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Abstract

We study the existence of weak solution for the stationary Nordström-

Vlasov equations in a bounded domain. The proof follows by fixed point

method. The asymptotic behavior for large light speed is analyzed as well.

We justify the convergence towards the stationary Vlasov-Poisson model for

stellar dynamics.
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1 Introduction

We consider a population of particles and we assume that collisions are so rare

such that we can neglect them. In plasma physics the charged particles interact by
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16 route de Gray, 25030 Besançon Cedex France. E-mail : mbostan@math.univ-fcomte.fr

1



electro-magnetic forces and the evolution of the system is described by the Vlasov-

Maxwell equations. When the magnetic field is negligible we can use the Vlasov-

Poisson system. In astrophysics large stellar systems such as galaxies or globular

clusters interact by gravitational forces and the dynamics of the system is given by

the Einstein-Vlasov equations.

The Cauchy problem for the Vlasov-Poisson and Vlasov-Maxwell systems are

now well understood, cf. [1, 26, 29, 33, 35, 39], respectively [10, 16, 19, 20, 21, 24].

There are also some results for initial-boundary value problems [6, 23] and boundary

value problems [7, 22, 30, 31]. A lot of studies concerns the stationary solutions and

their stability [4, 5, 18, 32, 34].

It is well known that the Vlasov-Poisson model can be derived from the relativis-

tic Vlasov-Maxwell model assuming that the particle velocities are small compared

to the light speed [8, 15, 25, 38].

The Einstein-Vlasov system is much more difficult, see [2, 36, 37]. A simplified

relativistic model is obtained by coupling the Vlasov equation to the Nordström

scalar gravitation theory [28].

We denote by z = z(t, x, p) ≥ 0 the particle density in the phase-space. Here

t ∈ R represents the time, x ∈ RN the position and p ∈ RN the impulsion, with

N ≥ 1. The density z satisfies the following kinetic equation

∂tz+ vc(p) · ∇xz−
(

(∂tφ + vc(p) · ∇xφ)
p

mc2
+
∇xφ

γc(p)

)
· ∇pz = 0, (1)

coupled to the wave equation

1

c2
∂2

t φ−∆xφ = −e
N+1
mc2

φ(t,x)

∫

RN

z(t, x, p)

γc(p)
dp. (2)

Here m is the mass of particles, c is the light speed in the vacuum, γc(p) =(
1 + |p|2

m2c2

) 1
2
, p ∈ RN is the Lorentz factor and vc(p) = p

mγc(p)
is the relativistic

velocity of a particle with impulsion p ∈ RN . For more details on the model see

[11]. After introducing the new unknown f(t, x, p) = e
N+1

mc2
φ(t,x)z(t, x, p) the system

becomes

∂tf + vc(p) · ∇xf + F (t, x, p) · ∇pf =
N + 1

mc2
f(t, x, p)Sφ, (3)
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1

c2
∂2

t φ−∆xφ = −µ(t, x), (4)

µ(t, x) =

∫

RN

f(t, x, p)

γc(p)
dp, (5)

where S = ∂t+vc(p)·∇x is the free-transport operator and F (t, x, p) = −
(
Sφ p

mc2
+ ∇xφ

γc(p)

)
.

We impose the initial conditions

f(0, ·, ·) = f0, φ(0, ·) = ϕ0, ∂tφ(0, ·) = ϕ1. (6)

The Nordström-Vlasov system (3), (4), (5), (6) was analyzed recently by Calogero

and Rein. They proved that classical solutions exist at least locally in time in

three dimensions and globally in time in one dimension, cf. [13]. The existence of

global weak solutions is obtained in [14]. The convergence towards the gravitational

Vlasov-Poisson model when the light speed becomes large is justified in [12].

The aim of this paper is to construct weak solutions for the stationary boundary

value Nordström-Vlasov system

vc(p)·∇xf−
(

vc(p) · ∇xφ
p

mc2
+
∇xφ

γc(p)

)
·∇pf =

N + 1

mc2
f(x, p)vc(p)·∇xφ, (x, p) ∈ Ω×RN ,

(7)

−∆xφ = −µ(x), x ∈ Ω, (8)

µ(x) =

∫

RN

f(x, p)

γc(p)
dp, x ∈ Ω, (9)

with the boundary conditions

f(x, p) = g(x, p), (x, p) ∈ Σ−, φ(x) = ϕ0(x), x ∈ ∂Ω, (10)

with N ≥ 2. For the one dimensional case the reader can refer to [9]. Here Ω is a

smooth open bounded set of RN , Σ− = {(x, p) ∈ ∂Ω×RN : p·n(x) < 0} where n(x)

represents the unit outward normal to ∂Ω at x and g, ϕ0 are given functions. We

introduce also the notations Σ = ∂Ω×RN , Σ+ = {(x, p) ∈ ∂Ω×RN : p ·n(x) > 0},
we denote by dσ the superficial measure on ∂Ω and we consider the measures dν±

on Σ± given by dν± = |vc(p) · n(x)| dσ(x) dp. One of the key points is to take

advantage of the conservation of the particle total energy along characteristics. We
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use the method introduced by Poupaud in [30], but in a gravitational case. We

obtain the following existence result

Theorem 1.1 Assume that ϕ0 ∈ H1/2(∂Ω)∩L∞(∂Ω), ϕ0 ≥ 0 on ∂Ω, g ≥ 0 on Σ−

such that

g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−,

for some constants C > 0, δ > N − 1, N ≥ 2. Then, for any c > 0 there is a

weak solution (fc, φc) for the stationary Nordström-Vlasov system (7), (8), (9), (10)

satisfying

0 ≤ fc ≤ e
N+1
mc2

‖ϕ0‖L∞(∂Ω)‖g‖L∞(Σ−),

∫

RN

fc(·, p)

γc(p)
dp ∈ L∞(Ω),

φc ∈ H1(Ω), lim
R→+∞

∥∥∥∥
∫

|p|≥R

fc(·, p)

γc(p)
dp

∥∥∥∥
L∞(Ω)

= 0.

Moreover, if δ > 2N , N ∈ {2, 3} we have

sup
c≥1

∥∥∥∥
∫

RN

fc(·, p) dp

∥∥∥∥
L∞(Ω)

< +∞, lim
R→+∞

sup
c≥1

∥∥∥∥
∫

|p|≥R

fc(·, p) dp

∥∥∥∥
L∞(Ω)

= 0.

We justify also the asymptotic behavior towards the stationary boundary value

Vlasov-Poisson system for large light speed

Theorem 1.2 Assume that ϕ0 ∈ H1/2(∂Ω)∩L∞(∂Ω), ϕ0 ≥ 0 on ∂Ω, g ≥ 0 on Σ−

such that

g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−,

for some constants C > 0, δ > 2N , N ∈ {2, 3}. For any c ≥ 1 let (fc, φc) be the

weak solution of the stationary Nordström-Vlasov system constructed in Theorem

1.1. Then there is a sequence (ck)k, limk→+∞ck = +∞ such that

fk := fck
⇀ f, weakly ? in L∞(Ω× RN),

φk := φck
→ φ, strongly in H1(Ω),
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where (f, φ) is a weak solution of the Vlasov-Poisson system

p

m
· ∇xf −∇xφ · ∇pf = 0, (x, p) ∈ Ω× RN , (11)

−∆xφ = −ρ(x) := −
∫

RN

f(x, p) dp, x ∈ Ω, (12)

f(x, p) = g(x, p), (x, p) ∈ Σ−, φ(x) = ϕ0(x), x ∈ ∂Ω. (13)

Our paper is organized as follows. In Section 2 we recall the notions of weak

and mild solutions for the stationary Vlasov problem and we present the properties

of such solutions. In particular we deduce estimates for the mild solution, some

of them being independent of the light speed. In Section 3 we construct a fixed

point map for a regularized Nordström-Vlasov system and we show the existence

of a fixed point by using the Schauder theorem. The existence of weak solution for

the Nordström-Vlasov system is obtained in Section 4 by weak stability. We prove

also the convergence towards the gravitational Vlasov-Poisson system when the light

speed goes to infinity.

2 The Vlasov equation

In this paragraph we assume that φ = φ(x), g = g(x, p) are given functions and we

introduce the notions of weak and mild solutions for the stationary Vlasov problem

vc(p) · ∇xf + F (x, p) · ∇pf =
N + 1

mc2
f(x, p)Sφ, (x, p) ∈ Ω× RN , (14)

f(x, p) = g(x, p), (x, p) ∈ Σ−, (15)

where S = vc(p) ·∇x and F (x, p) = −
(
Sφ p

mc2
+ ∇xφ

γc(p)

)
. Observe that the divergence

of the field (vc(p), F (x, p)) with respect to the variables (x, p) is given by

div(x,p)(vc(p), F (x, p)) = − N

mc2
Sφ. (16)
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Therefore the Vlasov equation (14) can be written formally

divx

(
vc(p)f(x, p)e−

φ(x)

mc2

)
+ divp

(
F (x, p)f(x, p)e−

φ(x)

mc2

)
= 0, (x, p) ∈ Ω× RN .

We have the usual definition for the weak solution

Definition 2.1 Assume that φ ∈ W 1,∞(Ω), g ∈ L1
loc(Σ

−; dν−). We say that f ∈
L1

loc(Ω×RN) is a weak solution for the stationary Vlasov problem (14), (15) if and

only if

−
∫

Ω

∫

RN

f(x, p)e−
φ(x)

mc2 (vc(p) · ∇xθ + F (x, p) · ∇pθ) dp dx =

∫

Σ−
g(x, p)e−

φ(x)

mc2 θ dν−,(17)

for any test function θ ∈ C1
c (Ω× RN) satisfying θ|Σ+ = 0.

Assume now that φ ∈ W 2,∞(Ω) and for any (x, p) ∈ (Ω × RN) ∪ Σ− let us

introduce the system of characteristics

dX

ds
= vc(P (s)),

dP

ds
= F (X(s), P (s)), (18)

with the conditions

X(s = 0) = x, P (s = 0) = p. (19)

Notice that under the above regularity hypothesis on φ there is a unique C1 solution

(X(s), P (s)) := (X(s; x, p), P (s; x, p)) of (18), (19) for s ∈]sin(x, p), sout(x, p)[ where

the entry/exit times are given by

sin(x, p) = inf{τ ≤ 0 : X(s; x, p) ∈ Ω, ∀ s ∈]τ, 0[}, (20)

sout(x, p) = sup{τ ≥ 0 : X(s; x, p) ∈ Ω, ∀ s ∈]0, τ [}. (21)

Observe that the Vlasov equation (14) can be written

vc(p) ·∇x

(
f(x, p)e−

N+1
mc2

φ(x)
)

+F (x, p) ·∇p

(
f(x, p)e−

N+1
mc2

φ(x)
)

= 0, (x, p) ∈ Ω×RN ,

saying that f(x, p)e−
N+1
mc2

φ(x) is constant along all characteristics. We have the defi-

nition
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Definition 2.2 Assume that φ ∈ W 2,∞(Ω). The mild solution (or solution by char-

acteristics) of the stationary Vlasov problem (14), (15) is given by

f(x, p) = e
N+1
mc2

φ(x)e−
N+1
mc2

φ(X(sin;x,p))g(X(sin; x, p), P (sin; x, p)), if sin(x, p) > −∞,

and

f(x, p) = 0 if sin(x, p) = −∞.

By definition the mild solution is unique. Unfortunately, in general there is no

uniqueness for the weak solution because f can take arbitrary values on the char-

acteristics such that sin = −∞. In order to retrieve the uniqueness of the weak

solution we penalize the Vlasov equation. For any α > 0 we consider the problem

αf(x, p) + vc(p) · ∇xf + F (x, p) · ∇pf =
N + 1

mc2
f(x, p)Sφ, (x, p) ∈ Ω× RN , (22)

f(x, p) = g(x, p), (x, p) ∈ Σ−. (23)

The equation (22) can be written

αf(x, p)e−
φ(x)

mc2 + divx

(
vc(p)f(x, p)e−

φ(x)

mc2

)
+ divp

(
F (x, p)f(x, p)e−

φ(x)

mc2

)
= 0,

and thus we introduce the notion of weak solution for (22), (23) as in Definition 2.1

for any φ ∈ W 1,∞(Ω), g ∈ L1
loc(Σ

−; dν−). We have the classical uniqueness result

Proposition 2.1 Assume that φ is smooth (for example φ ∈ W 2,∞(Ω)), α > 0 and

g ∈ L∞(Σ−; dν−). Then there is at most one bounded weak solution for (22), (23).

Proof. Consider (fk)k∈{1,2} two bounded weak solutions for (22), (23) and let

f = f1 − f2. We have

αf(x, p) + vc(p) · ∇xf + F (x, p) · ∇pf =
N + 1

mc2
f(x, p)Sφ, (x, p) ∈ Ω× RN , (24)

f(x, p) = 0, (x, p) ∈ Σ−. (25)
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By (16) we know that divpF = − N
mc2

Sφ and therefore (cf. [3, 17]) we obtain

2αf 2e−
N+2
mc2

φ(x) + divx

(
f 2e−

N+2
mc2

φ(x)vc(p)
)

+ divp

(
f 2e−

N+2
mc2

φ(x)F (x, p)
)

= 0, (x, p) ∈ Ω× RN . (26)

After integration on Ω× RN one gets

2α

∫

Ω

∫

RN

f 2(x, p)e−
N+2
mc2

φ(x) dp dx +

∫

Σ+

f 2(x, p)e−
N+2
mc2

φ(x) dν+ = 0,

saying that f |Ω×RN = 0 (and also f |Σ+ = 0).

2.1 Properties of the characteristics

We assume that φ ∈ W 2,∞(Ω) is a given function. We start by analyzing the

change of variables (x, p) → (X(s; x, p), P (s; x, p)) where (X, P ) solves the system

of characteristics (18), (19). By using (16) we deduce that the determinant of the

jacobian matrix J(s; x, p) := ∂(X(s;x,p),P (s;x,p))
∂(x,p)

satisfies

d

ds
det J(s; x, p) = − det J(s; x, p)

N

mc2

d

ds
φ(X(s; x, p)), (27)

and therefore we obtain

det J(s; x, p) = e−
N

mc2
φ(X(s;x,p))e

N
mc2

φ(x) 6= 0, (28)

saying that

dX(s) dP (s) = e−
N

mc2
φ(X(s;x,p))e

N
mc2

φ(x) dx dp. (29)

Consider now the change of variables

O 3 (s, x, p) → (X(s; x, p), P (s; x, p)), (30)

where

O = ∪(x,p)∈Σ− (]0, sout(x, p)[×{x} × {p}) .

By direct computations we check that

dX dP = |vc(p) · n(x)|e− N
mc2

φ(X(s;x,p))e
N

mc2
φ(x) ds dσ(x) dp. (31)
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For any (x, p) ∈ Ω× RN we introduce the energy function

Wc(x, p) = mc2

((
1 +

|p|2
m2c2

) 1
2

e
φ(x)

mc2 − 1

)
.

We check easily that Wc is conserved along the characteristics.

Proposition 2.2 Assume that φ ∈ W 2,∞(Ω). Then for any solution of (18) we

have
d

ds
{Wc(X(s), P (s))} = 0, sin < s < sout.

Observe that

Wc(x, p) = e
φ(x)

mc2 Ec(p) + mc2
(
e

φ(x)

mc2 − 1
)

,

where Ec(p) = mc2

((
1 + |p|2

m2c2

) 1
2 − 1

)
is the relativistic kinetic energy. Obviously

we have

lim
c→+∞

Ec(p) =
|p|2
2m

, p ∈ RN ,

and

lim
c→+∞

mc2
(
e

φ(x)

mc2 − 1
)

= φ(x), x ∈ Ω,

and therefore the total relativistic energy Wc converges towards the total classical

energy |p|2
2m

+ φ(x) when c goes to infinity, as expected.

2.2 Properties of the mild solution

By using the results of the previous paragraph we are ready to establish several

properties of the mild solution of (14), (15). We have the following standard results

Proposition 2.3 Assume that φ ∈ C1(Ω),∇xφ ∈ W 1,∞(Ω)N , g ∈ L∞loc(Σ
−; dν−).

Denote by f the mild solution of (14), (15). Then

1) if g is nonnegative, f is nonnegative ;

2) f belongs to L∞loc(Ω×RN). Moreover, if g ∈ L∞(Σ−; dν−) then f ∈ L∞(Ω×RN)

and

‖f‖L∞(Ω×RN ) ≤ e
N+1
mc2

supΩ φe−
N+1
mc2

inf∂Ω φ‖g‖L∞(Σ−;dν−) ; (32)
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3) for any test function ψ ∈ C0
c (Ω× RN) we have

∫

Ω

∫

RN

f(x, p)ψ(x, p) dp dx =

∫

Σ−
g(x, p)e−

φ(x)

mc2

∫ sout(x,p)

0

ψ(X(s; x, p), P (s; x, p))

× e
φ(X(s;x,p))

mc2 ds dν− ; (33)

4) f is a weak solution for (14), (15).

Proof. The first statement and the last part of the second one are obvious. Let us

check that f is locally bounded. Take R > 0 and C > 0 such that

|g(x, p)| ≤ C, a.e. (x, p) ∈ Σ−, |p| ≤ (m2c2 + R2)
1
2 e

2
mc2

supΩ |φ|. (34)

Consider (x, p) ∈ Ω×RN , |p| ≤ R such that sin(x, p) > −∞ (the case sin(x, p) = −∞
is trivial since f(x, p) = 0). By the definition of the mild solution we have

|f(x, p)| = e
N+1

mc2
φ(x)e−

N+1

mc2
φ(X(sin;x,p))|g(X(sin; x, p), P (sin; x, p))|

≤ e
N+1

mc2
supΩ φe−

N+1

mc2
inf∂Ω φ|g(X(sin; x, p), P (sin; x, p))|. (35)

By Proposition 2.2 we have also

(
1 +

|p|2
m2c2

) 1
2

e
φ(x)

mc2 =

(
1 +

|P (sin; x, p)|2
m2c2

) 1
2

e
φ(X(sin;x,p))

mc2 ,

and we deduce that

|P (sin; x, p)| ≤ (m2c2 + R2)
1
2 e

2
mc2

supΩ |φ|. (36)

Combining (34), (35), (36) we deduce that

|f(x, p)| ≤ e
N+1
mc2

supΩ φe−
N+1
mc2

inf∂Ω φC, a.e. (x, p) ∈ Ω× RN , |p| ≤ R,

and thus f is locally bounded. In order to establish the mild formulation (33)

observe that f± := max{0,±f} are the mild solutions of (14), (15) corresponding

to the boundary conditions g± := max{0,±g} and therefore it is sufficient to check

(33) when g ≥ 0, for any nonnegative test function ψ ∈ C0
c (Ω × RN). This follows
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immediately by using the change of variables (30) and formula (31). Indeed, since

f is locally bounded and ψ is compactly supported, fψ is integrable and we have
∫

Ω

∫

RN

fψ dp dx =

∫

Ω

∫

RN

f(x, p)ψ(x, p)1{sin(x,p)>−∞} dp dx

=

∫

Σ−

∫ sout(x,p)

0

f(X(s; x, p), P (s; x, p))ψ(X(s; x, p), P (s; x, p))

× |vc(p) · n(x)|e− N
mc2

φ(X(s;x,p))e
N

mc2
φ(x) ds dσ(x) dp

=

∫

Σ−
g(x, p)e−

φ(x)

mc2

∫ sout(x,p)

0

ψ(X(s; x, p), P (s; x, p))e
φ(X(s;x,p))

mc2 ds dν−.

For verifying the last statement the idea is to apply the mild formulation (33) with

the function

ψ(x, p) = −e−
φ(x)

mc2 (vc(p) · ∇xθ + F (x, p) · ∇pθ) ,

for any test function θ ∈ C1
c (Ω × RN) satisfying θ|Σ+ = 0. Observe that for any

(x, p) ∈ Σ− we have

e
φ(X(s;x,p))

mc2 ψ(X(s; x, p), P (s; x, p)) = − d

ds
θ(X(s; x, p), P (s; x, p)),

and thus

−
∫

Ω

∫

RN

f(x, p)e−
φ(x)

mc2 (vc(p) · ∇xθ + F (x, p) · ∇pθ) dp dx =

∫

Σ−
g(x, p)e−

φ(x)

mc2 (37)

×
∫ sout(x,p)

0

{− d

ds
θ(X(s; x, p), P (s; x, p))} ds dν−.

By taking into account that θ|Σ+ = 0, we obtain for any (x, p) ∈ Σ− such that

sout(x, p) < +∞
∫ sout(x,p)

0

− d

ds
{θ(X(s; x, p), P (s; x, p))} ds = θ(x, p). (38)

Combining (37), (38) we deduce formally that the weak formulation holds for any

test function θ ∈ C1
c (Ω × RN) such that θ|Σ+ = 0. A rigorous proof for checking

that the mild solution is a weak solution could be the following. Without loss of

generality we assume that g ≥ 0. For any α > 0 consider fα the mild solution of the

penalized stationary Vlasov problem (22), (23). The solution fα is given by

fα(x, p) = e
N+1
mc2

φ(x)e−
N+1
mc2

φ(X(sin;x,p))eαsin(x,p)g(X(sin; x, p), P (sin; x, p)), if sin(x, p) > −∞,

(39)
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and fα(x, p) = 0 if sin(x, p) = −∞. Indeed, the equation (22) can be written

αfe−
N+1

mc2
φ(x)+vc(p)·∇x

(
fe−

N+1

mc2
φ(x)

)
+F (x, p)·∇p

(
fe−

N+1

mc2
φ(x)

)
= 0, (x, p) ∈ Ω×RN ,

(40)

and the above formula comes by observing that formally we have

d

ds
{eαsf(X(s; x, p), P (s; x, p))e−

N+1
mc2

φ(X(s;x,p))} = 0, sin(x, p) < s < sout(x, p).

As before fα is nonnegative and satisfies the mild formulation

∫

Ω

∫

RN

fα(x, p)ψ(x, p) dp dx =

∫

Σ−
g(x, p)e−

φ(x)

mc2

∫ sout(x,p)

0

e−αsψ(X(s; x, p), P (s; x, p))

× e
φ(X(s;x,p))

mc2 ds dν−,

for any test function ψ ∈ C0
c (Ω × RN). Now we can verify easily that fα is weak

solution for (22), (23). Indeed, for any θ ∈ C1
c (Ω×RN) satisfying θ|Σ+ = 0 consider

ψ(x, p) = e−
φ(x)

mc2 (α θ(x, p)− vc(p) · ∇xθ − F (x, p) · ∇pθ),

and observe that

e−αsψ(X(s; x, p), P (s; x, p))e
φ(X(s;x,p))

mc2 = − d

ds
{e−αsθ(X(s; x, p), P (s; x, p))}.

Therefore we obtain

∫

Ω

∫

RN

fα(x, p)e−
φ(x)

mc2 (α θ(x, p) − vc(p) · ∇xθ − F (x, p) · ∇pθ) dp dx =

∫

Σ−
g(x, p)e−

φ(x)

mc2

×
∫ sout

0

− d

ds
{e−αsθ(X(s; x, p), P (s; x, p))}ds dν−,

and we are done if we show that

∫ sout(x,p)

0

− d

ds
{e−αsθ(X(s; x, p), P (s; x, p))}ds = θ(x, p), (x, p) ∈ Σ−.

This is obvious if sout(x, p) < +∞. In the case sout(x, p) = +∞ observe that

∫ +∞

0

− d

ds
{e−αsθ(X(s; x, p), P (s; x, p))}ds = θ(x, p)

− lim
t→+∞

{e−αtθ(X(t; x, p), P (t; x, p))}
= θ(x, p). (41)

12



Notice that we have 0 ≤ fα ≤ fβ ≤ f for any 0 < β ≤ α, where f is the mild

solution of (14), (15). Actually we have f = supα>0fα = limα↘0 fα. By passing to

the limit for α ↘ 0 in the weak formulation satisfied by fα one gets easily that f is

also a weak solution for (14), (15).

Remark 2.1 Under the hypotheses of Proposition 2.3 the mild solution f has a

locally bounded trace γ+f on Σ+ satisfying the Green formula

−
∫

Ω

∫

RN

fe−
φ(x)

mc2 (vc(p) · ∇xθ + F (x, p) · ∇pθ) dp dx +

∫

Σ+

γ+fe−
φ(x)

mc2 θ(x, p) dν+

=

∫

Σ−
ge−

φ(x)

mc2 θ(x, p) dν−, (42)

for any test function θ ∈ C1
c (Ω×RN). The trace γ+f is given by the same formula

as those for f in Definition 2.2, is nonnegative if g is nonnegative, is bounded if g

is bounded and we have

‖γ+f‖L∞(Σ+;dν+) ≤ e
N+1

mc2
{sup∂Ω φ−inf∂Ω φ}‖g‖L∞(Σ−;dν−). (43)

Analogous results hold for the solutions (fα)α>0.

We intend now to estimate the density µ(·) =
∫
RN

f(·,p)
γc(p)

dp. The crucial point is the

conservation of the total energy Wc.

Proposition 2.4 Assume that φ ∈ C1(Ω),∇xφ ∈ W 1,∞(Ω)N , φ ≥ 0 on ∂Ω, g ≥ 0

on Σ− and that there is a function H : [0, +∞[→ [0, +∞[ such that

g(x, p) ≤ H(Wc(x, p)), (x, p) ∈ Σ−.

We denote by f the mild solution of (14), (15). Then we have the inequalities

f(x, p) ≤ e
N+1
mc2

φ(x)H(Wc(x, p))1{Wc(x,p)≥0}, (x, p) ∈ Ω× RN , (44)

γ+f(x, p) ≤ e
N+1
mc2

sup∂Ω φH(Wc(x, p)), (x, p) ∈ Σ+. (45)
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Proof. Since φ is nonnegative on ∂Ω we have Wc(x, p) ≥ 0, ∀ (x, p) ∈ Σ. Take

(x, p) ∈ Ω× RN such that Wc(x, p) < 0. By Proposition 2.2 we have

Wc(X(s; x, p), P (s; x, p)) = Wc(x, p) < 0, ∀ s ∈]sin(x, p), sout(x, p)[.

Since Wc|Σ ≥ 0 we deduce that sin(x, p) = −∞, f(x, p) = 0 and thus the inequality

(44) is trivial. Assume now that (x, p) ∈ Ω×RN such thatWc(x, p) ≥ 0. As previous

we can suppose that sin(x, p) > −∞ and by the definition of the mild solution and

Proposition 2.2 we obtain

f(x, p) = e
N+1
mc2

φ(x)e−
N+1
mc2

φ(X(sin;x,p))g(X(sin; x, p), P (sin; x, p))

≤ e
N+1
mc2

φ(x)H(Wc(X(sin; x, p), P (sin; x, p)))

= e
N+1
mc2

φ(x)H(Wc(x, p))1{Wc(x,p)≥0}.

The inequality (45) follows in similar way.

By using Proposition 2.4 we obtain the following estimates for µ

Proposition 2.5 Assume that φ ∈ C1(Ω),∇xφ ∈ W 1,∞(Ω)N , φ ≥ 0 on ∂Ω, g ≥ 0

on Σ− and that there is δ > N − 1, N ≥ 2 such that

g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−,

for some constant C > 0. Denote by f the mild solution of (14), (15), µ(·) =
∫
RN

f(·,p)
γc(p)

dp, µR(·) =
∫
|p|≥R

f(·,p)
γc(p)

dp, ∀ R > 0. Then we have

µ(x) ≤ Ce2
φ(x)

mc2 , x ∈ Ω, (46)

µR(x) ≤ C
e2

φ(x)

mc2

(
1 + max{0, rc(R)e

φ(x)

mc2 + φ(x)}
)δ−(N−1)

, (47)

for some constant C = C(m, c, sup∂Ω φ,N, δ) and with rc(R) = R2

m

(
1 +

(
1 + R2

m2c2

) 1
2

)−1

.

Proof. We check easily that there is a constant C1 = C1(m, c, sup∂Ω φ) such that

g(x, p) ≤ C1

(1 +Wc(x, p))δ
, (x, p) ∈ Σ−.
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Applying Proposition 2.4 with the function H(u) = C1

(1+u)δ , ∀ u ≥ 0 yields

f(x, p) ≤ e
N+1
mc2

φ(x) C1

(1 +Wc(x, p))δ
1{Wc(x,p)≥0}, (x, p) ∈ Ω× RN . (48)

The above inequality allows us to estimate
∫
|p|≥R

f(·,p)
γc(p)

dp for any R ≥ 0. For any

fixed x ∈ Ω we use the change of variable

mc2

{(
1 +

u2

m2c2

) 1
2

e
φ(x)

mc2 − 1

}
= W , (49)

where

u ≥ max

{
R, mc

√(
e−2

φ(x)

mc2 − 1
)

+

}
=: uR

c (x),

W ≥ max

{
0,mc2

{(
1 +

R2

m2c2

) 1
2

e
φ(x)

mc2 − 1

}}
=: WR

c (x).

We have the equalities

u = mc

(( W
mc2

+ 1

)2

e−2
φ(x)

mc2 − 1

) 1
2

, W ≥WR
c (x), (50)

and
du

dW =
m

u

( W
mc2

+ 1

)
e−2

φ(x)

mc2 , W ≥WR
c (x). (51)

Note that we have

mc2

((
1 +

R2

m2c2

) 1
2

e
φ(x)

mc2 − 1

)
= mc2

((
1 +

R2

m2c2

) 1
2

− 1

)
e

φ(x)

mc2 + mc2
(
e

φ(x)

mc2 − 1
)

≥ R2

m
(
1 +

(
1 + R2

m2c2

) 1
2

)e
φ(x)

mc2 + φ(x). (52)

We deduce that

WR
c (x) ≥ max{0, rc(R)e

φ(x)

mc2 + φ(x)}, (53)

15



where rc(R) = R2

m

 
1+
“
1+ R2

m2c2

” 1
2

! , ∀ R ≥ 0, c > 0. Take now R ≥ 0 and let us

estimate
∫
|p|≥R

f(x,p)
γc(p)

dp. We obtain

∫

|p|≥R

f(x, p)

γc(p)
dp ≤ C1 e

N+1
mc2

φ(x)

∫

|p|≥R

1{Wc(x,p)≥0}
γc(p)(1 +Wc(x, p))δ

dp

≤ C2 e
N+1
mc2

φ(x)

∫ +∞

uR
c (x)

uN−1 du

(1 + u)
(
1 + mc2

((
1 + u2

m2c2

) 1
2 e

φ(x)

mc2 − 1
))δ

= C2 e
N+1
mc2

φ(x)

∫ +∞

WR
c (x)

(mc)N−2
(( W

mc2
+ 1

)2
e−2

φ(x)

mc2 − 1
)N−2

2

1 + mc
(( W

mc2
+ 1

)2
e−2

φ(x)

mc2 − 1
) 1

2

× m

(1 +W)δ

( W
mc2

+ 1

)
e−2

φ(x)

mc2 dW

= C2 e
N

mc2
φ(x)

∫ +∞

WR
c (x)

(mc)N−2(Q2(W)− 1)
N−2

2 m Q(W)

(1 + mc(Q2(W)− 1)
1
2 )(1 +W)δ

dW ,

where we used the notation Q(W) =
( W

mc2
+ 1

)
e−

φ(x)

mc2 . By taking into account that

sup
Q≥1

Q

1 + mc(Q2 − 1)
1
2

< +∞,

we deduce that

∫

|p|≥R

f(x, p)

γc(p)
dp ≤ C3 e

N
mc2

φ(x)

∫ +∞

WR
c (x)

(Q2(W)− 1)
N−2

2

(1 +W)δ
dW

= C3 e2
φ(x)

mc2

∫ +∞

WR
c (x)

(( W
mc2

+ 1
)2 − e2

φ(x)

mc2

)N−2
2

(1 +W)δ
dW

≤ C3 e2
φ(x)

mc2

∫ +∞

WR
c (x)

( W
mc2

+ 1

)
N−2 dW

(1 +W)δ

≤ C4 e2
φ(x)

mc2

∫ +∞

WR
c (x)

dW
(1 +W)δ−N+2

. (54)

In the above computations C2, C3, C4 denote some constants depending on m, c, sup∂Ω φ, N .

For R = 0 one gets

µ(x) =

∫

RN

f(x, p)

γc(p)
dp ≤ C4 e2

φ(x)

mc2

∫ +∞

0

dW
(1 +W)δ−N+2

≤ C e2
φ(x)

mc2 , x ∈ Ω, (55)
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since we have δ > N − 1. Take now R > 0. We have

µR(x) =

∫

|p|≥R

f(x, p)

γc(p)
dp ≤ C4 e2

φ(x)

mc2

(δ −N + 1)(1 +WR
c (x))δ−N+1

≤ C e2
φ(x)

mc2

(
1 + max{0, rc(R)e

φ(x)

mc2 + φ(x)}
)δ−N+1

. (56)

The above estimates allow us to justify the existence of weak solution for the station-

ary Nordström-Vlasov system. We intend to investigate the asymptotic behavior of

these solutions when the light speed goes to infinity. We need to establish uniform

estimates with respect to c.

Proposition 2.6 Assume that φ ∈ C1(Ω),∇xφ ∈ W 1,∞(Ω)N , φ ≥ 0 on ∂Ω, g ≥ 0

on Σ− and that there is δ > 2N , N ≥ 2 such that

g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−, (57)

for some constant C > 0. Denote by f the mild solution of (14), (15). Then we

have for any c ≥ 1, x ∈ Ω
∫

RN

f(x, p) dp ≤ C e
φ(x)

mc2

(
1 + |φ(x)|N−2

2

)
, (58)

∫

|p|≥R

f(x, p) dp ≤
C e

φ(x)

mc2

(
1 + |φ(x)|N−2

2

)

(
1 + max{0, r(R)e

φ(x)

mc2 + φ(x)}
) δ

2
−N

, (59)

for some constant C = C(m, sup∂Ω φ, N, δ) and with

r(R) =
R2

m
(
1 +

(
1 + R2

m2

) 1
2

) .

Proof. In the following computations the notation C stands for constants depending

on m, ‖φ‖L∞(∂Ω), δ, N but not on the light speed. Observe that for any c > 0 we

have the inequalities

Ec(p) = mc2

((
1 +

|p|2
m2c2

) 1
2

− 1

)
≤ |p|2

2m
, p ∈ RN ,
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and

mc2
(
1− e−

φ(x)

mc2

)
≤ φ(x), x ∈ Ω.

Therefore we obtain for any (x, p) ∈ Σ− and c ≥ 1

g(x, p) ≤ C
(
1 + |p|2

2m
+ φ(x)

) δ
2

≤ C
(

1 + mc2

((
1 + |p|2

m2c2

) 1
2 − e−

φ(x)

mc2

)) δ
2

=
C e

δφ(x)

2mc2

(
e

φ(x)

mc2 + mc2

((
1 + |p|2

m2c2

) 1
2
e

φ(x)

mc2 − 1

)) δ
2

≤ C

(1 +Wc(x, p))
δ
2

.

By Proposition 2.4 we deduce that

f(x, p) ≤ e
N+1
mc2

φ(x) C

(1 +Wc(x, p))
δ
2

1{Wc(x,p)≥0}, (x, p) ∈ Ω× RN . (60)

For any R ≥ 0 we use one more time the change of variable (49), (50), (51). By

using (60) one gets as before
∫

|p|≥R

f(x, p) dp ≤ Ce
N+1
mc2

φ(x)

∫ +∞

uR
c (x)

uN−1 du
(
1 + mc2

((
1 + u2

m2c2

) 1
2 e

φ(x)

mc2 − 1
)) δ

2

= Ce
N+1
mc2

φ(x)

∫ +∞

WR
c (x)

(mc)N−2
(( W

mc2
+ 1

)2
e−2

φ(x)

mc2 − 1
)N−2

2

(1 +W)
δ
2

× m

( W
mc2

+ 1

)
e−2

φ(x)

mc2 dW , x ∈ Ω. (61)

Observe that for any W ≥WR
c (x) and c ≥ 1 we have

mc

(( W
mc2

+ 1

)2

e−2
φ(x)

mc2 − 1

) 1
2

= mc e−
φ(x)

mc2

( W
mc2

( W
mc2

+ 2

)
+ 1− e2

φ(x)

mc2

) 1
2

≤ mc e−
φ(x)

mc2

( W
mc2

( W
mc2

+ 2

)
− 2φ(x)

mc2

) 1
2

≤ Ce−
φ(x)

mc2

(
W + 1 + |φ(x)| 12

)
. (62)
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Combining (61), (62) yields

∫

|p|≥R

f(x, p) dp ≤ Ce
φ(x)

mc2

∫ +∞

WR
c (x)

(1 +W)N−2 + |φ(x)|N−2
2

(1 +W)
δ
2
−1

dW . (63)

For R = 0 one gets

∫

RN

f(x, p) dp ≤ Ce
φ(x)

mc2

(
1 + |φ(x)|N−2

2

)
, x ∈ Ω, c ≥ 1, (64)

since we have δ > 2N . By taking into account that for any R > 0, x ∈ Ω, c ≥ 1 we

have

WR
c (x) ≥ max{0, r(R) e

φ(x)

mc2 + φ(x)},

we obtain
∫

|p|≥R

f(x, p) dp ≤
Ce

φ(x)

mc2

(
1 + |φ(x)|N−2

2

)

(
1 + max{0, r(R)e

φ(x)

mc2 + φ(x)}
) δ

2
−N

. (65)

Remark 2.2 For any α > 0 denote by fα the mild solution of (22), (23) and by f

the mild solution of (14), (15). Since 0 ≤ fα ≤ f we deduce that the conclusions of

Propositions 2.5, 2.6 hold true for fα, uniformly with respect to α > 0.

3 Fixed point application

We intend to show the existence of weak solution for the Nordström-Vlasov equations

by using the Schauder fixed point theorem. We assume that ϕ0 is a nonnegative

smooth function on the boundary ∂Ω and we consider φ0 the solution of the problem

−∆xφ0 = 0, x ∈ Ω, φ0(x) = ϕ0(x), x ∈ ∂Ω. (66)

If Ω is of class C3 and ϕ0 belongs to W 3− 1
q
,q(∂Ω) for some q > N , then ∇xφ0 ∈

W 2,q(Ω) ⊂ W 1,∞(Ω). In order to use the mild formulation we need to regularize the

field ∇xφ. Since we want to preserve some information about the trace of φ on the

19



boundary ∂Ω it is convenient to use some special regularization procedure. Let us

introduce some notations. For any ε > 0 consider

Oε = {x ∈ Ω : dist(x, ∂Ω) < ε}.

Since Ω is bounded and smooth, there is εΩ > 0 and a smooth function D : Ω → R

such that D(x) = dist(x, ∂Ω), ∀ x ∈ OεΩ
, ν = −∇xD is regular and bounded in Ω

and ν(x) = n(P∂Ω(x)) for any x ∈ OεΩ
, where P∂Ω is the projection on ∂Ω and n is

the unit outward normal on ∂Ω. In particular ν(x) = n(x) for any x ∈ ∂Ω. Consider

ζ ∈ C∞
c (RN), ζ ≥ 0, supp ζ ⊂ {x ∈ RN : |x| ≤ 1}, ∫

RN ζ(x) dx = 1, ζε(·) =

1
εN ζ

( ·
ε

)
for any ε > 0. Following the construction in [27] for any φ ∈ H1

0 (Ω) we

define

Rεφ(x) =

∫

RN

ζε(y)φ(x + 2εν(x)− y) dy

=

∫

RN

ζε(x + 2εν(x)− y)φ(y) dy, x ∈ Ω, (67)

where φ(x) = φ(x), x ∈ Ω and φ(x) = 0, x ∈ RN − Ω. If Ω is of class C3 then ν is

of class C2 and therefore Rεφ ∈ C2(RN). Observe that for ε small enough we have

Rεφ(x) = 0, ∀ x ∈ Oε and thus Rεφ ∈ C2
c (Ω). Moreover we have limε↘0 Rεφ = φ in

H1(Ω). For any c > 0 we define the fixed point map Fc,ε as follows : for φ ∈ H1
0 (Ω)

consider Fc,εφ = φ̃ where

- f is the mild solution for the stationary regularized Vlasov problem

εf(x, p) + vc(p) · ∇xf −
(

vc(p) · ∇x(Rεφ + φ0)
p

mc2
+
∇x(Rεφ + φ0)

γc(p)

)
· ∇pf

=
N + 1

mc2
f(x, p)vc(p) · ∇x(Rεφ + φ0), (x, p) ∈ Ω× RN , (68)

f(x, p) = g(x, p), (x, p) ∈ Σ− ; (69)

- φ̃ is the solution of the Poisson problem

−∆xφ̃ = −µ(x), x ∈ Ω, (70)

φ̃(x) = 0, x ∈ ∂Ω, (71)
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with µ(·) =
∫
RN

f(·,p)
γc(p)

dp.

The properties of the map Fc,ε are summed up in the following straightforward result

Proposition 3.1 Assume that Ω is regular, ϕ0 ∈ W 3− 1
q
,q(∂Ω) for some q > N ,

ϕ0 ≥ 0 on ∂Ω, g ≥ 0 on Σ− such that

g(x, p) ≤ C

(1 + |p|)δ
, (x, p) ∈ Σ−, (72)

for some constants C > 0, δ > N − 1 with N ≥ 2. Then

1) there is a constant Cc = C(m, c, sup∂Ω ϕ0, N, δ) such that

‖Fc,εφ‖H1(Ω) ≤ Cc, ∀ φ ∈ H1
0 (Ω), φ ≤ 0 ;

2) the map Fc,ε is continuous with respect to the weak topology of H1(Ω) ;

3) there is a fixed point for the application Fc,ε.

Proof. 1) For any φ ∈ H1
0 (Ω), φ ≤ 0 we have Rεφ ≤ 0. By Proposition 2.5 and

Remark 2.2 we know that

0 ≤ µ(x) ≤ C1e
2

φ0(x)+Rεφ(x)

mc2 ≤ C1e
2

mc2
sup∂Ω ϕ0 =: C2, x ∈ Ω, (73)

for some constant C1 = C1(m, c, sup∂Ω ϕ0, N, δ). In particular we deduce that

‖µ‖L2(Ω) ≤ C2 (meas(Ω))1/2 which implies that

‖Fc,εφ‖H1(Ω) = ‖φ̃‖H1(Ω) ≤ C3(m, c, sup
∂Ω

ϕ0, N, δ) =: Cc.

2) The arguments are standard. Take (φk)k ⊂ H1
0 (Ω) such that limk→+∞φk = φ

weakly in H1(Ω). By weak convergence we have

Rεφk(x) → Rεφ(x), ∇xRεφk(x) → ∇xRεφ(x), x ∈ Ω. (74)

We check easily that

sup
k
{‖Rεφk‖L∞(Ω) + ‖∇xRεφk‖L∞(Ω)} < +∞, (75)

and by using the dominated convergence theorem we have

lim
k→+∞

∇xRεφk = ∇xRεφ strongly in L2(Ω)N . (76)
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Denote by (fk)k, f the mild solutions of (68), (69) corresponding to the fields

(∇xRεφk)k, respectively ∇xRεφ. By Proposition 2.3 we know that (fk)k are also

weak solutions and therefore, for any test function θ ∈ C1
c (Ω × RN), θ|Σ+ = 0 we

can write
∫

Ω

∫

RN

fk(x, p)e−
Rεφk(x)+φ0(x)

mc2 (εθ(x, p)− vc(p) · ∇xθ − Fk(x, p) · ∇pθ) dp dx (77)

=

∫

Σ−
g(x, p)e−

ϕ0(x)

mc2 θ(x, p) dν−,

where Fk(x, p) = −
(
vc(p) · ∇x(Rεφk + φ0)

p
mc2

+ ∇x(Rεφk+φ0)
γc(p)

)
. By Proposition 2.3

we have

sup
k
‖fk‖L∞(Ω×RN ) ≤ sup

k
e

N+1
mc2

supΩ(Rεφk+φ0)‖g‖L∞(Σ−;dν−) < +∞, (78)

and therefore we can extract a sequence (ki)i such that fki
⇀ f̃ weakly ? in L∞(Ω×

RN). By using (74), (75), (76) we can pass easily to the limit with respect to i in the

weak formulations (77) written for k = ki and we deduce that f̃ is a weak solution

for (68), (69). By Proposition 2.1 we deduce that f̃ = f . Actually all the sequence

(fk)k converges weakly ? in L∞(Ω × RN) towards f . Denote by (µk)k and µ the

densities given by

µk(·) =

∫

RN

fk(·, p)

γc(p)
dp, ∀ k, µ(·) =

∫

RN

f(·, p)

γc(p)
dp.

By using Proposition 2.5 and by taking into account that supk ‖Rεφk + φ0‖L∞(Ω) <

+∞ we deduce that

sup
k≥1

‖µk‖L∞(Ω) < +∞, lim
R→+∞

sup
k≥1

∥∥∥∥
∫

|p|≥R

fk(·, p)

γc(p)
dp

∥∥∥∥
L∞(Ω)

= 0, (79)

and we obtain easily that µk ⇀ µ weakly in Ls(Ω), ∀ 1 ≤ s < +∞ and µk ⇀ µ

weakly ? in L∞(Ω). Consider (φ̃k)k, φ̃ the solutions of the problems

−∆xφ̃k = −µk(x), x ∈ Ω, φ̃k(x) = 0, x ∈ ∂Ω,

−∆xφ̃ = −µ(x), x ∈ Ω, φ̃(x) = 0, x ∈ ∂Ω.
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Since (µk)k is bounded in L2(Ω), (φ̃k)k is bounded in H2(Ω) and thus we can extract

a subsequence (φ̃ki
)i which converges in H1(Ω). By using the convergence µki

⇀ µ

weakly ? in L∞(Ω) we deduce that limi→+∞ φ̃ki
= φ̃ in H1(Ω). In fact all the

sequence (φ̃k)k = (Fc,εφk)k converges strongly in H1(Ω) towards φ̃ = Fc,εφ. In

particular Fc,ε is continuous with respect to the weak topology of H1(Ω).

3) We consider the set Xc,ε = {φ ∈ H1
0 (Ω) : ‖φ‖H1(Ω) ≤ Cc, φ ≤ 0} which is

convex and compact with respect to the weak topology of H1(Ω). Observe also that

Fc,ε(Xc,ε) ⊂ Xc,ε. Indeed, by construction φ̃ = Fc,εφ ∈ H1
0 (Ω) and by the first point

we have ‖φ̃‖H1(Ω) ≤ Cc. Since −∆xφ̃ = −µ(x) ≤ 0, x ∈ Ω and φ̃|∂Ω = 0 we have

supΩ φ̃ ≤ 0. We conclude by the Schauder fixed point theorem.

4 The stationary Nordström-Vlasov equations

By passing to the limit with respect to ε ↘ 0 we obtain the existence of weak

solution for the stationary Nordström-Vlasov system as stated in Theorem 1.1.

Proof. (of Theorem 1.1) For any fixed c > 0 take (εk)k≥1 a decreasing sequence

converging towards 0 and consider ϕ0,k ∈ W 3− 1
q
,q(∂Ω) for some q > N such that

lim
k→+∞

ϕ0,k = ϕ0 in H1/2(∂Ω), sup
k≥1

‖ϕ0,k‖L∞(∂Ω) ≤ ‖ϕ0‖L∞(∂Ω), ϕ0,k ≥ 0, ∀ k.

(80)

By Proposition 3.1 there is (fc,k, φc,k) solution for

εkfc,k + vc(p) · ∇xfc,k −
(

vc(p) · ∇x(Rεk
φc,k + φ0,k)

p

mc2
+
∇x(Rεk

φc,k + φ0,k)

γc(p)

)
· ∇pfc,k

=
N + 1

mc2
fc,k(x, p) vc(p) · ∇x(Rεk

φc,k + φ0,k), (x, p) ∈ Ω× RN , (81)

−∆xφc,k = −µc,k(x) = −
∫

RN

fc,k(x, p)

γc(p)
dp, −∆xφ0,k = 0, x ∈ Ω, (82)

fc,k(x, p) = g(x, p), (x, p) ∈ Σ−, φc,k(x) = 0, φ0,k(x) = ϕ0,k(x), x ∈ ∂Ω, (83)
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such that

0 ≤ φ0,k(x) ≤ ‖ϕ0,k‖L∞(∂Ω) ≤ ‖ϕ0‖L∞(∂Ω), φc,k(x) ≤ 0, ∀ x ∈ Ω, ∀ k ≥ 1,

0 ≤ fc,k(x, p) ≤ e
N+1
mc2

‖ϕ0‖L∞(∂Ω)‖g‖L∞(Σ−), (x, p) ∈ Σ−, k ≥ 1,

sup
k≥1

∥∥∥∥
∫

RN

fc,k(·, p)

γc(p)
dp

∥∥∥∥
L∞(Ω)

≤ C(c)e
2

mc2
‖ϕ0‖L∞(∂Ω) ,

for some constant depending on c. In particular we have

sup
k≥1

‖µc,k‖LN+1(Ω) < +∞,

and thus

sup
k≥1

‖φc,k‖L∞(Ω) ≤ C sup
k≥1

‖φc,k‖W 1,N+1(Ω) ≤ C sup
k≥1

‖µc,k‖LN+1(Ω) < +∞.

By using Proposition 2.5 we deduce easily that

lim
R→+∞

sup
k≥1

∥∥∥∥
∫

|p|≥R

fc,k(·, p)

γc(p)
dp

∥∥∥∥
L∞(Ω)

= 0.

We can assume (after extraction eventually) that

lim
k→+∞

fc,k = fc, weakly ? in L∞(Ω× RN),

lim
k→+∞

µc,k = µc :=

∫

RN

fc(·, p)

γc(p)
dp, weakly ? in L∞(Ω),

lim
k→+∞

φc,k = φc, strongly in H1(Ω),

lim
k→+∞

φ0,k = φ0, strongly in H1(Ω),

where φ0 is the solution of (66). We check easily that (fc, φc +φ0) is a weak solution

of the stationary Nordström-Vlasov system. Observe also that

0 ≤ fc ≤ e
N+1
mc2

‖ϕ0‖L∞(∂Ω)‖g‖L∞(Σ−), lim
R→+∞

∥∥∥∥
∫

|p|≥R

fc(·, p)

γc(p)
dp

∥∥∥∥
L∞(Ω)

= 0.

Assume now that δ > 2N with N ∈ {2, 3}. By using Proposition 2.6 we have for

any c ≥ 1
∫

RN

fc,k(x, p) dp ≤ C1e
‖ϕ0‖L∞(∂Ω)

mc2 (1 + |Rεk
φc,k(x) + φ0,k(x)|N−2

2 )

≤ C2(1 + |Rεk
φc,k(x)|N−2

2 ), x ∈ Ω, k ≥ 1, (84)
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for some constants C1, C2 depending on m, ‖ϕ0‖L∞(∂Ω), N, δ but not on c. If N = 2

the inequality (84) gives the uniform estimates

sup
k≥1,c≥1

‖µc,k‖L∞(Ω) ≤ sup
k≥1,c≥1

∥∥∥∥
∫

R2

fc,k(·, p) dp

∥∥∥∥
L∞(Ω)

≤ 2C2, (85)

sup
k≥1,c≥1

‖φc,k‖L∞(Ω) ≤ C(Ω) sup
k≥1,c≥1

‖φc,k‖W 1,3(Ω) ≤ C(Ω) sup
k≥1,c≥1

‖µc,k‖L3(Ω) < +∞.

(86)

Combining (86), (59) yields

lim
R→+∞

sup
k≥1,c≥1

∥∥∥∥
∫

|p|≥R

fc,k(·, p) dp

∥∥∥∥
L∞(Ω)

= 0. (87)

By passing to the limit with respect to k we obtain that fc = w ? limk→+∞fc,k

satisfies

sup
c≥1

∥∥∥∥
∫

R2

fc(·, p) dp

∥∥∥∥
L∞(Ω)

< +∞, lim
R→+∞

sup
c≥1

∥∥∥∥
∫

|p|≥R

fc(·, p) dp

∥∥∥∥
L∞(Ω)

= 0.

We analyze now the case N = 3. We have from (84)

∫

R3

fc,k(x, p) dp ≤ C2(1 + |Rεk
φc,k(x)|1/2), x ∈ Ω, k ≥ 1, c ≥ 1. (88)

We deduce that for any s > 3, c ≥ 1 we have

‖µc,k‖s
Ls(Ω) ≤ C3(1 + ‖Rεk

φc,k‖s/2

Ls/2(Ω)
)

≤ C4(1 + ‖φc,k‖s/2

Ls/2(Ω)
)

≤ C5(1 + ‖φc,k‖s/2
Ls(Ω))

≤ C6(1 + ‖µc,k‖s/2
Ls(Ω)),

for some constants C3, C4, C5, C6 not depending on k ≥ 1 and c ≥ 1 and therefore

we obtain supk≥1,c≥1 ‖µc,k‖Ls(Ω) < +∞. Finally one gets

sup
k≥1,c≥1

‖φc,k‖L∞(Ω) ≤ C7(Ω) sup
k≥1,c≥1

‖φc,k‖W 1,s(Ω) ≤ C8 sup
k≥1,c≥1

‖µc,k‖Ls(Ω) < +∞.

From (88), (59) we deduce that

sup
k≥1,c≥1

∥∥∥∥
∫

R3

fc,k(·, p) dp

∥∥∥∥
L∞(Ω)

< +∞,

25



lim
R→+∞

sup
k≥1,c≥1

∥∥∥∥
∫

|p|≥R

fc,k(·, p) dp

∥∥∥∥
L∞(Ω)

= 0.

By passing to the limit with respect to k we obtain that fc = w ? limk→+∞fc,k

satisfies

sup
c≥1

∥∥∥∥
∫

R3

fc(·, p) dp

∥∥∥∥
L∞(Ω)

< +∞, lim
R→+∞

sup
c≥1

∥∥∥∥
∫

|p|≥R

fc(·, p) dp

∥∥∥∥
L∞(Ω)

= 0.

For any c > 0 we proved the existence of weak solution for the stationary Nordström-

Vlasov system. A natural question is what happens if the light speed c goes to

infinity. We can prove the convergence towards a weak solution of the Vlasov-

Poisson system for stellar dynamics as stated in Theorem 1.2.

Proof. (of Theorem 1.2) Take (ck)k an increasing sequence such that limk→+∞ck =

+∞. For any k we consider the solution (fk, φk) := (fck
, φck

) constructed in Theorem

1.1.

vk(p) · ∇xfk −
(

vk(p) · ∇xφk
p

mc2
k

+
∇xφk

γk(p)

)
· ∇pfk

=
N + 1

mc2
k

fk(x, p) vk(p) · ∇xφk, (x, p) ∈ Ω× RN , (89)

−∆xφk = −µk(x) := −
∫

RN

fk(x, p)

γk(p)
dp, x ∈ Ω, (90)

fk(x, p) = g(x, p), (x, p) ∈ Σ−, φk(x) = ϕ0(x), x ∈ ∂Ω, (91)

where γk(p) = γck
(p), vk(p) = vck

(p), p ∈ RN . By Theorem 1.1 we also know that

sup
k≥1

‖fk‖L∞(Ω×RN ) ≤ e
N+1
mc2

‖ϕ0‖L∞(∂Ω)‖g‖L∞(Σ−),

sup
k≥1

∥∥∥∥
∫

RN

fk(·, p) dp

∥∥∥∥
L∞(Ω)

< +∞, lim
R→+∞

sup
k≥1

∥∥∥∥
∫

|p|≥R

fk(·, p) dp

∥∥∥∥
L∞(Ω)

= 0.

We can assume (after extraction eventually) that

fk ⇀ f weakly ? in L∞(Ω× RN),

µk ⇀ ρ :=

∫

RN

f(·, p) dp weakly ? in L∞(Ω),
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φk → φ strongly in H1(Ω).

By taking into account that vk(p) → p
m

uniformly on compact sets of RN we deduce

easily that (f, φ) is a weak solution for the stationary Vlasov-Poisson system (11),

(12), (13). Moreover the function f satisfies

∫

RN

f(·, p) dp ∈ L∞(Ω), lim
R→+∞

∥∥∥∥
∫

|p|≥R

f(·, p) dp

∥∥∥∥
L∞(Ω)

= 0.
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