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Abstract. We prove the existence and uniqueness of the mild solution for the 1D Vlasov-Poisson system with
initial-boundary conditions by using iterated approximations. The same arguments yield existence and uniqueness
for the free space or space periodic system. The major difficulty is the treatment of the boundary conditions. The
main idea consists of splitting the velocities range by introducing critical velocities corresponding to each boundary.
One of the crucial points is to estimate the critical velocity change in term of relative field. A result concerning
the continuity of the mild solution upon the initial-boundary conditions is presented as well.
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1. Introduction.

Many studies in the physics of charged particles are modeled by kinetic equations (Vlasov,
Boltzmann, etc) coupled with the electromagnetic equations (Poisson, Maxwell ). A few applica-
tion domains are semiconductors, particle accelerators, electron guns, etc.

Various results have been obtained for the free space systems. Weak solutions for the Vlasov-
Poisson system were constructed by Arseneev [1], Horst and Hunze [16]. The existence of classical
solutions has been studied in two or three dimensions by Ukai and Okabe [21], Horst [15], Batt
[2], Pfaffelmoser [18]. Classical solutions for the Vlasov-Poisson equations with small initial data
have been constructed by Bardos and Degond [3]. The propagation of the velocity moments for
the Vlasov-Poisson system in three dimensions has been studied by Lions and Perthame in [17].
They prove also an uniqueness result under a Lipschitz continuity assumption on the initial data.
Another uniqueness result has been obtained by Robert for bounded, compactly supported initial
data, [20]. A uniqueness result for BV solutions was obtained by Guo, Shu and Zhou [14].

The existence of weak solutions for the Vlasov-Maxwell system in three dimensions was shown
by DiPerna and Lions [9]. The relativistic Vlasov-Maxwell system was studied by Glassey and
Schaeffer [10]. In one dimension, the existence and uniqueness have been obtained by Cooper and
Klimas [7].

The boundary value problem have been studied as well. The existence of weak solutions for
the Vlasov-Poisson initial-boundary value problem in three dimensions is a result of Abdallah [4].
The existence of weak solutions for the three dimensional Vlasov-Maxwell initial-boundary value
problem has been analysed by Guo [12]. The stationary one dimensional Vlasov-Poisson system
has been studied by Greengard and Raviart [11]. An asymptotic analysis of the Vlasov-Poisson
system has been performed by Degond and Raviart [8] in the case of the plane diode. The station-
ary Vlasov-Maxwell system in three dimensions was analysed by Poupaud [19]. The regularity of
the solutions for the Vlasov-Maxwell system in a half line has been studied by Guo [13]. Results
for the time periodic case can be found in [6] for the Vlasov-Poisson system and in [5] for the
Vlasov-Maxwell system.

In this paper we study the existence and the uniqueness of the mild solution for the Vlasov-
Poisson initial-boundary value problem in one dimension :

∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈]0, T [×]0, 1[×Rv,
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f(t = 0, x, v) = f0(x, v), (x, v) ∈]0, 1[×Rv,

f(t, x, v) = g(t, x, v), (t, x, v) ∈]0, T [×Σ−,

E(t, x) = −∂xU, ∂xE = −∂2
xU = ρ(t, x) :=

∫

Rv

f(t, x, v)dv, (t, x) ∈]0, T [×]0, 1[,

U(t, x = 0) = U0(t), U(t, x = 1) = U1(t), t ∈]0, T [.

The function f(t, x, v) represents the particles distribution depending on the time t, the position
x and the velocity v. The electric field E(t, x) derives from an electrostatic potential U verifying
the Poisson equation with the charge density ρ(t, x) :=

∫
Rv

f(t, x, v)dv. Here Σ− is the subset of
boundary of the phases space ]0, 1[×Rv corresponding to the incoming velocities :

Σ− = {(0, v) | v > 0} ∪ {(1, v) | v < 0} = Σ−0 ∪ Σ−1 .

Similarly we define also Σ+ = {(0, v) | v < 0}∪{(1, v) | v > 0} = Σ+
0 ∪Σ+

1 which corresponds to the
outgoing velocities and Σ0 = {(0, 0), (1, 0)}. With the notations g|]0,T [×Σ−0

= g0, g|]0,T [×Σ−1
= g1

the boundary condition writes :

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0), t ∈]0, T [.

The existence of weak solution for the Vlasov-Poisson initial-boundary value problem has been
obtained in previous works; in [4] weak solutions of finite total (kinetic and electric) energy are
constructed in dimension d, d ≤ 3 by assuming initial-boundary conditions of finite kinetic, respec-
tively flux of kinetic energy :

∫ 1

0

∫

Rv

f0(x, v)|v|2dxdv + sup
0≤t≤T

{∫

v>0

v|v|2g0(t, v)dv −
∫

v<0

v|v|2g1(t, v)dv

}
< +∞,

and |v|λf0 ∈ L∞(]0, 1[×Rv), |v|λg0 ∈ L∞(]0, T [×R+
v ), |v|λg1 ∈ L∞(]0, T [×R−v ), for some λ > d + 1.

The main goal of this paper is to establish the existence and uniqueness of the mild solution
(or solution by characteristics) in one dimension under less restrictive hypothesis, say for initial-
boundary conditions of finite charge. As usual when studying coupled equations, we search the
solutions as fixed points for some nonlinear application. For the 1D Vlasov-Poisson system this
application writes for example F : BR(XT ) → BR(XT ) where :

FE(t, x) =
∫ x

0

ρE(t, y)dy −
∫ 1

0

(1− y)ρE(t, y)dy − U1(t) + U0(t), (t, x) ∈]0, T [×]0, 1[,

where ρE(t, x) =
∫
Rv

fE(t, x, v)dv and fE solves the linear Vlasov problem associated to the field
E and BR(XT ) is the ball of radius R of some space XT . Naturally, in order to construct solutions
by characteristics, which writes :

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s, X(s; t, x, v)), sin(t, x, v) ≤ s ≤ sout(t, x, v),

the space XT to be considered is L∞(]0, T [;W 1,∞(]0, 1[)). Here sin/sout represent the entry/exit
time of the characteristics in the domain ]0, 1[ (see the next section for exact definitions). Since
by construction ∂xFE = ρE (conforming to the Poisson equation), it is clear that BR(XT ) is
preserved by F provided that the charge density remains uniformly bounded in L∞(]0, T [×]0, 1[).
Therefore the natural hypothesis are :

∫

Rv

sup
0<x<1

f0(x, v)dv +
∫

v>0

sup
0<t<T

g0(t, v)dv +
∫

v<0

sup
0<t<T

g1(t, v)dv < +∞,
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and :

max{‖f0‖L∞(]0,1[×Rv), ‖g0‖L∞(]0,T [×R+
v ), ‖g1‖L∞(]0,T [×R−v )} < +∞.

We intend to show the existence of an unique fixed point for F by using the iterated approximations
method, which requires to estimate FA−FB in term of A−B for A, B different fields of XT . This
can be done by using the mild formulation of the Vlasov problem. Indeed, by using the continuity
equation ∂tρE +∂xjE = 0, FE can be represented also in term of the current density. Or estimate∫ t

0
jA(s, x)ds − ∫ t

0
jB(s, x)ds in L∞(]0, 1[) reduces to a duality calculation by taking the product

by L1 functions ϕ :

〈
∫ t

0

(jA(s, ·)− jB(s, ·))ds, ϕ(·)〉=
∫ t

0

∫ 1

0

∫

Rv

(fA(s, x, v)− fB(s, x, v))vϕ(x)dsdxdv

=
∫ t

0

∫

v>0

vg0(τ, v)
∫ XA(s0

out)

XB(s0
out)

ϕ(u)dudτdv

−
∫ t

0

∫

v<0

vg1(τ, v)
∫ XA(s1

out)

XB(s1
out)

ϕ(u)dudτdv

+
∫ 1

0

∫

Rv

f0(x, v)
∫ XA(si

out)

XB(si
out)

ϕ(u)dudxdv,

where s0
out = sout(τ, 0, v), si

out = sout(0, x, v), s1
out = sout(τ, 1, v) represent the exit times of the

characteristics (see the next sections for the exact definitions). Note that for large velocities the
integrand of the left boundary term vanishes since both XA(sout(τ, 0, v)) = XB(sout(τ, 0, v)) = 1.
This suggest the definition of some critical velocities v0(t; τ, 0), v1(t; τ, 0) such that :

sout(τ, 0, v)<t, X(sout(τ, 0, v); τ, 0, v) = 0, 0 < v < v0(t; τ, 0),

sout(τ, 0, v)=t, 0 < X(sout(τ, 0, v); τ, 0, v) < 1, v0(t; τ, 0) < v < v1(t; τ, 0),

sout(τ, 0, v)<t, X(sout(τ, 0, v); τ, 0, v) = 1, v > v1(t; τ, 0).

Similar definitions hold for the right boundary term. One of the key point of our analysis consists
on estimating the relative critical velocity. For non decreasing fields with respect to x, we have :

|vk
A(t; τ, k)− vk

B(t; τ, k)| ≤
∫ t

τ

‖A(s)−B(s)‖L∞(]0,1[)ds, k = 0, 1,

and finally one gets :

‖FA(t)−FB(t)‖L∞(]0,1[) ≤ C

∫ t

0

‖A(τ)−B(τ)‖L∞(]0,1[)dτ,

where C depends only on the L∞(]0, T [;W 1,∞(]0, 1[)) norms of A,B and the initial-boundary con-
ditions . We prove the following existence and uniqueness result :

Theorem Assume that there is n0, h0, h1 : [0, +∞[→ [0, +∞[ bounded non increasing functions
such that f0(x, v) ≤ n0(|v|), ∀(x, v) ∈]0, 1[×Rv, g0(t, v) ≤ h0(v),∀(t, v) ∈]0, T [×R+

v , g1(t, v) ≤
h1(−v), ∀(t, v) ∈]0, T [×R−v and :

∫

Rv

n0(|v|)dv +
∫

v>0

h0(v)dv +
∫

v<0

h1(−v)dv < +∞,

max{‖n0‖L∞(R+
v ), ‖h0‖L∞(R+

v ), ‖h1‖L∞(R+
v ), ‖U1 − U0‖L∞(]0,T [)} < +∞.
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Then there is an unique mild solution for the 1D Vlasov-Poisson initial-boundary value problem .

The estimate of the relative critical velocity, which is used for the treatment of the boundary
terms, relies on some comparison results for characteristics associated to non decreasing fields, pre-
sented in Section 4. This is why, when studying the Vlasov-Poisson initial-boundary value problem
we consider only one species of charged particles. All the definitions concerning the weak/mild
formulations for the Vlasov or Vlasov-Poisson problem are recalled in Sections 2, 3. The main
result on the existence and uniqueness of the mild solution is developed in Section 5 as well as a
continuity result upon the initial-boundary conditions . The same method applies when studying
the free or periodic space problem. Moreover, in this cases there are no boundary terms and thus
the analysis on critical velocities not need to be used. This time the existence and uniqueness result
can be obtained for general electric fields (not necessarily non decreasing in space) which allows us
to treat systems with two species of charged particles (plasma globally neutral). Statements and
sketch of the proofs can be found in Sections 6, 7.

2. The Vlasov equation.

The equation which models the transport of charged particles is called the Vlasov equation. In
one dimension, if the particles move only under the action of an electric field this equation writes :

∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈]0, T [×]0, 1[×Rv. (2.1)

Here E(t, x) is a given electric field which derives from a potential U(t, x) :

E(t, x) = −∂xU, (t, x) ∈]0, T [×]0, 1[.

The initial-boundary conditions for the particles distribution are given by :

f(t = 0, x, v) = f0(x, v), (x, v) ∈]0, 1[×Rv, (2.2)

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0), t ∈]0, T [. (2.3)

Now let us briefly recall the definitions of weak and mild solutions for the Vlasov problem (2.1), (2.2)
and (2.3).

2.1. Weak solutions for the Vlasov-Poisson problem.

Definition 2.1. Assume that E ∈ L∞(]0, T [×]0, 1[), f0∈L1
loc(]0, 1[×Rv), vg0∈L1

loc(]0, T [×R+
v ),

vg1 ∈ L1
loc(]0, T [×R−v ). We say that f ∈ L1

loc(]0, T [×]0, 1[×Rv) is a weak solution for the Vlasov
problem (2.1), (2.2), (2.3) iff :

−
∫ T

0

∫ 1

0

∫

Rv

f(t, x, v) · (∂tϕ + v · ∂xϕ + E(t, x) · ∂vϕ)dtdxdv =
∫ 1

0

∫

Rv

f0(x, v)ϕ(0, x, v)dxdv

+
∫ T

0

∫

v>0

vg0(t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫

v<0

vg1(t, v)ϕ(t, 1, v)dtdv,

for all test function ϕ ∈ Tw where :

Tw = {ϕ ∈ W 1,∞(]0, T [×]0, 1[×Rv) | ϕ|]0,T [×Σ+ = ϕ(T, ·, ·) = 0,∃R : supp(ϕ) ⊂ [0, T ]×[0, 1]×BR}.



Existence and Uniqueness for the 1D Vlasov-Poisson system 5

2.2. Mild solutions for the Vlasov problem.

We need to consider also some special solutions of (2.1), (2.2), (2.3) which are called mild
solutions or solutions by characteristics. These solutions require more regularity on the electric
field and they are particular cases of weak solutions. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[))
and for (t, x, v) ∈ {[0, T [×]0, 1[×Rv} ∪ {]0, T [×Σ−} let us denote by (X(s; t, x, v), V (s; t, x, v)) the
unique solution of the ordinary differential system of equations :

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s,X(s; t, x, v)), sin ≤ s ≤ sout, (2.4)

which verify the conditions :

X(s = t; t, x, v) = x, V (s = t; t, x, v) = v.

Here sin = sin(t, x, v) (resp. sout = sout(t, x, v)) represents the incoming (resp. outgoing) time of
the characteristics in the domain ]0, 1[ defined by :

sin(t, x, v) = max{0, sup{0 ≤ s ≤ t : X(s; t, x, v) ∈ {0, 1}}}, (2.5)

and :

sout(t, x, v) = min{T, inf{T ≥ s ≥ t : X(s; t, x, v) ∈ {0, 1}}}. (2.6)

The total travel time through the domain (lifetime) writes τ(t, x, v) = sout(t, x, v)−sin(t, x, v) ≤ T .
Now we replace in the Definition 2.1 the function ∂tϕ + v · ∂xϕ + E(t, x) · ∂vϕ by ψ, which gives
after integration :

ϕ(t, x, v) = −
∫ sout(t,x,v)

t

ψ(s,X(s; t, x, v), V (s; t, x, v))ds,

and we define the mild solution as follows :

Definition 2.2. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)), f0 ∈ L1
loc(]0, 1[×Rv), vg0 ∈

L1
loc(]0, T [×R+

v ), vg1 ∈ L1
loc(]0, T [×R−v ). We say that f ∈ L1

loc(]0, T [×]0, 1[×Rv) is a mild solution
for the Vlasov problem (2.1), (2.2), (2.3) iff :

∫ T

0

∫ 1

0

∫

Rv

f(t, x, v)ψ(t, x, v)dtdxdv=
∫ 1

0

∫

Rv

f0(x, v)
∫ sout(0,x,v)

0

ψ(s,X(s; 0, x, v), V (s; 0, x, v))dsdxdv

+
∫ T

0

∫

v>0

vg0(t, v)
∫ sout(t,0,v)

t

ψ(s, X(s; t, 0, v), V (s; t, 0, v))dsdtdv

−
∫ T

0

∫

v<0

vg1(t, v)
∫ sout(t,1,v)

t

ψ(s, X(s; t, 1, v), V (s; t, 1, v))dsdtdv,

for all test function ψ ∈ Tm where :

Tm = {ψ ∈ L∞(]0, T [×]0, 1[×Rv) | ∃R > 0 : supp(ψ) ⊂ [0, T ]× [0, 1]×BR}.
In order to simplify the formulas we shall use the following notations :

(X(s), V (s)) = (X(s; t, x, v), V (s; t, x, v)), (X0(s), V 0(s)) = (X(s; t, 0, v), V (s; t, 0, v)),

(X1(s), V 1(s)) = (X(s; t, 1, v), V (s; t, 1, v)), (Xi(s), V i(s)) = (X(s; 0, x, v), V (s; 0, x, v)),

and :

sin = sin(t, x, v), sout = sout(t, x, v), s0
out = sout(t, 0, v), s1

out = sout(t, 1, v), si
out = sout(0, x, v).
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Remark 2.3. It is well known that the mild solution is unique and is given by f(t, x, v) =
gk(sin, V (sin)) if sin(t, x, v) > 0, X(sin(t, x, v); t, x, v) = k, k = 0, 1, f(t, x, v) = f0(X(sin), V (sin))
if sin(t, x, v) = 0.

Note that every mild solution is also weak solution. Moreover, the existence of weak solu-
tion for the Vlasov problem with bounded initial-boundary conditions f0, g0, g1 ∈ L∞, follows
by regularization of the electric field with respect to x by convolution with ζε(·) = 1

ε ζ
( ·

ε

)
, ζ ∈

C∞0 , supp(ζ) = [−1, 1], ζ ≥ 0,
∫
R ζ(u)du = 1, and by passing to the limit for ε ↘ 0 in the weak

formulation of fε, the mild solution associated to Eε = E ? ζε.

3. The Vlasov-Poisson system.

The self-consistent electric field solves the Poisson equation :

∂xE = −∂2
xU = ρ(t, x) :=

∫

Rv

f(t, x, v)dv, (t, x) ∈]0, T [×]0, 1[, (3.1)

with the boundary conditions :

U(t, x = 0) = U0(t), U(t, x = 1) = U1(t), t ∈]0, T [. (3.2)

The system formed by (2.1), (3.1), (2.2), (2.3), (3.2) is called the Vlasov-Poisson initial-boundary
value problem in one dimension. Obviously the electric field writes :

E(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − U1(t) + U0(t), (t, x) ∈]0, T [×]0, 1[, (3.3)

and therefore we can give the following definitions :

Definition 3.1. Assume that f0∈L1
loc(]0, 1[×Rv), vg0∈L1

loc(]0, T [×R+
v ), vg1∈L1

loc(]0, T [×R−v ),
U1−U0 ∈ L∞(]0, T [). We say that (f,E) ∈ L1(]0, T [×]0, 1[×Rv)×L∞(]0, T [×]0, 1[) (resp. (f, E) ∈
L1(]0, T [×]0, 1[×Rv) × L∞(]0, T [;W 1,∞(]0, 1[))) is a weak (resp. mild) solution for the Vlasov-
Poisson problem iff f is a weak (resp. mild) solution for the Vlasov problem (2.1), (2.2), (2.3)
corresponding to the electric field (3.3) given by the Poisson problem.

4. Characteristics.

The main tool of our analysis is the mild formulation of the Vlasov problem. In order to
estimate the charge and current densities we need more informations about the characteristics.
We present here some properties of the characteristics associated to regular, non decreasing with
respect to x fields.

Proposition 4.1. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is non decreasing with respect to
xand that (X1(s), V1(s)), (X2(s), V2(s)) are two characteristics such that there is s1 < s2 verifying
X1(si) = X2(si), i = 1, 2. Then the characteristics coincide : (X1(s), V1(s)) = (X2(s), V2(s)), ∀s.

Proof. The conclusion follows easily after multiplication of the equation d2

ds2 (X1(s)−X2(s)) =
E(s,X1(s))− E(s, X2(s)) by X1(s)−X2(s) and integration by parts on [s1, s2].

Proposition 4.2. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is non decreasing with respect
to x. If v1 < v2 then we have :

X(s; t, x, v1) < X(s; t, x, v2), V (s; t, x, v1) < V (s; t, x, v2), ∀s ∈]t, sout(t, x, v1)]∩]t, sout(t, x, v2)],

and :

X(s; t, x, v1) > X(s; t, x, v2), V (s; t, x, v1) < V (s; t, x, v2), ∀s ∈ [sin(t, x, v1), t[∩[sin(t, x, v2)[.
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Proof. Suppose that there is s ∈ [sin(t, x, v1), sout(t, x, v1)] ∩ [sin(t, x, v2), sout(t, x, v2)], s 6= t
such that X(s; t, x, v1) = X(s; t, x, v2). Since X(t; t, x, v1) = X(t; t, x, v2) = x, by the Proposi-
tion 4.1 it follows that the characteristics coincide, and thus v1 = v2 which is in contradiction
with the hypothesis. Therefore X(s; t, x, v1) − X(s; t, x, v2) has constant sign on the intervals
[sin(t, x, v1), t[∩[sin(t, x, v2), t[ and ]t, sout(t, x, v1)]∩]t, sout(t, x, v2)]. On the other hand we have :

d

ds
(X(s; t, x, v1)−X(s; t, x, v2))|s=t = v1 − v2 < 0,

and therefore X(s; t, x, v1)−X(s; t, x, v2) is decreasing locally in s = t. We deduce that :

X(s; t, x, v1) > X(s; t, x, v2), s ∈ [sin(t, x, v1), t[∩[sin(t, x, v2), t[,

and :

X(s; t, x, v1) < X(s; t, x, v2), s ∈]t, sout(t, x, v1)]∩]t, sout(t, x, v2)].

By using the characteristics equations one gets :

d

ds
(V (s; t, x, v1)− V (s; t, x, v2)) = E(s,X(s; t, x, v1))− E(s, X(s; t, x, v2)),

and thus V (s; t, x, v1) − V (s; t, x, v2) is non decreasing on [sin(t, x, v1), t[∩[sin(t, x, v2), t[ and non
increasing on ]t, sout(t, x, v1)]∩]t, sout(t, x, v2)]. We deduce that :

V (s; t, x, v1)−V (s; t, x, v2) ≤ v1−v2 < 0, s ∈ [sin(t, x, v1), sout(t, x, v1)]∩[sin(t, x, v2), sout(t, x, v2)].

When using the mild formulation of the Vlasov problem it is important to distinguish the char-
acteristics with respect to the exit point. This justifies the following definitions : for (t, x) ∈
{[0, T [×]0, 1[} ∪ {]0, T [×{0, 1}} we denote by V0,V1,VT the subsets of Rv given by :

V0(T ; t, x) := {v ∈ Rv : sout(t, x, v) < T, X(sout(t, x, v); t, x, v) = 0}, (4.1)

V1(T ; t, x) := {v ∈ Rv : sout(t, x, v) < T, X(sout(t, x, v); t, x, v) = 1}, (4.2)

VT (T ; t, x) := {v ∈ Rv : sout(t, x, v) = T, 0 < X(T ; t, x, v) < 1}. (4.3)

Note that when E is bounded there is R large enough such that ] − ∞,−R[⊂ V0(T ; t, x) and
]R, +∞[⊂ V1(T ; t, x) and thus V0(T ; t, x) 6= ∅,V1(T ; t, x) 6= ∅. By the definition V0(T ; t, x) ∩
V1(T ; t, x) = ∅ and VT (T ; t, x) ∩ {V0(T ; t, x) ∪ V1(T ; t, x)} = ∅.

Proposition 4.3. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is non decreasing with respect
to x. Then we have :
(1) if v2 ∈ V0(T ; t, x) then v1 ∈ V0(T ; t, x), ∀v1 < v2;
(2) if v1 ∈ V1(T ; t, x) then v2 ∈ V1(T ; t, x), ∀v2 > v1;
(3) if v1 ∈ V0(T ; t, x), v2 ∈ V1(T ; t, x), then v1 < v2.

Proof. (1) Suppose that sout(t, x, v1) ≥ sout(t, x, v2). By the Proposition 4.2 we deduce that :
X(s; t, x, v1) < X(s; t, x, v2),∀s ∈]t, sout(t, x, v1)]∩]t, sout(t, x, v2)] =]t, sout(t, x, v2)]. In particular
for s = sout(t, x, v2) we find that : 0 ≤ X(sout(t, x, v2); t, x, v1) < X(sout(t, x, v2); t, x, v2) = 0,
which is not possible. Finally it comes that sout(t, x, v1) < sout(t, x, v2) < T and :

X(sout(t, x, v1); t, x, v1) < X(sout(t, x, v1); t, x, v2) < 1.

We deduce that X(sout(t, x, v1); t, x, v1) = 0 or v1 ∈ V0(T ; t, x).
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(2) Similarly, if v1 ∈ V1(T ; t, x, ) and v1 < v2 we have sout(t, x, v2) < sout(t, x, v1) < T (oth-
erwise 1 = X(sout(t, x, v1); t, x, v1) < X(sout(t, x, v1); t, x, v2)) and 0 < X(sout(t, x, v2); t, x, v1) <
X(sout(t, x, v2); t, x, v2). We deduce that X(sout(t, x, v2); t, x, v2) = 1 and v2 ∈ V1(T ; t, x).

(3) Suppose that v1 ≥ v2. Since v1 ∈ V0(T ; t, x), by (1) it follows that v2 ∈ V0(T ; t, x) ∩
V1(T ; t, x) = ∅. Therefore we have v1 < v2.

We introduce the critical velocities v0(T ; t, x), v1(T ; t, x) given by :

v0(T ; t, x) := supV0(T ; t, x), v1(T ; t, x) := inf V1(T ; t, x). (4.4)

Obviously we have −∞ < v0(T ; t, x) ≤ v1(T ; t, x) < +∞.

Proposition 4.4. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is non decreasing with respect
to x. We have :
(1) ]−∞, v0(T ; t, x)[⊂ V0(T ; t, x) ⊂]−∞, v0(T ; t, x)];
(2) ]v1(T ; t, x), +∞[⊂ V1(T ; t, x) ⊂ [v1(T ; t, x),+∞[;
(3) ]v0(T ; t, x), v1(T ; t, x)[⊂ VT (T ; t, x) ⊂ [v0(T ; t, x), v1(T ; t, x)].

Proof. From the Proposition 4.3 and the definitions of v0, v1 we deduce (1) and (2). By the
other hand VT (T ; t, x) ⊂ Rv−{V0(T ; t, x)∪V1(T ; t, x)} ⊂ Rv−{]−∞, v0(T ; t;x)[∪]v1(T ; t, x),+∞[}
= [v0(T ; t, x), v1(T ; t, x)]. Let us prove that ]v0, v1[⊂ VT . Consider v0 < v < v1, if v0 < v1.
Suppose that sout(t, x, v) < T with X(sout(t, x, v); t, x, v) = 0, or v ∈ V0(T ; t, x). By the Propo-
sition 4.3 we deduce that ṽ ∈ V0(T ; t, x), ∀v0 < ṽ < v which is in contradiction with ṽ > v0 =
supV0(T ; t, x). The same arguments apply for sout(t, x, v) < T, X(sout(t, x, v); t, x, v) = 1, by tak-
ing v < ṽ < v1. It comes that sout(t, x, v) = T, ∀v0 < v < v1. Suppose now that X(T ; t, x, v) = 0.
If we take v0 < ṽ < v we deduce that sout(t, x, ṽ) = T and by the Proposition 4.2 we find that
0 ≤ X(T ; t, x, ṽ) < X(T ; t, x, v) = 0. Similarly we can show that X(T ; t, x, v) = 1 is not possible.
Finally we deduce that X(T ; t, x, v) ∈]0, 1[,∀v0 < v < v1, and thus ]v0, v1[⊂ VT .

Let us consider two fields A,B. In order to prove the uniqueness of the mild solution for the
Vlasov-Poisson problem, it will be useful to estimate the change of critical velocity |vk

A−vk
B |, k = 0, 1

with respect to the relative field A − B. For this we need to introduce the notion of sub/super-
characteristics :

Definition 4.5. Assume that E ∈ L∞(]0, T [; W 1,∞(]0, 1[)) is non decreasing with respect
to x. We say that (X(s), V (s)) is a sub-characteristic (resp. super-characteristic) iff X is twice
differentiable with respect to s and :

dX

ds
= V (s),

dV

ds
≤ E(s,X(s)), sin ≤ s ≤ sout,

(resp. :

dX

ds
= V (s),

dV

ds
≥ E(s, X(s)), sin ≤ s ≤ sout, )

with the same definitions for sin, sout as before.

We have the following comparison result :

Proposition 4.6. (Forward Comparison) Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is non
decreasing with respect to x. Consider (X(s), V (s)), (X(s), V (s)) a sub-characteristic, resp. a
super-characteristic such that : X(t) ≤ X(t), V (t) ≤ V (t). Then we have :

X(s) ≤ X(s), V (s) ≤ V (s), ∀s ∈ [t, sout] ∩ [t, sout].



Existence and Uniqueness for the 1D Vlasov-Poisson system 9

Proof. We can extend the field E to ]0, T [×Rx by Ẽ(t, x) = E(t, 0), x < 0 and Ẽ(t, x) =
E(t, 1), x > 1. We have ‖Ẽ‖L∞(]0,T [;W 1,∞(]0,1[)) ≤ ‖E‖L∞(]0,T [;W 1,∞(]0,1[)) and Ẽ is non decreasing
with respect to x. Consider (x, v) ∈ Rx × Rv such that X(t) ≤ x ≤ X(t), V (t) ≤ v ≤ V (t).
Denote by (X(s; t, x, v), V (s; t, x, v)) the characteristic associated to the field Ẽ :

dX

ds
= V (s),

dV

ds
= Ẽ(s,X(s)),

with the conditions X(s = t; t, x, v) = x, V (s = t; t, x, v) = v. We show that X(s) ≤ X(s) ≤
X(s), V (s) ≤ V (s) ≤ V (s), for all s ∈ [t, sout] ∩ [t, sout]. For this we can use the iterated
approximations method. For example, in order to prove that X ≤ X,V ≤ V we consider as
first approximation X0 = X,V 0 = V and we define Xn+1(s) = x +

∫ s

t
V n(τ)dτ , V n+1(s) =

v +
∫ s

t
Ẽ(τ,Xn(τ))dτ , ∀s ∈ [t, sout], ∀n ≥ 0. We check easily that Xn(s) ≥ X(s), V n(s) ≥

V (s),∀s ∈ [t, sout] and by passing to the limit for n → +∞ we find that X(s) ≥ X(s), V (s) ≥
V (s), ∀s ∈ [t, sout]. In the same way, by taking as initial approximation (X0, V 0) = (X, V ) we
prove that X(s) ≤ X(s), V (s) ≤ V (s), ∀s ∈ [t, sout]. Finally we have :

X(s) ≤ X(s) ≤ X(s), V (s) ≤ V (s) ≤ V (s), ∀s ∈ [t, sout] ∩ [t, sout].

Remark 4.7. In fact, since 0 ≤ X(s), X(s) ≤ 1 ∀ t ≤ s ≤ min{sout, sout} it follows that
0 ≤ X(s) ≤ 1 ∀ t ≤ s ≤ min{sout, sout} and therefore (X,V ) coincide with the characteristic
associated to the field E. Moreover, sout(t, x, v) ≥ min{sout, sout}.

Now we are ready to prove a result of continuous dependence of the critical velocities with
respect to the electric field. We have the following lemma :

Lemma 4.8. (Critical velocity change) Assume that A,B ∈ L∞(]0, T [; W 1,∞(]0, 1[)) are non
decreasing with respect to x. Then for all (t, x) ∈ [0, T [×[0, 1] we have the following inequality :

|vk
A(T ; t, x)− vk

B(T ; t, x)| ≤
∫ T

t

‖A(s)−B(s)‖L∞(]0,1[)ds, k = 0, 1. (4.5)

Proof. Denote by m = ‖A−B‖L1(]t,T [;L∞(]0,1[)). Let us prove for example that |v0
A− v0

B | ≤ m.
Suppose that v0

A − v0
B > m. Therefore there is v > v0

B such that ṽ = v + m < v0
A and thus

we deduce from the Proposition 4.4 that XB(sB
out(t, x, v); t, x, v) > 0, XA(sA

out(t, x, ṽ); t, x, ṽ) = 0,
sA

out(t, x, ṽ) < T . Consider the solution (XC , VC) of the following system of ordinary differential
equations :

dXC

ds
= VC(s),

dVC

ds
= B(s, XA(s)), t ≤ s ≤ sC

out(t, x, v),

with the conditions XC(t) = x, VC(t) = v. With the notations :

(XA(s), VA(s)) = (XA(s; t, x, ṽ), VA(s; t, x, ṽ)), t ≤ s ≤ sA
out(t, x, ṽ),

and :

(XB(s), VB(s)) = (XB(s; t, x, v), VB(s; t, x, v)), t ≤ s ≤ sB
out(t, x, v),

we have also :

dXA

ds
= VA(s),

dVA

ds
= A(s,XA(s)), t ≤ s ≤ sA

out(t, x, ṽ),

with XA(t) = x, VA(t) = ṽ and :

dXB

ds
= VB(s),

dVB

ds
= B(s,XB(s)), t ≤ s ≤ sB

out(t, x, v),
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with XB(t) = x, VB(t) = v. We deduce that :

d

ds
(XA −XC) = VA(s)− VC(s),

d

ds
(VA − VC) = (A−B)(s,XA(s)), t ≤ s ≤ min{sA

out, s
C
out},

and XA(t)−XC(t) = 0, VA(t)− VC(t) = ṽ − v = m. We have :

|VA(s)− VC(s)− VA(t) + VC(t)| ≤
∫ s

t

‖A(τ)−B(τ)‖L∞(]0,1[)dτ ≤ m, t ≤ s ≤ min{sA
out, s

C
out},

and thus VA(s) − VC(s) ≥ VA(t) − VC(t) − m = 0, t ≤ s ≤ min{sA
out, s

C
out}. Moreover, since

XA(t) = XC(t) = x it follows that XA(s) ≥ XC(s), t ≤ s ≤ min{sA
out, s

C
out}. If we suppose that

sA
out < sC

out, we deduce that XC(sA
out; t, x, v) ≤ XA(sA

out; t, x, ṽ) = 0 and thus we have sC
out ≤ sA

out

which is in contradiction with the previous supposition. Therefore we have sC
out ≤ sA

out < T .
In particular XC(sC

out; t, x, v) ∈ {0, 1} and XC(sC
out; t, x, v) ≤ XA(sC

out; t, x, ṽ). Note also that
XA(sC

out; t, x, ṽ) = 1 implies that sA
out ≤ sC

out and thus it follows that sA
out = sC

out < T which is not
possible because XA(sA

out; t, x, ṽ) = 0 and XA(sC
out; t, x, ṽ) = 1. We obtain that XC(sC

out; t, x, v) ≤
XA(sC

out; t, x, ṽ) < 1 and we deduce that XC(sC
out; t, x, v) = 0. On the other hand :

d2

ds2
XC = B(s,XA(s)) ≥ B(s,XC(s)), t ≤ s ≤ sC

out,

and :

d2

ds2
XB = B(s, XB(s)), t ≤ s ≤ sB

out.

Note that XC(t) = XB(t) = x and VC(t) = VB(t) = v. Thus by applying the forward comparison
(see Proposition 4.6) we deduce that XC(s) ≥ XB(s), VC(s) ≥ VB(s), t ≤ s ≤ min{sB

out, s
C
out}. If

we suppose that sC
out < sB

out, we deduce that :

0 = XC(sC
out; t, x, v) ≥ XB(sC

out; t, x, v),

and thus we have sB
out ≤ sC

out which is in contradiction with the previous supposition. Therefore
we have sB

out ≤ sC
out ≤ sA

out < T and :

XB(s) ≤ XC(s) ≤ XA(s), VB(s) ≤ VC(s) ≤ VA(s), t ≤ s ≤ sB
out.

Since v > v0
B and sB

out < T we have XB(sB
out; t, x, v) = 1. Now, by taking s = sB

out in the previous
inequality we obtain :

1 = XB(sB
out; t, x, v) ≤ XA(sB

out; t, x, ṽ),

which implies that XA(sB
out; t, x, ṽ) = 1 and sA

out ≤ sB
out, or sA

out = sB
out. As before we obtain a

contradiction because XA(sA
out; t, x, ṽ) = 0 and XA(sB

out; t, x, ṽ) = 1. Finally we have proved that
the supposition v0

A− v0
B > m is false and thus v0

A− v0
B ≤ m. By changing A with B we obtain also

that v0
B−v0

A ≤ m, or |v0
A−v0

B | ≤ m. The same arguments apply for the critical velocities v1
A, v1

B .

We end this section with some usual calculations concerning the continuity of the characteris-
tics with respect to the field.

Proposition 4.9. Assume that A,B ∈ L∞(]0, T [;W 1,∞(]0, 1[)) and consider (t, x, v) ∈
{[0, T [×]0, 1[×Rv} ∪ {]0, T [×Σ−}. Then for s ∈ [sA

in(t, x, v), sA
out(t, x, v)] ∩ [sB

in(t, x, v), sB
out(t, x, v)]

we have :

|XA(s; t, x, v)−XB(s; t, x, v)|+|VA(s; t, x, v)− VB(s; t, x, v)| ≤
∣∣∣∣
∫ s

t

‖A(τ)−B(τ)‖L∞(]0,1[)dτ

∣∣∣∣

· exp
(∣∣∣∣

∫ s

t

(1 + ‖∂xB(τ)‖L∞(]0,1[))dτ

∣∣∣∣
)

.
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5. Existence and uniqueness of the mild solution.

In this section we intend to prove the existence and the uniqueness of the mild solution
for the Vlasov-Poisson initial-boundary value problem in one dimension by using the iterated
approximations method. We consider the application F defined for regular electric field E ∈
L∞(]0, T [; W 1,∞(]0, 1[)) as follows :

E → fE → ρE =
∫

Rv

fE(t, x, v)dv → E1 = F(E), (5.1)

where fE is the mild solution of the Vlasov problem associated to the field E and E1 is the Poisson
electric field corresponding to the charge density ρE . Before analysing the application F let us
introduce some notations. If u : [0,+∞[→ [0, +∞[ is a bounded non increasing real function and
R > 0 we denote by uR : [−R, +∞[→ [0, +∞[ the function given by uR(t) = u(0) if −R ≤ t ≤ R
and uR(t) = u(t−R) if t > R. If we assume that u belongs to L1(R+) therefore :

‖uR‖L1(−R,+∞) = 2R‖u‖L∞(R+) + ‖u‖L1(R+).

5.1. Estimate of FE.

We assume that the initial-boundary conditions verify the following hypothesis denoted by
(H) : there is n0, h0, h1 : [0, +∞[→ [0, +∞[ bounded, non increasing functions such that :

f0(x, v)≤n0(|v|), (x, v) ∈]0, 1[×Rv,

(H) g0(t, v)≤h0(v), (t, v) ∈]0, T [×R+
v ,

g1(t, v)≤h1(−v), (t, v) ∈]0, T [×R−v ,

and :

(H0) M0 :=
∫

Rv

n0(|v|)dv +
∫

v>0

h0(v)dv +
∫

v<0

h1(−v)dv < +∞,

(H∞) M∞ := max{‖n0‖L∞(R+
v ), ‖h0‖L∞(R+

v ), ‖h1‖L∞(R+
v )} < +∞.

Under the previous hypothesis we can prove the following proposition :

Proposition 5.1. Assume that f0, g0, g1 satisfy the hypothesis (H), (H0), (H∞) and U0−U1 ∈
L∞(]0, T [). Then for every E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) we have fE ∈ L∞(]0, T [;L1(]0, 1[×Rv)),
ρE ∈ L∞(]0, T [; L1(]0, 1[)) ∩ L∞(]0, T [×]0, 1[),FE ∈ L∞(]0, T [; W 1,∞(]0, 1[)). Moreover the fol-
lowing estimates hold :

‖fE‖L∞(]0,t[;L1(]0,1[×Rv)) = ‖ρE‖L∞(]0,t[;L1(]0,1[)) ≤ 6 ·M∞

∫ t

0

‖E(τ)‖L∞(]0,1[)dτ + M0,

‖ρE‖L∞(]0,t[×]0,1[) = ‖∂xFE‖L∞(]0,t[×]0,1[) ≤ 6 ·M∞

∫ t

0

‖E(τ)‖L∞(]0,1[)dτ + M0,

‖FE‖L∞(]0,t[;W 1,∞(]0,1[)) ≤ 12 ·M∞

∫ t

0

‖E(s)‖L∞(]0,1[)ds + 2M0 + ‖U0 − U1‖L∞(]0,t[),

lim
R1→+∞

∫

|v|>R1

fE(t, x, v)dv = 0, uniformly with respect to (t, x) ∈]0, T [×]0, 1[,
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and the mild formulation of the Vlasov problem holds for test functions ψ ∈ L∞(]0, T [×]0, 1[×Rv).

Proof. By the Remark 2.3 we have :

ρE(t, x)=
∫

Rv

fE(t, x, v)dv =
∫

Rv

f0(X(0; t, x, v), V (0; t, x, v))1{sin(t,x,v)=0}dv

+Σ1
k=0

∫

Rv

gk(sin(t, x, v), V (sin(t, x, v); t, x, v))1{sin(t,x,v)>0}1{X(sin(t,x,v);t,x,v)=k}dv

=Ii + I0 + I1.

Let us estimate the first integral Ii. For this, consider R =
∫ t

0
‖E(τ)‖L∞(]0,1[)dτ and remark that

|V (0; t, x, v)| ≥ |v| − R which implies that n0(|V (0; t, x, v)|) ≤ nR
0 (|v|). By using the hypothesis

(H) we find :

Ii≤
∫

Rv

n0(|V (0; t, x, v)|)1{sin(t,x,v)=0}dv

≤
∫

Rv

nR
0 (|v|)dv = 2R‖n0‖L∞(R+

v ) + 2 · ‖n0‖L1(R+
v ).

In the same way, by writting v ≥ V (sin(t, x, v); t, x, v) − R ≥ −R when X(sin(t, x, v); t, x, v) = 0
and v ≤ V (sin(t, x, v); t, x, v) + R ≤ R when X(sin(t, x, v); t, x, v) = 1, one gets :

I0 + I1≤
∫

v>−R

hR
0 (v)dv +

∫

v<R

hR
1 (−v)dv

≤2 ·R · (‖h0‖L∞(R+
v ) + ‖h1‖L∞(R+

v )) + ‖h0‖L1(R+
v ) + ‖h1‖L1(R+

v ).

Finally we deduce that :

ρE(t, x) ≤ 6 ·M∞

∫ t

0

‖E(τ)‖L∞(]0,1[)dτ + M0, (t, x) ∈]0, T [×]0, 1[,

and therefore :

|FE(t, x)| =
∣∣∣∣
∫ x

0

ρE(t, y)dy −
∫ 1

0

(1− y)ρE(t, y)dy − U1(t) + U0(t)
∣∣∣∣

≤ ‖ρE‖L∞(]0,t[;L1(]0,1[)) + ‖U0 − U1‖L∞]0,t[.

In order to estimate the charge outside a ball of radius R1 just remark that, for example :

Ii
R1

=
∫

|v|>R1

f0(X(0; t, x, v), V (0; t, x, v))1{sin(t,x,v)=0}dv

≤
∫

|v|>R1

nR
0 (|v|)dv =

∫

|v|>R1−R

n0(|v|)dv,

for R1 > R. Finally one gets that :
∫

|v|>R1

fE(t, x, v)dv ≤
∫

|v|>R1−R

n0(|v|)dv +
∫

v>R1−R

h0(v)dv +
∫

v<−R1+R

h1(−v)dv → 0,

as R1 → +∞ uniformly with respect to (t, x) ∈]0, T [×]0, 1[. Consider now ψ∈L∞(]0, T [×]0, 1[×Rv)
and ψR1 = χR1(v)ψ(t, x, v) where χR1(·) = χ(·/R1) and χ ∈ C1

c (R), χ(u) = 1, |u| ≤ 1, χ(u) =
0, |u| ≥ 2, 0 ≤ χ(u) ≤ 1, 1 ≤ |u| ≤ 2. Obviously ψR1 ∈ Tm and thus :
∫ T

0

∫ 1

0

∫

Rv

fE(t, x, v)ψR1(t, x, v)dtdxdv=
∫ 1

0

∫

Rv

f0(x, v)
∫ sout(0,x,v)

0

ψR1(s,X(s; 0, x, v), V (s; 0, x, v))dsdxdv

+
∫ T

0

∫

v>0

vg0(t, v)
∫ sout(t,0,v)

t

ψR1(s,X(s; t, 0, v), V (s; t, 0, v))dsdtdv

−
∫ T

0

∫

v<0

vg1(t, v)
∫ sout(t,1,v)

t

ψR1(s,X(s; t, 1, v), V (s; t, 1, v))dsdtdv.
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We have :
∣∣∣∣∣
∫ T

0

∫ 1

0

∫

Rv

fEψR1dtdxdv −
∫ T

0

∫ 1

0

∫

Rv

fEψdtdxdv

∣∣∣∣∣≤
∫ T

0

∫ 1

0

∫

Rv

fE(1− χR1(v))|ψ|dtdxdv

≤‖ψ‖L∞

∫ T

0

∫ 1

0

∫

|v|>R1

fEdtdxdv → 0, as R1 → +∞.

In order to apply the dominated convergence theorem of Lebesgue remark that :

|f0(x, v)
∫ si

out

0

ψR1(s,X
i(s), V i(s))ds| ≤ f0(x, v)‖ψ‖L∞T ∈ L1(]0, 1[×Rv).

Note also that for R = ‖E‖L1(]0,T [;L∞(]0,1[)) we have :

|vg0(t, v)
∫ s0

out

t

ψR1(s,X
0(s), V 0(s))ds| ≤ 2Rg0(t, v)T‖ψ‖L∞1{0<v≤2R} + vg0(t, v)‖ψ‖L∞

1
v −R

1{v>2R}

≤ 2RT‖ψ‖L∞g0(t, v)1{0<v≤2R} + 2‖ψ‖L∞g0(t, v)1{v>2R} ∈ L1(]0, T [×R+
v ),

since V 0(s) ≥ v − R and s0
out − t ≤ 1

v−R for v > R. The same arguments apply for the right
boundary term and finally, by passing R1 → +∞ we deduce that the mild formulation holds for
every ψ ∈ L∞(]0, T [×]0, 1[×Rv).

Remark 5.2. Consider x(t) = (M0 + ‖U0 − U1‖L∞(]0,T [)) exp(6 ·M∞t) and :

XT = {E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) | ‖E‖L∞(]0,t[×]0,1[) ≤ x(t), ∀ 0 ≤ t ≤ T}.
Then FXT ⊂ XT and :

‖FE‖L∞(]0,T [;W 1,∞(]0,1[)) ≤ 2 · x(T )− ‖U0 − U1‖L∞(]0,T [).

5.2. Estimate of FA−FB.

The aim of this section is to estimate the L∞ norm of FA − FB with respect to the L∞

norm of A − B. In a first time we perform our computations by introducing also the current
density jE(t, x) :=

∫
Rv

vfE(t, x, v)dv. This requires additional hypothesis on the initial boundary
conditions. For the moment we assume also :

(H1) M1 :=
∫

Rv

n0(|v|)|v|dv +
∫

v>0

h0(v)vdv −
∫

v<0

h1(−v)vdv < +∞.

Later on we shall see that this hypothesis can be removed.

Proposition 5.3. Assume that f0, g0, g1 satisfy (H), (H1), (H∞) and U0 − U1 ∈ L∞(]0, T [).
Then for every E ∈ L∞(]0, T [; W 1,∞(]0, 1[)) fE |v| ∈ L∞(]0, T [;L1(]0, 1[×Rv)), |jE |(t, x) :=∫
Rv

fE(t, x, v)|v|dv ∈ L∞(]0, T [; L1(]0, 1[))∩L∞(]0, T [×]0, 1[), FE+U1−U0 ∈ W 1,∞(]0, T [×]0, 1[).
Moreover, the following estimates hold :

max{‖ |jE | ‖L∞(]0,T [;L1(]0,1[)), ‖ |jE | ‖L∞(]0,T [×]0,1[)}≤3 ·M∞

(∫ t

0

‖E(s)‖L∞(]0,1[)ds

)2

+M0

∫ t

0

‖E(s)‖L∞(]0,1[)ds + M1,

∂t{FE + U1 − U0} = −jE(t, x) +
∫ 1

0

jE(t, y)dy, (t, x) ∈]0, T [×]0, 1[,
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lim
R1→+∞

∫

|v|>R1

|v|fE(t, x, v)dv = 0, uniformly with respect to (t, x) ∈]0, T [×]0, 1[,

and the mild formulation of the Vlasov problem holds for every function ψ such that |ψ(t, x, v)| ≤
C(1 + |v|).

Proof. Exactly as before we have :

|jE |(t, x)=
∫

Rv

|v|fE(t, x, v)dv =
∫

Rv

|v|f0(X(0; t, x, v), V (0; t, x, v))1{sin(t,x,v)=0}

+Σ1
k=0

∫

Rv

|v|gk(sin(t, x, v), V (sin(t, x, v); t, x, v))1{sin(t,x,v)>0}1{X(sin(t,x,v);t,x,v)=k}dv

=J i + J 0 + J 1.

Consider R =
∫ t

0
‖E(s)‖L∞(]0,1[)ds and thus |V (0; t, x, v)| ≥ |v| −R which implies that :

J i ≤
∫

Rv

|v|nR
0 (|v|)dv = R2n0(0) +

∫

Rv

|v|n0(|v|)dv + R

∫

Rv

n0(|v|)dv.

The terms J k, k ∈ {0, 1} can be estimated in the same manner and finally one gets :

|jE |(t, x) ≤ 3 ·R2M∞ + RM0 + M1, (t, x) ∈]0, T [×]0, 1[.

By performing the same computations on Rv − BR1 we get that limR1→+∞
∫
|v|>R1

|v|fEdv = 0,
uniformly with respect to (t, x) ∈]0, T [×]0, 1[. In order to check that the mild formulation holds
∀ψ such that |ψ(t, x, v)| ≤ C(1 + |v|), consider ψR1 = χR1(v)ψ ∈ Tm. This time we have :
∣∣∣∣∣
∫ T

0

∫ 1

0

∫

Rv

fEψR1dtdxdv −
∫ T

0

∫ 1

0

∫

Rv

fEψdtdxdv

∣∣∣∣∣≤
∫ T

0

∫ 1

0

∫

Rv

fE(1− χR1(v))|ψ(t, x, v)|dtdxdv

≤
∫ T

0

∫ 1

0

∫

|v|>R1

fE · C(1 + |v|)dtdxdv → 0, as R1 → +∞.

In order to pass to the limit in the other terms of the mild formulation for the test function ψR1 ,
take R = ‖E‖L1(]0,T [;L∞(]0,1[)) and remark that :

∣∣∣∣∣f0(x, v)
∫ si

out

0

ψR1(s,X
i(s), V i(s))ds

∣∣∣∣∣ ≤ f0(x, v) · T · C(1 + |v|+ R) ∈ L1(]0, 1[×Rv),

∣∣∣∣∣vgk(t, v)
∫ sk

out

t

ψR1(s, X
k(s), V k(s))ds

∣∣∣∣∣≤2Rgk(t, v) · T · C(1 + |v|+ R)1{|v|≤2R}

+|v|gk(t, v)
C(1 + |v|+ R)

|v| −R
1{|v|>2R}

≤2R · T · C · gk(t, v)(1 + |v|+ R)1{|v|≤2R}

+C

(
3 +

1
R

)
|v|gk(t, v)1{|v|>2R} ∈ L1(]0, T [×R±v ).

By passing to the limit in the mild formulation for R1 → +∞ and using the dominated convergence
theorem our conclusion follows. Let us compute now the time derivative of FE+U1−U0. First of all,
by using the mild formulation with the test function ψ(t, x, v) = ∂tϕ + v∂xϕ, ϕ ∈ C1

c (]0, T [×]0, 1[)
(note that |ψ(t, x, v)| ≤ C(1 + |v|)) we deduce the continuity equation ∂tρE + ∂xjE = 0 in
D′(]0, T [×]0, 1[). By direct computation, the continuity equation implies that :

∂t{FE + U1 − U0} = −jE(t, x) +
∫ 1

0

jE(t, y)dy ∈ L∞(]0, T [×]0, 1[).
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Obviously ∂x{FE + U1 − U0} = ρE ∈ L∞(]0, T [×]0, 1[) and thus we obtain that FE + U1 − U0 ∈
W 1,∞(]0, T [×]0, 1[).

Remark 5.4. We have :

FE(t, x) + U1(t)− U0(t)=−
∫ t

0

jE(s, x)ds +
∫ t

0

∫ 1

0

jE(s, y)dsdy + FE(0, x) + U1(0)− U0(0)

=−
∫ t

0

jE(s, x)ds +
∫ t

0

∫ 1

0

jE(s, y)dsdy

+
∫ x

0

∫

Rv

f0(y, v)dydv −
∫ 1

0

∫

Rv

(1− y)f0(y, v)dydv.

By using the formula given above we can estimate FA−FB. This will be done in the following
two Propositions. One of the key points is the critical velocity change result (see Lemma 4.8).

Proposition 5.5. Assume that A,B ∈ L∞(]0, T [;W 1,∞(]0, 1[)) are non decreasing with re-
spect to x and the hypothesis (H), (H1), (H∞) hold. Then for 0 ≤ t ≤ T we have :

∥∥∥∥
∫ t

0

jA(s, ·)ds−
∫ t

0

jB(s, ·)ds

∥∥∥∥
L∞(]0,1[)

≤ C ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds,

where C is a constant depending only on ‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)), T and the
initial-boundary conditions .

Proof. Consider ϕ ∈ L1(]0, 1[) bounded and let us estimate
∫ 1

0

∫ t

0
(jA(s, x)− jB(s, x))ϕ(x)dxds.

By applying the mild formulation with ψ(t, x, v) = ϕ(x)v (which is possible since |ψ(t, x, v)| ≤
‖ϕ‖L∞ |v|) we have :

∫ 1

0

∫ t

0

(jA(s, x)−jB(s, x))ϕ(x)dxds =
∫ t

0

∫ 1

0

∫

Rv

(fA(s, x, v)− fB(s, x, v))vϕ(x)dsdxdv

=
∫ 1

0

∫

Rv

f0(x, v)

[∫ si
A

0

V i
A(τ)ϕ(Xi

A(τ))dτ −
∫ si

B

0

V i
B(τ)ϕ(Xi

B(τ))dτ

]
dxdv

+
∫ t

0

∫

v>0

vg0(s, v)

[∫ s0
A

s

V 0
A(τ)ϕ(X0

A(τ))dτ −
∫ s0

B

s

V 0
B(τ)ϕ(X0

B(τ))dτ

]
dsdv

−
∫ t

0

∫

v<0

vg1(s, v)

[∫ s1
A

s

V 1
A(τ)ϕ(X1

A(τ))dτ −
∫ s1

B

s

V 1
B(τ)ϕ(X1

B(τ))dτ

]
dsdv

=
∫ 1

0

∫

Rv

f0(x, v)

[∫ Xi
A(si

A)

x

ϕ(u)du−
∫ Xi

B(si
B)

x

ϕ(u)du

]
dxdv

+
∫ t

0

∫

v>0

vg0(s, v)

[∫ X0
A(s0

A)

0

ϕ(u)du−
∫ X0

B(s0
B)

0

ϕ(u)du

]
dsdv

−
∫ t

0

∫

v<0

vg1(s, v)

[∫ X1
A(s1

A)

1

ϕ(u)du−
∫ X1

B(s1
B)

1

ϕ(u)du

]
dsdv

=Ii
AB + I0

AB + I1
AB .

We introduce the notations Φi
C =

∫ Xi
C(si

C)

x
ϕ(u)du, Φk

C =
∫ Xk

C(sk
C)

k
ϕ(u)du, k ∈ {0, 1}, C ∈ {A,B}.

Here si
C , sk

C represent the exist times associated to the domain ]0, t[×]0, 1[×Rv, with k ∈ {0, 1}, C ∈
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{A,B}. The term Ii
AB writes :

Ii
AB =

∫ 1

0

∫

Rv

f0(x, v)[Φi
A1{v<v0

A} − Φi
B1{v<v0

B}]dxdv

+
∫ 1

0

∫

Rv

f0(x, v)[Φi
A1{v0

A<v<v1
A} − Φi

B1{v0
B<v<v1

B}]dxdv

+
∫ 1

0

∫

Rv

f0(x, v)[Φi
A1{v>v1

A} − Φi
B1{v>v1

B}]dxdv

=Ii
0 + Ii

t + Ii
1,

where vk
C = vk

C(t; 0, x) are the critical velocities corresponding to the domain ]0, t[×]0, 1[, to the
point (0, x) and the field C, with k = 0, 1, C = A,B. The first and the third integral are easy
to estimate since for v < v0

A we have Xi
A(si

A) = 0 and thus Φi
A =

∫ 0

x
ϕ(u)du ; for v > v1

A we have
Xi

A(si
A) = 1 and Φi

A =
∫ 1

x
ϕ(u)du. We obtain by using the critical velocity change :

|Ii
0|≤‖ϕ‖L1(]0,1[)‖f0‖L∞(]0,T [×]0,1[×Rv)

∫ 1

0

|v0
A(t; 0, x)− v0

B(t; 0, x)|dx

≤‖ϕ‖L1(]0,1[)‖f0‖L∞(]0,T [×]0,1[×Rv)

∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds,

and also :

|Ii
1| ≤ ‖ϕ‖L1(]0,1[)‖f0‖L∞(]0,T [×]0,1[×Rv)

∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds.

Let us estimate now the second integral Ii
t . Remark that when v0

A < v < v1
A we have sA

out(0, x, v) =
t and thus Φi

A =
∫ XA(t)

x
ϕ(u)du. Similarly Φi

B =
∫ XB(t)

x
ϕ(u)du when v0

B < v < v1
B . We can write :

|Ii
t |≤

∣∣∣∣
∫ 1

0

∫

Rv

f0(x, v)Φi
A1{v0

A<v<max{v0
A,v0

B}}dxdv

∣∣∣∣

+
∣∣∣∣
∫ 1

0

∫

Rv

f0(x, v)Φi
A1{min{v1

A,v1
B}<v<v1

A}dxdv

∣∣∣∣

+
∣∣∣∣
∫ 1

0

∫

Rv

f0(x, v)Φi
B1{v0

B<v<max{v0
A,v0

B}}dxdv

∣∣∣∣

+
∣∣∣∣
∫ 1

0

∫

Rv

f0(x, v)Φi
B1{min{v1

A,v1
B}<v<v1

B}dxdv

∣∣∣∣

+
∣∣∣∣
∫ 1

0

∫

Rv

f0(x, v)(Φi
A − Φi

B)1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}dxdv

∣∣∣∣ .

By using Lemma 4.8 we deduce :

max{|v0
A −max{v0

A, v0
B}|, |v0

B −max{v0
A, v0

B}|} ≤
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds,

and :

max{|v1
A −min{v1

A, v1
B}|, |v1

B −min{v1
A, v1

B}|} ≤
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds.

It comes that the first four terms can be estimated by 4·‖ϕ‖L1‖f0‖L∞
∫ t

0
‖A(s)−B(s)‖L∞ds. When
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max{v0
A, v0

B} < v < min{v1
A, v1

B} we have :

|Φi
A − Φi

B |=
∣∣∣∣∣
∫ XA(t)

XB(t)

ϕ(u)du

∣∣∣∣∣

≤
∫ 1

0

|ϕ(u)|1{|u−XA(t)|≤|XA(t)−XB(t)|}du.

Therefore, by using the Proposition 4.9 the last term of Ii
t writes :

|I5|=
∣∣∣∣
∫ 1

0

∫

Rv

f0(x, v)(Φi
A − Φi

B)1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}dxdv

∣∣∣∣

≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫

Rv

f0(x, v)1{v0
A<v<v1

A}1{|u−XA(t)|≤C
R t
0 ‖A(s)−B(s)‖L∞ds}dxdvdu,

(5.2)

where C = exp
(∫ t

0
(1 + ‖∂xB(s)‖L∞(]0,1[))ds

)
. By the change of variables y = XA(t; 0, x, v),

w = VA(t; 0, x, v) on {(x, v) ∈]0, 1[×Rv : v0
A(t; 0, x) < v < v1

A(t; 0, x)} one gets :

|I5|≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫

Rw

f0(XA(0; t, y, w), VA(0; t, y, w))1{|u−y|≤C
R t
0 ‖A(s)−B(s)‖L∞ds}dydwdu

≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫

Rw

nR
0 (|w|)1{|u−y|≤C

R t
0 ‖A(s)−B(s)‖L∞ds}dydwdu

≤2 · C ·
∫ t

0

‖A(s)−B(s)‖L∞ds(2 ·R · ‖n0‖L∞(R+
v ) + 2 · ‖n0‖L1(R+

v ))‖ϕ‖L1(]0,1[),

where as usual R =
∫ t

0
‖A(s)‖L∞(]0,1[)ds. Finally we proved that :

|Ii
AB |≤{6‖f0‖L∞ + 4C(

∫ t

0

‖A(s)‖L∞ds‖n0‖L∞(R+
v ) + ‖n0‖L1(R+

v ))}
∫ t

0

‖A(s)−B(s)‖L∞ds · ‖ϕ‖L1

≤Ci ·
∫ t

0

‖A(s)−B(s)‖L∞ds · ‖ϕ‖L1(]0,1[).

Let us analyse the term I0
AB . As before we have :

I0
AB =

∫ t

0

∫

Rv

vg0(s, v)
[
Φ0

A1{0<v<v0
A} − Φ0

B1{0<v<v0
B}

]
dsdv

+
∫ t

0

∫

Rv

vg0(s, v)
[
Φ0

A1{v0
A<v<v1

A} − Φ0
B1{v0

B<v<v1
B}

]
dsdv

+
∫ t

0

∫

Rv

vg0(s, v)
[
Φ0

A1{v>v1
A} − Φ0

B1{v>v1
B}

]
dsdv

=I0
0 + I0

t + I0
1 .

Taking into account that for 0 < v < v0
C(t; s, 0) we have X0

C(s0
out,C) = 0 we deduce that Φ0

C = 0
for C = A,B and thus I0

0 = 0. By the other hand, for v > v1
C we have X0

C(s0
out,C) = 1 and thus

Φ0
C =

∫ 1

0
ϕ(u)du, for C = A,B. One gets :

|I0
1 | ≤

∣∣∣∣∣
∫ t

0

∫ v1
B

v1
A

vg0(s, v)
∫ 1

0

ϕ(u)dsdvdu

∣∣∣∣∣ ≤ t · ‖vg0‖L∞(]0,T [×R+
v )|v1

A − v1
B | · ‖ϕ‖L1(]0,1[).
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By applying Lemma 4.8 we have :

|v1
A(t; s, 0)− v1

B(t; s, 0)| ≤
∫ t

s

‖A(τ)−B(τ)‖L∞(]0,1[)dτ,

and therefore :

|I0
1 | ≤ t · ‖vg0‖L∞(]0,T [×R+

v ) · ‖ϕ‖L1(]0,1[) ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds.

The term I0
t writes :

|I0
t |≤

∣∣∣∣
∫ t

0

∫

Rv

vg0(s, v)Φ0
A1{v0

A<v<max{v0
A,v0

B}}dsdv

∣∣∣∣

+
∣∣∣∣
∫ t

0

∫

Rv

vg0(s, v)Φ0
A1{min{v1

A,v1
B}<v<v1

A}dsdv

∣∣∣∣

+
∣∣∣∣
∫ t

0

∫

Rv

vg0(s, v)Φ0
B1{v0

B<v<max{v0
A,v0

B}}dsdv

∣∣∣∣

+
∣∣∣∣
∫ t

0

∫

Rv

vg0(s, v)Φ0
B1{min{v1

A,v1
B}<v<v1

B}dsdv

∣∣∣∣

+
∣∣∣∣
∫ t

0

∫

Rv

vg0(s, v)(Φ0
A − Φ0

B)1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}dsdv

∣∣∣∣ .

The first four terms can be estimated as before by :

t · ‖vg0‖L∞(]0,T [×R+
v ) · ‖ϕ‖L1(]0,1[) ·

∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds.

Since for max{v0
A, v0

B} < v < min{v1
A, v1

B} we have Φ0
A−Φ0

B =
∫ XA(t)

XB(t)
ϕ(u)du the last term writes :

|I5|≤
∣∣∣∣∣
∫ t

0

∫

v>0

vg0(s, v)
∫ XA(t)

XB(t)

ϕ(u)1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}dsdvdu

∣∣∣∣∣

≤
∫ 1

0

|ϕ(u)|
∫ t

0

∫

v>0

vg0(s, v)1{|u−XA(t;s,0,v)|<|XA(t;s,0,v)−XB(t;s,0,v)|}1{max{v0
A,v0

B}<v<min{v1
A,v1

B}}

≤
∫ 1

0

|ϕ(u)|
∫ t

0

∫

v>0

vg0(s, v)1{|u−XA(t;s,0,v)|<C·R t
0 ‖A(τ)−B(τ)‖L∞dτ}1{v0

A<v<v1
A}dudsdv.

This time we perform the change of variables (y, w) = S(s, v), with y = XA(t; s, 0, v), w =
VA(t; s, 0, v) on the set D = {(s, v) ∈]0, t[×Rv : v0

A(t; s, 0) < v < v1
A(t; s, 0)}. By standard

computations one gets that :
∣∣∣∣
∂(y, w)
∂(s, v)

∣∣∣∣ = |v|,

and thus :

|I5|≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫

w>−R

1{(y,w)∈S(D)}g0(sin(t, y, w), V (sin(t, y, w); t, y, w))1{|u−y|<C·R t
0 ‖A(τ)−B(τ)‖L∞dτ}

≤
∫ 1

0

|ϕ(u)|
∫ 1

0

∫

w>−R

hR
0 (w)1{|u−y|<C·R t

0 ‖A(τ)−B(τ)‖L∞dτ}dydwdu

≤2C

∫ t

0

‖A(τ)−B(τ)‖L∞dτ · (2R‖h0‖L∞(R+
v ) + ‖h0‖L1(R+

v )) · ‖ϕ‖L1(]0,1[),
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where R =
∫ t

0
‖A(τ)‖L∞dτ . Finally one gets :

|I0
AB |≤{5 · t · ‖vh0‖L∞(R+

v ) + 2 exp
(∫ t

0

(1 + ‖∂xB(s)‖L∞(]0,1[))ds

)

·
(

2 · ‖h0‖L∞(R+
v ) ·

∫ t

0

‖A(s)‖L∞(]0,1[)ds + ‖h0‖L1(R+
v )

)
} ·

∫ t

0

‖A(s)−B(s)‖L∞ds · ‖ϕ‖L1(]0,1[)

≤C0 ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds · ‖ϕ‖L1(]0,1[).

The same arguments apply for I1
AB and we deduce that :

∣∣∣∣
∫ 1

0

(∫ t

0

jA(s, x)ds−
∫ t

0

jB(s, x)ds

)
ϕ(x)dx

∣∣∣∣≤|Ii
AB |+ |I0

AB |+ |I1
AB |

≤(Ci + C0 + C1)
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds · ‖ϕ‖L1 ,

for all ϕ ∈ L1(]0, 1[) bounded, in particular for all ϕ ∈ C0(]0, 1[). Since
∫ t

0
jA(s, ·)ds− ∫ t

0
jB(s, ·)ds

belongs to L∞(]0, 1[) we deduce by density that the previous inequality holds for all ϕ ∈ L1(]0, 1[)
and we have the estimate :

∥∥∥∥
∫ t

0

jA(s, ·)ds−
∫ t

0

jB(s, ·)ds

∥∥∥∥
L∞(]0,1[)

≤ C ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds, 0 ≤ t ≤ T,

with C = Ci +C0 +C1 a constant which depends on ‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)),
‖n0‖L∞ , ‖h0‖L∞ , ‖h1‖L∞ , ‖n0‖L1 , ‖h0‖L1 , ‖h1‖L1 but not on ‖vn0‖L1 , ‖vh0‖L1 , ‖vh1‖L1 (note
also that since hk are non increasing we have ‖vhk‖L∞(R+

v ) ≤ ‖hk‖L1(R+
v ), k = 0, 1).

Proposition 5.6. Assume that A,B ∈ L∞(]0, T [;W 1,∞(]0, 1[)) are non decreasing with
respect to x and that the hypothesis (H), (H1), (H∞) hold. Then for all 0 ≤ t ≤ T we have :

‖FA(t)−FB(t)‖L∞(]0,1[) ≤ 2 · C ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds,

with C = Ci + C0 + C1 as before.

Proof. By the Remark 5.4 we have :

|FA(t, x)−FB(t, x)|≤
∣∣∣∣
∫ t

0

jA(s, x)ds−
∫ t

0

jB(s, x)ds

∣∣∣∣ +
∫ 1

0

∣∣∣∣
∫ t

0

jA(s, y)ds−
∫ t

0

jB(s, y)ds

∣∣∣∣ dy

≤2 ·
∥∥∥∥
∫ t

0

jA(s, ·)ds−
∫ t

0

jB(s, ·)ds

∥∥∥∥
L∞(]0,1[)

≤2 · C ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds, 0 ≤ t ≤ T.

5.3. Existence and uniqueness of the mild solution.

Theorem 5.7. Assume that the hypothesis (H), (H1), (H∞) hold and U1 − U0 ∈ L∞(]0, T [).
Then there is a unique mild solution (f, E) for the 1D Vlasov-Poisson initial-boundary value prob-
lem . Moreover we have the estimates :

‖ρE‖L∞(]0,T [×]0,1[) ≤ B(exp(TA)− 1) + C,
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‖|jE |‖L∞(]0,T [×]0,1[) ≤
B2

2A
(exp(TA)− 1)2 +

BC

A
(exp(TA)− 1) + M1,

‖E‖L∞(]0,T [;W 1,∞(]0,1[)) ≤ 2B exp(TA) + C −B,

where A = 6 ·M∞, B = M0 + ‖U1 − U0‖L∞(]0,T [), C = M0.

Proof. Consider XT = {E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) | ‖∂xE(t)‖L∞(]0,1[) ≤ B exp(tA)+C−B,
‖E(t)‖L∞(]0,1[) ≤ B exp(tA), 0 ≤ t ≤ T}. By the Proposition 5.1 and the Remark 5.2 we know that
F : XT → XT is well defined and by the Proposition 5.6 there is a constant C1 = C1(M0,M∞, ‖U0−
U1‖L∞(]0,T [), T ) such that :

‖FA(t)−FB(t)‖L∞(]0,1[) ≤ C1 ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds, A,B ∈ XT .

We deduce that F has a unique fixed point E ∈ XT and therefore (fE , E) is the unique mild
solution of the 1D Vlasov-Poisson initial-boundary value problem . The estimate on |jE | follows
by the Proposition 5.3.

5.4. Existence and uniqueness of the mild solution in the general case.

In this section we study the existence and uniqueness of the mild solution when assuming only
the hypothesis (H), (H0), (H∞). In order to do this we only need to prove that the Proposition 5.6
still holds under the above hypothesis. For α > 0 let us consider the initial-boundary conditions
given by :

fα
0 (x, v)=

f0(x, v)
1 + α|v| , (x, v) ∈]0, 1[×Rv,

gα
0 (t, v)=

g0(t, v)
1 + αv

, (t, v) ∈]0, T [×R+
v ,

gα
1 (x, v)=

g1(t, v)
1− αv

, (t, v) ∈]0, T [×R−v .

It is easy to check that if (H), (H0), (H∞) hold, then the same hypothesis (Hα), (Hα
0 ), (Hα

∞),
corresponding to the initial-boundary conditions fα

0 , gα
0 , gα

1 , hold with the functions nα
0 (v) := n0(v)

1+αv ,

hα
k (v) := hk(v)

1+αv , v ∈ R+
v , k = 0, 1 and we have Mα

0 ≤ M0 < +∞, Mα
∞ ≤ M∞ < +∞. Moreover,

note also that (Hα
1 ) is satisfied with Mα

1 ≤ M0
α < +∞. Since n0, h0, h1 ∈ L1(R+

v ) are non increasing
we check easily that nα

0 , hα
0 , hα

1 are non increasing and :

‖vhα
k‖L∞(R+

v ) ≤ ‖vhk‖L∞(R+
v ) ≤ ‖hk‖L1(R+

v ), k = 0, 1, α > 0.

Proposition 5.8. Assume that A,B ∈ L∞(]0, T [;W 1,∞(]0, 1[)) are non decreasing with
respect to x and that (H), (H0), (H∞) hold. Then for all 0 ≤ t ≤ T we have :

‖FA(t)−FB(t)‖L∞(]0,1[) ≤ C ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds,

where C depends only on ‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)),M0,M∞, T .

Proof. By the Proposition 5.6 we have :

‖FαA(t)−FαB(t)‖L∞(]0,1[) ≤ Cα ·
∫ t

0

‖A(s)−B(s)‖L∞(]0,1[)ds, (5.3)
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where Fα corresponds to the initial-boundary conditions fα
0 , gα

0 , gα
1 . Remark that (Cα)α>0 is

bounded since we have :

Cα =C(‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)),M
α
0 ,Mα

∞, T )
≤C(‖A‖L1(]0,T [;W 1,∞(]0,1[)), ‖B‖L1(]0,T [;W 1,∞(]0,1[)),M0,M∞, T ).

The conclusion follows by passing to the limit in the inequality 5.3 for α → 0 and by using the
monotone convergence theorem.

Now we can state the existence and uniqueness result in the general case :

Theorem 5.9. Assume that the hypothesis (H), (H0), (H∞) hold and U1 − U0 ∈ L∞(]0, T [).
Then there is a unique mild solution of the 1D Vlasov-Poisson initial-boundary value problem
(fE , E) which verifies the estimates :

‖∂xE‖L∞ = ‖ρE‖L∞ ≤ (M0 + ‖U1 − U0‖L∞) exp(6 · TM∞)− ‖U1 − U0‖L∞ ,

‖E‖L∞ ≤ (M0 + ‖U1 − U0‖L∞) exp(6 · TM∞).

5.5. Continuity upon the initial-boundary conditions .

The goal of this section is to estimate the difference between two mild solutions (fk, Ek), k =
1, 2 with respect to the initial-boundary conditions . Consider two sets of initial-boundary condi-
tions fk

0 , gk
0 , gk

1 , Uk
0 −Uk

1 ∈ L∞ verifying the hypothesis (Hk), (Hk
0 ), (Hk

∞), k = 1, 2. We define the
applications Fk as before. We have for t ∈ [0, T ] :

‖∂xFkE(t)‖L∞ = ‖ρk
E‖L∞ ≤ 6 ·Mk

∞

∫ t

0

‖E(s)‖L∞ds + Mk
0 ,

and :

‖FkE(t)‖L∞ ≤ 6 ·Mk
∞

∫ t

0

‖E(s)‖L∞ds + Mk
0 + |Uk

0 (t)− Uk
1 (t)|.

First of all let us assume the hypothesis (H), (H1) and (H∞). We have :

Proposition 5.10. Assume that E ∈ L∞(]0, T [;W 1,∞(]0, 1[)) is non decreasing with respect
to x and that the hypothesis (Hk), (Hk

1 ), (Hk
∞) hold. We suppose also that the functions :

(Hi) lk(v) = sup
0≤t≤T

|g1
k(t, (−1)kv)− g2

k(t, (−1)kv)|, k = 0, 1

are non increasing with respect to v ∈ R+
v , or :

(Hii)
∫ T

0

∫

v>0

v|g1
0(t, v)− g2

0(t, v)|dtdv −
∫ T

0

∫

v<0

v|g1
1(t, v)− g2

1(t, v)|dtdv < +∞.

Then for all 0 ≤ t ≤ T we have :

‖F1E(t)−F2E(t)‖L∞≤C(‖E‖L1(]0,t[;L∞(]0,1[)))(‖f1
0 − f2

0 ‖L1(]0,1[×Rv) + Σ1
k=0(‖lk‖L1 + ‖lk‖L∞))

+|U1
1 (t)− U1

0 (t)− U2
1 (t) + U2

0 (t)|,
in the case (i) or :

‖F1E(t)−F2E(t)‖L∞≤2(‖f1
0 − f2

0 ‖L1(]0,1[×Rv) + Σ1
k=0‖v(g1

k − g2
k)‖L1(]0,t[×R+

v ))

+|U1
1 (t)− U1

0 (t)− U2
1 (t) + U2

0 (t)|,
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in the case (ii).

Proof. Consider ϕ ∈ L1(]0, 1[) and let us calculate :

∫ 1

0

∫ t

0

(j1
E(s, x)− j2

E(s, x))ϕ(x)dxds=
∫ t

0

∫ 1

0

∫

Rv

(f1
E − f2

E)vϕ(x)dsdxdv

=
∫ 1

0

∫

Rv

(f1
0 (x, v)− f2

0 (x, v))
∫ si

out

0

V i(s)ϕ(Xi(s))dxdvds

+Σ1
k=0(−1)k

∫ t

0

∫

(−1)kv>0

v(g1
k − g2

k)
∫ sk

out

s

V k(τ)ϕ(Xk(τ))dsdvdτ

=
∫ 1

0

∫

Rv

(f1
0 (x, v)− f2

0 (x, v))
∫ Xi(si

out)

x

ϕ(u)dxdvdu

+Σ1
k=0(−1)k

∫ t

0

∫

(−1)kv>0

v(g1
k(s, v)− g2

k(s, v))
∫ Xk(sk

out)

k

ϕ(u)dsdvdu

=Ii + Σ1
k=0Ik.

Obviously we have :

|Ii| ≤ ‖f1
0 − f2

0 ‖L1(]0,1[×Rv) · ‖ϕ‖L1(]0,1[).

On the other hand, with the notation Φk =
∫ Xk(sk

out)

k
ϕ(u)du we have :

I0 =
∫ t

0

∫

Rv

v(g1
0(s, v)− g2

0(s, v))dsdvΦ01{0<v<v0
E}

+
∫ t

0

∫

Rv

v(g1
0(s, v)− g2

0(s, v))dsdvΦ01{v0
E<v<v1

E}

+
∫ t

0

∫

Rv

v(g1
0(s, v)− g2

0(s, v))dsdvΦ01{v>v1
E}

=I0
0 + I0

t + I0
1 ,

where vk
E = vk

E(t; s, k) are the critical velocities corresponding to the domain ]0, t[×]0, 1[, to the
point (s, k) and the field E. Let us calculate now :

∫ 1

0

(∫ 1

0

∫ t

0

(j1
E(s, y)− j2

E(s, y))dsdy

)
ϕ(x)dx=

∫ t

0

∫ 1

0

∫

Rv

v(f1
E(s, y, v)− f2

E(s, y, v))dsdydv ·
∫ 1

0

ϕ(u)du

=
∫ 1

0

ϕ(u)du · {
∫ 1

0

∫

Rv

(f1
0 − f2

0 )
∫ si

out

0

V i(s)dxdvds

+Σ1
k=0(−1)k

∫ t

0

∫

(−1)kv>0

v(g1
k − g2

k)
∫ sk

out

s

V k(τ)dsdvdτ}

=
∫ 1

0

ϕ(u)du · {
∫ 1

0

∫

Rv

(f1
0 − f2

0 )(Xi(si
out)− x)dxdv

+Σ1
k=0(−1)k

∫ t

0

∫

(−1)kv>0

v(g1
k − g2

k)(Xk(sk
out)− k)dsdv}

=J i + Σ1
k=0J k.
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Obviously we have |J i| ≤ ‖f1
0 − f2

0 ‖L1(]0,1[×Rv) · ‖ϕ‖L1(]0,1[). On the other hand we have :

J 0 =
∫ t

0

∫

Rv

v(g1
0 − g2

0)(X0(s0
out)− 0)1{0<v<v0

E}dsdv

∫ 1

0

ϕ(u)du

+
∫ t

0

∫

Rv

v(g1
0 − g2

0)(X0(s0
out)− 0)1{v0

E<v<v1
E}dsdv

∫ 1

0

ϕ(u)du

+
∫ t

0

∫

Rv

v(g1
0 − g2

0)(X0(s0
out)− 0)1{v>v1

E}dsdv

∫ 1

0

ϕ(u)du

=J 0
0 + J 0

t + J 0
1 .

For 0 < v < v0
E we have X0(s0

out) = 0 and thus I0
0 = J 0

0 . For v > v1
E we have X0(s0

out) = 1
and thus I0

1 = J 0
1 . In order to evaluate I0

t and J 0
t we can perform the change of variables

(y, w) = S(s, v) :

y = X0(t; s, 0, v), w = V 0(t; s, 0, v),
∣∣∣∣
∂(y, w)
∂(s, v)

∣∣∣∣ = |v|,

on D = {(s, v) ∈]0, t[×R+
v | v0

E(t; s, 0) < v < v1
E(t; s, 0)}. In the case (i) one gets :

|I0
t |≤

∫ 1

0

|ϕ(u)|du ·
∫ t

0

∫

Rv

v|g1
0(s, v)− g2

0(s, v)|1{v0
E<v<v1

E}dsdv

=
∫ 1

0

|ϕ(u)|du ·
∫ 1

0

∫

w>−R

|g1
0 − g2

0 |(s0
in(t, y, w), V 0(s0

in(t, y, w); t, y, w))1S(D)dydw

≤
∫

w>−R

lR0 (w)dw · ‖ϕ‖L1(]0,1[) = (2R‖l0‖L∞(R+
v ) + ‖l0‖L1(R+

v )) · ‖ϕ‖L1(]0,1[),

where R =
∫ t

0
‖E(s)‖L∞(]0,1[)ds. In a similar manner we find that :

|J 0
t |≤

∫ t

0

∫

Rv

v|g1
0 − g2

0 |1{v0
E<v<v1

E}dsdv · ‖ϕ‖L1(]0,1[)

≤
∫

w>−R

hR
0 (w)dw · ‖ϕ‖L1(]0,1[).

Finally one gets that :

|I − J |=
∣∣∣∣
∫ 1

0

(∫ t

0

(j1
E(s, x)− j2

E(s, x))ds−
∫ 1

0

∫ t

0

(j1
E(s, y)− j2

E(s, y))dyds

)
ϕ(x)dx

∣∣∣∣
=|Ii + I0 + I1 − J i − J 0 − J 1|
≤|Ii|+ |J i|+ |I0

t |+ |J 0
t |+ |I1

t |+ |J 1
t |

≤C(R)(‖f1
0 − f2

0 ‖L1 + Σ1
k=0(‖lk‖L∞ + ‖lk‖L1)) · ‖ϕ‖L1(]0,1[),

and the conclusion follows in the case (i) by using the Remark 5.4. For the case (ii) it is sufficient
to remark that :

max{|Ik
t |, |J k

t |} ≤
∫ t

0

∫

(−1)kv>0

(−1)kv|g1
k(s, v)− g2

k(s, v)|dsdv · ‖ϕ‖L1(]0,1[), k = 0, 1.

Remark 5.11. The conclusion of Proposition 5.10 still holds if we replace the hypothesis (Hk
1 )

by (Hk
0 ), k = 0, 1 (proceed like in the proof of the Proposition 5.8).
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Proposition 5.12. Assume that E1, E2 ∈ L∞(]0, T [;W 1,∞(]0, 1[)) are non decreasing with
respect to x and that (Hk), (Hk

0 ), (Hk
∞) hold. We suppose also that (Hi) or (Hii) is verified. Then

for all 0 ≤ t ≤ T we have :

‖F1E1(t)−F2E2(t)‖L∞(]0,1[) ≤ C1 + C2

∫ t

0

‖E1(s)− E2(s)‖L∞(]0,1[)ds,

where C2 = C2(‖Ek‖L1(]0,T [;W 1,∞(]0,1[)),M
k
0 , Mk

∞, T ) and :

C1 = C1(‖Ek‖L1(]0,T [;L∞(]0,1[)))
(‖f1

0 − f2
0 ‖L1 + Σ1

k=0(‖lk‖L1 + ‖lk‖L∞)
)
+ |U1

1 −U1
0 −U2

1 +U2
0 |(t),

in the case (i) or :

C1 = 2
(‖f1

0 − f2
0 ‖L1 + ‖v(g1

0 − g2
0)‖L1 + ‖v(g1

1 − g2
1)‖L1

)
+ |U1

1 − U1
0 − U2

1 + U2
0 |(t),

in the case (ii).

Proof. We can write :

‖F1E1(t)−F2E2(t)‖L∞ ≤ ‖F1E1(t)−F1E2(t)‖L∞ + ‖F1E2(t)−F2E2(t)‖L∞ .

By using the Proposition 5.8 we find :

‖F1E1(t)−F1E2(t)‖L∞(]0,1[) ≤ C2

∫ t

0

‖E1(s)− E2(s)‖L∞(]0,1[)ds,

where C2 depends on ‖Ek‖L1(]0,T [;W 1,∞(]0,1[)),M
1
0 ,M1

∞, T . The conclusion follows by the Proposi-
tion 5.10 and the Remark 5.11.

Theorem 5.13. Assume that fk
0 , gk

0 , gk
1 , Uk

1 − Uk
0 ∈ L∞(]0, T [), k = 1, 2 are two sets of

initial-boundary conditions verifying the hypothesis (Hk), (Hk
0 ), (Hk

∞) and (Hi) or (Hii). Denote
by (fk, Ek), k = 1, 2 the corresponding unique mild solutions. Then we have for all 0 ≤ t ≤ T :

‖E1(t)− E2(t)‖L∞(]0,1[) ≤ C{‖f1
0 − f2

0 ‖L1 + Σ1
k=0(‖lk‖L1 + ‖lk‖L∞) + |U1

1 − U1
0 − U2

1 + U2
0 |(t)},

in the case (i) or :

‖E1(t)− E2(t)‖L∞(]0,1[)≤C{‖f1
0 − f2

0 ‖L1(]0,1[×Rv) + Σ1
k=0‖v(g1

k − g2
k)‖L1(]0,T [×R+

v )

+|U1
1 − U1

0 − U2
1 + U2

0 |(t)},

in the case (ii) where C is a constant depending on Mk
0 , Mk

∞, ‖Uk
0 − Uk

1 ‖L∞ , T .

Proof. Since (fk, Ek) are mild solutions we have FkEk = Ek, Ek are non decreasing with
respect to x and we know that :

‖Ek‖L∞(]0,T [;W 1,∞(]0,1[)) ≤ C(Mk
0 , Mk

∞, ‖Uk
1 − Uk

0 ‖L∞(]0,T [), T ).

By the Proposition 5.12 we have for all 0 ≤ t ≤ T :

‖E1(t)−E2(t)‖L∞(]0,1[) = ‖F1E1(t)−F2E2(t)‖L∞(]0,1[) ≤ C1 +C2

∫ t

0

‖E1(s)−E2(s)‖L∞(]0,1[)ds,

with C1, C2 as before. The conclusion of the theorem follows by using the Gronwall lemma.
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6. The 1D Vlasov-Maxwell system.

This section is devoted to the study of the 1D Vlasov-Maxwell system with initial condition
by adapting the method used previously. Since the proofs are quite similar we only sketch them.
Moreover, as explained in the introduction, in this case we can consider different species of particles.
Recall that results on the existence and uniqueness have already been obtained by Cooper and
Klimas [7]. Let us introduce the equations :

∂tf
± + v · ∂xf± ± E · ∂vf± = 0, (t, x, v) ∈]0, T [×Rx × Rv, (6.1)

∂tE = −j(t, x) := −j+ + j− = −
∫

Rv

v(f+(t, x, v)− f−(t, x, v))dv, (t, x) ∈]0, T [×Rx, (6.2)

with the initial conditions :

f±(t = 0, x, v) = f±0 (x, v), (x, v) ∈ Rx × Rv, (6.3)

E(t = 0, x) = E0(x) =
∫

ρ0(y)dy, x ∈ Rx, (6.4)

where ρ0 = ρ+
0 − ρ−0 =

∫
Rv

(f+
0 − f−0 )dv and

∫
ρ0(y)dy denotes an arbitrary primitive of ρ0.

Assume that E ∈ L∞(]0, T [;W 1,∞(Rx)), f±0 ∈ L1
loc(Rx × Rv). We denote by (X±(s), V ±(s)) the

characteristics associated to ±E. As usual we say that f± ∈ L1
loc(]0, T [×Rx×Rv) is a mild solution

for the Vlasov problem (6.1), (6.3) iff :
∫ T

0

∫

Rx

∫

Rv

f±(t, x, v)ψ(t, x, v)dtdxdv =
∫

Rx

∫

Rv

f±0

∫ T

0

ψ(s, X±(s; 0, x, v), V ±(s; 0, x, v))dxdvds,

for all test function ψ ∈ L∞(]0, T [×Rx × Rv) compactly supported in [0, T ] × Rx × Rv. Assume
now that f±0 ∈ L1(Rx×Rv). We say that (f±, E) ∈ L1(]0, T [×Rx×Rv)×L∞(]0, T [;W 1,∞(Rx)) is
a mild solution of the 1D Vlasov-Maxwell problem iff f± is a mild solution for the Vlasov problem
(6.1), (6.3) corresponding to the electric field ±E such that :

∫

Rx

E(t, x)ϕ(x)dx=−
∫

Rx

∫

Rv

f+
0 (x, v)

∫ X+(t;0,x,v)

x

ϕ(u)dudxdv +
∫

Rx

∫

Rv

f−0 (x, v)
∫ X−(t;0,x,v)

x

ϕ(u)dudxdv

+
∫

Rx

E0(x)ϕ(x)dx, ∀ϕ ∈ L1(Rx).

Remark 6.1. Note that the previous formula defines a unique function E ∈ L∞(]0, T [×Rx).
This definition can be derived formally from the equation (6.2) by using the mild formulation :
∫

Rx

E(t, x)ϕ(x)=−
∫ t

0

∫

Rx

∫

Rv

v(f+(s, x, v)− f−(s, x, v))ϕ(x)dsdxdv +
∫

Rx

E0(x)ϕ(x)dx

=−
∫

Rx

∫

Rv

f+
0 (x, v)

∫ t

0

V +(s)ϕ(X+(s))dsdxdv +
∫

Rx

∫

Rv

f−0 (x, v)
∫ t

0

V −(s)ϕ(X−(s))dsdxdv

+
∫

Rx

E0(x)ϕ(x)dx

=−
∫

Rx

∫

Rv

f+
0 (x, v)

∫ X+(t;0,x,v)

x

ϕ(u)dudxdv +
∫

Rx

∫

Rv

f−0 (x, v)
∫ X−(t;0,x,v)

x

ϕ(u)dudxdv

+
∫

Rx

E0(x)ϕ(x)dx.
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As before we define the application F for E ∈ L∞(]0, T [;W 1,∞(Rx)) by :

E → f±E → E1(t) = FE(t) = E0 −
∫ t

0

∫

Rv

v(f+
E − f−E )dsdv,

where f±E are the mild solutions of the Vlasov problem (6.1),(6.3) associated to the field ±E, E0

is given by (6.4) and − ∫ t

0

∫
Rv

v(f+
E − f−E )dsdv is defined as in Remark 6.1.

6.1. Estimate of FE.

We assume that there is n±0 : [0,+∞[→ [0, +∞[ non increasing, such that :

(H±) f±0 (x, v) ≤ n±0 (|v|), (x, v) ∈ Rx × Rv,

(H±
0 ) M±

0 :=
∫

Rv

n±0 (|v|)dv < +∞,

(H±
∞) M±

∞ := ‖n±0 ‖L∞(R+
v ) < +∞,

(Hρ0) Mρ0 := sup
x∈Rx

∣∣∣∣
∫ x

0

(ρ+
0 (y)− ρ−0 (y))dy

∣∣∣∣ < +∞.

Proposition 6.2. Assume that f±0 ∈ L1(Rx × Rv) satisfy (H±), (H±
0 ), (H±

∞). Then for
every E ∈ L∞(]0, T [; W 1,∞(Rx)) we have f±E ∈ L∞(]0, T [;L1(Rx × Rv)), ρ±E ∈ L∞(]0, T [×Rx),
FE ∈ L∞(]0, T [;W 1,∞(Rx)). Moreover the following estimates hold :

‖f±E ‖L∞(]0,T [;L1(Rx×Rv)) = ‖ρ±E‖L∞(]0,T [;L1(Rx)) =
∫

Rx

∫

Rv

f±0 (x, v)dxdv,

‖ρ±E‖L∞(]0,T [×Rx) ≤ 2M±
∞

∫ t

0

‖E(s)‖L∞(Rx)ds + M±
0 ,

‖FE‖L∞(]0,T [×Rx) ≤ C + Mρ0 + ‖f+
0 ‖L1(Rx×Rv) + ‖f−0 ‖L1(Rx×Rv),

‖∂xFE‖L∞(]0,T [×Rx) ≤ 2(M+
∞ + M−

∞)
∫ t

0

‖E(s)‖L∞(Rx)ds + M+
0 + M−

0 ,

lim
R1→+∞

∫

|v|>R1

f±E (t, x, v)dv = 0, uniformly with respect to (t, x) ∈]0, T [×Rx,

and the mild formulation of the Vlasov problem holds for all ψ ∈ L∞(]0, T [×Rx × Rv).

Proof. We have :

ρ±E(t, x)=
∫

Rv

f±E dv =
∫

Rv

f±0 (X±(0; t, x, v), V ±(0; t, x, v))dv

≤
∫

Rv

n±0 (|V ±(0; t, x, v)|)dv ≤
∫

Rv

n±,R
0 (|v|)dv

=2RM±
∞ + M±

0 ,
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where R =
∫ t

0
‖E(s)‖L∞(Rx)ds. By the definition of FE, taking into account that E0(x) = C +∫ x

0
ρ0(y)dy, we deduce that :

‖FE(t)‖L∞(Rx) ≤ C + Mρ0 + ‖f+
0 ‖ofL1(Rx×Rv) + ‖f−0 ‖L1(Rx×Rv), 0 ≤ t ≤ T.

By using the definition of FE(t) and the mild formulation we check that ∂xFE(t) = ρ(t) in
D′(Rx), 0 ≤ t ≤ T and we deduce that ‖∂xFE‖L∞ ≤ ‖ρ+

E‖L∞ + ‖ρ−E‖L∞ ≤ 2R(M+
∞ + M−

∞) +
M+

0 + M−
0 . The last two assertions follow by standard calculations as it was done for the Vlasov-

Poisson problem.

Remark 6.3. If we note XT = {E ∈ L∞(]0, T [;W 1,∞(Rx)) | ‖E‖L∞(]0,T [×Rx) ≤ ‖E0‖L∞(Rx)+
‖f+

0 ‖L1 + ‖f−0 ‖L1}, then F(XT ) ⊂ XT and :

‖∂xFE‖L∞(]0,T [×Rx) ≤ 2(M+
∞ + M−

∞) · T · (‖E0‖L∞(Rx) + ‖f+
0 ‖L1 + ‖f−0 ‖L1) + M+

0 + M−
0 .

6.2. Estimate of FA−FB.

Proposition 6.4. Assume that A,B ∈ L∞(]0, T [;W 1,∞(Rx)) and f±0 ∈ L1(Rx × Rv) verify
the hypothesis (H±), (H±

0 ), (H±
∞). Then for all 0 ≤ t ≤ T we have :

‖FA(t)−FB(t)‖L∞(Rx) ≤ C

∫ t

0

‖A(s)−B(s)‖L∞(Rx)ds,

with C a constant depending on ‖A‖L1(]0,T [;W 1,∞(Rx)), ‖B‖L1(]0,T [;W 1,∞(Rx)),M
±
0 ,M±

∞, T .

Proof. Take ϕ ∈ L1(Rx) and calculate :

∣∣∣∣
∫

Rx

(FA(t, x)−FB(t, x))ϕ(x)dx

∣∣∣∣=
∣∣∣∣∣−

∫

Rx

∫

Rv

f+
0

∫ X+
A (t)

X+
B (t)

ϕ(u)dudxdv +
∫

Rx

∫

Rv

f−0

∫ X−
A (t)

X−
B (t)

ϕ(u)dudxdv

∣∣∣∣∣

≤Σk=±

∫

Ru

|ϕ(u)|
∫

Rx

∫

Rv

fk
0 (x, v)1{|u−Xk

A(t)|<|Xk
B(t)−Xk

A(t)|}dudxdv

≤Σk=±

∫
|ϕ(u)|

∫ ∫
fk
0 (Xk

A(0; t, y, w), V k
A(0; t, y, w))1{|u−y|≤C·R}

≤‖ϕ‖L1(Rx)2CR(M+
0 + M−

0 + 2
∫ t

0

‖A(s)‖L∞ds(M+
∞ + M−

∞)),

where C = exp
(∫ t

0
(1 + ‖∂xB(s)‖L∞(Rx))ds

)
and R =

∫ t

0
‖A(s)−B(s)‖L∞(Rx)ds.

We can prove by using the iterated approximations method the theorem :

Theorem 6.5. Assume that f±0 ∈ L1(Rx×Rv) verify the hypothesis (H±), (H±
0 ), (H±

∞). Then,
for a fixed choice of primitive in (6.4), there is an unique mild solution for the 1D Vlasov-Maxwell
initial value problem.

Remark 6.6. If in addition we assume that |v|pf±0 ∈ L1(Rx × Rv) and :

(H±
p ) M±

p :=
∫

Rv

|v|pn±0 (|v|)dv < +∞,

for some integer p ≥ 1 we can prove that :

|v|pf± ∈ L∞(]0, T [; L1(Rx × Rv)),
∫

Rv

|v|pf±(t, x, v)dv ∈ L∞(]0, T [×Rx).
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In particular j± =
∫
Rv
vf±dv ∈ L∞(]0, T [×Rx) and ∂tE = −j, limR1→+∞

∫
|v|>R1

|v|pf±dv = 0
uniformly with respect to (t, x) ∈]0, T [×Rx and the mild formulation of the Vlasov problem holds
for all function |ψ(t, x, v)| ≤ C(1 + |v|p).

Proof. By multiplying the Vlasov equation by |v|p we get :

d

dt

∫

Rx

∫

Rv

f±(t, x, v)|v|pdxdv = ±
∫

Rx

∫

Rv

Ef±p|v|p−2vdxdv.

Therefore we deduce that :
∫

Rx

∫

Rv

f±(t, x, v)|v|pdxdv ≤
∫

Rx

∫

Rv

f±0 (x, v)|v|pdxdv + p‖E‖L∞(]0,T [×Rx)

∫ t

0

∫

Rx

∫

Rv

f±|v|p−1dxdvds,

and the conclusion follows by induction on p. On the other hand :
∫

Rv

|v|pf±(t, x, v)dv=
∫

Rv

|v|pf±0 (X±(0; t, x, v), V ±(0; t, x, v))dv

≤
∫

Rv

|v|pn±,R
0 (|v|)dv

≤C(R)(‖n±0 ‖L∞(R+
v ) + ‖|v|pn±0 (|v|)‖L1(Rv)),

with R =
∫ t

0
‖E(s)‖L∞(Rx)ds. In order to verify that ∂tE = −j in D′(]0, T [×Rx), take ϕ ∈

C1
0 (]0, T [×Rx) and use the mild formulation with the test function ψ(t, x, v) = vϕ(t, x).

7. The periodic 1D Vlasov-Poisson problem.

In this section we analyse the space periodic 1D Vlasov-Poisson problem :

∂tf
± + v · ∂xf± ± E · ∂vf± = 0, (t, x, v) ∈]0, T [×]0, 1[×Rv, (7.1)

∂xE = ρ(t, x) := ρ+ − ρ− =
∫

Rv

(f+(t, x, v)− f−(t, x, v))dv, (t, x) ∈]0, T [×]0, 1[, (7.2)

with the space periodic initial conditions :

f±(t = 0, x, v) = f±0 (x, v), (x, v) ∈]0, 1[×Rv. (7.3)

The electric field derives from a space periodic potential and thus
∫ 1

0
E(t, x)dx = 0. In this case

the Poisson field can be written as :

E(t, x) =
∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy, x ∈ [0, 1], t ∈ [0, T ]. (7.4)

We introduce the mild formulation as before, by taking space periodic test functions. This time is
convenient to define the application F for 1-periodic with respect to x fields E ∈ L∞(]0, T [×Rx)
by :

E → f±E → ρ±E →
∫ x

0

ρE(t, y)dy −
∫ 1

0

(1− y)ρE(t, y)dy = FE.

Remark 7.1. FE is 1-periodic in x iff
∫ 1

0
ρE(t, y)dy = 0, 0 ≤ t ≤ T and therefore, by the

conservation of the total charge, iff
∫ 1

0

∫
Rv

f+
0 (x, v)dxdv =

∫ 1

0

∫
Rv

f−0 (x, v)dxdv.
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7.1. Estimate of FE.

We assume that f±0 verify the hypothesis (H±), (H±
0 ), (H±

∞). We suppose also that the neu-
trality condition holds :

(N)
∫ 1

0

∫

Rv

f+
0 (x, v)dxdv =

∫ 1

0

∫

Rv

f−0 (x, v)dxdv.

Proposition 7.2. Assume that f±0 are 1-periodic in x and satisfy (H±), (H±
0 ), (H±

∞) and
(N). Then for every E ∈ L∞(]0, T [;W 1,∞(Rx)) 1-periodic in x we have :

‖ρ±E‖L∞(]0,T [×Rx) ≤ 2M±
∞

∫ t

0

‖E(s)‖L∞(Rx)ds + M±
0 ,

‖FE‖L∞(]0,T [×Rx) ≤
∫ 1

0

∫

Rv

f+
0 (x, v)dxdv +

∫ 1

0

∫

Rv

f−0 (x, v)dxdv ≤ M+
0 + M−

0 ,

‖∂xFE‖L∞(]0,T [×Rx) ≤ 2(M+
∞ + M−

∞)
∫ t

0

‖E(s)‖L∞(Rx)ds + M+
0 + M−

0 .

Moreover limR1→+∞
∫
|v|>R1

f±E (t, x, v)dv = 0 uniformly with respect to (t, x) ∈]0, T [×Rx and the
mild formulation of the Vlasov problem holds for all function ψ ∈ L∞(]0, T [×Rx ×Rv), 1-periodic
in x.

7.2. Estimate of FA−FB.

Proposition 7.3. Assume that A,B ∈ L∞(]0, T [;W 1,∞(Rx)) are 1-periodic in x and the
hypothesis (H±), (H±

0 ), (H±
∞), (N) hold. Then for all 0 ≤ t ≤ T we have :

‖FA(t)−FB(t)‖L∞(Rx) ≤ C

∫ t

0

‖A(s)−B(s)‖L∞(Rx)ds,

where the constant C depends on ‖A‖L1(]0,T [;W 1,∞(Rx)), ‖B‖L1(]0,T [;W 1,∞(Rx)),M
±
0 ,M±

∞, T .

Proof. Take ϕ ∈ L1
loc(Rx) and calculate :

I±1 =
∣∣∣∣
∫ 1

0

ϕ(x)
∫ x

0

(ρ±A(t, y)− ρ±B(t, y))dydx

∣∣∣∣

=
∣∣∣∣
∫ ∫

(f±0 (X±
A (0; t, y, v), V ±

A (0; t, y, v))− f±0 (X±
B (0; t, y, v), V ±

B (0; t, y, v)))
∫ 1

y

ϕ(x)dxdydv

∣∣∣∣

=

∣∣∣∣∣
∫ ∫

f±0 (ξ, η)
∫ X±

B (t;0,ξ,η)

X±
A (t;0,ξ,η)

ϕ(x)dxdξdη

∣∣∣∣∣

≤
∫ 1

0

|ϕ(u)|
∫ ∫

f±0 (ξ, η)1{|u−X±
A (t)|<|X±

A (t)−X±
B (t)|}dξdηdu

≤
∫ 1

0

|ϕ(u)|
∫∫

f±0 (X±
A (0; t, y, w), V ±

A (0; t, y, w))1{|u−y|<CR}dydw

≤2CR(2
∫ t

0

‖A(s)‖L∞ds ·M±
∞ + M±

0 ) · ‖ϕ‖L1(]0,1[),

where C = exp
(∫ t

0
(1 + ‖∂xB(s)‖L∞)ds

)
and R =

∫ t

0
‖A(s) − B(s)‖L∞ds. In order to estimate

I±2 =
∣∣∣
∫ 1

0
(1− y)(ρ±A(t, y)− ρ±B(t, y))dy

∣∣∣ take ϕ ≡ 1 in the previous computation.
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Finally we obtain the existence and uniqueness of the space periodic mild solution :

Theorem 7.4. Assume that f±0 are 1-periodic in x and satisfy the hypothesis (H±), (H±
0 ),

(H±
∞), (N). Then there is an unique mild solution for the space periodic 1D Vlasov-Poisson

problem. Moreover we have the estimates :

‖ρ±‖L∞(]0,T [×Rx) ≤ 2M±
∞ · T · (M+

0 + M−
0 ) + M±

0 ,

‖E‖L∞(]0,T [×Rx) ≤ M+
0 + M−

0 .
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