the moment that squ(0,p) < +oo for
any p €]0,4+o0o[—{po}. By Proposition 2.2 it is sufficient to consider 0 < p < py
and to check that ¢'(xy) # 0, with zy given in statement 1) of Proposition 2.2. By
Proposition 2.1 we have e2?(©) < (1 4 p?)e??(0) = ¢2¢(@0) implying that ¢(z¢) > ¢(0).
Therefore xy is not a minimum point of ¢ on [0,1] and since ¢ is convex, thus
¢'(zog) # 0. It remains to analyze the case p = pg > 0. Since ¢ is convex, we deduce
by (19) that max,ejo1) ¢(z) = ¢(1) > ¢(0). In fact we have ¢(1) > ¢(z), € [0,1].

For any s € [0, Sout(0, p)[ we obtain
(1 [P(5))e0) > (14 [P )X = (14 et = 240,
which implies P(s) > 0, ¥V s € [0, Sout(0,p)[. In this case we obtain

lim X(s;0,p) =1, lim P(s;0,p) =0.
s,/"sout (0,p) ( p) 8,/ s0ut (0,p) ( p)

Moreover, since ¢ is convex, ¢(0) < ¢(1), we have ¢’(1) > 0 and as in the proof of

Proposition 2.2 we deduce that sou(0, pg) < +00.

References

[1] H. ANDREASSON, The Einstein-Vlasov system/Kinetic theory, Living Rev.
Relativ. 5(2002).

[2] M. BOSTAN, Permanent regimes for the 1D Vlasov-Poisson system with

boundary conditions, STAM J. Math. Anal. 35(2003) 922-948.

[3] M. BosTAN, Boundary value problem for the three dimensional time periodic

Vlasov-Maxwell system, Comm. Math. Sci. 3(2005) 621-663.

[4] F. BoucHut, F. GOLSE AND C. PALLARD, Classical solutions and the
Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration.
Mech. Anal. 170(2003) 1-15.

33



[5]

(6]

[7]

[10]

[11]

[12]

S. CALOGERO, Spherically symmetric steady states of galactic dynamics in
scalar gravity, Class. Quantum Grav. 20(2003) 1729-1741.

S. CALOGERO AND G. REIN, On classical solutions of the Nordstrom-Vlasov

system, Comm. Partial Differential Equations 28(2003) 1863-1885.

S. CALOGERO AND G. REIN, Global weak solutions to the Nordstrom-Vlasov

system, J. Differential Equations 204(2004) 323-338.

P. DEGOND, Local existence of solutions of the Vlasov-Maxwell equations and

convergence to the Vlasov-Poisson equations for infinite light velocity, Math.

Methods Appl. Sci. 8(1986) 533-558.

P. DEGOND AND P.-A. RAVIART, An asymptotic analysis of the one-

dimensional Vlasov-Poisson system : the Child-Langmuir law, Asymptotic

Anal. 4(1991) 187-214.

R. J. DipERNA AND P. L. LioNs, Global weak solutions of the Vlasov-

Maxwell system, Comm. Pure Appl. Math. XVII(1989) 729-757.

R. GLASSEY AND J. SCHAEFFER, Global existence for the relativistic Vlasov-
Maxwell system with nearly neutral initial data, Comm. Math. Phy. 119(1988)
353-384.

R. GLASSEY AND J. SCHAEFFER, On the ’one and one-half dimensional’
relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci. 13(1990) 169-
179.

R.T. GLASSEY AND J. SCHAEFFER, The two and one-half dimensional rela-

tivistic Vlasov-Maxwell system, Comm. Math. Phys. 185(1997) 257-284.

R. GrAassSEY AND W. STRAUSS, Singularity formation in a collisionless
plasma could only occur at high velocities, Arch. Ration. Mech. Anal. 92(1986)
56-90.

34



[15] R. GLASSEY AND W. STRAUSS, Large velocities in the relativistic Vlasov-

Maxwell equations, J. Fac. Sci. Tokyo 36(1989) 615-627.

[16] C. GREENGARD AND P.-A. RAVIART, A boundary value problem for the

stationary Vlasov-Poisson equations : the plane diode, Comm. Pure and Appl.

Math. XLIII(1990) 473-507.

[17] S. KLAINERMAN AND G. STAFFILANI, A new approach to study the Vlasov-

Maxwell system, Commun. Pure Appl. Anal. 1(2002) 103-125.

[18] G. NORDSTROM, Zur Theorie der Gravitation vom Standpunkt des Rela-

tivitatsprinzips, Ann. Phys. Lpz. 42(1913), 533.

[19] F. PouprAuD, Boundary value problems for the stationary Vlasov-Maxwell

system, Forum Math. 4(1992) 499-527.

[20] G. REIN, Selfgravitating Systems in Newtonian theory - the Vlasov-Poisson
system, Part 1 179-194, Banach Center Publ. 41, Polish Acad. Sci., Warszawa
1997.

[21] A. D. RENDALL, An introduction to the Einstein-Vlasov system, Mathemat-
ics of gravitation, Part I 35-68, Banach Center Publ. 41, Polish Acad. Sci.,
Warszawa 1997.

[22] A. D. RENDALL, The Einstein-Vlasov system (The Einstein equations and
the large scale behavior of gravitational fields), 231-250, Birkhauser, Basel
2004.

35



