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Abstract

We perform the asymptotic analysis of kinetic models which describe the behavior of

populations interacting through alignement. The asymptotic regime we are interested in,

corresponds to a large alignement frequency and assumes that the alignement effects are

dominated by the self propulsion and friction forces. The former hypothesis leads to a

macroscopic model, while the second one impose a fixed speed in the limit, and thus a

reduction of the dynamics to a sphere, in the velocity space. The analysis relies on the

averaging techniques, which have been successfully used in the magnetic confinement of

charged particles. Since at the limit, the particle distribution is supported on a sphere,

we need to work with measures in the velocity space. As for the Euler equations, the

fluid model comes by integrating the kinetic equation against the collision invariants, in

the velocity space. The main difficulty is the identification of the collision invariants for

the averaged alignement kernel.
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1 Introduction
?〈Intro〉?

The subject matter of this paper concerns the behavior of living organisms such as flocks of

birds, school of fish, swarms of insects, myxobacteria ... These models include short-range

repulsion, long-range attraction, self-propelling and friction forces, reorientation or alignment

see [44, 34, 25, 39, 38, 2, 3, 40]. We consider self-propelled particles with Rayleigh friction

[23, 22, 18, 21], and alignement, introduced through the Cucker-Smale reorientation procedure

[26], see also [37, 35, 19, 20, 41] for further details. If we denote by f = f(t, x, v) ≥ 0 the par-

ticle density in the phase space (x, v) ∈ Rd ×Rd, with d ∈ {2, 3}, the self-propulsion/friction

mechanism is given by the term divv{f(α − β|v|2)v}. Notice that the balance between the

self-propulsion and friction forces occurs on the velocity sphere |v| = r :=
√
α/β. We fixe the

speed r, meaning that α and β are anytime related by the equality α = βr2. The coefficients

α, β > 0 can be interpreted as follows. In the absence of friction, the particles accelerate

with αv, leading to a exponential growth of velocity, with frequency α. In the absence of

self-propulsion, the inverse of the relative kinetic energy grows linearly, with the frequency

2β|v|2, where v is the initial velocity of the particle

d

ds

|v|2

|V (s)|2
= − |v|2

|V (s)|4
2(V (s) · V ′(s)) = 2β|v|2.

Each individual in the group relaxes his velocity toward the mean velocity of the neighbors,

leading to the term ν divv{f(u[f ] − v)}, where ν is the reorientation frequency and u[f ] is

the mean velocity

u[f(t)](x) =

∫
Rd

∫
Rdf(t, x′, v′)h(x− x′)v′ dv′dx′∫

Rd

∫
Rdf(t, x′, v′)h(x− x′) dv′dx′

.

The weight application h is a decreasing, radial, non negative given function that determines

the interaction neighborhood around any position. Including also noise in the above kinetic

model, leads to the Fokker-Planck like equation

∂tf+divx(fv)+divv{f(α−β|v|2)v} = ν divv{f(v−u[f ])}+τ∆vf = ν divv{f(v−u[f ])+σ∇vf}

(1) Equ1

where σ = τ/ν represents the diffusion coefficient in the velocity space. We investigate the

large time and space scale regime of (1) that is, we fixe large time and space units. In this

case, the equation (1) should be replaced by

δ{∂tf+divx(fv)}+divv{f(α−β|v|2)v} = ν divv{f(v−u[f ])+σ∇vf}, (t, x, v) ∈ R+×Rd×Rd.

(2) Equ2
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The choice of a large length unit leads to a local reorientation mechanism : the mean velocity

u[f ] in (2) is now given by

u[f(t)](x) =

∫
Rdf(t, x, v′)v′ dv′∫
Rdf(t, x, v′) dv′

.

Notice that if f(t, x, ·) = 0, then the Fokker-Planck collision operator vanishes for any u. In

this case we can define u[f(t)] = 0, without loss of generality. We assume that the frequencies

δ, α, ν scale like
α

δ
≈ 1

ε1
,
ν

δ
≈ 1

ε2

for some small parameters ε1, ε2 > 0 and thus the equation (2) becomes

∂tf
ε1,ε2 +divx(f ε1,ε2v)+

1

ε1
divv{f ε1,ε2(α−β|v|2)v} =

ν

ε2
divv{f ε1,ε2(v−u[f ε1,ε2 ])+σ∇vf ε1,ε2}.

(3) Equ3

Assume for the moment that ε1 ↘ 0 and ε2 is fixed. In this situation, the leading order term

in the Fokker-Planck equation (3) corresponds to the self-propulsion/friction mechanism, and

we expect that the limit density f ε2 = limε1↘0 f
ε1,ε2 satisfies

divv{f ε2(α− β|v|2)v} = 0.

The previous constraint exactly says that at any time t and any position x, the velocity

distribution f ε2(t, x, ·) is a measure supported in {0}∪ rSd−1 cf. [10]. The particles will tend

to move with asymptotic speed r. These models have been shown to produce complicated

dynamics and patterns such as mills, double mills, flocks and clumps, see [31]. Assuming

that all individuals move with constant speed also leads to spatial aggregation, patterns, and

collective motion [27, 32, 43]. More exactly, it was shown in [10] that, by taking the limit

ε1 ↘ 0, the solutions f ε1,ε2 of (3) converge toward the solution f ε2 of

∂tf
ε2+divx(f ε2ω)+

ν

ε2
divω

{
f ε2
(
Id −

ω ⊗ ω
r2

)
u[f ε2 ]

}
=

τ

ε2
∆ωf

ε2 , (t, x, ω) ∈ R+×Rd×rSd−1

(4) Equ4

with

u[f ε2(t)](x) =

∫
rSd−1f

ε2(t, x, ω)ω dω∫
rSd−1f ε2(t, x, ω) dω

, (t, x) ∈ R+ × Rd.

The above result states that in the limit ε1 ↘ 0, the Cucker-Smale model with diffusion is

reduced to a Vicsek like model. The evolution problem (4) on the phase space Rd × rSd−1,

with normalized field u[f ε2 ] i.e.,

∂tf + divx(fω) + ν divω

{
f

(
Id −

ω ⊗ ω
r2

)
Ω[f ]

}
= τ∆ωf, (t, x, ω) ∈ R+ ×Rd × rSd−1 (5) Equ5
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Ω[f(t)](x) =

∫
rSd−1f(t, x, ω)ω dω

|
∫
rSd−1f(t, x, ω)ω dω|

, (t, x) ∈ R+ × Rd

was also proposed in the literature as continuum version [29] of the Vicsek model [44, 25].

Our case, based on the relaxation toward the mean velocity u[f ], is not included in the

model (5), whose alignement mechanism relies only on the direction of the mean velocity

Ω[f ] = u[f ]/|u[f ]|. Nevertheless, our method still applies and allows us to handle the model

with normalization as well.

The original model in [44, 24] was derived as the mean-field limit of some stochastic

particle systems in [5]. In fact, previous particle systems have also been studied with noise

in [4] for the mean-field limit (see also [42, 16, 30, 17], in [36] for studying some properties of

the Cucker-Smale model with noise, and in [28, 33] for analyzing the phase transition in the

Vicsek model.

We assume now that both ε1, ε2 become small. The idea is to justify a macroscopic model

for (4), resulting from the balance between two opposite phenomena

1. The reorientation, which tends to align the particle velocities with respect to the mean

velocity ;

2. The diffusion, which tends to spread the particle velocities isotropically on the sphere

rSd−1.

Such hydrodynamic model was obtained in [29], by letting ε2 ↘ 0 in the normalized aligne-

ment version of (4). Notice that this macroscopic model was obtained by passing to the limit

successively in (3) with respect to ε1, ε2. After letting ε1 ↘ 0, the dynamics was reduced to

the phase space (x, v) ∈ Rd × rSd−1, but still captures microscopic behavior in the tangent

directions to the sphere rSd−1. The second limit procedure, ε2 ↘ 0, leads to the macroscopic

equations for the density
∫
rSd−1f dω and the direction of the flux

∫
rSd−1ωf dω.

We intend to obtain a macroscopic model, by passing to the limit in (3), simultaneously

with respect to (ε1, ε2). Motivated by the above discussion, we assume that ε1 = ε2 and

ε2 = ε, where ε > 0 is a small parameter, that is, the self-propulsion/friction mechanism

dominates the alignement. Therefore (3) becomes

∂tf
ε+divx(f εv)+

divv{f ε(α− β|v|2)v}
ε2

=
ν

ε
divv {f ε(v − u[f ε]) + σ∇vf ε} , (t, x, v) ∈ R+×R2d

(6) Equ6

supplemented by the initial condition

f ε(0, x, v) = f in(x, v), (x, v) ∈ Rd × Rd.
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Very recently, by a similar scaling, fluid models have been obtained for the transport of

charged particles, under the action of strong magnetic fields, which dominate the collision

effects. The resulting macroscopic model is a gyrokinetic version of the Euler equations, in

the parallel direction with respect to the magnetic field [13, 15].

The behavior of the family (f ε)ε>0, as the parameter ε becomes small, follows by analyzing

the formal expansion

f ε = f + εf (1) + ε2f (2) + ... (7) FormalExpansion

Plugging the above Ansatz into (6), leads to the constraints

divv{f(α− β|v|2)v} = 0 (8) Equ8

divv{f (1)(α− β|v|2)v} = ν divv{f(v − u[f ]) + σ∇vf} (9) Equ9

and to the time evolution equations

∂tf + divx(fv) + divv{f (2)(α− β|v|2)v} = ν divv{f (1)(v − u[f ]) + σ∇vf (1)} (10) Equ10

− ν divv

{
f

∫
Rdf

(1)(v′ − u[f ]) dv′∫
Rdf dv′

}
...

We expect a macroscopic model for the moments of f , similar to that obtained in [29]. The

main advantage for considering (6) instead of (4) with ε2 = ε is that the resolution of (6)

for small ε will provide a solution supported near Rd × rSd−1, which fits much better the

behavior of living organism systems, than the solution of (4) on Rd × rSd−1. But the prize

to be paid is to deal with two Lagrange multipliers, appearing in (10), which have to be

eliminated, thanks to the constraints (8) and (9). The first constraint was analyzed in detail

in [10]. It exactly says that f is a measure supported in Rd × ({0} ∪ rSd−1). We denote by

M+
b (Rd) the set of non negative bounded Radon measure on Rd.

〈FirstConstraint〉
Proposition 1.1 Assume that (1+ |v|2)F ∈M+

b (Rd). Then F solves divv{F (α−β|v|2)v} =

0 in D′(Rd) i.e., ∫
Rd

(α− β|v|2)v · ∇vϕ dF (v) = 0, for any ϕ ∈ C1
c (Rd)

if and only if supp F ⊂ {0} ∪ rSd−1.

The proof of Proposition 1.1 is based on the resolution of the adjoint problem

−(α− β|v|2)v · ∇vϕ = ψ(v), v ∈ Rd

for any smooth function ψ with compact support in {({0} ∪ rSd−1), cf. Lemma 3.1 of [10].
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〈AdjointProblem〉
Lemma 1.1 For any C1 function ψ = ψ(v) with compact support in {({0} ∪ rSd−1), there

is a bounded C1 function ϕ = ϕ(v) such that ϕ(0) = 0 and

−(α− β|v|2)v · ∇vϕ = ψ(v), v ∈ Rd.

In the sequel, we introduce a projection operator onto the subspace of the constraints in (8).

This construction follows closely the gyro-average method in gyro-kinetic theory [6, 7, 8, 9,

11, 12, 14]. An average operator serves to separate between two scales. For example, in gyro-

kinetic theory, two time scales exist : a fast time variable, related to the rapid cyclotronic

motion, and a slow time variable, related to the parallel motion with respect to the magnetic

field. The gyro-average operator represents the average of the fast dynamics over a cyclotronic

period, provided that the slow time variable is frozen. Following this technique, we obtain

an accurate enough but simpler model, from the numerical approximation point of view. All

the fluctuations have been removed and replaced by averaged effects.

Our model (6) presents not two, but three time variables : t, t/ε and t/ε2. The dynamics

is dominated by the self-propulsion/friction mechanism, introducing the fast time variable s =

t/ε2. The average operator is related to the characteristic flow of the field 1
ε2

(α−β|v|2)v ·∇v.

This characteristic flow V = V(s; v), written with respect to s = t/ε2

dV
ds

= (α− β |V(s; v)|2)V(s; v), V(0; v) = v

conserves the direction v
|v| and has as equilibria the elements of {0} ∪ rSd−1. The Jacobian

matrix

∂v{(α− β|v|2)v} = (α− β|v|2)Id − 2βv ⊗ v

being negative on rSd−1 and definite positive at 0, we deduce that the points of rSd−1 are

stable equilibria, and 0 is an unstable equilibrium. For simplicity we neglect the measure

of the unstable point 0 in the velocity space. More generally, some results of this work

have been rigorously justified, but some other have been discussed only at the formal level.

The complete mathematical analysis of these models is out of scope of this paper. We are

mainly interested in the two or three dimensional setting, but the same arguments apply for

any dimension d ≥ 2. For the sake of generality, we state and prove all the results in any

dimension d ≥ 2, and we distinguish, if necessary, between the cases d = 2 and d ≥ 3.

Motivated by the previous observations, we define the average of a non negative bounded

measure cf. [10]. We will denote by f(x, v) dvdx the integration against the measure f .
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This is done independently of being the measure f absolutely continuous with respect to the

Lebesgue measure or not.

Definition 1.1

1. Let F ∈ M+
b (Rd) be a non negative bounded measure on Rd. We denote by 〈F 〉 the

measure corresponding to the linear application

ψ →
∫
Rd

ψ(v) 1v=0F (v) dv +

∫
Rd

ψ

(
r
v

|v|

)
1v 6=0F (v) dv ,

for all ψ ∈ C0
c (Rd), i.e.,∫

Rd

ψ(v) 〈F 〉 (v) dv =

∫
v=0

ψ(v)F (v) dv +

∫
v 6=0

ψ

(
r
v

|v|

)
F (v) dv ,

for all ψ ∈ C0
c (Rd).

2. Let f ∈M+
b (Rd ×Rd) be a non negative bounded measure on Rd ×Rd. We denote by 〈f〉

the measure corresponding to the linear application

ψ →
∫
Rd

∫
Rd

ψ(x, v) 1v=0f(x, v) dvdx+

∫
Rd

∫
Rd

ψ

(
x, r

v

|v|

)
1v 6=0f(x, v) dvdx ,

for all ψ ∈ C0
c (Rd × Rd), i.e.,∫

Rd

∫
Rd

ψ(x, v) 〈f〉 (x, v) dvdx =

∫
v=0

ψ(x, v)f(x, v) dvdx+

∫
v 6=0

ψ

(
x, r

v

|v|

)
f(x, v) dvdx,

for all ψ ∈ C0
c (Rd × Rd).

It is easily seen that the average of a non negative bounded measure is a non negative bounded

measure, with the same mass, but supported in {0} ∪ rSd−1, Rd× ({0} ∪ rSd−1) respectively.

We have the following characterization (see Proposition 5.1 [10]).

〈VarChar〉
Proposition 1.2 Assume that f is a non negative bounded measure on Rd × Rd. Then 〈f〉

is the unique measure f̃ satisfying supp f̃ ⊂ Rd × ({0} ∪ rSd−1),∫
v 6=0

ψ

(
x, r

v

|v|

)
f̃(x, v) dvdx =

∫
v 6=0

ψ

(
x, r

v

|v|

)
f(x, v) dvdx, ψ ∈ C0

c (Rd × Rd)

and f̃ = f on Rd × {0}.

A direct consequence of Proposition 1.2 is that any bounded, non negative measure, sup-

ported in Rd × ({0} ∪ rSd−1) is left unchanged by the average operator. Another property

of the average operator is that it removes any measure of the form divv{f(α − β|v|2)v}, cf.

Proposition 5.2 [10].
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〈Elimination〉
Proposition 1.3 For any f ∈M+

b (Rd×Rd) such that divv{f(α−β|v|2)v} ∈ Mb(Rd×Rd),

we have
〈
divv{f(α− β|v|2)v}

〉
= 0.

The above proposition plays a crucial role when eliminating the Lagrange multiplier f (2)

in (10). Indeed, for doing that, it is enough to average both hand sides in (10). By the

constraint (8), we know that f is supported in Rd × ({0} ∪ rSd−1), and thus is left invariant

by the average. We check that 〈∂tf〉 = ∂t 〈f〉 = ∂tf , and thus, averaging (10) still leads to a

evolution problem for f

∂tf+〈divx(fv)〉 =
〈
νdivv

{
f (1)(v − u[f ]) + σ∇vf (1)

}〉
−

〈
νdivv

{
f

∫
Rdf

(1)(v′ − u[f ]) dv′∫
Rdf dv′

}〉
.

(11) Equ12

Certainly, a much more difficult task is to eliminate the Lagrange multiplier f (1). We expect

that this can be done thanks to the constraint in (9). The solvability of (9), with respect to

f (1), depends on a compatibility condition, to be satisfied by the right hand side. Indeed, by

Proposition 1.3, we should have

〈ν divv{f(v − u[f ]) + σ∇vf}〉 =
〈

divv{f (1)(α− β|v|2)v}
〉

= 0 (12) Equ14

saying that f is a equilibrium for the average collision kernel

〈Q(f)〉 = 0, Q(f) = ν divv{f(v − u[f ]) + σ∇vf}.

The equilibria of the average collision kernel form a d-dimensional manifold, that is one

dimension less than the equilibria manifold of the Fokker-Planck operatot Q (see also [29, 33]).

For any l ∈ R+,Ω ∈ Sd−1, we introduce the von Mises-Fisher distribution

MlΩ(ω) dω =
exp

(
lΩ · ωr

)∫
rSd−1exp

(
lΩ · ω′r

)
dω ′

dω, ω ∈ rSd−1.

〈AveEqui〉Proposition 1.4 Let F ∈M+
b (Rd) be a non negative bounded measure on Rd, supported in

rSd−1. The following statements are equivalent.

1. 〈Q(F )〉 = 0, that is∫
v 6=0

{
−(v − u[F ]) · ∇v

[
ψ̃

(
r
v

|v|

)]
+ σ∆v

[
ψ̃

(
r
v

|v|

)]}
F dv = 0 for any ψ̃ ∈ C2(rSd−1).

2. There are ρ ∈ R+,Ω ∈ Sd−1 such that F = ρMlΩdω where l ∈ R+ satisfies∫ π
0 cos θ el cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
=

σ

r2
l.

8



The modulus of the mean velocity is not a coordinate on the equilibria manifold, but it is

determined by the condition

|u| = σl

r
,

∫ π
0 cos θ el cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
=

σ

r2
l.

Clearly l = 0 is a solution, which corresponds to the isotropic equilibrium

F = ρM0Ω dω = ρ
dω

ωdrd−1

where ωd represents the area of the unit sphere in Rd. We prove that, if the diffusion is large

enough, then the only equilibrium is the isotropic one.

〈IsotropicEquilibrium〉
Proposition 1.5 Let λ : R+ → R be the function given by

λ(l) =

∫ π
0 cos θel cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
, l ∈ R+, d ≥ 2.

The function λ is strictly increasing, strictly concave and verifies

λ(0) = 0, λ′(0) =
1

d
, lim
l→+∞

λ(l) = 1.

If σ
r2 ≥ 1

d , then the only solution of λ(l) = σ
r2 l is l = 0. If σ

r2 ∈]0, 1
d [, then there is a unique

l = l
(
σ
r2

)
> 0 such that λ(l) = σ

r2 l.

Our main result establishes the macroscopic equations satisfied by the density ρ and orien-

tation Ω, which parametrize the von Mises-Fisher equilibrium, obtained when passing to the

limit for ε ↘ 0 in (6). We retrieve the limit model in [29], written for any space dimension

d ≥ 2.

〈MainResult1〉
Theorem 1.1 For any σ, r such that σ

r2 ∈]0, 1
d [, we denote by l = l

(
σ
r2

)
the unique positive

solution of λ(l) = σ
r2 l. Let f in ∈ M+

b (Rd × Rd) be a non negative bounded measure on

Rd × Rd, d ≥ 2. For any ε > 0 we consider the problem

∂tf
ε+divx(f εv)+

1

ε2
divv(f

ε(α−β|v|2)v) =
ν

ε
divv[f

ε(v−u[f ε])+σ∇vf ε], (t, x, v) ∈ R+×Rd×Rd

(13) Equ71

f ε(0) = f in, (x, v) ∈ Rd × Rd.

Therefore the limit distribution f = limε↘0 f
ε, is a von Mises-Fisher equilibrium f =

ρMlΩ(ω) dω on rSd−1, where the density ρ(t, x) and the orientation Ω(t, x) satisfy the macro-

scopic equations

∂tρ+ divx

(
ρ
lσ

r
Ω

)
= 0, (t, x) ∈ R+ × Rd (14) Equ73
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∂tΩ + kd r(Ω · ∇x)Ω +
r

l
(Id − Ω⊗ Ω)

∇xρ
ρ

= 0 (15) Equ74

with the initial conditions

ρ(0, x) =

∫
Rd

f in(x) dv, Ω(0, x) =

∫
Rdvf

in(x) dv∣∣∫
Rdvf in(x) dv

∣∣ , x ∈ Rd

where

kd =

∫ π
0 el cos θχ(cos θ) cos θ sind−1 θ dθ∫ π

0 el cos θχ(cos θ) sind−1 θ dθ

and χ solves

− σ
r2

d

dc

{
elcχ ′(c)(1− c2)

1
2

}
= relc, c ∈]− 1, 1[, χ(−1) = χ(1) = 0 if d = 2

and

− σ
r2

d

dc

{
elcχ ′(c)(1− c2)

d−1
2

}
+(d−2)

σ

r2
elcχ(c)(1−c2)

d−5
2 = relc(1−c2)

d−2
2 , c ∈]−1, 1[, d ≥ 3.

Our article is organized as follows. In Section 2 we study the equilibria of the average collision

operator. This analysis can be carried out by introducing some Bessel functions. In the next

section we investigate the notion of collision invariant. We determine the structure of these

invariants and present theirs symmetries. Section 4 is devoted to the derivation of the fluid

model for the macroscopic quantities, parametrizing the limit von Mises-Fisher equilibrium.

The proofs of some technical results can be found in Appendix.

2 The equilibria of the average collision operator

〈AveColOpe〉
We consider the collision operator Q(F ) = νdivv{F (v − u[F ]) + σ∇vF} where u[F ] =∫
RdvF dv/

∫
RdF dv is the mean velocity. The above operator should be understood in the du-

ality sense between non negative bounded measures on Rd and smooth functions, compactly

supported in Rd∫
Rd

ψ(v)Q(F ) dv = ν

∫
Rd

[−(v − u[F ]) · ∇vψ(v) + σ∆vψ(v)]F dv

for any F ∈ M+
b (Rd) and ψ ∈ C2

c (Rd) such that
∫
Rd |v|F dv < +∞. As suggested by the

formal expansion (7), we focus on measures satisfying (see (8), (9))

divv{F (α− β|v|2)v} = 0, Q(F ) = divv{F (1)(α− β|v|2)v}.

Thanks to Propositions 1.3, 1.1, we deduce that supp F ⊂ {0} ∪ rSd−1 and

〈Q(F )〉 =
〈

divv{F (1)(α− β|v|2)v}
〉

= 0.
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We discuss the case of non negative bounded measures supported on the sphere rSd−1, that

is, we discard all difficulties related to the mass of the points at rest. For such measures, the

equality 〈Q(F )〉 = 0 can be interpreted in the following sense (see Proposition 1.2)∫
v 6=0

{
−(v − u[F ]) · ∇v

[
ψ̃

(
r
v

|v|

)]
+ σ∆v

[
ψ̃

(
r
v

|v|

)]}
= 0, for any ψ̃ ∈ C2(rSd−1).

The complete description of the above equilibria of the average collision operator Q, called the

von Mises-Fisher distributions, is given by Proposition 1.4, whose proof is detailed below. We

start with the following easy integration by parts formula on spheres. The proof is postponed

to Appendix A.

〈IntByPartsSphere〉
Lemma 2.1 Assume that A = A(v) is a C1 vector field in O = {v ∈ Rd : r1 < |v| < r2}.

Then for any t ∈]r1, r2[ we have∫
|ω|=t

(divvA)(ω) dω =

∫
|ω|=t

{
ω ⊗ ω
t2

: ∂vA(ω) +
(d− 1)ω

t2
·A(ω)

}
dω. (16) Ident0

In particular, if A(v) · v = 0, v ∈ O, then∫
|ω|=t

(divvA)(ω) dω = 0, t ∈]r1, r2[ (17) Ident1

and for any function χ ∈ C1(O) we have∫
|ω|=t

∇vχ(ω) ·A(ω) dω +

∫
|ω|=t

χ(ω)(divvA)(ω) dω = 0, t ∈]r1, r2[. (18) Ident2

It is very convenient to express the differential operators ∇ω,divω of functions and vector

fields on the sphere rSd−1 in terms of the differential operators ∇v,divv applied to extensions

of functions and vector fields on a neighborhood of rSd−1 in Rd. The notation ·̃ stands for the

restriction on the sphere rSd−1. The proof of the following lemma is detalied in Appendix B.

〈Extension〉
Lemma 2.2

1. Let ψ = ψ(v) be a C1 function in a open set of Rd, containing rSd−1. Then, for any

ω ∈ rSd−1 we have

∇ωψ̃(ω) =

(
Id −

ω ⊗ ω
r2

)
∇̃vψ(ω).

2. Let ψ̃ = ψ̃(ω) be a C1 function on rSd−1 and ψ : O = {v ∈ Rd : r1 < |v| < r2} → R be

the function defined by ψ(v) = ψ̃
(
r v
|v|

)
, v ∈ O, with 0 < r1 < r < r2 < +∞. Then, for any

t ∈]r1, r2[, we have

(∇vψ)(ωt) = (∇ωtψ)(ωt) =
r

t
(∇ωψ̃)

(
r
ωt
t

)
, |ωt| = t.

11



3. Let ξ̃ = ξ̃(ω) be a C1 vector field on rSd−1 and ξ = ξ(v) a C1 extension of ξ̃ in the set

O = {v ∈ Rd : r1 < |v| < r2} such that ξ(v) · v = 0 for any v ∈ O. Then we have

(divω ξ̃)(ω) = (d̃ivvξ)(ω), ω ∈ rSd−1.

〈Complement〉
Remark 2.1 Consider ξ̃ = ξ̃(ω) a C1 vector field on rSd−1 and ξ(v) = ξ̃

(
r v
|v|

)
, v ∈ Rd\{0}.

We have ξ(v) · v = 0, v ∈ Rd \ {0}, and for any t > 0

(divvξ)(ωt) = (divωtξ)(ωt) =
r

t
(divω ξ̃)

(
r
ωt
t

)
, ωt ∈ tSd−1.

The first equality comes by the third statement of Lemma 2.2. In oder to check the second

equality, pick a C1 function ψt on tSd−1 and consider the function ψ̃(ω) = ψt(tω/r), ω ∈

rSd−1. We have

∇ωψ̃(ω) =
t

r
(∇ωtψt)

(
t
ω

r

)
and thus

−
∫
|ωt|=t

(divωtξ)(ωt)ψt(ωt) dωt =

∫
|ωt|=t

ξ(ωt) · ∇ωtψt(ωt) dωt

=

∫
|ω|=r

ξ
(
t
ω

r

)
· (∇ωtψt)

(
t
ω

r

)( t
r

)d−1

dω

=

∫
|ω|=r

ξ̃(ω) · ∇ωψ̃(ω)

(
t

r

)d−2

dω

= −
∫
|ω|=r

(divω ξ̃)(ω)ψ̃(ω)

(
t

r

)d−2

dω

= −
∫
|ωt|=t

r

t
(divω ξ̃)

(
r
ωt
t

)
ψt(ωt) dωt.

We deduce that (divωtξ)(ωt) = r
t (divω ξ̃)(rωt/t) for any ωt ∈ tSd−1.

Before giving the proof of Proposition 1.4, we indicate a formula which will be used several

times in our computations. For any continuous function G : [−r, r]→ R, d ≥ 2,Ω ∈ Sd−1, we

have ∫
rSd−1

G(ω · Ω) dω =

∫ π

0
G(r cos θ) sind−2 θ dθ rd−1ωd−1

with ω1 = 2. In particular, for any continuous function g : [−r, r]→ R, we have∫
rSd−1

g(ω · Ω)MlΩ(ω) dω =

∫
rSd−1g(ω · Ω) exp

(
lΩ · ωr

)
dω∫

rSd−1exp
(
lΩ · ωr

)
dω

=

∫ π
0 g(r cos θ)el cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
.

(19) ForMag

Proof. (of Proposition 1.4)

1. =⇒ 2. We assume that F is a equilibrium for the average collision kernel. We claim

12



that
∫
Rdϕ(v)F dv = 0 for any smooth function ϕ satisfying

∫
rSd−1ϕ(ω)M(ω) dω = 0, with

M(v) = exp
(
− |v−u[F ] |2

2σ

)
, v ∈ Rd. The idea is to solve the problem

−divω(M(ω)∇ωψ̃) = M(ω)ϕ̃(ω), ω ∈ rSd−1 (20) Equ14

where ϕ̃ is the restriction on rSd−1 of ϕ and the notations divω,∇ω stand for the divergence

and gradient operators along the sphere rSd−1. Notice that we have∫
rSd−1

ϕ̃(ω)M(ω) dω =

∫
rSd−1

ϕ(ω)M(ω) dω = 0.

We introduce the Hilbert spaces

L2(rSd−1) = {χ : rSd−1 → R,
∫
rSd−1

(χ(ω))2M(ω) dω < +∞}

H1(rSd−1) = {χ : rSd−1 → R,
∫
rSd−1

{(χ(ω))2 + |∇ωχ|2}M(ω) dω < +∞}

endowed with the scalar products

(χ, θ)r =

∫
rSd−1

χ(ω)θ(ω)M(ω) dω, χ, θ ∈ L2(rSd−1)

((χ, θ))r =

∫
rSd−1

[χ(ω)θ(ω) +∇ωχ · ∇ωθ] M(ω) dω, χ, θ ∈ H1(rSd−1).

We denote by | · |r, ‖ · ‖r the norm induced by the above scalar products. There is a constant

Cr such that the following Poincaré inequality holds true

|χ|2r =

∫
rSd−1

(χ(ω))2M(ω) dω ≤ Cr
∫
rSd−1

|∇ωχ|2M(ω) dω = Cr|∇ωχ|2r

for any χ ∈ H1(rSd−1) satisfying
∫
rSd−1χ(ω)M(ω) dω = 0. The previous inequality guaran-

tees that the application χ→ |∇ωχ|r is a norm equivalent to ‖ · ‖r on

H̃1(rSd−1) := H1(rSd−1) ∩ {θ ∈ L2(rSd−1) :

∫
rSd−1

θ(ω)M(ω) dω = 0}.

Therefore, the bilinear form

(χ, θ) ∈ H̃1(rSd−1)× H̃1(rSd−1)→
∫
rSd−1

∇ωχ · ∇ωθ M(ω) dω

is symmetric, bounded and coercive. By the Lax-Milgram lemma, there is a unique solution

ψ̃ ∈ H̃1(rSd−1) for the variational problem (20)∫
rSd−1

∇ωψ̃ · ∇ωχ M(ω) dω =

∫
rSd−1

ϕ̃(ω)χ(ω)M(ω) dω (21) Equ15
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for any χ ∈ H̃1(rSd−1). Observe that (21) still holds true for any constant function on rSd−1,

thanks to the compatibility condition
∫
rSd−1ϕ̃(ω)M(ω) dω = 0. Therefore the variational

formulation is valid for any function χ ∈ H1(rSd−1), implying that

−divω(M(ω)∇ωψ̃) = M(ω)ϕ̃(ω), ω ∈ rSd−1.

We consider the homogeneous function ψ of degree 0, which coincides with ψ̃ on rSd−1

ψ(v) = ψ̃

(
r
v

|v|

)
, v ∈ Rd \ {0}.

By Lemma 2.2, statements 2 and 3, we check that for any v ∈ rSd−1 we have

M(v)

{
v − u[F ]

σ
· ∇v

[
ψ̃

(
r
v

|v|

)]
−∆v

[
ψ̃

(
r
v

|v|

)]}
= −divω(M∇ωψ̃) = M(v)ϕ̃(v)

and therefore we obtain∫
Rd

ϕ(v)F dv =

∫
Rd

{
v − u[F ]

σ
· ∇v

[
ψ̃

(
r
v

|v|

)]
−∆v

[
ψ̃

(
r
v

|v|

)]}
F dv = 0.

We deduce that the linear forms ϕ→
∫
rSd−1ϕ(ω)M(ω) dω and ϕ→

∫
Rdϕ(v)F dv are propor-

tional, and thus there is C̃ such that for any ϕ ∈ C(Rd), we have

∫
Rd

ϕ(v)F dv = C̃

∫
rSd−1

ϕ(ω)M(ω) dω = ρ

∫
rSd−1ϕ(ω) exp

(
ω·u[F ]
σ

)
dω∫

rSd−1exp
(
ω·u[F ]
σ

)
dω

, ρ = C̃

∫
rSd−1

M(ω) dω.

Therefore the measure F has a positive density with respect to dω on rSd−1

F = ρ
exp

(
ω·u[F ]
σ

)
dω∫

rSd−1exp
(
ω′·u[F ]
σ

)
dω ′

.

If ρ = 0, we obtain F = 0, and we can take l = 0 and any Ω ∈ Sd−1. Assume now that

ρ > 0. If u[F ] = 0, we obtain F = ρ dω
ωdrd−1 which corresponds to l = 0 and any Ω ∈ Sd−1. If

u[F ] 6= 0, we introduce Ω[F ] = u[F ]
|u[F ]| . By the definition of u[F ], we have

u[F ] =

∫
rSd−1exp

(
ω·u[F ]
σ

)
ω dω∫

rSd−1exp
(
ω·u[F ]
σ

)
dω

=

∫ π
0 r cos θ exp

(
r|u[F ]|
σ cos θ

)
sind−2 θ dθ∫ π

0 exp
(
r|u[F ]|
σ cos θ

)
sind−2 θ dθ

Ω[F ]. (22) Equ20

For the last equality use the fact that∫
rSd−1

exp

(
ω · u[F ]

σ

)
ω dω =

∫
rSd−1

exp

(
ω · u[F ]

σ

)
(ω · Ω) dω Ω

and formula (19). The equality (22) reduces to the condition

|u[F ]|
r

=

∫ π
0 cos θ exp

(
r|u[F ]|
σ cos θ

)
sind−2 θ dθ∫ π

0 exp
(
r|u[F ]|
σ cos θ

)
sind−2 θ dθ

.
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We introduce the function λ : R+ → R

λ(l) =

∫ π
0 cos θel cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
, l ∈ R+.

Therefore the non negative number r|u[F ]|
σ satisfies λ(l) = σ

r2 l, and thus the measure F is

given by

F = ρ
exp

(
r|u[F ]|
σ

ω
r · Ω

)
dω∫

rSd−1exp
(
r|u[F ]|
σ

ω ′

r · Ω
)

dω ′
= ρMlΩ dω

with ρ ∈ R+, Ω = u[F ]
|u[F ]| ∈ Sd−1, l ∈ R+ satisfying λ(l) = σ

r2 l.

2. =⇒ 1. Conversely, let F be a measure given by F = ρMlΩdω for some ρ ∈ R+,Ω ∈

Sd−1, l ∈ R+ such that λ(l) = σ
r2 l. If ρ = 0, F is the trivial equilibrium (with u[F ] = 0). If

ρ > 0, the mean velocity writes

u[F ] =

∫
RdvF dv∫
RdF dv

=

∫
rSd−1(ω · Ω) exp

(
lωr · Ω

)
dω∫

rSd−1exp
(
lωr · Ω

)
dω

Ω

=
r
∫ π

0 cos θel cos θ sind−2 θ dθ∫ π
0 el cos θ sind−2 θ dθ

Ω = rλ(l)Ω =
σ

r
lΩ

saying that u[F ]
|u[F ]| = Ω and |u[F ]| = σl

r . For any test function ψ̃ ∈ C2(rSd−1) we have

M(v)

[
(v − u[F ]) · ∇v

[
ψ̃

(
r
v

|v|

)]
− σ∆v

[
ψ̃

(
r
v

|v|

)] ]
= −σdivω(M∇ωψ̃), v ∈ rSd−1

where M(v) = exp
(
− |v−u[F ]|2

2σ

)
, v ∈ Rd. Notice that for any v ∈ rSd−1 we have

M(v) = exp

(
−
r2 + σ2l2

r2

2σ

)∫
rSd−1

exp
(
lΩ · ω

r

)
dω MlΩ(ω)

and thus, the above equality becomes

MlΩ(v)

{
(v − u[F ]) · ∇v

[
ψ̃

(
r
v

|v|

)]
− σ∆v

[
ψ̃

(
r
v

|v|

)]}
= −σdivω(MlΩ∇ωψ̃), v ∈ rSd−1.

Therefore we obtain∫
v 6=0

{
(v − u[F ]) · ∇v

[
ψ̃

(
r
v

|v|

)]
− σ∆v

[
ψ̃

(
r
v

|v|

)]}
F dv

=

∫
|v|=r

{
(v − u[F ]) · ∇v

[
ψ̃

(
r
v

|v|

)]
− σ∆v

[
ψ̃

(
r
v

|v|

)]}
ρMlΩ(v) dv

= −ρσ
∫
rSd−1

divω(MlΩ(ω)∇ωψ̃) dω = 0.

The properties of the function λ are summarized in Proposition 1.5, whose proof is detalied

below.
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Proof. (of Proposition 1.5)

We introduce the function

β0(l) =
1

π

∫ π

0
el cos θ sind−2 θ dθ, l ∈ R.

It is a Bessel like function [1]. Indeed, it verifies the linear second order differential equation

l2β′′0 (l) + (d− 1)lβ′0(l) = l2β0(l), l ∈ R. (23) EquBessel

We recall that the standard modified Bessel function In(l) = 1
π

∫ π
0 el cos θ cos(nθ) dθ, n ∈ N,

satisfy

l2I ′′n(l) + lI ′n(l) = (l2 + n2)In(l), l ∈ R.

Clearly β′0(l) = 1
π

∫ π
0 cos θel cos θ sind−2 θ dθ and thus the function λ writes

λ(l) =
β′0(l)

β0(l)
.

It is easily seen that β′0(0) = 0, implying that λ(0) = 0. Indeed, we have

πβ′0(0) =

∫ π

0
cos θ sind−2 θ dθ =

∫ π

0

d

dθ

sind−1 θ

d− 1
dθ = 0, d ≥ 2.

Moreover, λ is strictly increasing. This comes by the formula

λ′(l) =
β′′0 (l)β0(l)− (β′0(l))2

β2
0(l)

(24) EquDerLam

and by observing that the Cauchy inequality implies

(β′0(l))2 =

(
1

π

∫ π

0
cos θel cos θ sind−2 θ dθ

)2

<
1

π

∫ π

0
el cos θ sind−2 θ dθ

1

π

∫ π

0
cos2 θel cos θ sind−2 θ dθ = β0(l)β′′0 (l).

The derivative of λ at l = 0 is

λ′(0) =
β′′0 (0)

β0(0)
=

∫ π
0 cos2 θ sind−2 θ dθ∫ π

0 sind−2 θ dθ
=

∫ π
0 cos θ d

dθ
sind−1 θ
d−1 dθ∫ π

0 sind−2 θ dθ
=

∫ π
0 sind θ dθ

(d− 1)
∫ π

0 sind−2 θ dθ
.

But we also have

λ′(0) = 1−
∫ π

0 sind θ dθ∫ π
0 sind−2 θ dθ

.

We deduce that ∫ π
0 sind θ dθ∫ π

0 sind−2 θ dθ
= 1− λ′(0) = (d− 1)λ′(0)

which yields λ′(0) = 1/d. We claim that λ is strictly concave. Combining (24), (23), we

obtain for any l > 0

λ′(l) =

(
β0(l)− d−1

l β
′
0(l)
)
β0(l)

β2
0(l)

−
(
β′0(l)

β0(l)

)2

= 1− d− 1

l
λ(l)− λ2(l). (25) Equ22

16



As λ is positive and strictly increasing, we deduce that λ is strictly concave on R+. Clearly

the function λ is bounded on R+

0 = λ(0) < λ(l) =

∫ π
0 cos θel cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ
< 1

and 1
d = λ′(0) > λ′(l) > 0, l > 0. Let us denote by Λ0,Λ1 the limits

Λ0 = lim
l→+∞

λ(l) ∈]0, 1], Λ1 = lim
l→+∞

λ′(l) ∈ [0,
1

d
[.

If Λ1 > 0 then the inequality λ′(l) > Λ1, l > 0, implies

lim
l→+∞

λ(l) = lim
l→+∞

{λ(l)− λ(0)} ≥ lim
l→+∞

lΛ1 = +∞

which contradicts the boundedness of λ. Therefore Λ1 = 0 and thus λ′([0,+∞[) =]0, λ′(0)] =

]0, 1/d]. Passing to the limit, when l→ +∞, in (25), yields Λ0 = liml→+∞ λ(l) = 1.

If σ
r2 ≥ 1

d , the function l→ λ(l)− σ
r2 l is strictly decreasing on R+, and vanishes at l = 0

λ′(l)− σ

r2
< λ′(0)− σ

r2
=

1

d
− σ

r2
≤ 0, l > 0

implying that the only solution of λ(l) = σ
r2 l on R+ is l = 0. If σ

r2 ∈]0, 1
d [, there is a

unique l̃( σ
r2 ) > 0 such that λ′(l̃) = σ

r2 and the function l → λ′(l)− σ
r2 is positive on ]0, l̃( σ

r2 )[

and negative on ]l̃( σ
r2 ),+∞[. Therefore the function l → λ(l) − σ

r2 l is strictly increasing on

[0, l̃( σ
r2 )], strictly decreasing on [l̃( σ

r2 ),+∞[{
λ(l)− σ

r2
l
}
|l=0 = 0, lim

l→+∞

{
λ(l)− σ

r2
l
}

= −∞.

We deduce that there is a unique solution l( σ
r2 ) > 0 such that λ(l( σ

r2 )) = σ
r2 l(

σ
r2 ).

Remark 2.2 The value l = 0 corresponds to the isotropic equilibrium M0Ω dω = dω
ωdrd−1 .

The limit when l → +∞ leads to the Dirac measure on rSd−1, concentrated at rΩ, that is,

for any function ψ̃ ∈ C(rSd−1) we have

lim
l→+∞

∫
rSd−1

ψ̃(ω)MlΩ(ω) dω = ψ̃(rΩ).

The function λ can be computed explicitly, at least for d = 3. Nevertheless, very good

explicite approximations are available in any dimension d.

〈Approximation〉
Lemma 2.3
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1. Consider the function

µ : R+ → R+, µ(l) =

√
d2 + 4l2 − d

2l
=

2l√
d2 + 4l2 + d

, l ∈ R+.

The function µ is strictly increasing, strictly concave and we have

µ(0) = λ(0) = 0, µ′(0) = λ′(0) =
1

d
, lim
l→+∞

µ(l) = 1

µ′(l) < 1− d− 1

l
µ(l)− µ2(l), µ(l) < λ(l), l > 0.

2. If d = 3, the function λ is given by λ(l) = cosh(l)
sinh(l) −

1
l , l > 0.

Proof.

1. By direct computations we obtain

µ′(l) =
2d√

d2 + 4l2(
√
d2 + 4l2 + d)

> 0, l ∈ R+

and

1− d− 1

l
µ(l)− µ2(l) =

2√
d2 + 4l2 + d

.

Therefore µ satisfies the first order differential inequation

µ′(l) =
2d√

d2 + 4l2(
√
d2 + 4l2 + d)

<
2√

d2 + 4l2 + d
= 1− d− 1

l
µ(l)− µ2(l), l > 0

and the initial condition µ(0) = 0. Recall that λ satisfies the first order differential equation

(cf. (25))

λ′(l) = 1− d− 1

l
λ(l)− λ2(l), l > 0

with the initial condition λ(0) = 0. By comparison principle, it follows that µ(l) < λ(l) for

any l > 0. Clearly µ′(0) = 1
d = λ′(0), liml→+∞ µ(l) = 1, µ′(l) > 0, l ∈ R+, and µ′ is strictly

decreasing, saying that µ is strictly increasing and strictly concave on R+.

2. In the case d = 3 we obtain

πβ0(l) =

∫ π

0
el cos θ sin θ dθ =

el − e−l

l
, l > 0

πβ′0(l) =

∫ π

0
el cos θ cos θ sin θ dθ =

el + e−l

l
− el − e−l

l2
, l > 0

implying that

λ(l) =
β′0(l)

β0(l)
=

cosh(l)

sinh(l)
− 1

l
, l > 0.
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In order to exploit the constraint (9) we will need to compute Q(F ), where F is a von Mises-

Fisher equilibrium, let us say F = MlΩ(ω)dω. This computation is detailed in the following

lemma. The notation (·, ·) stands for the pairing between distributions and smooth functions.

Lemma 2.4 Let F = MlΩ(ω)dω be a von Mises-Fisher equilibrium. Then we have, for any

function ϕ ∈ C2
c (Rd)

(Q(F ), ϕ) = νσ
MlΩ

M

d

dt
|t=r

∫
|ωt|=t

M(ωt)(∇vϕ)(ωt) ·
ωt
t

dωt

where M(v) = exp
(
− |v−u[F ]|2

2σ

)
, v ∈ Rd.

Proof. Pick a test function ϕ ∈ C2
c (Rd) and notice that

(Q(F ), ϕ) = ν(F, σ∆vϕ− (v − u[F ]) · ∇vϕ)

= ν

(
F, σ

divv(M∇vϕ)

M(v)

)
= νσ

∫
rSd−1

divv(M∇vϕ)(ω)
MlΩ(ω)

M(ω)
dω.

It is easily seen that the function MlΩ
M is constant on the sphere rSd−1

MlΩ(ω)

M(ω)
=

exp
(
r2+|u[F ]|2

2σ

)
∫
rSd−1exp

(
lΩ · ω′r

)
dω ′

, ω ∈ rSd−1

and therefore we have

(Q(F ), ϕ) = νσ
MlΩ

M

d

dt
|t=r

∫
|v|<t

divv(M∇vϕ) dv

= νσ
MlΩ

M

d

dt
|t=r

∫
|ωt|=t

M(ωt)∇vϕ(ωt) ·
ωt
t

dωt.

Thanks to the above result, we can determine F (1) −
〈
F (1)

〉
in terms of F . More exactly we

prove

〈FOneF〉
Lemma 2.5 Let F = MlΩ(ω)dω be a von Mises-Fisher equilibrium and F (1) a bounded

measure such that

divv{F (1)(α− β|v|2)v} = Q(F ).

Then for any function χ ∈ C1
c (Rd), such that χ|rSd−1 = 0 we have∫

Rd

χ(v)
(
F (1) −

〈
F (1)

〉)
dv =

∫
v 6=0

χ(v)F (1) dv = νσ
MlΩ

M

d

dt
|t=r

∫
|ωt|=t

M(ωt)χ(ωt)

tβ(t2 − r2)
dωt.
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Proof. For any function ϕ ∈ C1
c (Rd), we know that

−
∫
Rd

(α− β|v|2)v · ∇vϕ F (1) dv = (Q(F ), ϕ) = νσ
MlΩ

M

d

dt
|t=r

∫
|ωt|=t

M(ωt)∇vϕ(ωt) ·
ωt
t

dωt.

The idea is to solve the adjoint problem (cf. Lemma 1.1)

−(α− β|v|2)v · ∇vϕ = χ(v)

and to express the normal derivative of ϕ in terms of χ. Indeed, for any ωt ∈ tSd−1, we have

∇vϕ(ωt) ·
ωt
t

=
χ(ωt)

t(βt2 − α)
=

χ(ωt)

tβ(t2 − r2)
.

Finally we obtain the formula∫
v 6=0

χ(v)F (1) dv = (Q(F ), ϕ) = νσ
MlΩ

M

d

dt
|t=r

∫
|ωt|=t

M(ωt)χ(ωt)

tβ(t2 − r2)
dωt.

Once we have determined the form of the dominant distribution f(t, x) = ρ(t, x)MlΩ(t,x)dω,

we search for macroscopic equations characterizing ρ(t, x) and Ω(t, x). For doing that, we

use the moments of (11) with respect to the velocity. The key point is how to eliminate f (1)

in the right hand side of (11). Notice that this right hand side is the linearization around f ,

with
∫
Rdf dv > 0, computed in the direction f (1), of the average collision kernel Q

lim
ε↘0

〈
Q(f + εf (1))

〉
− 〈Q(f)〉

ε
=
〈
νdivv

[
f (1)(v − u[f ]) + σ∇vf (1)

]〉
−

〈
νdivv

[
f

∫
Rdf

(1)(v′ − u[f ]) dv′∫
Rdf dv′

]〉
=
〈

divvAf (f (1))
〉

where

Af (f (1)) = ν
[
f (1)(v − u[f ]) + σ∇vf (1)

]
− νf

∫
Rdf

(1)(v′ − u[f ]) dv′∫
Rdf dv′

.

We are looking for functions such that∫
Rd

ψ(v)
〈

divvAf (f (1))
〉

dv (26) Equ23

can be expressed in terms of the velocity moments of f , in order to get a closure for the

macroscopic quantities ρ(t, x),Ω(t, x). For example ψ(v) = 1 leads to the continuity equation

∂t

∫
Rd

f dv + divx

∫
Rd

vf dv = 0
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which also writes

∂tρ+ divx

(
ρ
σ

r
lΩ
)

= 0.

Naturally, we need to find other functions ψ, which will allow us to characterize the time

evolution of the orientation Ω. Recall that the constraint (9) determines f (1) −
〈
f (1)

〉
(in

terms of f), but not
〈
f (1)

〉
. Motivated by this, we are looking for functions ψ such that∫

Rd

ψ(v)
〈

divvAf (g(1))
〉

dv = 0

for any measures f, g(1) supported in Rd × rSd−1. Indeed, in that case the expression in (26)

can be computed in terms of f , provided that we neglect the mass of f (1) at Rd × {0}∫
Rd

ψ(v)
〈

divvAf (f (1))
〉

dv =

∫
Rd

ψ
〈

divvAf

〈
f (1)

〉〉
dv +

∫
Rd

ψ
〈

divvAf

[
f (1) −

〈
f (1)

〉]〉
dv

=

∫
Rd

ψ(v)
〈

divvAf

[
f (1) −

〈
f (1)

〉]〉
dv.

Let us concentrate now on the collision invariants of the average collision operator. Recall

that the linearized of 〈Q〉, around a measure F such that
∫
RdF dv > 0, writes

lim
ε↘0

〈
Q(F + εF (1))

〉
− 〈Q(F )〉

ε
=
〈

divvAF (F (1))
〉

where

AF (F (1)) = ν
[
F (1)(v − u[F ]) + σ∇vF (1)

]
− νF

∫
RdF

(1)(v′ − u[F ]) dv′∫
RdF dv′

.

We search for functions ψ = ψ(v) such that∫
Rd

ψ(v)
〈

divvAF (G(1))
〉

dv = 0 (27) Equ41

for any bounded measures F,G(1) supported in rSd−1. Actually, since we already know that

the dominant term is a von Mises-Fisher distribution, it is enough to impose (27) only for

F = MlΩdω, with λ(l) = σ
r2 l, for some given Ω ∈ Sd−1. Doing that, to any orientation Ω,

we associate a family of suitable pseudo-collision invariants, allowing us to determine the

macroscopic equations satisfied by the moments ρ,Ω, see also [29] for a similar construction.

Nevertheless the approach is not exactly the same. Actually, once we have determined ψ such

that (27) is verified for any bounded measure G(1) supported in rSd−1, we need to check that

(27) still holds true for any bounded measure, not necessarily supported in rSd−1, satisfying

the constraint (9) (see Proposition 3.4 and C). The condition (27) should be understood in

the following sense ∫
v 6=0

ψ̃

(
r
v

|v|

)
divv{AF (G(1))} dv = 0, F = MlΩ dω
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for any G(1) ∈Mb(Rd), supp G(1) ⊂ rSd−1, that is∫
v 6=0

{
−(v − u[F ]) · ∇v

[
ψ̃

(
r
v

|v|

)]
+ σ∆v

[
ψ̃

(
r
v

|v|

)]}
G(1) dv

+

∫
v 6=0

∫
v′ 6=0(v′ − u[F ])G(1) dv′∫

RdF dv′
· ∇v

[
ψ̃

(
r
v

|v|

)]
F dv = 0 (28) Equ42

for F = MlΩdω and any G(1) ∈ Mb(Rd), supp G(1) ⊂ rSd−1. Taking into account the

equalities

∇v
[
ψ̃

(
r
v

|v|

)]
= ∇ωψ̃, ∆v

[
ψ̃

(
r
v

|v|

)]
= ∆ωψ̃, |v| = r

the condition (28) becomes

[
−(ω − u[MlΩ]) · ∇ωψ̃ + σdivω(∇ωψ̃)

]
+ (ω − u[MlΩ]) ·

∫
rSd−1∇ω′ψ̃MlΩ dω ′∫

rSd−1MlΩ dω ′
= 0, ω ∈ rSd−1.

(29) Equ43

3 The collision invariants
?〈ColInv〉?

In the sequel we concentrate on the resolution of the linear equation (29). If we introduce

the vector

W [ψ̃] =

∫
rSd−1∇ωψ̃MlΩ(ω) dω∫

rSd−1MlΩ(ω) dω
=

∫
rSd−1

∇ωψ̃MlΩ(ω) dω

the equation (29) becomes elliptic on rSd−1 and writes

−σdivω(MlΩ∇ωψ̃) = MlΩ(ω)(ω − u[MlΩ]) ·W [ψ̃]. (30) Equ62

The solvability of (30) requires that the integral of the right hand side over rSd−1 vanishes,

which is true, by the definition of the mean velocity. But there is another compatibility

condition to be fullfiled. Take any vector W ′ ∈ Rd and multiply the equation (30) by the

scalar function ω → W ′ · ω, whose gradient along rSd−1 is
(
Id − ω⊗ω

r2

)
W ′. Integrating by

parts yields

σ

∫
rSd−1

MlΩ(ω)∇ωψ̃ dω ·W ′ =
∫
rSd−1

MlΩ(ω)(ω − u[MlΩ])⊗ (ω − u[MlΩ]) dω : W [ψ̃]⊗W ′

saying that W [ψ̃] is an eigenvector of the matrix

MlΩ :=

∫
rSd−1

MlΩ(ω)(ω − u[MlΩ])⊗ (ω − u[MlΩ]) dω

corresponding to the eigenvalue σ. The following lemma details the spectral properties of the

matrix MlΩ.
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〈SpecProp〉
Lemma 3.1 For any l ∈ R+ such that λ(l) = σ

r2 l, and Ω ∈ rSd−1, the matrix MlΩ is

symmetric, definite positive and

M0Ω =
r2

d
Id, MlΩ = (r2 − (d− 1)σ − |u|2)Ω⊗ Ω + σ(Id − Ω⊗ Ω), l > 0, 0 <

σ

r2
<

1

d
.

If 0 < σ
r2 <

1
d , we have r2 − (d− 1)σ − |u|2 < σ and, in particular ker(MlΩ − σId) = (RΩ)⊥.

Proof. Clearly MlΩ is symmetric and definite positive. The case l = 0 is trivial, and we

have M0Ω = r2

d Id. Assume now that l > 0 and thus necessarily σ
r2 ∈]0, 1

d [ cf. Proposition

1.5. We consider a orthonormal basis {E1, ..., Ed−1,Ω}. It is easily seen that

MlΩ =

∫
rSd−1

(ω − u)⊗ ωMlΩ dω

=

∫
rSd−1

[((ω · Ω)− |u|)Ω +
d−1∑
i=1

(ω · Ei)Ei]⊗ [(ω · Ω)Ω +
d−1∑
i=1

(ω · Ei)Ei]MlΩ dω

=

∫
rSd−1

((ω · Ω)− |u|)(ω · Ω)MlΩ dω Ω⊗ Ω +
d−1∑
i=1

∫
rSd−1

(ω · Ei)2MlΩ dω Ei ⊗ Ei

=

∫
rSd−1

((ω · Ω)2 − |u|2)MlΩ dω Ω⊗ Ω +
1

d− 1

∫
rSd−1

(r2 − (ω · Ω)2)MlΩ dω(Id − Ω⊗ Ω).

We show that ∫
rSd−1

(ω · Ω)2MlΩ dω = r2 − (d− 1)σ.

This comes by the condition λ(l) = σ
r2 l and integrations by parts

r2 −
∫
rSd−1

(ω · Ω)2MlΩ dω =
r2
∫ π

0 sin θel cos θ sind−1 θ dθ∫ π
0 el cos θ sind−2 θ dθ

= −r
2

l

∫ π
0

d
dθe

l cos θ sind−1 θ dθ∫ π
0 el cos θ sind−2 θ dθ

= (d− 1)
r2

l

∫ π
0 cos θel cos θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ

= (d− 1)
r2

l
λ(l)

= (d− 1)
r2

l

σ

r2
l = (d− 1)σ.

We deduce also that∫
rSd−1

((ω · Ω)2 − |u|2)MlΩ dω = r2 − (d− 1)σ − |u|2

and therefore

MlΩ = (r2 − (d− 1)σ − |u|2)Ω⊗ Ω + σ(Id − Ω⊗ Ω).
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We claim that the biggest eigenvalue is σ, that is r2 − (d − 1)σ − |u|2 < σ, or equivalently

r2 < dσ + |u|2. This is a consequence of Lemma 2.3. Indeed, since l > 0, we know that

µ(l) =
2l√

d2 + 4l2 + d
< λ(l) =

σ

r2
l

implying that √
d2 + 4l2 >

2r2

σ
− d > 0, since r2 > dσ

or equivalently

4l2 > 4
r4

σ2
− 4d

r2

σ
.

Replacing l = |u|r
σ in the above inequality, yields r2 < dσ + |u|2.

The resolution of (29) follows immediately, thanks to Lemma 3.1. As (29) is linear and

admits any constant function on rSd−1 as solution, we will work with zero mean solutions on

rSd−1, that is
∫
rSd−1ψ̃(ω) dω = 0.

〈CollInvBis〉
Proposition 3.1 Let MlΩ be a von Mises-Fisher distribution i.e., Ω ∈ Sd−1, l ∈ R+, λ(l) =

σ
r2 l, and E1, ..., Ed−1 be a orthonormal basis of (RΩ)⊥.

1. If l = 0 and σ
r2 6= 1

d , then the only (zero mean) solution of (29) is the trivial one.

2. If l = 0 and σ
r2 = 1

d , then the family of zero mean solutions for (29) is a linear space of

dimension d. A basis is given by the functions ψ̃1, ..., ψ̃d satisfying

−σdivω(M0Ω∇ωψ̃i) = M0Ω(ω)(ω · Ei),
∫
rSd−1

ψ̃i(ω) dω = 0, i ∈ {1, ..., d}, Ed = Ω.

(31) Equ63

3. If 0 < σ
r2 < 1

d , l > 0, λ(l) = σ
r2 l, then the family of zero mean solutions for (29) is a

linear space of dimension d− 1. A basis is given by the functions ψ̃1, ..., ψ̃d−1 satisfying

−σdivω(MlΩ∇ωψ̃i) = MlΩ(ω)(ω · Ei),
∫
rSd−1

ψ̃i(ω) dω = 0, i ∈ {1, ..., d− 1}. (32) Equ65

Proof.

1. Let ψ̃ be a zero mean solution of (29). Multiplying by (ω · W ′), with W ′ ∈ Rd, and

integrating by parts over rSd−1 yield

σW [ψ̃] ·W ′ = σ

∫
rSd−1

M0Ω∇ωψ̃ ·W ′ dω =

∫
rSd−1

M0Ω(ω − 0) ·W [ψ̃](ω ·W ′) dω

=M0ΩW [ψ̃] ·W ′ = r2

d
W [ψ̃] ·W ′.
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Therefore
(
σ − r2

d

)
W [ψ̃] = 0, implying that W [ψ̃] = 0 and

−divω(M0Ω(ω)∇ωψ̃) = 0.

We deduce that ψ̃ is a constant, zero mean function on rSd−1, and thus ψ̃ = 0.

2. As l = 0, then
∫
rSd−1ωM0Ω(ω) dω = u = 0. Therefore the right hand sides in (31) are zero

mean functions on rSd−1, and by Lax-Milgram lemma, the zero mean functions (ψ̃i)1≤i≤d

are well defined. Notice that these functions also solve (29). Indeed, after multiplication by

(ω ·W ′), with W ′ ∈ Rd, and integration by parts we obtain, for any i ∈ {1, ..., d}

σ

∫
rSd−1

∇ωψ̃i ·W ′M0Ω dω =

∫
rSd−1

(ω · Ei)(ω ·W ′)M0Ω dω =M0ΩEi ·W ′.

We deduce that

σ

∫
rSd−1

M0Ω(ω)∇ωψ̃i dω =M0ΩEi =
r2

d
Ei = σEi, i ∈ {1, .., d} (33) Equ66

which eactly says that (ψ̃i)1≤i≤d solve (29). It is easily seen that the family (ψ̃i)1≤i≤d is

linearly independent : if
∑d

i=1 ciψ̃i = 0, then by (33) one gets

d∑
i=1

ciEi =
d∑
i=1

ci

∫
rSd−1

M0Ω(ω)∇ωψ̃i dω = 0

implying that ci = 0, i ∈ {1, ..., d}. We show now that any zero mean solution ψ̃ for (29) is

a linear combination of (ψ̃i)1≤i≤d. Let (ci)1≤i≤d be the coordinates of the vector W [ψ̃] with

respect to the basis (Ei)1≤i≤d

W [ψ̃] =

∫
rSd−1

M0Ω(ω)∇ωψ̃ dω =

d∑
i=1

ciEi.

We claim that ψ̃ =
∑d

i=1 ciψ̃i. Indeed, since ψ̃ and
∑d

i=1 ciψ̃i have zero mean, thanks to the

uniqueness of zero mean solution, it is enough to check that
∑d

i=1 ciψ̃i solves (30), with the

right hand side M0Ωω ·W [ψ̃]. Indeed, we have

−σdivω(M0Ω∇ω
d∑
i=1

ciψ̃i) =
d∑
i=1

ciM0Ω(ω · Ei) = M0Ω(ω − 0) ·W [ψ̃]

implying that ψ̃ =
∑d

i=1 ciψ̃i.

3. The arguments are similar. The solutions (ψ̃i)1≤i≤d−1 in (32) also solve (29), and are

linearly independent. But for any solution ψ̃ of (29), we have for any W ′ ∈ Rd

σW [ψ̃]·W ′ = σ

∫
rSd−1

MlΩ∇ωψ̃·W ′ dω =

∫
rSd−1

MlΩ(ω−u[MlΩ])·W [ψ̃](ω·W ′) dω =MlΩW [ψ̃]·W ′.

Therefore W [ψ̃] ∈ ker(MlΩ − σId) = (RΩ)⊥ = span{E1, ..., Ed−1} and we deduce that ψ̃ =∑d−1
i=1 ciψ̃i, with W [ψ̃] =

∑d−1
i=1 ciEi.
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We focus now on the structure of the solutions of (29). This is a consequence of the symmetry

of MlΩ, by rotations leaving invariant the orientation Ω. We concentrate on the case 0 <

σ
r2 <

1
d , λ(l) = σ

r2 l, l > 0.

〈Struct1〉
Proposition 3.2 For any W ∈ Rd,W · Ω = 0, let us denote by ψ̃W the unique solution of

the problem

−σdivω(MlΩ∇ωψ̃W ) = MlΩ (ω − u) ·W = MlΩ (ω ·W ),

∫
rSd−1

ψ̃W dω = 0.

For any orthogonal transformation O of Rd, leaving invariant the orientation Ω, that is

OΩ = Ω, we have

ψ̃W (Oω) = ψ̃tOW (ω), ω ∈ rSd−1.

Proof. We know that ψ̃W is the minimum point of the functional

JW (z) =
σ

2

∫
rSd−1

MlΩ|∇ωz|2 dω−
∫
rSd−1

MlΩ(ω·W )z(ω) dω, z ∈ H1(rSd−1),

∫
rSd−1

z(ω) dω = 0.

It is easily seen that, for any orthogonal transformation O of Rd, and any function z ∈

H1(rSd−1),
∫
rSd−1z(ω) dω = 0, we have

zO := z ◦ O ∈ H1(rSd−1),

∫
rSd−1

zO(ω) dω = 0

and

(∇ωzO)(ω) = tO(∇ωz)(Oω), ω ∈ rSd−1.

Moreover, for any z ∈ H1(rSd−1),
∫
rSd−1z(ω) dω = 0, and any orthogonal transformation

leaving invariant the orientation Ω we obtain

JtOW (zO) =
σ

2

∫
rSd−1

MlΩ(ω)|tO(∇ωz)(Oω)|2 dω −
∫
rSd−1

MlΩ(ω)(ω · tOW )z(Oω) dω

=
σ

2

∫
rSd−1

MlΩ(Oω)|(∇ωz)(Oω)|2 dω −
∫
rSd−1

MlΩ(Oω)(Oω ·W )z(Oω) dω

=
σ

2

∫
rSd−1

MlΩ(ω)|∇ωz(ω)|2 dω −
∫
rSd−1

MlΩ(ω)(ω ·W )z(ω) dω

= JW (z).

Finally, one gets for any z ∈ H1(rSd−1),
∫
rSd−1z(ω) dω = 0

JtOW (ψ̃W ◦ O) = JW (ψ̃W ) ≤ JW (z ◦ tO) = JtOW (z)

saying that ψ̃W ◦ O = ψ̃tOW .
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We claim that there is a function χ such that, for any i ∈ {1, ..., d−1}, the solution ψ̃i writes

ψ̃i(ω) = χ
(

Ω · ω
r

)
ci(ω), ci(ω) =

ω · Ei√
r2 − (ω · Ω)2

, ω ∈ rSd−1 \ {±rΩ}.

〈InvField〉Lemma 3.2 We consider the vector field F given by

F (ω) =
d−1∑
i=1

ψ̃i(ω)Ei, ω ∈ rSd−1.

Then the vector field F do not depend on the orthonormal basis {E1, ..., Ed−1} of (RΩ)⊥ and

for any orthogonal transformation O of Rd, preserving Ω, we have

F (Oω) = OF (ω), ω ∈ rSd−1.

There is a function χ such that

F (ω) = χ
(

Ω · ω
r

) (Id − Ω⊗ Ω)(ω)√
r2 − (Ω · ω)2

, ω ∈ rSd−1 \ {±rΩ}

and thus, for any i ∈ {1, ..., d− 1}, we have

ψ̃i(ω) = χ
(

Ω · ω
r

) ω · Ei√
r2 − (Ω · ω)2

, ω ∈ rSd−1 \ {±rΩ}.

Proof. Consider any other orthonormal basis {F1, ..., Fd−1} of (RΩ)⊥. Thanks to the iden-

tities

E1 ⊗ E1 + ...+ Ed−1 ⊗ Ed−1 + Ω⊗ Ω = Id, F1 ⊗ F1 + ...+ Fd−1 ⊗ Fd−1 + Ω⊗ Ω = Id

we obtain

d−1∑
i=1

ψ̃iEi =

d−1∑
i=1

ψ̃EiEi =

d−1∑
i=1

ψ̃∑d−1
j=1 (Ei·Fj)Fj

Ei =

d−1∑
i=1

d−1∑
j=1

(Ei · Fj)ψ̃FjEi

=

d−1∑
j=1

ψ̃Fj

d−1∑
i=1

(Ei · Fj)Ei =

d−1∑
j=1

ψ̃FjFj .

Pick O any orthogonal transformation of Rd, leaving invariant Ω. For any ω ∈ rSd−1, we can

write, by Proposition 3.2

F (Oω) =
d−1∑
i=1

ψ̃Ei(Oω)Ei =
d−1∑
i=1

ψ̃tOEi
(ω)Ei = O

d−1∑
i=1

ψ̃tOEi
(ω) tOEi = OF (ω)

where, in the last equality, we have used the independence of F with respect to the orthonor-

mal basis of (RΩ)⊥. Take now ω ∈ rSd−1 \ {±rΩ} and

E =
(Id− Ω⊗ Ω)ω√
r2 − (Ω · ω)2

.

27



Clearly E · Ω = 0, |E| = 1.

If d = 2, as we know that F (ω) · Ω = 0, there is Λ = Λ(ω) such that

F (ω) = Λ(ω)E = Λ(ω)
(I2 − Ω⊗ Ω)ω√
r2 − (Ω · ω)2

.

If d ≥ 3, take any unitary vector ⊥E, orthogonal to E and Ω, and consider the symmetry

O = Id − 2 ⊥E ⊗ ⊥E.

The above orthogonal transformation leaves invariant Ω, and thus, by the hypothesis, we

know that

F (Oω′) = OF (ω′), ω′ ∈ rSd−1.

Observe that

0 = ⊥E · E = ⊥E · ω − (ω · Ω)Ω√
r2 − (Ω · ω)2

=
⊥E · ω√

r2 − (Ω · ω)2
, Oω = ω

and thus

F (ω) = F (Oω) = (Id − 2 ⊥E ⊗ ⊥E)F (ω) = F (ω)− 2(F (ω) · ⊥E) ⊥E.

We deduce that F (ω) · ⊥E = 0 for any vector ⊥E, orthogonal to E and Ω. As F (Ω) ·Ω = 0,

we deduce that F (ω) is orthogonal to any vector orthogonal to E, anf thus there is Λ = Λ(ω)

such that

F (ω) = Λ(ω)E = Λ(ω)
(Id − Ω⊗ Ω)ω√
r2 − (Ω · ω)2

, ω ∈ rSd−1 \ {±rΩ}.

We claim that Λ(ω) depends only on Ω · ωr . Indeed, for any d ≥ 2, and any orthogonal

transformation O, such that OΩ = Ω, we have F (Oω) = OF (ω)

(Id−Ω⊗Ω)Oω = Oω− (Ω ·Oω)Ω = Oω− (Ω ·ω)OΩ = O(Id−Ω⊗Ω)ω, ω ∈ rSd−1 \{±rΩ}√
r2 − (Ω · Oω)2 = |(Id−Ω⊗Ω)Oω| = |O(Id−Ω⊗Ω)ω| = |(Id−Ω⊗Ω)ω| =

√
r2 − (Ω · ω)2

implying that Λ(Oω) = Λ(ω), ω ∈ rSd−1 \ {±rΩ}. Actually, the previous equality holds true

for any ω ∈ rSd−1, since OΩ = Ω. We are done if we prove that Λ(ω) = Λ(ω′) for any

ω, ω′ ∈ rSd−1 \ {±rΩ} such that Ω · ω = Ω · ω′, ω 6= ω′. Consider the rotation O such that

OE = E′, (O − Id)|span{E,E′}⊥ = 0, E =
(Id − Ω⊗ Ω)ω√
r2 − (Ω · ω)2

, E′ =
(Id − Ω⊗ Ω)ω′√
r2 − (Ω · ω′)2

.

Notice that the condition OE = E′ exactly says that Oω = ω′ and thus Λ(ω′) = Λ(Oω) =

Λ(ω). We deduce that there is a function χ such that Λ(ω) = χ
(
Ω · ωr

)
and therefore

d−1∑
i=1

ψ̃i(ω)Ei = F (ω) = χ
(

Ω · ω
r

) (Id − Ω⊗ Ω)ω√
r2 − (Ω · ω)2

=
d−1∑
i=1

χ
(

Ω · ω
r

) ω · Ei√
r2 − (Ω · ω)2

Ei
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implying that

ψ̃i(ω) = χ
(

Ω · ω
r

) ω · Ei√
r2 − (Ω · ω)2

, i ∈ {1, ..., d− 1}, ω ∈ rSd−1 \ {±rΩ}.

?〈BiDim〉?
Remark 3.1 In the case d = 2, we take E1 = ⊥Ω, ω = r(cos θΩ + sin θ ⊥Ω) and therefore ψ̃1

writes

ψ̃1(r(cos θΩ + sin θ ⊥Ω)) = χ(cos θ)sign(sin θ), θ ∈]− π, 0[ ∪ ]0, π[.

Clearly, the function ψ1(θ) := ψ̃1(r(cos θΩ + sin θ ⊥Ω)) is odd (in particular
∫
rS1 ψ̃1(ω)dω =∫ π

−π ψ1(θ)rdθ = 0) and the condition∫
rS1

|∇ωψ̃1|2MlΩ(ω)dω < +∞

implies that
∫ π
−π |∂θψ1|2dθ < +∞. Therefore ψ1 is continuous on ]−π, π[, and thus χ(1) = 0.

Notice that χ(−1) = 0 as well, since limθ↗π ψ1(θ) = ψ̃1(−rΩ) = limθ↘−π ψ1(θ).

Thanks to Lemma 3.2, in order to determine ψ̃i, i ∈ {1, ..., d − 1}, we only need to solve

for χ. The idea is to analyse the behavior of the functionals JEi on the set of functions

Ψi,h(ω) = h
(
Ω · ωr

)
ci(ω), ω ∈ rSd−1. The notation Pω stands for the orthogonal projection

on the tangent space to rSd−1 at ω, that is, Pω = Id − ω⊗ω
r2 .

Proposition 3.3 The function χ constructed in Lemma 3.2 solves the problem

− σ
r2

d

dc

{
elcχ ′(c)(1− c2)

1
2

}
= relc, c ∈]− 1, 1[, χ(−1) = χ(1) = 0 if d = 2 (34) Prob2D

and

− σ
r2

d

dc

{
elcχ ′(c)(1− c2)

d−1
2

}
+(d−2)

σ

r2
elcχ(c)(1−c2)

d−5
2 = relc(1−c2)

d−2
2 , c ∈]−1, 1[, if d ≥ 3.

(35) Prob3D

Proof. For any i ∈ {1, ..., d− 1}, the gradient of Ψi,h writes

∇ωΨi,h = h′
(

Ω · ω
r

)
ci(ω)

PωΩ

r
+ h

(
Ω · ω

r

)
∇ωci

where

∇ωci =
PωEi√

r2 − (ω · Ω)2
+

(ω · Ei)(ω · Ω)

(r2 − (ω · Ω)2)3/2
PωΩ.

29



Therefore we obtain

∇ωψi,h = h′
(

Ω · ω
r

) ω · Ei√
r2 − (ω · Ω)2

PωΩ

r
+

h
(
Ω · ωr

)√
r2 − (ω · Ω)2

[
PωEi +

(ω · Ei)(ω · Ω)

r2 − (ω · Ω)2
PωΩ

]
.

Notice that PωΩ and ∇ωci are orthogonal, thanks to the equality |PωΩ|2 = 1− (ω·Ω)2

r2 . Indeed,

we have

PωΩ ·
[
PωEi +

(ω · Ei)(ω · Ω)

r2 − (ω · Ω)2
PωΩ

]
= −(ω · Ei)(ω · Ω)

r2
+

(ω · Ei)(ω · Ω)

r2 − (ω · Ω)2
|PωΩ|2 = 0.

Observe also that

|∇ωci|2 =
1

r2 − (ω · Ω)2

[
1− (ω · Ei)2

r2 − (ω · Ω)2

]
implying that

|∇ωΨi,h|2 =
(
h′
(

Ω · ω
r

)
ci(ω)

)2 |PωΩ|2

r2
+
(
h
(

Ω · ω
r

))2
|∇ωci|2

=

(
h′
(
Ω · ωr

))2
(ω · Ei)2

r4
+

(
h
(
Ω · ωr

))2
r2 − (ω · Ω)2

[
1− (ω · Ei)2

r2 − (ω · Ω)2

]
.

Performing orthogonal changes of coordinates, which preserve Ω, we deduce that the integrals∫
rSd−1 |∇ωΨi,h|2MlΩ dω do not depend on i ∈ {1, ..., d− 1}, and thus∫

rSd−1

|∇ωΨi,h|2MlΩ dω =
1

d− 1

∫
rSd−1

(
h′
(
Ω · ωr

))2
r4

[r2 − (ω · Ω)2]MlΩ dω (36) EquFunct1

+
d− 2

d− 1

∫
rSd−1

(
h
(
Ω · ωr

))2
r2 − (ω · Ω)2

MlΩ dω.

We also need to compute the linear part of the functional JEi∫
rSd−1

MlΩ (ω · Ei)h
(

Ω · ω
r

)
ci(ω) dω =

1

d− 1

∫
rSd−1

MlΩ h
(

Ω · ω
r

)√
r2 − (ω · Ω)2 dω. (37) EquFunct2

The expression of JEi(ψi,h) follows by (36), (37)

JEi(ψi,h) =
σ

2(d− 1)

∫
rSd−1

MlΩ

(
h′
(

Ω · ω
r

))2 r2 − (Ω · ω)2

r4
dω

+
σ

2

d− 2

d− 1

∫
rSd−1

MlΩ

(
h
(
Ω · ωr

))2
r2 − (ω · Ω)2

dω

− 1

d− 1

∫
rSd−1

MlΩh
(

Ω · ω
r

)√
r2 − (ω · Ω)2 dω

=
σ

2(d− 1)r2

∫ π
0 el cos θ(h′(cos θ))2 sind θ dθ∫ π

0 el cos θ sind−2 θ dθ

+
σ

2

d− 2

d− 1

∫ π
0 el cos θ

(
h(cos θ)
r sin θ

)2
sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ

− 1

d− 1

∫ π
0 el cos θh(cos θ)r sin θ sind−2 θ dθ∫ π

0 el cos θ sind−2 θ dθ

=
J(h)

(d− 1)πβ0(l)
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where πβ0(l) =
∫ π

0 el cos θ sind−2 θ dθ and

J(h) =
σ

2r2

∫ 1

−1
elc(h′(c))2(1− c2)

d−1
2 dc+

σ

2

d− 2

r2

∫ 1

−1
elc(h(c))2(1− c2)

d−5
2 dc

− r
∫ 1

−1
elch(c)(1− c2)

d−2
2 dc.

We consider the Hilbert spaces

H2 = {h :]− 1, 1[→ R, (1− c2)1/4h′ ∈ L2(]− 1, 1[), h(−1) = h(1) = 0}

and

Hd = {h :]− 1, 1[→ R, (1− c2)
d−1

4 h′ ∈ L2(]− 1, 1[), (1− c2)
d−5

4 h ∈ L2(]− 1, 1[)}, d ≥ 3

endowed with the scalar products

(g, h)2 =

∫ 1

−1
g′(c)h′(c)

√
1− c2 dc, g, h ∈ H2

and

(g, h)d =

∫ 1

−1
g′(c)h′(c)(1− c2)

d−1
2 dc+

∫ 1

−1
g(c)h(c)(1− c2)

d−5
2 dc, g, h ∈ Hd, if d ≥ 3.

By Lemma 3.2, there is a function χ such that ψ̃i = χ
(
Ω · ωr

)
ci(ω), i ∈ {1, ..., d − 1}.

We know that ψ̃i, i ∈ {1, ..., d − 1}, minimize the functionals JEi(z), with z ∈ H1(rSd−1),∫
rSd−1z(ω) dω = 0. In particular, for any h ∈ Hd, d ≥ 2, we have

JEi(Ψi,h) ≥ JEi(ψ̃i), Ψi,h(ω) = h
(

Ω · ω
r

)
ci(ω)

implying that χ, which belongs to Hd, is the solution of the minimization problem

J(h) ≥ J(χ), h ∈ Hd.

Thanks to the Lax-Milgram lemma, we deduce that χ is the solution of the problem (34) if

d = 2, and (35) if d ≥ 3.

Up to now, for a given equilibrium F = MlΩ dω, we have determined the functions ψ such

that ∫
Rd

ψ(v) lim
ε↘0

〈
Q(F + εG(1))

〉
− 〈Q(F )〉

ε
dv = 0

for any bounded measure G(1), supported in rSd−1. But we need to control the linearization

of 〈Q〉 around the equilibrium F in the direction F (1), which is not necessarily supported in

rSd−1. It happens that the constraint divv{F (1)(α−β|v|2)v} = Q(F ), see (9), will guarantee

that ∫
Rd

ψ(v) lim
ε↘0

〈
Q(F + εF (1))

〉
− 〈Q(F )〉

ε
dv =

∫
Rd

ψ(v)
〈

divvAF (F (1))
〉

dv = 0.

These computations are a little bit tedious and can be found in Appendix C.
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〈ZeroAvePart〉
Proposition 3.4 Let F = MlΩdω be a von Mises-Fisher distribution with l > 0, and F (1)

be a bounded measure (not charging a small neighborhood of 0, for simplifying), satisfying

divv{F (1)(α − β|v|2)v} = Q(F ). Then the linearized of 〈Q〉 around F in the direction F (1)

verifies ∫
Rd

ψ̃(v)
〈

divvAF (F (1))
〉

dv = 0, for any collision invariant ψ̃ of 〈Q〉 .

4 The limit model
〈LimMod〉

We identify the model satisfied by the limit distribution f = limε↘0 f
ε. We already know

that f is a von Mises-Fisher distribution f = ρ(t, x)MlΩ(t,x)(ω)dω with ρ ≥ 0,Ω ∈ Sd−1, l ≥

0, λ(l) = σ
r2 l. If σ

r2 ≥ 1
d , then l = 0 and MlΩdω reduces to the isotropic measure on rSd−1,

that is f = ρ(t, x) dω
rd−1ωd

, with zero mean velocity u[f ] =
∫
rSd−1ωρMlΩ dω = 0. In this

case, the continuity equation reduces to the trivial limit model ∂tρ = 0, t ∈ R+. From now

on, we assume that σ
r2 ∈]0, 1

d [, and we consider l > 0 the unique solution for λ(l) = σ
r2 l cf.

Proposition 1.5. We are ready to justify the main result in Theorem 1.1.

Proof. (of Theorem 1.1)

The continuity equation (14) comes from the continuity equation of (13)

∂t

∫
Rd

f dv + divx

∫
Rd

fv dv = lim
ε↘0

{
∂t

∫
Rd

f ε dv + divx

∫
Rd

f εv dv

}
= 0

and the formula for the mean velocity of a von Mises-Fisher equilibrium

u[f ] =

∫
rSd−1

ωρMlΩ dω = ρ
lσ

r
Ω = ρλ(l)rΩ.

Equivalently, (14) is obtained by using the collision invariant ψ̃ = 1. The equation (15)

will follow, by using the (d − 1) dimensional linear space of collision invariants studied in

Proposition 3.1. Revisiting the expansion (7), we obtain

∂tf + divx(fv) + divv{f (2)(α− β|v|2)v} = νdivv(Af (f (1))) (38) Equ75

together with the constarints

divv{f(α− β|v|2)v} = 0 (39) Equ76

divv{f (1)(α− β|v|2)v} = Q(f). (40) Equ77

The first constraint (39) says that, for any (t, x) ∈ R+ × Rd, supp f(t, x) ⊂ {0} ∪ rSd−1.

Averaging the second constraint (40) leads to

〈Q(f)〉 =
〈

divv{f (1)(α− β|v|2)v}
〉

= 0
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and thus f(t, x) = ρ(t, x)MlΩ(t,x)(ω)dω, ω ∈ rSd−1. Averaging (38) allows us to get rid of f (2)

∂t 〈f〉+ divx 〈vf〉 = ν
〈

divvAf (f (1))
〉
. (41) Equ78

In order to eliminate f (1) as well, we test (41) against the functions ψi(v) = ψ̃i

(
r v
|v|

)
, where

(ψ̃i)1≤i≤d−1 are the collision invariants constructed in Proposition 3.1. Indeed, by Proposition

3.4, we know that∫
v 6=0

ψ̃

(
r
v

|v|

)〈
divvAf (f (1))

〉
dv =

∫
v 6=0

ψ̃

(
r
v

|v|

)
divvAf (f (1)) dv = I[ψ̃i] = 0, i ∈ {1, ..., d−1}

and therefore∫
rSd−1

∂t(ρMlΩ)ψ̃i dω +

∫
rSd−1

divx(ρMlΩω)ψ̃i(ω) dω = 0, i ∈ {1, ..., d− 1}. (42) Equ79

Let {E1, ..., Ed−1,Ω} be a orthonormal basis and ψ̃1, ..., ψ̃d−1 be the solutions of the problems

(32). We recall that

d−1∑
i=1

ψ̃iEi = F (ω) = χ
(

Ω · ω
r

) (Id − Ω⊗ Ω)ωr√
1−

(
Ω · ωr

)2 .
The equation (42), written for i ∈ {1, ..., d− 1}, says that

(Id − Ω⊗ Ω)

∫
rSd−1

[∂t(ρMlΩ) + divx(ρMlΩω)]
χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 ωr dω = 0.

We need to compute the vectors

U1 =

∫
rSd−1

∂tρMlΩ(ω)
χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 ωr dω

U2 =

∫
rSd−1

ρMlΩ(ω) l ∂tΩ ·
ω

r

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 ωr dω

U3 =

∫
rSd−1

ω · ∇xρMlΩ(ω)
χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 ωr dω

U4 =

∫
rSd−1

lρω · t∂xΩ
ω

r
MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 ωr dω

and to impose
4∑
i=1

(Id − Ω⊗ Ω)Ui = 0. (43) Equ85

Clearly, the first vector U1 is parallel to Ω, and thus

(Id − Ω⊗ Ω)U1 = 0. (44) Equ86
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The treatment of the second and third vectors requires to compute

A : =

∫
rSd−1

ω

r
⊗ ω

r
MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 dω

=
d−1∑
i=1

∫
rSd−1

(ω · Ei)2

r2
MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 dω Ei ⊗ Ei

+

∫
rSd−1

(ω · Ω)2

r2
MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 dω Ω⊗ Ω

=
1

d− 1

∫
rSd−1

[
1−

(
Ω · ω

r

)2
]
MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 dω

d−1∑
i=1

Ei ⊗ Ei

+

∫
rSd−1

(ω · Ω)2

r2
MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 dω Ω⊗ Ω

=

∫ π
0 sin2 θel cos θ χ(cos θ)

sin θ sind−2 θ dθ∫ π
0 el cos θ sind−2 θ dθ

Id − Ω⊗ Ω

d− 1

+

∫ π
0 cos2 θel cos θ χ(cos θ)

sin θ sind−2 θ dθ∫ π
0 el cos θ sind−2 θ dθ

Ω⊗ Ω.

We obtain, thanks to the identity ∂tΩ · Ω = 1
2∂t|Ω|

2 = 0

(Id − Ω⊗ Ω)U2 = (Id − Ω⊗ Ω)ρlA∂tΩ =
ρl

d− 1

∫ π
0 el cos θχ(cos θ) sind−1 θ dθ∫ π

0 el cos θ sind−2 θ dθ
∂tΩ (45) Equ87

and

(Id −Ω⊗Ω)U3 = r(Id −Ω⊗Ω)A∇xρ =
r

d− 1

∫ π
0 el cos θχ(cos θ) sind−1 θ dθ∫ π

0 el cos θ sind−2 θ dθ
(Id −Ω⊗Ω)∇xρ.

(46) Equ88

We concentrate now on the last vector U4. Observe that

(Id − Ω⊗ Ω)U4 = rρl

∫
rSd−1

ω

r
⊗ ω

r
: ∂xΩ MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2
d−1∑
i=1

(
Ei ·

ω

r

)
Ei dω

and for any i ∈ {1, ..., d− 1}∫
rSd−1

ω

r
⊗ ω

r
: ∂xΩ MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 (Ei · ωr ) dω

=

∫
rSd−1

(ω · Ei)2 (ω · Ω)

r3
MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 dω [Ei ⊗ Ω : ∂xΩ + Ω⊗ Ei : ∂xΩ]

=

∫
rSd−1

1−
(
Ω · ωr

)2
d− 1

(ω · Ω)

r
MlΩ(ω)

χ
(
ω
r · Ω

)√
1−

(
Ω · ωr

)2 dω [Ei ⊗ Ω : ∂xΩ + Ω⊗ Ei : ∂xΩ]

=
1

d− 1

∫ π
0 sin2 θ cos θel cos θ χ(cos θ)

sin θ sind−2 θ dθ∫ π
0 el cos θ sind−2 θ dθ

(∂xΩΩ · Ei + t∂xΩΩ · Ei).
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Thanks to the formula t∂xΩΩ = 1
2∇x|Ω|

2 = 0, we obtain

(Id − Ω⊗ Ω)U4 =
rρl

d− 1

∫ π
0 cos θel cos θχ(cos θ) sind−1 θ dθ∫ π

0 el cos θ sind−2 θ dθ

d−1∑
i=1

(∂xΩΩ · Ei)Ei (47) Equ89

=
rρl

d− 1

∫ π
0 cos θel cos θχ(cos θ) sind−1 θ dθ∫ π

0 el cos θ sind−2 θ dθ
(Id − Ω⊗ Ω)∂xΩΩ

=
rρl

d− 1

∫ π
0 cos θel cos θχ(cos θ) sind−1 θ dθ∫ π

0 el cos θ sind−2 θ dθ
∂xΩΩ.

The evolution equation for the orientation Ω comes now by (43), (44), (45), (46), (47)

ρl∂tΩ + r(Id − Ω⊗ Ω)∇xρ
d− 1

∫ π
0 el cos θχ(cos θ) sind−1 θ dθ∫ π

0 el cos θ sind−2 θ dθ

+
rρl

d− 1

∫ π
0 cos θel cos θχ(cos θ) sind−1 θ dθ∫ π

0 el cos θ sind−2 θ dθ
∂xΩΩ = 0

which also writes

∂tΩ + r

∫ π
0 cos θel cos θχ(cos θ) sind−1 θ dθ∫ π

0 el cos θχ(cos θ) sind−1 θ dθ
(Ω · ∇x)Ω +

r

l
(Id − Ω⊗ Ω)

∇xρ
ρ

= 0.

Remark 4.1 Taking the scalar product of the equation (15) with Ω, we obtain

1

2
∂t|Ω|2 +

kdr

2
(Ω · ∇x)|Ω|2 = 0, (t, x) ∈ R+ × Rd

implying that |Ω(t, x)| = 1, (t, x) ∈ R+ × Rd, provided that |Ω(0, x)| = 1, x ∈ Rd.

A Integration by parts on spheres

〈A〉

Proof. (of Lemma 2.1)

We pick a function η ∈ C1
c (]r1, r2[) and observe that

divv{η(|v|)A(v)} = η′(|v|) v
|v|
·A(v) + η(|v|)(divvA)(v), v ∈ O.

Integrating with respect to v over O leads to

0 =

∫
O

divv{η(|v|)A(v)} dv =

∫
O
η′(|v|) v

|v|
·A(v) dv +

∫
O
η(|v|)(divvA)(v) dv

=

∫ r2

r1

η′(t)

∫
|ω|=1

ω ·A(tω)td−1 dωdt+

∫ r2

r1

η(t)

∫
|ω|=1

(divvA)(tω)td−1 dωdt

=

∫ r2

r1

η(t)

[
− d

dt

∫
|ω|=1

ω ·A(tω)td−1 dω +

∫
|ω|=1

(divvA)(tω)td−1 dω

]
dt.
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We deduce that∫
|ω|=t

(divvA)(ω) dω =
d

dt

∫
|ω|=1

ω ·A(tω)td−1 dω

=

∫
|ω|=1
{ω · ∂vA(tω)ωtd−1 + ω ·A(tω)(d− 1)td−2} dω

=

∫
|ω|=t

{
ω ⊗ ω
t2

: ∂vA(ω) +
(d− 1)ω

t2
·A(ω)

}
dω.

Assume now that A(v) ·v = 0, v ∈ O. Taking the gradient with respect to v yields t∂vA(v)v+

A(v) = 0 implying ∂vA(v) : v ⊗ v = −A(v) · v = 0, v ∈ O. In this case (16) reduces to (17).

The formula in (18) follows easily by applying (17) with the field v → χ(v)A(v).

B Differential operators on spheres

〈B〉

Proof. (of Lemma 2.2)

1. Pick a point ω ∈ rSd−1 and a tangent vector X ∈ Tω(rSd−1). Let γ :]− ε, ε[→ rSd−1 be a

smooth curve such that γ(0) = ω, γ ′(0) = X. Then we have

∇ωψ̃ ·X = dψ̃ω(X) =
d

dt
|t=0ψ̃(γ(t)) =

d

dt
|t=0ψ(γ(t))

= ∇̃vψ(ω) ·X =

(
Id −

ω ⊗ ω
r2

)
∇̃vψ(ω) ·X

saying that

∇ωψ̃ −
(
Id −

ω ⊗ ω
r2

)
∇̃vψ ∈ Tω(rSd−1) ∩ (Tω(rSd−1))⊥ = {0}.

Therefore we deduce that ∇ωψ̃ =
(
Id − ω⊗ω

r2

)
∇̃vψ.

2. For any ωt ∈ tSd−1 and X ∈ Tωt(tSd−1), pick a smooth curve γ :]− ε, ε[→ tSd−1 such that

γ(0) = ωt, γ
′(0) = X. Therefore we have

∇ωtψ(ωt) ·X =
d

ds
|s=0ψ(γ(s)) =

d

ds
|s=0ψ̃

(
r
γ(s)

t

)
= ∇ωψ̃

(
r
ωt
t

)
· r
t
X

saying that (∇ωtψ)(ωt) = r
t (∇ωψ̃)

(
rωt
t

)
. Actually the function ψ has only tangent gradient

(to the spheres), and thus

(∇vψ)(ωt) = (∇ωtψ)(ωt) =
r

t
(∇ωψ̃)

(
r
ωt
t

)
, |ωt| = t.

3. Consider a C1 function ψ̃ on rSd−1 and ψ a C1 extension of ψ̃ on O. By Lemma 2.1, we

know that ∫
|ω|=r

∇̃vψ(ω) · ξ̃(ω) dω +

∫
|ω|=r

ψ̃(ω)d̃ivvξ(ω) dω = 0. (48) EquStep1
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But, by the previous statement, we can write

∇̃vψ(ω)·ξ̃(ω) = ∇̃vψ(ω)·
(
Id −

ω ⊗ ω
r2

)
ξ̃(ω) =

(
Id −

ω ⊗ ω
r2

)
∇̃vψ(ω)·ξ̃(ω) = ∇ωψ̃(ω)·ξ̃(ω).

(49) EquStep2

Combining (48), (49) yields∫
|ω|=r

ψ̃(ω)divω ξ̃(ω) dω = −
∫
|ω|=r

∇ωψ̃(ω) · ξ̃(ω) dω =

∫
|ω|=r

ψ̃(ω)d̃ivvξ(ω) dω, ψ̃ ∈ C1(rSd−1)

implying that divω ξ̃ = d̃ivvξ.

C Collision invariants and linearization of 〈Q〉
〈C〉

Proof. (of Proposition 3.4)

Consider a collision invariant ψ̃, and let us compute

I[ψ̃] :=

∫
v 6=0

ψ̃

(
r
v

|v|

)
divvAF (F (1)) dv

that is

I[ψ̃] = ν

∫
v 6=0

{
−(v − u[F ]) · ∇v

[
ψ̃

(
r
v

|v|

)]
+ σ∆v

[
ψ̃

(
r
v

|v|

)]}
F (1) dv

+ ν

∫
v 6=0

(v − u[F ]) ·

∫
v′ 6=0∇v′

[
ψ̃
(
r v′

|v′|

)]
F dv′∫

RdF dv′
F (1) dv.

We consider the application

χ(v) = −(v − u[F ]) · ∇v
[
ψ̃

(
r
v

|v|

)]
+ σ∆v

[
ψ̃

(
r
v

|v|

)]

+ (v − u[F ]) ·

∫
v′ 6=0∇v′

[
ψ̃
(
r v′

|v′|

)]
F dv′∫

RdF dv′

= u[F ] · ∇v
[
ψ̃

(
r
v

|v|

)]
+ σ∆v

[
ψ̃

(
r
v

|v|

)]
+ (v − u[F ]) ·

∫
rSd−1

(∇ω′ψ̃)(ω′)MlΩ(ω′) dω ′, v 6= 0.

As ψ̃ is a collision invariant, we have χ(ω) = 0, for any ω ∈ rSd−1 cf. (29). Thanks to Lemma

2.5, the integral I[ψ̃] can be written

I[ψ̃] = ν

∫
v 6=0

χ(v)F (1) dv =
ν2σ

β

MlΩ

M

d

dt
|t=r

∫
|ωt|=t

M(ωt)
χ(ωt)

t(t2 − r2)
dωt

=
ν2σ

β

MlΩ

M

d

dt
|t=r

∫
|ω|=r

M
(
t
ω

r

) χ
(
tωr
)

t(t2 − r2)

(
t

r

)d−1

dω.
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Thanks to the second statement in Lemma 2.2, we can write

∇v
[
ψ̃

(
r
v

|v|

)](
t
ω

r

)
=
r

t
(∇ωψ̃)(ω)

and by Remark 2.1, we have

∆v

[
ψ̃

(
r
v

|v|

)](
t
ω

r

)
=
(r
t

)2
(∆ωψ̃)(ω).

Therefore, the function t→ χ
(
tωr
)

is given by

χ
(
t
ω

r

)
=
r

t
u[F ] · (∇ωψ̃)(ω) + σ

r2

t2
(∆ωψ̃)(ω) +

(
t
ω

r
− u[F ]

)
·W [ψ̃]

with W [ψ̃] =
∫
rSd−1∇ωψ̃MlΩ(ω) dω. As χ(ω) = 0, ω ∈ rSd−1, because ψ̃ is a collision

invariant, we obtain

M
(
t
ω

r

) χ
(
tωr
)

t(t2 − r2)
= M

(
t
ω

r

) χ (tωr )− χ(ω)

t(t2 − r2)

= M
(
t
ω

r

) r−t
t u[F ] · (∇ωψ̃)(ω) + σ r

2−t2
t2

(∆ωψ̃)(ω) + t−r
r ω ·W [ψ̃]

t(t− r)(t+ r)

= M
(
t
ω

r

) ω ·W [ψ̃]

rt(t+ r)
−M

(
t
ω

r

) σ
t3

(∆ωψ̃)(ω)−M
(
t
ω

r

) u[F ] · (∇ωψ̃)(ω)

t2(t+ r)

=
M
(
tωr
)

rt(t+ r)
[ω ·W [ψ̃] + u[F ] · (∇ωψ̃)(ω)]− σ

t3
divω

(
M
(
t
ω

r

)
∇ωψ̃

)
.

It is easily seen that
∫
rSd−1M

(
tωr
)
ω dω ∈ RΩ and, as we know that W [ψ̃] ∈ (RΩ)⊥, we

deduce that ∫
rSd−1

M
(
t
ω

r

)
ω ·W [ψ̃] dω = 0.

Taking into account that ∫
rSd−1

divω

{
M
(
t
ω

r

)
∇ωψ̃

}
dω = 0

we deduce that

I[ψ̃] =
ν2σ

β

MlΩ

M

d

dt
|t=r

[(
t

r

)d−1 ∫
rSd−1

M
(
tωr
)
∇ωψ̃ · u[F ]

rt(t+ r)
dω

]

=
ν2σ

β

MlΩ

M

d

dt
|t=r

[(
t

r

)d−1 1

rt(t+ r)

]∫
rSd−1

M (ω)∇ωψ̃ · u[F ] dω

+
ν2σ

2r3β

MlΩ

M

d

dt
|t=r

∫
rSd−1

M
(
t
ω

r

)
∇ωψ̃ · u[F ] dω.

As before

MlΩ

M

∫
rSd−1

M(ω)∇ωψ̃ dω · u[F ] =

∫
rSd−1

MlΩ∇ωψ̃ dω · u[F ] = W [ψ̃] · u[F ] = 0
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implying that

I[ψ̃] =
ν2σ

2r3β

MlΩ

M

d

dt
|t=r

∫
rSd−1

M
(
t
ω

r

)
∇ωψ̃ · u[F ] dω

=
ν2σ

2r3β

MlΩ

M

∫
rSd−1

M(ω)

(
u[F ]− ω

σ
· ω
r

) (
∇ωψ̃ · u[F ]

)
dω

=
ν2

2r4β

∫
rSd−1

MlΩ(u[F ] · ω − r2)(∇ωψ̃ · u[F ]) dω

=
ν2

2r4β

∫
rSd−1

MlΩ(∇ωψ̃ · u[F ])(ω · u[F ]) dω.

In the last equality we have used one more time that W [ψ̃] · u[F ] = 0. We claim that the

last integral vanishes. Indeed, multiplying by (ω · u[F ])2 the equation (30) satisfied by the

collision invariant ψ̃ one gets

2σ

∫
rSd−1

MlΩ(∇ωψ̃ · u[F ])(ω · u[F ]) dω = W [ψ̃] ·
∫
rSd−1

MlΩ(ω · u[F ])2(ω − u[F ]) dω

= W [ψ̃] ·
∫
rSd−1

MlΩ(ω · u[F ])2ω dω.

It is easily seen that
∫
rSd−1MlΩ(ω · u[F ])2ω dω ∈ RΩ and therefore

W [ψ̃] ·
∫
rSd−1

MlΩ(ω · u[F ])2ω dω = 0

saying that I[ψ̃] = 0.
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BraHep77 [16] W. Braun, K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of

interacting classical particles, Commun. Math. Phys. 56(1977) 101-113.
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