EXISTENCE AND UNIQUENESS OF THE MILD SOLUTION FOR THE 1D
VLASOV-POISSON INITIAL-BOUNDARY VALUE PROBLEM
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Abstract. We prove the existence and uniqueness of the mild solution for the 1D Viasov-Poisson system with
initial-boundary conditions by using iterated approximations. The same arguments yield existence and uniqueness
for the free space or space periodic system. The major difficulty is the treatment of the boundary conditions. The
main idea consists of splitting the velocities range by introducing critical velocities corresponding to each boundary.
One of the crucial points is to estimate the critical velocity change in term of relative field. A result concerning
the continuity of the mild solution upon the initial-boundary conditions is presented as well.
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1. Introduction.

Many studies in the physics of charged particles are modeled by kinetic equations (Vlasov,
Boltzmann, etc) coupled with the electromagnetic equations (Poisson, Maxwell ). A few applica-
tion domains are semiconductors, particle accelerators, electron guns, etc.

Various results have been obtained for the free space systems. Weak solutions for the Vlasov-
Poisson system were constructed by Arseneev [1], Horst and Hunze [16]. The existence of classical
solutions has been studied in two or three dimensions by Ukai and Okabe [21], Horst [15], Batt
[2], Pfaffelmoser [18]. Classical solutions for the Vlasov-Poisson equations with small initial data
have been constructed by Bardos and Degond [3]. The propagation of the velocity moments for
the Vlasov-Poisson system in three dimensions has been studied by Lions and Perthame in [17].
They prove also an uniqueness result under a Lipschitz continuity assumption on the initial data.
Another uniqueness result has been obtained by Robert for bounded, compactly supported initial
data, [20]. A uniqueness result for BV solutions was obtained by Guo, Shu and Zhou [14].

The existence of weak solutions for the Vlasov-Maxwell system in three dimensions was shown
by DiPerna and Lions [9]. The relativistic Vlasov-Maxwell system was studied by Glassey and
Schaeffer [10]. In one dimension, the existence and uniqueness have been obtained by Cooper and
Klimas [7].

The boundary value problem have been studied as well. The existence of weak solutions for
the Vlasov-Poisson initial-boundary value problem in three dimensions is a result of Abdallah [4].
The existence of weak solutions for the three dimensional Vlasov-Maxwell initial-boundary value
problem has been analysed by Guo [12]. The stationary one dimensional Vlasov-Poisson system
has been studied by Greengard and Raviart [11]. An asymptotic analysis of the Vlasov-Poisson
system has been performed by Degond and Raviart [8] in the case of the plane diode. The station-
ary Vlasov-Maxwell system in three dimensions was analysed by Poupaud [19]. The regularity of
the solutions for the Vlasov-Maxwell system in a half line has been studied by Guo [13]. Results
for the time periodic case can be found in [6] for the Vlasov-Poisson system and in [5] for the
Vlasov-Maxwell system.

In this paper we study the existence and the uniqueness of the mild solution for the Vlasov-
Poisson initial-boundary value problem in one dimension :

Ohf+v-0uf +E(t,x) 0,f =0, (t,2,v) €]0,T[x]0, 1[xR,,
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ft=0,2,v) = fo(z,v), (x,v) €0,1[xR,,

ft,z,v) = g(t,x,v), (t,z,v) €0, T[xE7,
E(t, @) = —0,U, 9,F = —02U = plt, ) = / ftz,0)dv, (t) €)0,T[x]0,1],
Ry

Ult,z = 0) = Up(t), Ut,z=1)=U,(t), te]o,T].

The function f(t,z,v) represents the particles distribution depending on the time ¢, the position
x and the velocity v. The electric field E(t,x) derives from an electrostatic potential U verifying
the Poisson equation with the charge density p(¢,x) := fRu f(t,z,v)dv. Here X~ is the subset of
boundary of the phases space ]0, 1[xR, corresponding to the incoming velocities :

5T ={0,v) |v>0}U{(1,v) |v <0} =%, UX].

Similarly we define also ¥ = {(0,v) | v < 0}U{(1,v) | v > 0} = XF U%] which corresponds to the
outgoing velocities and £° = {(0,0), (1,0)}. With the notations 9|]0,T[x25 = 90a9|]0,T[><2; =0
the boundary condition writes :

ft,z=0,0>0)=go(t,v >0), ft,x=1,0<0)=g1(¢t,v<0), t€]0,T].

The existence of weak solution for the Vlasov-Poisson initial-boundary value problem has been
obtained in previous works; in [4] weak solutions of finite total (kinetic and electric) energy are
constructed in dimension d, d < 3 by assuming initial-boundary conditions of finite kinetic, respec-
tively flux of kinetic energy :

1
//fo(x,v)m?dxdv—i— sup {/ v|v|290(t,v)dv—/ v|v2g1(t,v)dv} < 400,
0 JR, 0<t<T \Ju>0 v<0

and [v]* fo € L°°(]0,1[xR,), [v]*go € L>®(J0, T[xR}), |v|*g1 € L>=(]0, T[xR; ), for some A > d + 1.
The main goal of this paper is to establish the existence and uniqueness of the mild solution
(or solution by characteristics) in one dimension under less restrictive hypothesis, say for initial-
boundary conditions of finite charge. As usual when studying coupled equations, we search the
solutions as fixed points for some nonlinear application. For the 1D Vlasov-Poisson system this
application writes for example F : Br(Xr) — Br(Xr) where :

T 1
fE(tv‘T) - A pE(ta y)dy - /0 (1 - y)pE(tay)dy - Ul(t) + UO(t)v (tvx) E}O7T[X]Ov 1[7

where pgp(t,x) = fR fe(t,z,v)dv and fg solves the linear Vlasov problem associated to the field
E and Bgr(Xr) is the ball of radius R of some space Xr. Naturally, in order to construct solutions
by characteristics, which writes :

C%X(s;t,x,v) =V(s;t,x,v), C%V(s;t,x,v) = E(s,X(s;t,x,v)), Sin(t,x,v) <5 < Sou(t,x,v),

the space X7 to be considered is L>°(]0, T[; W1>°(]0,1[)). Here 8;,/Sous represent the entry/exit
time of the characteristics in the domain |0, 1] (see the next section for exact definitions). Since
by construction 9, FF = pg (conforming to the Poisson equation), it is clear that Br(Xr) is
preserved by F provided that the charge density remains uniformly bounded in L*°(]0, T'[x]0, 1]).
Therefore the natural hypothesis are :

/ sup fo(x,v)dv+/ sup go(t,v)dv—i-/ sup g1 (t,v)dv < 400,
R v v

L 0<z<1 >0 0<t<T <0 0<t<T
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and :

max{|| follL=qo,1[x®r,), ||gO||L°°(]O,T[><RU+)7 ||91||Loo(}o,T[><]R;)} < Fo0.

We intend to show the existence of an unique fixed point for F by using the iterated approximations
method, which requires to estimate FA— F B in term of A— B for A, B different fields of Xr. This
can be done by using the mild formulation of the Vlasov problem. Indeed, by using the continuity
equation O;pp + 81 7 E = 0, FFE can be represented also in term of the current density. Or estimate
fo ja(s,x)ds — fo JjB(s,x)ds in L>°(]0,1[) reduces to a duality calculation by taking the product
by L' functions ¢ :

t
(/ (ja(s,") —jB(s,))ds, (- /// (fa(s,z,v) — fB(s,z,v))vp(x)dsdxdv
0
XA(gout)
// vgo (T, v / o(u)dudrdv
XB(‘sout)
XA(gout)
// vg1 (T, v / o(u)dudrdv
XB(sout)
XA(Sout)
//fo x,v / o(u)dudzdv,

(Sut)

where 9, = Sout(7,0,0), 85, = Sout(0,2,0),5L,; = Sout(7,1,v) represent the exit times of the
characteristics (see the next sections for the exact definitions). Note that for large velocities the
integrand of the left boundary term vanishes since both X 4(84u:(7,0,v)) = Xp(Sout(7,0,v)) = 1.
This suggest the definition of some critical velocities v°(¢; 7, 0),v!(t; 7,0) such that :

Sout(T,0,v) <t, X (Sout(7,0,0);7,0,0) =0, 0 < v < vo(t; 7,0),
Sout(T,0,0)=t, 0 < X (8out(7,0,0);7,0,v) < 1, v°(t;7,0) < v < v'(t;7,0),

Sout (7,0,0) <t, X (5out(7,0,v);7,0,0) = 1, v > vl (t;7,0).

Similar definitions hold for the right boundary term. One of the key point of our analysis consists
on estimating the relative critical velocity. For non decreasing fields with respect to =, we have :

t
"UI]Z(IJ};T’ k) - ’U%(t;Ta k)| < / HA(S) - B(8)||L°°(]0,1Dd57 k= 0,1,
and finally one gets :
t
IFAE) = FEOl~goap < C [ 1AG) = BEl=goaper

where C' depends only on the L>(]0, T'[; W1>°(]0, 1)) norms of A, B and the initial-boundary con-
ditions . We prove the following existence and uniqueness result :

THEOREM Assume that there is ng, ho, b1 : [0, +00[— [0, +00[ bounded non increasing functions
ho

0
such that fo(z,v) < no(|v]),V(z,v) €]0,1[xRy, go(t,v) < (v),Y(t,v) € ]07T[XRj7 gi1(t,v) <
hi(=v),V(t,v) €]0,T[xR, and :

/ no(\v\)dv—i—/ ho(v)dv—i—/ hi(—v)dv < o0,
R, v>0 v<0

maX{HnOHLm(Rj)a ||h0HL°°(]Rv+)7 ||h1HL°°(]Rv+)7 U1 = Ul Lo, } < +00.
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Then there is an unique mild solution for the 1D Vlasov-Poisson initial-boundary value problem .

The estimate of the relative critical velocity, which is used for the treatment of the boundary
terms, relies on some comparison results for characteristics associated to non decreasing fields, pre-
sented in Section 4. This is why, when studying the Vlasov-Poisson initial-boundary value problem
we consider only one species of charged particles. All the definitions concerning the weak/mild
formulations for the Vlasov or Vlasov-Poisson problem are recalled in Sections 2, 3. The main
result on the existence and uniqueness of the mild solution is developed in Section 5 as well as a
continuity result upon the initial-boundary conditions . The same method applies when studying
the free or periodic space problem. Moreover, in this cases there are no boundary terms and thus
the analysis on critical velocities not need to be used. This time the existence and uniqueness result
can be obtained for general electric fields (not necessarily non decreasing in space) which allows us
to treat systems with two species of charged particles (plasma globally neutral). Statements and
sketch of the proofs can be found in Sections 6, 7.

2. The Vlasov equation.

The equation which models the transport of charged particles is called the Vlasov equation. In
one dimension, if the particles move only under the action of an electric field this equation writes :

Orf +v-0pf + E(t,x) - 0pf =0, (t,z,v) €]0,T[x]0, 1[xR,. (2.1)
Here E(t,z) is a given electric field which derives from a potential U (¢, x) :
E(t,z) = —0,U, (t,z) €]0,T[x]0,1].
The initial-boundary conditions for the particles distribution are given by :

ft=0,2,v) = fo(z,v), (x,v) €0,1[xR,, (2.2)

ft,x=0,v>0)=go(t,v>0), f(t,z=1,0v<0)=g(tv<0), ¢t€]0,T]. (2.3)
Now let us briefly recall the definitions of weak and mild solutions for the Vlasov problem (2.1), (2.2)
and (2.3).

2.1. Weak solutions for the Vlasov-Poisson problem.

DEFINITION 2.1. Assume that E € L*>(]0,T[x]0,1]), foeLl .(]0, 1[xR,),vgoeL}, .(]0, T[xR),

loc loc

vg1 € L}, (10, T[xR,). We say that f € L}, (]0,T[x]0,1[xR,) is a weak solution for the Viasov
problem (2.1), (2.2), (2.3) iff -

T 1 1
- / / / F(t,2,0) - (Bep+ v - Dup + B(t, ) - D,0)dtdxdv = / / fol@, v)p(0, 2, v)drdy
0JOJR, 0J/R,

T T
+// vgo(t,v)go(t,O,v)dtdv—// vg1 (¢, 0)p(t, 1, v)dtdv,
0Jv>0 0Jv

<0

for all test function ¢ € T,, where :

Tw = {(P € Wl’oo(}ovT[X]Oa I[XR'U) | (p|]0,T[><E+ = SD(Ta B ) = 07 dR: supp(tp) c [07T]X[07 1]XBR}
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2.2. Mild solutions for the Vlasov problem.

We need to consider also some special solutions of (2.1),(2.2),(2.3) which are called mild
solutions or solutions by characteristics. These solutions require more regularity on the electric
field and they are particular cases of weak solutions. Assume that E € L°°(]0,T[; W1°°(]0, 1[))
and for (t,z,v) € {[0,T[x]0,1[xR,} U {]0,T[x3"} let us denote by (X (s;t,x,v), V(s;t,x,v)) the
unique solution of the ordinary differential system of equations :

d d
d—X(S;t,x,v) =V(s;t,z,v), d—V(s;t,x,v) = E(s, X(s;t,2,v)), Sin < 5 < Souts (2.4)
s s

which verify the conditions :
X(s=t;t,x,v)=2a, V(s=t;t,x,v)=.

Here s;p, = Sin(t,x,v) (resp. Sout = Sout(t, z,v)) represents the incoming (resp. outgoing) time of
the characteristics in the domain ]0, 1[ defined by :

sin(t, z,v) = max{0,sup{0 < s <t : X(s;t,x,v) € {0,1}}}, (2.5)
and :
Sout(t, x,v) = min{T,inf{T > s>t : X(s;t,z,v) € {0,1}}}. (2.6)

The total travel time through the domain (lifetime) writes 7(t, ,v) = Sout(t, T, v) — Sin(t, z,v) < T
Now we replace in the Definition 2.1 the function 0y + v - Oy + E(t, ) - Oy by 1, which gives
after integration :

Sout (t,x,v)
o(t, z,v) = —/ U(s, X(s;t,x,v),V(s;t, x,v))ds,
t
and we define the mild solution as follows :

DEFINITION 2.2.  Assume that E € L>(]0,T[;W%><(]0,1[)), fo € L}, .(]0,1[xR,), vgy €

loc

L} (0, T[xR)), vgy € Li, . (]0,T[xR;). We say that f € L}, .(]0,T[x]0,1[xR,) is a mild solution

loc loc loc

for the Viasov problem (2.1), (2.2), (2.3) iff :
T 1 1 Sout (0,z,v)
///f(t,x,v)w(t,x,v)dtdxdv://fo(x,v)/ U(s, X(s;0,2,v),V(s;0,z,v))dsdzdv
0J0JR, 0J/R, 0
T Sout (t,0,0)
+// vgo(t,v)/ ¥(s, X (s;t,0,v),V(s;t,0,v))dsdtdv
0Jv>0 t

T Sout (t,1,v)
—// vgl(t,v)/ (s, X(s;t,1,0),V(s;t,1,v))dsdtdv,
t

0Jv<0

for all test function ¢ € T, where :
T =A{tp € L=(]0,T[x]0,1[xRy) [ IR > 0 : supp(¥) C [0,T] x [0,1] x Br}.
In order to simplify the formulas we shall use the following notations :

(X (), V() = (X(s5t,2,0), V(s t,2,0)), (X°(5),VO(s)) = (X(5;1,0,v), V(s31,0,0)),

(X' (5), V(5)) = (X (858, 1,0), V(s;t,1,0)), (X'(5),V'(5)) = (X(5;0,,0),V(s;0,2,0)),
and :

Sin = sm(t,x,v), Sout = Sout(t7x>v)7 Sgut = Sout(ty 0;”)7 S;ut = Sout(t7 170)7 Sgut = Sout(07x7v)~



6 M. BOSTAN

REMARK 2.3. It is well known that the mild solution is unique and is given by f(t,x,v) =
gk(Sim V(Sin)) Zszn(t, z, 1}) > 07 X(sln(t7 Z, U)7 ta z, 1}) = kv k= 07 17 f(tv &€, /U) = fO(X(SZn>7 V(Szn))
if sin(t,z,v) = 0.

Note that every mild solution is also weak solution. Moreover, the existence of weak solu-

tion for the Vlasov problem with bounded initial-boundary conditions fy,go,g1 € L°°, follows

by regularization of the electric field with respect to = by convolution with (.(-) = ¢ (%), ¢ €

Cge, supp(¢) = [-1,1],¢ > 0, fRC(u)du = 1, and by passing to the limit for € \, 0 Ein the weak
formulation of f¢, the mild solution associated to £ = E % (.

3. The Vlasov-Poisson system.
The self-consistent electric field solves the Poisson equation :
0. FE = 02U = p(t, ) ::/ f(t,z,v)dv, (t,z) €]0,T[x]0,1], (3.1)
RU

with the boundary conditions :
U(t,z =0) =Us(t), U(t,x=1)=Uy(t), t€]0,T]. (3.2)

The system formed by (2.1),(3.1), (2.2), (2.3), (3.2) is called the Vlasov-Poisson initial-boundary
value problem in one dimension. Obviously the electric field writes :

T 1
E(t,z) = / p(t,y)dy — / (L =y)p(t,y)dy — Ur(t) + Uo(t), (t,2) €]0,T[x]0,1], (3.3)
0 0
and therefore we can give the following definitions :

DEFINITION 3.1. Assume that foeLi, (10, 1[xR,),vgo€L}, . (J0, T[xR}),vg1€L}, . (0, T[XR),
Uy —Uy € L*>(]0,T]). We say that (f, E) € L'(]0, T[x]0,1[xR,) x L>=(]0, T[x]0,1]) (resp. (f, E) €
L1(]0, T[x]0,1[xR,) x L>=(]0,T[;W>(]0,1]))) is a weak (resp. mild) solution for the Vlasov-
Poisson problem iff f is a weak (resp. mild) solution for the Vlasov problem (2.1),(2.2),(2.3)
corresponding to the electric field (3.3) given by the Poisson problem.

4. Characteristics.
The main tool of our analysis is the mild formulation of the Vlasov problem. In order to
estimate the charge and current densities we need more informations about the characteristics.

We present here some properties of the characteristics associated to regular, non decreasing with
respect to z fields.

PROPOSITION 4.1. Assume that E € L>(]0, T[; W1°°(]0,1[)) is non decreasing with respect to
zand that (X1(s), Vi(s)), (Xa(s), Va(s)) are two characteristics such that there is sy < so verifying
X1(s;) = Xa(si), i = 1,2. Then the characteristics coincide : (X1(s), Vi(s)) = (Xa(s), Va(s)),Vs.

Proof. The conclusion follows easily after multiplication of the equation %(X 1(s) — Xa(s)) =
E(s,X1(s)) — E(s,X2(s)) by X1(s) — X2(s) and integration by parts on [s1, s3]. O

PROPOSITION 4.2. Assume that E € L>(]0,T[; W°°(]0,1[)) is non decreasing with respect
to x. If vi < vg then we have :

X(s5t,x,01) < X(s5t,2,09), V(s;t,x,v1) < V(s;t,2,02), Vs €], Sout(t, 2, v1)]N]E, Sout (t, T, v2)],
and :

X(s;t,x,v1) > X(s;t,2,09), V(sit,x,v1) < V(s;t,2,v9), Vs € [8in(t,x,v1), t[N[Sin(t, 2, v2)].
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Proof. Suppose that there is s € [s;, (¢, @, v1), Sout(t, ,v1)] N [$in (L, 2, V2), Sout (t, T, v2)], 8 £ ¢
such that X (s;t,z,v1) = X(s;t,x,vq). Since X (t;t,z,v1) = X(t;t,z,v9) = x, by the Proposi-
tion 4.1 it follows that the characteristics coincide, and thus v; = vy which is in contradiction
with the hypothesis. Therefore X (s;¢,z,v1) — X (s;t,2,v2) has constant sign on the intervals
[Sin (t, @, v1), t[N[Sin (t, 2, v2), t] and ¢, Sout (t, 2, v1)]NE, Sout (t, 2, v2)]. On the other hand we have :

d
%(X(S;tamavl) - X(S;taxav2))|s=t =11 —v2 < 07

and therefore X (s;t,x,v1) — X(s;¢,x,v2) is decreasing locally in s = ¢. We deduce that :
X(s;t,x,v1) > X(s58,2,02), 8 € [$in(t,x,v1), t{N[8in(t, x,v2), 1],

and :
X(s;t,w,v1) < X(s5t,x,09), s EJL, Sout(t, 2,v1)]N]E, Sout (t, 2, v2)].

By using the characteristics equations one gets :

d
d—(V(s;t,x, v1) = V(s;t,x,v2)) = E(s, X (s;¢,2,v1)) — E(s, X(s;t,2,v2)),

s
and thus V(s;t,x,v1) — V(s;t,2,v2) is non decreasing on [s;, (¢, x, v1), t[{N[sin(t, z,v2), [ and non
increasing on |t, Sout (t, 2, v1)]N]E, Sout (£, , v2)]. We deduce that :

V(s;t,z,vl)—V(s;t,x,vg) S V1 —V2 < Oa ERS [Sin(t7$,vl),Sout(t,fﬁ,'l}l)]m[.sfin(t,IE,'UQ),Sout(t,$,U2)].

O

When using the mild formulation of the Vlasov problem it is important to distinguish the char-
acteristics with respect to the exit point. This justifies the following definitions : for (¢,z) €
{[0, T[x]0,1[} U {]0, T[x{0,1}} we denote by V°, V1 VT the subsets of R, given by :

VUT;t,x) :={v €Ry ¢ Sour(t,r,v) < T, X(sour(t,x,v);t,x,v) =0}, (4.1)
VHT;t,x) ={veR, : sput(t,z,v) < T, X(Sout(t,z,v);t,z,v) =1}, (4.2)
VI(T;t,2) == {veER, : souilt,z,v) =T, 0< X(T;t,z,v) < 1}. (4.3)

Note that when E is bounded there is R large enough such that | — oo, —R[C V°(T;t,z) and
|R, +oo[C V}(T;t,x) and thus VO(T;t,x) # 0,V(T;t,x) # (. By the definition VO(T;t,2) N
VUT;t,x) = 0 and VI (T;t,2) N {V°(T;t,2) UVH(T;t,z)} = 0.

PROPOSITION 4.3. Assume that E € L>(]0, T[; W°°(]0,1[)) is non decreasing with respect
to x. Then we have :
(1) if vg € VO(T;t, ) then vy € VO(T;t,2), Vo1 < vg;
(2) if v1 € VY(T;t,x) then vy € VI(T;t,2),Yvg > v1;
(3) if vi € VU(T;t,x), vg € VI(T;t,x), then vy < va.

Proof. (1) Suppose that seut(t, z,v1) > Sout(t,z,v2). By the Proposition 4.2 we deduce that :
X(s;t,x,v1) < X(85t,2,02),Y8 €L, Sout(t, @, v1)|N]E, Sout (t, 2, V2)] =]t, Sout(t, 2, v2)]. In particular
for s = Sout(t,x,v2) we find that : 0 < X(sout(t, 2, v2);t,2,01) < X(Sout(t,x,v2);t,x,v2) = 0,
which is not possible. Finally it comes that sy (t, ,v1) < Sout(t, z,v2) < T and :

X (Sout(t,z,v1);t, 2,v1) < X (Sout(t, z,v1);t, 2,v9) < 1.

We deduce that X (seut(t, z,v1);t,2,v1) = 0 or v, € VO(T';t, x).
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(2) Similarly, if vy € VI(T;t,2,) and vy < vy we have sout(t, 7,v2) < Sout(t,x,v1) < T (oth-
erwise 1 = X (Sout(t, z,v1);t,2,v1) < X(Sout(t,z,v1);t,x,v2)) and 0 < X (Spus(t, z,v2);t, x,v1) <
X (Sout(t, x,v2);t,m,v2). We deduce that X (sous(t, z,v2);t,2,v2) = 1 and ve € VH(T;t, 7).

(3) Suppose that v; > we. Since vy € VO(T;t,z), by (1) it follows that ve € VO(T;t,z) N
VY(T;t,x) = 0. Therefore we have vy < vy. O

We introduce the critical velocities v°(T;t, x), v (T;t, x) given by :
VTt x) = sup VO(Tst,2), v (Tt z) := inf VY(T;t,x). (4.4)
Obviously we have —oo < v*(T;t,x) < v!(T;t,z) < +o0.

PROPOSITION 4.4. Assume that E € L>=(]0,T[;W1°(]0,1[)) is non decreasing with respect
to x. We have :
(1) ] — 00, 0°(T;t, ) [C VO(T;t x) C] — 00,0°(T;t,2)];
(2) Wi (T;t,2), +oolC VY(T;t,x) C [wH(T;t, x), +oo[;
(3) WO(T;t,z), v (T;t, x)[C VT(T t,z) C [v%(T;t,x), v (T;t,z)].

Proof. From the Proposition 4.3 and the definitions of v°,v! we deduce (1) and (2). By the
other hand VT (T;t,x) C R,—{V°(T;t,z)UV(T;t :c)} C R, —{]—00,v°(T;t; z)[Uv (T t,x), +oo[}
= [(T;t,z),v (T;t,x)]. Let us prove that Jo% vi[c VT. Con51der W0 <o < ol if 00 < ol
Suppose that Seyt(t, x,v) < T with X(sout(t,x,v),t,w,v) =0, or v € V)(T;t, ). By the Propo—
sition 4.3 we deduce that & € VO(T;t,x),Vv® < & < v which is in contradiction with & > v? =
sup VO(T';t, z). The same arguments apply for sout(t Z,0) < T, X (Sout(t,x,v);t,z,v) = 1, by tak-
ing v < ¥ < vl. It comes that s,y (t, z,v) = T, YVo° < v < v!. Suppose now that X (T;t,x,v) = 0.
If we take v° < @ < v we deduce that s, (t,7,9) = T and by the Proposition 4.2 we find that
0< X(T;t,z,0) < X(T;t,x,v) = 0. Similarly we can show that X (T;t,2,v) = 1 is not possible.
Finally we deduce that X (T;t,z,v) €]0,1[,Vv° < v < v!, and thus |0, v'[C VT. O

Let us consider two fields A, B. In order to prove the uniqueness of the mild solution for the
Vlasov-Poisson problem, it will be useful to estimate the change of critical velocity [v% —vk|, k = 0,1
with respect to the relative field A — B. For this we need to introduce the notion of sub/super-
characteristics :

DEFINITION 4.5. Assume that E € L>(]0,T[; W%>(]0,1])) is non decreasing with respect
to x. We say that (X(s),V(s)) is a sub-characteristic (resp. super-characteristic) iff X is twice
differentiable with respect to s and :

X v

= < <<

15 V(s), s E(s,X(5)), Sin <8< Sout,
(resp. :

dX dV

dS V(8)7 dS - E(SaX(S))a Sin > S8 > Sout7)

with the same definitions for s;n, Sout as before.
We have the following comparison result :

PROPOSITION 4.6. (Forward Comparison) Assume that E € L*(]0,T[; W'>(]0,1[)) is non
decreasing with respect to x. Consider (X(s),V(s)),(X(s),V(s)) a sub-characteristic, resp. a
super-characteristic such that : X(t) < X(t), V.(t) < V(t). Then we have :

X(s) < X(s), V(s) <V(s), Vs €t s, NIt Sout-

» Zout
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Proof. We can extend the field E to [0, T[xR, by E(t,x) = E(t,0),z < 0 and E(t,z) =
E(t, 1),z > 1. We have || E| zoqo,ri:w1.>~q0,1)) < Bl Lo qo,7 w12 o,1p) and E is non decreasing
with respect to z. Consider (z,v) € R, x R, such that X(t) <z < X(¢), V(t) <v < V(#).
Denote by (X (s;t,x,v),V(s;t,z,v)) the characteristic associated to the field E :

dX v _ =
75 = V(S)7 dis = E(S,X(S)),

with the conditions X (s = ¢;¢,z,v) =, V(s = t;t,2,v) = v. We show that X(s) < X(s) <
X(s), V(s) < V(s) < V(s), for all s € [t,5,,,] N [t,S0ut). For this we can use the iterated
approximations method. For example, in order to prove that X < XV < V we consider as
first approximation X° = X,V? = V and we define X"*!(s) = x + [ V"(r)dr, V"F1(s) =
v+ [ E(1,X"™(1))dr, Vs € [t,8,,), ¥n > 0. We check easily that X"(s) > X(s),V"(s)
V(s),Vs € [t, 8oy and by passing to the limit for n — 400 we find that X (s) > X(s), V(s)
V(s), Vs € [t,8,,] In the same way, by taking as initial approximation (X% V°) = (X,V)

prove that X (s) < X(s),V(s) < V(s),Vs € [t,Sou]. Finally we have :

=RIVAIVAN

X(s) < X(s) < X(s), V(s) < V(s) < V(s), Vs € [t, 8p00] N [t Sou]-
0

REMARK 4.7. In fact, since 0 < X(s),X(s) < 1Vt < s < min{s,,;,S0ut} it follows that
0 < X(s) 1Vt<s <min{s,,Sou and therefore (X, V) coincide with the characteristic

associated to the field E. Moreover, Sout(t,x,v) > min{s,,;, Sout }-

Now we are ready to prove a result of continuous dependence of the critical velocities with
respect to the electric field. We have the following lemma :

LEMMA 4.8. (Critical velocity change) Assume that A, B € L>(]0,T[; W%>(]0,1])) are non
decreasing with respect to x. Then for all (t,x) € [0, T[x[0,1] we have the following inequality :

T
Wk (T, ) — by (Tt )| < / 1A(s) = B(s)|l = o.1pds, k =0, 1. (4.5)
t

Proof. Denote by m = ||A— Bl L1(je, 7,15 (j0,1]))- Let us prove for example that [v% —v%] < m.

Suppose that v4 — v} > m. Therefore there is v > v% such that & = v +m < v9 and thus

we deduce from the Proposition 4.4 that Xg(sB,,(t, z,v);t,x,v) > 0, Xa(s2,(t,2,9);t,2,7) = 0,
sA . (t,x,9) < T. Consider the solution (X¢,Ve) of the following system of ordinary differential

equations :

dx, v,
dsc =Ve(s), Tsc = B(s,Xa(s)), t<s<sC,(tav),

with the conditions X¢(t) = z, Vo (t) = v. With the notations :

(Xa(5),Va(s)) = (Xa(s;t,z,0),Va(s;t,x,0)), t <s< s (t,z,0),

out

and :

(Xp(s),Va(s)) = (Xp(s;t,z,v), Va(s;t,z,v)), t < s < s5 (t x,v),

out

we have also :

dX dv, -
= Vals), 5= Al Xa(s), t <5< sh(ta,0),
with X 4(t) = 2,Va(t) = 0 and :
dX dv;
G =Vs(s), 7 =B(s, Xp(s), t <5< sftx0),
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with Xp(t) =z, Ve(t) = v. We deduce that :

d%(XA — Xc) =Vals) = Vo(s), d*(VA ~ Vo) = (A= B)(s, Xa(s)), t<s<min{sj,, 55},
and X4(t) — X¢(t) =0, Va(t) — Ve(t) = 0 — v = m. We have :

[Va(s) = Vo(s) = Va(t) + Vo ()] < / |A(T) = B(7) || oeqo,apdr < my ¢ < s < min{shye, $ue}
t

and thus Va(s) — Ve(s) > Va(t) — Ve(t) —m =
XA( ) = Xc(t) = x it follows that X 4(s) 2 ofs

t < sout? we deduce that XC( out’t T ’U) < XA( Souts out — “out
Wthh is in contradiction with the previous Supp081t10n Therefore we have s§, < s, < T.
In particular Xc(sS,:t,z,v) € {0,1} and Xo(s8, st z,v) < Xa(sS,st, x, U) Note also that
Xa(sS, it 2, 0) =1 1mpheb that s, < S, and thus it follows that s?

out 4,.=55,<T Which is not
posmble because X (s2,;t,x,9) = 0 and XA( t,x,0) =1. We obtam that Xc(sS,,;t,2,v) <

Souts Uy

0, t<s< rmn{sout7 s$.+}. Moreover, since
), t < s < min{s4,, sC,}. If we suppose that
t,x,9) = 0 and thus we have 5§, < s2

Sout> Souts

Xa(sS ,;t,2,9) < 1 and we deduce that Xc(sS,,;t,z,v) = 0. On the other hand :
d2
EXC = B(s,Xa(s)) > B(s, Xc(s)), t <5 <55,
and :
d2
WXB = B(s,Xp(s), t < s < s5,.

Note that X¢(t) = Xp(t) =  and Vo(t) = Vp(t) = v. Thus by applying the forward comparison
(see Proposition 4. 6) we deduce that Xc(s) > Xp(s),Vo(s) > Va(s), t < s <min{sZ,, sC }. If

we suppose that s$, < sZ,, we deduce that :

0= X (58, t,x,0) > Xp(sC,,;t, x,0),

Souts Souts

and thus We have sB S s¢ , which is in contradiction with the previous supposition. Therefore

out
we have s2, <50, <sA, <T and :

out

Xp(s) < Xe(s) < Xa(s), Va(s) < Ve(s) < Vals), t<s<sh,

out

Since v > v% and sB, < T we have Xp(sZ,;t,x,v) = 1. Now, by taking s = sZ, in the previous
inequality we obtain :

1 :XB( outat T 'U) <XA( outvt T U)
which implies that X4 (s Out,t z,7) = 1 and 52, < sout, or s4 . = sB .. As before we obtain a

contradiction because X 4(s2,;t,2,7) = 0 and Xa(s Out,t x,0) = 1. Finally we have proved that
the supposition v% —v% > m is false and thus v4 —v% < m. By changing A with B we obtaln also

that v} —vY% < m, or [v4 —v%| < m. The same arguments apply for the critical velocities v}, vk. O

We end this section with some usual calculations concerning the continuity of the characteris-
tics with respect to the field.

PROPOSITION 4.9. Assume that A,B € L*(]0,T; Wloo(]O 1)) and consider (t,xz,v) €
{[0,T[x]0, 1[xR,} U{]0, T[xX~}. Then for s € [si (t,z,v), s4,,(t, 2,v)] N [sZ (¢, 2,v), 58 ,(t, z,0)]

we have :

| X a(s;t,2,0) — Xp(s;t,x,v)| HVa(s; t, z,0) — Vp(s; t, z,0)| < ‘/ | A(T) = B(7)l| oo o,1pdT
¢

e ).

S

t (L+ 1102 B(1) || Lo qo.1p))dT
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5. Existence and uniqueness of the mild solution.

In this section we intend to prove the existence and the uniqueness of the mild solution
for the Vlasov-Poisson initial-boundary value problem in one dimension by using the iterated
approximations method. We consider the application F defined for regular electric field £ €
L]0, T[; W1°°(]0,1])) as follows :

B fy— pp— /R Fo(t, 2, v)dv — By = F(E), (5.1)

where fg is the mild solution of the Vlasov problem associated to the field F and E; is the Poisson
electric field corresponding to the charge density pr . Before analysing the application F let us
introduce some notations. If u : [0, +0o[— [0, +o0[ is a bounded non increasing real function and
R > 0 we denote by u” : [-R, +00[— [0, +00] the function given by uf(t) = u(0) if —-R <t < R
and uf'(t) = u(t — R) if t > R. If we assume that u belongs to L'(RT) therefore :

HUR||L1(—R,+<><>) = 2R||u|| oo m+y + llull 1 (®m+)-

5.1. Estimate of FE.

We assume that the initial-boundary conditions verify the following hypothesis denoted by
(H) : there is ng, ho, h1 : [0, +oo[— [0, +00[ bounded, non increasing functions such that :

fo(z,v) <no(|v]), (z,v) €]0,1[xR,,
(H) go(t,v)gho(v), (t,’l)) G]OaT[XRI7

g1(t,v)<hi(—v), (t,v) €]0,T[xR,,

and :

(Ho) My := / no(|v])dv + />0 ho(v)dv + /<0 hi(—v)dv < 400,

v

(Hoo) Moo = maX{HnollLoc(m)’ HhOHLoc(Rj)a Hh1||Lw(Rj)} < +o0.
Under the previous hypothesis we can prove the following proposition :
PROPOSITION 5.1. Assume that fo, go, g1 satisfy the hypothesis (H ), (Hy), (Hso) and Ug—U; €
L*(]0,T[). Then for every E € L*(]0,T[; W1>°(]0,1[)) we have fr € L>=(]0,T[; L*(]0,1[xR,)),

pe € L>(0,T[; L*(]0,1[)) N L>=(J0,T[x]0,1[), FE € L>(]0,T[; W+°>°(]0,1[)). Moreover the fol-
lowing estimates hold :

t
1fEll Lot qoaixr,)) = [lpEll L (o.tiL1q0,10) < 6 Moo/o IE(m)|| L go,1pdT + Mo,
t
lpell Lo qo.tixo.1) = 10:F Ell L o,t1xj0.1p < 6 Moo/ IE(T) [z go.ap dr + Mo,
0
t
||.7:EHLOO(]O¢[;W1,OO(]0,1[)) <12 - M, / ||E(S)‘|Loc(]071[)d8 + 2My + HUO — Ul”Loo(]O’tD,
0

lim fe(t,z,v)dv =0, uniformly with respect to (t,z) €]0,T[x]0, 1],
Ri1—+00 "U|>R1
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and the mild formulation of the Viasov problem holds for test functions ¢ € L*(]0,T[x]0,1[xR,).
Proof. By the Remark 2.3 we have :

pE(tvx) :/ fE(t,JZ,U)d’U = / fO(X(O;taxav)aV(O;t7xvv))l{sm(t,m,v):O}dv
R, Ry

+Z]£;:0 / gk:(szn (t7 z, U)v V(S'Ln(tv €T, ’U); ta z, U))]-{sm (t,:r,'u)>0}l{X(sin(t,z,v);t,x,v):k}dv
R

=7'+ 7%+ 7"

Let us estimate the first integral Z¢. For this, consider R = f(f | E(7)|lL>qo,1pd7 and remark that
|V (0;t,2,v)| > |v| — R which implies that no(|V(0;¢,z,v)|) < nft(|v]). By using the hypothesis
(H) we find :

Ti< / no([V(0: .2, 0)) 1 (o1 ()0} 0
R

v

S/ ng (Jo])dv = 2R|nol| oo ) + 2 0]l 1 gt

In the same way, by writting v > V (s, (¢, z,v);t,x,v) — R > —R when X (s;,(¢, z,v);t,z,v) =0
and v < V(s (t,z,v);t,2,v) + R < R when X (s, (¢, z,v);t,2,v) = 1, one gets :

IO+11§/ Rhg(v)dw/ Rhf(—v)d@
v>— v<

<2 R ([[holl oo iy + 11l oo @p)) + [P0l ey + 1hall pr iy
Finally we deduce that :
t
pu(t,z) <6 Moo/ |E() |z~ qo.apdr + Mo, (t,2) €0, T[]0, 1],
0
and therefore :

|FE(t,z)| = ‘/OxpE(t,y)dy—/o (1 —=y)pe(t,y)dy — Ui(t) + Uo(t)

< lpellz=qo,;rrgo,ip) + 1Uo = UtllLoejo -

In order to estimate the charge outside a ball of radius R; just remark that, for example :

- / Fo(X (031, 2,0), V(03 £, 2,0)) 1 (o1 (.0.) 0y 0
|’U|>R1

< / nf(Jof)dv = / o (fo])do,
o> Ry v|>R1—R

for Ry > R. Finally one gets that :

/ fe(t,z,v)dv < / no(|v|)dv —|—/ ho(v)dv —|—/ hi(—=v)dv — 0,
|v]|>R;y [v|>R1—R v>R1—R v<—R1+R

as Ry — +oo uniformly with respect to (¢, ) €]0,T[x]0, 1[. Consider now ¢ € L>(
and Y, = xg, (V)¥(t,x,v) where xg,(:) = x(-/R1) and x € C}(R),x(u) = 1
0,ul > 2,0 < x(u) <1,1 < |u| <2. Obviously ¥, € 7,, and thus :
T p1 1 Sout (0,z,v)
| [ [1ett..000m, 0 v)atdzav= [ [ o) [ b, (5, X (5:0,,), V (530, ,0))dsdady
0JoJR, 0JR, 0
T Sout (t,0,v)
+// Ugo(t,v)/ YR, (s, X (s;1,0,v),V(s;t,0,v))dsdtdv
0Jv>0 t

T Sout (t,1,v)
—// vgl(t,v)/ YR, (8, X (s;5t,1,0), V(s;t,1,v))dsdtdv.
t

0Jv<0
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‘We have :

/0 T/OI/R{EQ/JRldtdwdv - /0 T/OI/R ;fmb didado

</ T/Ol/R{Eu — s ()ldedado

T pl
<[l Lo // fedtdzdv — 0, as Ry — +o0.
0J0J|v|>R,

In order to apply the dominated convergence theorem of Lebesgue remark that :

| oz, v) /Ou U, (5, X7(s), V(3))ds| < folx,v)[¥llz=T € L'(J0, 1[xR,).

Note also that for R = ||E||£1o,7[;L>(o,1))) We have :

0
Sout

1
lvgo(t,v) [ Yr,(s,X°(s),V°(s))ds| < 2Rgo(t, v)T |||l L Li0cv<2ry + Ugt)(t»v)\|1/)||L°°m1{u>2R}
t
< 2RT|[Y| L go(t, v)Locv<any + 2[[¥[| L go(t, v)1{ys2ry € L' (0, T[xRY),

since VO(s) > v — R and 8%, —t < ﬁ for v > R. The same arguments apply for the right

out

boundary term and finally, by passing R; — 400 we deduce that the mild formulation holds for
every ¢ € L*(]0,T[x]0,1[xR,). O

REMARK 5.2. Consider z(t) = (Mo + [|[Uo — Ui || qo,77)) exp(6 - Moot) and :
Xp = {B € I2(0,T[ W0, 1) | |Ells=gosiajoy < 2(t),¥0 <t < T},
Then FXr C X7 and :

|FE| Lo qo,rwrqo,1p) < 2 2(T) — [[Uo — Url| oo o, 1 -

5.2. Estimate of FA — FB.

The aim of this section is to estimate the L° norm of FA — FB with respect to the L
norm of A — B. In a first time we perform our computations by introducing also the current
density jg(t,z) := fRU vfE(t,z,v)dv. This requires additional hypothesis on the initial boundary
conditions. For the moment we assume also :

(Hy) M ::/ no(loDloldo + [ ho(wyvdo — [ ha(—v)vdv < 400,
Ry v>0 v<0

Later on we shall see that this hypothesis can be removed.

PROPOSITION 5.3. Assume that fo, g0, g1 satisfy (H), (H1), (He) and Uy — Uy € L*(]0,TY).
Then for every E € L>*(]0,T[;Wb>(]0,1])) felv] € L>=(0,T[; L*(]0,1[xR,)), |is|(t,z) =
va fE(tvxaU)|v|dU € Loo(]O7T[7L1(]O7 1[))mLOO(]OaT[X]07 1[); -7:E+U1 _UO € Wl,oo(]():T[x]Oa 1[ :

Moreover, the following estimates hold :

t 2
max{|| [je| [|z>=qo.rt2rqo.p)s Il 17E] [z qo,1x10,10 } <3 - Moo (/0 ||E(5)Loo(]o,1[)d8>

t
M, / V()] 1 o1pds + M.
0

O{FE+U, —Up} = —jp(t x) —l—/o Jje(t,y)dy, (t,z) €]0,T[x]0,1],
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lim [v|fe(t,z,v)dv = 0, wuniformly with respect to (t,x) €]0,T[x]0, 1],
Ri—+00 Jiy|>R,

and the mild formulation of the Viasov problem holds for every function 1 such that |(t,x,v)| <
C(1+ |v]).
Proof. Exactly as before we have :

|jE\<t,x>=/ ol f (£, s v) o = / ol fo(X (03 £, 0), V(0: £,2, 0)) Lo, (t.0.01 03
R, R,

+ZI£;:0 / |U‘gk(8in(t7 Zz, U)7 V(Sln (t7 xz, U); t,z, v))l{sm(t,w,v)>0} 1{X(sm(t,z,v);t,z,v):k:}dv
Ry
VAR VARV A
Consider R = fg 1 E(s) ||z qo,1pds and thus [V(0;¢,z,v)| > |v| — R which implies that :

jig/R |v|n§(|v|)dv:R2n0(0)+/ |v|n0(|v|)dv+R/ no(|v])dv.

v R, R,
The terms J%, k € {0,1} can be estimated in the same manner and finally one gets :
ljEl(t,2) <3+ R* My + RMy + My, (t,x) €]0,T[x]0,1[.

By performing the same computations on R, — Bgr, we get that limp, 4 f‘U|>R1 |v|fedv = 0,
uniformly with respect to (¢,2) €]0,T[x]0,1[. In order to check that the mild formulation holds
V4p such that |¢(t, z,v)| < C(1 + |v]), consider ¥r, = xr, (V)¢ € Tp,. This time we have :

/0 T/Ol/R{Ele dtdzdv — /O T/OI/R {Ew dtdadu

</ T/OI/RUfEa = X )t . v) dtdzd

T 1

S// fe - C(1+ |v|)dtdxdv — 0, as Ry — +o0.
0J0J|v|>Ry

In order to pass to the limit in the other terms of the mild formulation for the test function g, ,

take R = || E||1qo,r[;Lo (jo,1])) and remark that :

out

fo(z,v) YR, (s, X"(s), V'(s))ds

0

s°

< folz,v) - T-C(1+ |v] + R) € L]0, 1[xR,),

Sﬁut
vgk(t,v)/ s (5, X¥(5), VE(5))ds| <2Rgi(t,0) - T - C(1+ o] + R)Ljo<omy
t

C(1+ |v|+ R)
+|U|gk(t’v)—\v| — 5 Le>2R)

<L2R-T-C - gip(t,v)(1+ |[v| + R)1{js|<2r}
1
+C (3 + R) [lgr (£, 0) L (1o >2my € L (10, T[XRT).

By passing to the limit in the mild formulation for R; — 400 and using the dominated convergence
theorem our conclusion follows. Let us compute now the time derivative of F E4+U; —Uy. First of all,
by using the mild formulation with the test function (¢, x,v) = dyp + v0,¢, ¢ € CL(]0, T[x]0,1])
(note that [¢(t,z,v)] < C(1 4+ |v])) we deduce the continuity equation Oypg + 0:jg = 0 in
D'(]0,T[x]0,1[). By direct computation, the continuity equation implies that :

MWFE+U — U} = —jp(t,z) +/O je(t,y)dy € L>=(]0,T[x]0,1[).
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Obviously 0, {FE 4+ Uy, — Uy} = pr € L*°(]0,T[x]0,1[) and thus we obtain that FE + Uy — Uy €
Whe(]0, T[x]0,1[). O

REMARK 5.4. We have :

t t el
FE(t,z)+ Ui (t) — Up(t)=— /jE(S,I)dS + / /jE(s,y)dsdy + FE(0,2) + Ui (0) — Uy(0)

/jE(sacds—l—//]Esydsdy
//foy, dydv—//l— )fo(y, v)dydv.

By using the formula given above we can estimate FA—F B. This will be done in the following
two Propositions. One of the key points is the critical velocity change result (see Lemma 4.8).

PROPOSITION 5.5. Assume that A, B € L>=(]0,T[;W'>(]0,1[)) are non decreasing with re-
spect to x and the hypothesis (H), (H1), (Hoo) hold. Then for 0 <t <T we have :

\A%@»%—A%@»m

where C'is a constant depending only on || Al|L1qo, ;w1 qo,1)s 1 Bllzrgo,rpwie=qop), T and the
initial-boundary conditions .

t
< [1A() = Bl qoands
L= (j0,1[ 0

Proof. Consider ¢ € L(]0,1[) bounded and let us estimate folf(f(jA(s, x) — jp(s,x))p(x)dzds.
By applying the mild formulation with ¥(¢,z,v) = p(z)v (which is possible since |[¥(¢,z,v)| <
]l Lo |v]) we have :

JﬁiZFjA(S’x)‘73<8’$»¢*m>dxds::L/ﬁ/d]/<fA<s,x,v>—-fB<s,x,U»v¢4m>dsdxdv
[l s [ ]
] sae .
[ s [vie <»m—l$@ﬁmmﬂmm%mv
-/ / fo(a,v [ |/ - / XB(ZB()u)du] drdv
gt | [ gt [ ]
//“%“)V&%QM—A%%@mPMU

/" m()@%»m—/B@vww%mmth

We introduce the notations ®%, = ffé(se) (u)du, L = fXC(GC) (uw)du, k € {0,1}, C € {A, B}.
Here si,, s, represent the exist times associated to the domain |0, ¢[x]0, 1[xR,, with k € {0,1},C €
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{A, B}. The term I, 5 writes :
1243 :AAfO(xvv)[¢21{v<vg} - (pZBl{v<voB}]d‘Tdv
1
+A/ﬂ§f0(x7v)[¢hl{vg<v<vk} - ¢331{v%<v<vg}]d‘rdv
1
+//Rf0(xvv)[q)f41{v>v}4} - ‘I)ZB]'{U>1)113}]dIdU
0/R,
=T} + I, + I},
where v, = vk (t;0,z) are the critical velocities corresponding to the domain 0, ¢[x]0, 1[, to the
point (0,z) and the field C, with k£ = 0,1, C = A, B. The first and the third integral are easy

to estimate since for v < v% we have X’ (s%) = 0 and thus &4 = fzogo(u)du ; for v > v} we have
Xi(sY)=1and 9 = fml (u)du. We obtain by using the critical velocity change :

1
|I(Z)|S”‘»O”Ll(]o,l[)||f0||L°°(]O,T[><]O,1[><Rv)/O W4 (t;0,2) — v} (0, 2)|de
¢
S”QDHLl(]O,l[)||f0||L°°(]O,T[><]O,1[><R1,)A | A(s) = B(s)|lLeqo,1pds,
and also :

t
IZi] < llellzrgo,p I follze qo,7(x]0,1[xR.) /0||A(8) — B(s)|| L~ qo,1pds-

Let us estimate now the second integral Z;. Remark that when v < v < v} we have s2 ,(0,z,v) =

t and thus &4 = f;(“(t)gp(u)du. Similarly &% = fXB(t)ap(u)du when v} < v < v} . We can write :

T

1
|Ig|§/O/Rfo(x’U)(I)i\l{v%<v<max{v%,v%}}dmdv

1
+//fO(xaU)(I)ix1{min{v}4,v}3}<v<vl{1}dzdv
0J/R,

1
+//fo(x7U)¢§31{v%<v<max{v%,v%}}dxdv
0JR,

1
+//.fO(:CaU)q)ZB1{min{v}4,v}3}<v<v}5}d:€dv
0J/R,

R
1
+ /0 ]Rfo<x7 U)((I)fA - (PlB)1{max{'UDA,'uOB}<'u<min{vil,UIB}}dxdv
By using Lemma 4.8 we deduce :
t
max{[v}) — max{vy, vp}|, [vp — max{vy, vp}[} < /OHA(S) — B(s)ll < (0,1 ds;
and :
t
max{|vy — min{vy, vp}|, jvp — min{vy, vp}[} < /OHA(S) = B($)ll L= (0,1 ds.

It comes that the first four terms can be estimated by 4- ||| 11| foll = fJHA(s) —B(s)||p~ds. When
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max{v9,v%} < v < min{v},vh} we have :

Xa (t)
/ o(u)du

XB(t)

- ¥ =

1
S/O () |1 {ju—x 4 (t)| <1 XA (1)~ X (1) ] DU

Therefore, by using the Proposition 4.9 the last term of Z} writes :

|Zs5| =

0((13, U)((I)il - (I)iB)l{max{vg,UOB}<v<min{v}4,v}3}}d$dv

1 1
§/0|<P(U)| /O/Rfo(%U)l{vg<v<v;}1{\u—xA(t)\gcR; | A(s)—B(s) || oo ds} AT VAN,
(5.2)

where C' = exp (fg(l + ||8IB(S)||L00(]O,1D)dS>. By the change of variables y = X4(¢;0,z,v),
w = Va(t;0,2,v) on {(z,v) €0, 1[xR, : vq(t;0,2) < v < vh(t0,2)} one gets :

1 1
|Zs] S/O|<P(U)| /O/Rfo(XA(O;tvy’w), Va(0st, 4, w) 11y <ot a(s)=B(s)]| oo dsy W dwedu
1 .

§/|90(U)|// o (WD {0y <R A(s) - B(s)| oo dsy W dw i

<2-C- / | A(s) s)||zeds(2- R - HnOHLoo(Rjy) +2- HnOHLl(Rjy))”SDHLl(]O,l[)v
where as usual R = fg | A(s) [ > o,1pds. Finally we proved that :

_ t t
1T 5l <46l foll o +4C( / Aol oy + Imolgs s} | 1AGS) = Bls) s il
<c* [ 146) = BGlsds Tellsoas
Let us analyse the term Z9 5. As before we have :
¢ i
I,OLXB :/0 /RUQO(S»U) _(P?41{0<v<v%} - ®%1{0<v<v03}} dsdv

t -
+/ /RUQO(S,U) CD?A]-{U%<U<U}4} - (I)OBl{vOB<'U<v}3}} dsdv
0 v B

t -

+/ /WQO(va) (p%l{v>v}4} - (I)OB]-{U>U}B}:| dsdv
0 JR, -

=Ty +I; +I3.

Taking into account that for 0 < v < v¢(t;s,0) we have X2(s9,, o) = 0 we deduce that ®¢, =0
for C' = A, B and thus Z§ = 0. By the other hand, for v > v{, we have X¢(s9,, o) = 1 and thus

<I>Oc—f0<p )du, for C = A, B. One gets :

T)B
// vgosv/ p(u)dsdvdu

IZ3] <

<t ||U90HL<>C(]O,T[ij)‘U,14 —vpl- lellzrgo,1p-
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By applying Lemma 4.8 we have :

t
(v (£ 5,0) — vl (t:5,0)] < / 1A(r) — B(r)|| 1= qopdr.

and therefore :

i
IZP| < - [[vgoll poe o, xrety - 12l L1go,10) '/0 [A(s) = B(s)ll Lo, ds.

The term Z? writes :

t
‘Ii?|§ /0/Rvgo(&U)(b%]'{'u%<'u<max{'uDA,'uOB}}deU
t
+/0/RUQO(sa’U)(I)?A]-{min{vz,v}3}<v<v}4}d3dv

t
+//’090(57'U)@OB]-{UOB<U<max{v%,v%}}deU’
0JR,

t
+//090(37U)(b(])i’1{min{v}4,v}3}<v<v}3}d5dv
0 v

¢
+ /O/Rz)go(s,v)(<1>?4 — OB) L {rmax {09 08, } <o<minfol, o} 11 A5V -
The first four terms can be estimated as before by :
¢
t-llvgoll e go,rixry - 0 llzrgoap - /0 |A(s) — B(s)|| = (o.1pds-

Since for max{v%,v%} < v < min{v}, vk} we have % — @ f B(t u)du the last term writes :

Xa(t)
|I5‘< // UgO S,V / go(u)1{maI{U%»U%}<U<min{u}4,U}B}}devdu
v> XB(t)

S/O |90(u)|/0/ 2}90(87U)1{|u—XA(t;s,O,v)\<|XA(t;s,O,v)—XB(t;s,O,v)\}1{maw{'u?47v%}<v<min{vh,v}3}}
v>

1 t
S/O |€0(U)|/0/>ggo(5av)1{|uXA(t;s,o,u)<c.R0* IA(F) = B(r) || oo dr} L{00 <v<o?, ydudsdv.

This time we perform the change of variables (y,w) = S(s,v), with y = X4(¢;5,0,v), w =
Va(t;s,0,v) on the set D = {(s,v) €]0,¢[xR, : v%(ts,0) < v < v4(¢s,0)}. By standard
computations one gets that :

= ‘Ulv

’8(1/, w)
(s, v)

and thus :

1 1
6l [ 1ol [ Limesionoloo b0 V(siate ) 8500 oy a0t

/“P |// W) {juy| <0 AG) B dry W

<2C / JA(T) = BTl z=dr - @RIholl gy + Ioll g gy) - Il 2o
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where R = [ ||A(7)||L~dr. Finally one gets :
t
051 <05 -t ko] o as ) + 2exD (j£<1-+amfxs>Lwa0Jo>ds)
t t
(2 oy [ IAG e goapds + tollsges) )} [ 14(6) = B)lmds Bellzagoay
t

<C®- [ 1) = B(s)le=gnapds - Ilxgoap:

The same arguments apply for 7} ; and we deduce that :

/01(/0tjA(S,a:)ds - /oth(S’z)dS> o(z)dz

<|Tisl + I Tsl + | Thsl

t
ﬁ0+CM%ﬂAHM$—M$MmmM&Whu

for all ¢ € L(]0,1[) bounded, in particular for all ¢ € Cy(]0, 1[). Since fot ja(s,-)ds — fot JiB(s,-)ds
belongs to L>°(]0, 1[) we deduce by density that the previous inequality holds for all ¢ € L*(]0, 1)
and we have the estimate :

‘ /OtjA(Sv )ds — /Oth(S’ )ds

with C' = CZ +CO +Cl a constant which depends on ||A||L1(]07T[;W1,oo(]071[)), ||B||Ll(]O,T[;Wl,oo(](LlD),
I0l[zoe, [hollze< [Ihallze=, lnollzrs [[BollLrs [Ihallzr but not on fone|[Lr, [[vhollLr, [[vhallLr (note
also that since hy, are non increasing we have ||vhg | gty < [kl 1 gy, £=0,1). O

t
s03/HM@fB@mwwmwaOStsn
L~ (]0,1]) 0

PROPOSITION 5.6. Assume that A,B € L*(]0,T[;W1>°(]0,1[)) are non decreasing with
respect to x and that the hypothesis (H), (H1), (Hoo) hold. Then for all 0 <t <T we have :

t
anaw—fB@mmeJDs2-03AHA@>—B@nummﬂﬂa
with C = C* 4+ C° + C! as before.

Proof. By the Remark 5.4 we have :

Lﬁﬂ&@®-é&@ﬂﬂ$+ﬁl
/OtjA(Sa )ds — /Oth(é’»‘)dS

<2-C- lA(s) — B(S)||Loo(]071[)d8, 0<t<T.
0

|FA(t,x) — FB(t,x)| < dy

t t
(ﬂd&ww—/ﬁwwﬂs
0 0

Le=(]0,1])

<2.|

5.3. Existence and uniqueness of the mild solution.

THEOREM 5.7. Assume that the hypothesis (H), (H1), (Hs) hold and Uy — Uy € L*(]0,TY).
Then there is a unique mild solution (f, E) for the 1D Viasov-Poisson initial-boundary value prob-
lem . Moreover we have the estimates :

lpEllLeqo,rx]0,1) < Blexp(TA) — 1)+ C,
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. B , BC
I7Elllz>qo,71x]0,1) < ﬂ(eXP(TA) -1+ T(GXP(TA) — 1)+ My,

| Bl o qo,ri;wroqoap) < 2Bexp(TA)+C — B,
where A =6 My, B= My+ |U; — UOHLOO(]O,T[); C = M,.

Proof. Consider Xp = {E € L>°(]0,T[; W">°(]0,1])) | |0:E(t)||L (0,1 < Bexp(tA)+C —B,
I E(#)|| Lo~ qo,1p < Bexp(tA), 0 <t < T}. By the Proposition 5.1 and the Remark 5.2 we know that
F : X1 — X7 is well defined and by the Proposition 5.6 there is a constant C; = Cy(My, M, ||[Up—
Uillz=qo,rp,T) such that :

t
IFA(t) — FBE) = goap < C1 - / 1A(s) — B(s)l|s=(oapds, A, B € Xr.
0

We deduce that F has a unique fixed point F € Xp and therefore (fg, E) is the unique mild
solution of the 1D Vlasov-Poisson initial-boundary value problem . The estimate on |jg| follows
by the Proposition 5.3. O

5.4. Existence and uniqueness of the mild solution in the general case.

In this section we study the existence and uniqueness of the mild solution when assuming only
the hypothesis (H), (Hy), (Hoo). In order to do this we only need to prove that the Proposition 5.6
still holds under the above hypothesis. For o > 0 let us consider the initial-boundary conditions
given by :

folz,v)

f(()x(xvv):l_"_a‘v‘a (1[,’,’1)) G]Ovl[XRU»

get,0) =2y o, TIxRY
9 1+O{U7 9 9 v

g% 0) =2V ) o, TRz
9 1 —OZ’U7 9 Ll v

It is easy to check that if (H), (Hp), (He) hold, then the same hypothesis (H?*), (H§), (HZ),

corresponding to the initial-boundary conditions f§, g&, g%, hold with the functions ng (v) := ?i—(;g,
h¢(v) == ?_’T_Efz, veRS, k=0,1and we have M < My < +oo, M$, < M, < +00. Moreover,

note also that (H{") is satisfied with M{ < % < +400. Since ng, ho, h1 € L*(R}) are non increasing
we check easily that nf, hf, h{ are non increasing and :

||Uhg||Loo(Rj) < ||Uhk||Loo(1Rj) < HthLl(Rj), k=0,1,a>0.

PROPOSITION 5.8. Assume that A,B € L*(]0,T[;W1>°(]0,1[)) are non decreasing with
respect to x and that (H), (Hyp), (Hx) hold. Then for all0 <t < T we have :

t
IFA() — FB(®)]|1~qoap < C- / 1A(s) — B(s)l| 1= o.pds.

where C' depends only on || A 1o, rwr.qo.1p)> | Bllrgo,rpwqo,1p)> Mo, Moo, T

Proof. By the Proposition 5.6 we have :

t
| FYA(t) — FB(t)|| Loy < C* /0 [A(s) — B(s)l Lo 10,1p 95, (5.3)
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where F* corresponds to the initial-boundary conditions f§, g, gf. Remark that (C*)4s0 is
bounded since we have :

C*=C (|| Allzrqo,r;wrqo,10)s | BllLr qo,rpwre= qo.1p), Mo Mo, T)
<C([|Allrgo, ;w2 qo.1p)» 1Bl L qo,rpwr e qo,10), Mo, Moo, T).

The conclusion follows by passing to the limit in the inequality 5.3 for « — 0 and by using the
monotone convergence theorem. O

Now we can state the existence and uniqueness result in the general case :

THEOREM 5.9. Assume that the hypothesis (H), (Hop), (Hoo) hold and Uy — Uy € L*(]0,TY).
Then there is a unique mild solution of the 1D Vlasov-Poisson initial-boundary value problem
(fE, E) which verifies the estimates :

10:Ell L= = llpell= < (Mo + ||Ur — UgllL) exp(6 - TM) — [[Ur — Uo|| Lo

|E|[Lee < (Mo + [[Ur — Ubl| L) exp(6 - TMoo).

5.5. Continuity upon the initial-boundary conditions .

The goal of this section is to estimate the difference between two mild solutions (f*, E¥), k =
1,2 with respect to the initial-boundary conditions . Consider two sets of initial-boundary condi-
tions f¥, gk, g¥, UF — UF € L™ verifying the hypothesis (H*), (HY), (HE), k = 1,2. We define the
applications F* as before. We have for ¢ € [0,7] :

¢
10:FF B(t)l|~ = llpk L~ <6 Mfo/o 1E(s) || ds + Mg,
and :
t
IFEE@®) L~ < 6~M§’o/0 1E(s) |z ds + Mg + Ug (t) = U (t)].
First of all let us assume the hypothesis (H), (H;) and (Hs). We have :

PROPOSITION 5.10. Assume that E € L>=(]0, T[; W1°°(]0,1])) is non decreasing with respect
to x and that the hypothesis (H*), (HY), (HE) hold. We suppose also that the functions :

(Hi) le(v) = sup |gi(t, (=D*v) = gi(t, (=1)*v)|, k=0,1

are non increasing with respect to v € RU , OT !

T
Hi) / / olgb (t,v) — g2(t,v)|dedv — / / olgh(t,0) — g2(t, v)\dtdv < +oo.
0

v<0
Then for all 0 <t <T we have :

IFLE(t) — F2E®) | L <CUIE] 2 goasz=qo.p)) (1fo — fillzrqoaixr,) + Shoo(llkllr + lkllze))
HUL (1) = Ug (t) = UR () + U (1)1,
in the case (i) or :
IF E(t) = F2E@®) | <2(1fo = f5llzrqoaixr,) + Skzollv(gk = 90| L1 go,sixrt)
HUL (1) = Ug (1) = UR () + UG (1)1,
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in the case (ii).

Proof. Consider ¢ € L(]0,1]) and let us calculate :

[ [t = szt anptorasas= [ [ [i73 = prostordsaas

= /0 1/(f&(x, v) = f(z,v)) / Vi(s)p(X'(s))dadvds

45l / /( L | g,%) / Sgu{/k(r)cp(Xk(T))dsdvdT
-/ 1/<f&<x, v) = f3(w,0)) / v

Xx* (Som)
+3h—o( // (s,v) — gi(s,v))/ o(u)dsdvdu
(-1) v>0 k

=T+ %} _,T".

Obviously we have :
1T < |Ifs — fallzrqoaixry) - lellLigo,1p-

On the other hand, with the notation ®* = fk Sour) u)du we have :

t
IO :/ /Rv(g(% (s,0) — 98(8’ U))deU(I)Ol{O<U<v%}
t
+/0 /R”(gé(sv v) = g5 (5, 0))dsdv®®1 0 oot
t
+/O /R”(gé(& v) = g5 (5, 0))dsdv®®1 5,1

=Ty + I + 17,

where vk = vk (¢;s, k) are the critical velocities corresponding to the domain ]0,¢[x]0, 1], to the

point (s, k) and the field E. Let us calculate now :

/ ( L 1/.7E (5,9) — 3(s y))dsdy) plwyte= | t / 1/R§5<fé<s,y,v> - f%(svyiv))dsdydv 3 o(u)d
_ /0 o(u)du - | / 1/( o) / Vi(s)deduds
45l ( / /( o ok = / VF(r)dsdvdr)
-/ o(u)du - { / / (f2 = F2)(X (s1,) — w)dadv

vt [ [ 92X (sby) — K)o}
( 1)kv>0
=T+ S T".
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Obviously we have || < ||fg — f&llz2(o,1[xR,) - l€llL10,17)- On the other hand we have :

' 1
J° :/ /Rv(gé — 95) (X (59u1) — 0)1(gcvet ydsdu /w(u)du
0 0
! 1
+/0 /Rv(gé — gD (XO(5001) — 0011y <y ydsdy /Og;(u)du
! 1
+/ /,U(gé B gg)(XO(Sgut) - 0)1{U>v}3}d8dv /go(u)du
0JR, 0

=Ty + T + T7
For 0 < v < v} we have X°(s%,,) = 0 and thus Z§ = JJ. For v > vk we have X°(s0,,) =1
and thus Z0 = J?. In order to evaluate ZY and J° we can perform the change of variables
(y,w) = S(s,v) :
0
y=Xt55,0.0), w0 =VOtis00) (58| <,

on D = {(s,v) €]0,t[xR} | v%(¢;5,0) < v < vk(t;s,0)}. In the case (i) one gets :
1 t
201 [ Towldu- [ [ vigb(s.0) = g3(5.0) 11 g cocyydso
1 1,
—[letwidu- [ [ lgb = Blshut 900, VOt g w0t w) Lo dud
0 0 Jw>—R

< / i w)dw gl oy = RMollzeqasy + lollaaty) - el g0,
w>—

where R = fg | E(s)||Loe jo,1p)ds- In a similar manner we find that :

t
|$0|§/0 /Rv|93 — 951109 <vcotydsdv - o]l Lo,y
<[ W) el
w>—R

Finally one gets that :

( Jikts.n) -~ szts.onas— [ f 1/gE (5:0) = 5. 0))ds ) )

_|IZ +Z’0 +Z‘1 jz jO jl
<IN+ TN+ 12+ 1T+ 1T+ 1T
CR)(Ilfg = f3ller + Zhzo(llellze + Ikl 1)) - lellzrgo,ap,

and the conclusion follows in the case (i) by using the Remark 5.4. For the case (ii) it is sufficient
to remark that :

- 7=

t
maax{ 71191} < [ /( o 0 0lgk(5,0) = g o s oy k=01
— v>

REMARK 5.11. The conclusion of Proposition 5.10 still holds if we replace the hypothesis (HT)
by (HEY), k= 0,1 (proceed like in the proof of the Proposition 5.8).
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PROPOSITION 5.12. Assume that E*, E? € L]0, T[; W1°°(]0,1[)) are non decreasing with
respect to x and that (H*), (HY), (HX.) hold. We suppose also that (H;) or (H;;) is verified. Then
for all 0 <t <T we have :

t
|FE () — F2E*(t)|| L~ qoap < C1 + 02/ 1B (s) — E2(5)]| L= qo,1pds,
0

where Cy = 02(||EkHLl(]O’T[;Wl,oc(]OJD),Mé“,MfO,T) and :
C1 = C1r(IE* | qo.rz=qoam) (I1fo = foller + Zheo (el + [lllze)) + UL = U — UZ + U5 (1),
in the case (i) or :
Cr=2(lfo = f8ller +llvgo = g8)lr + llvgr — gi)llr) + UL = Ug = UR + UgI(t),
in the case (ii).
Proof. We can write :
|FLEN(t) = FPEA(t) o < | F'EY(E) = FLE?(t) || + | F1E?(t) — F2E*(t) ]| Lo

By using the Proposition 5.8 we find :
t
|FLEN(t) = FLE*(t)| = go.ap < Co /OHEI(S) — B%(s)|l = o,1pds,

where C5 depends on HEkHLI(]O’T[;WI,OO(]O’ID), Mg, ML, T. The conclusion follows by the Proposi-
tion 5.10 and the Remark 5.11. O

THEOREM 5.13. Assume that f¥ gk ¥ UF — Ul € L>(0,T]), k = 1,2 are two sets of
initial-boundary conditions verifying the hypothesis (H*), (H}), (HX)) and (H;) or (H;;). Denote
by (f*, E¥), k = 1,2 the corresponding unique mild solutions. Then we have for all 0 <t < T :
1B () = E* ()]l = qoap < ClIfo = filler + Sheo(llkllzr + k) + |UT = Uy = UF + Ug1(1)},

in the case (i) or :

||E1(t) - E2(t)||L°°(]0,1[) SC{”JC(} - fg”Ll(]O,l[va) + Eizo\lv(gi - gi)l\u(mﬂxm)
+HUL = Uy = U + UG1(1)},

in the case (ii) where C is a constant depending on M}, ME ||U¥ — UF| 1, T.

Proof. Since (f*, E¥) are mild solutions we have FXE¥ = E* E¥ are non decreasing with
respect to x and we know that :

| E* || Lo go, 7w qoapy < C(Mg, MENUF — Udll e qorp, T)-

By the Proposition 5.12 we have for all 0 <t < T :
t
IE'(t) = E*(t)|| L jo,1p) = IF BN (t) = F*E* ()| = o,1p) < Ch +02/0 1B (s) = E*(5)|| o qo,1p ds,

with Cp,Cy as before. The conclusion of the theorem follows by using the Gronwall lemma. O
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6. The 1D Vlasov-Maxwell system.

This section is devoted to the study of the 1D Vlasov-Maxwell system with initial condition
by adapting the method used previously. Since the proofs are quite similar we only sketch them.
Moreover, as explained in the introduction, in this case we can consider different species of particles.
Recall that results on the existence and uniqueness have already been obtained by Cooper and
Klimas [7]. Let us introduce the equations :

OfE+v-0pfTF £ E-0,fT =0, (t,x,v) €0, T[xR, x R,, (6.1)

OE =—j(t,z) :==—j" +j = —/ o(fT(t 2, v) = [ (6@ 0))dv, (t2) €0, T[xR,,  (6.2)

v

with the initial conditions :

fi(t =0,z,v) = fgt(x,v), (z,v) € Ry x Ry, (6.3)

E(t=0,z) = Ey(z) = /po(y)aly7 r € R, (6.4)

where py = pi — py = Je ( fo& — fo)dv and [ po(y)dy denotes an arbitrary primitive of po.

Assume that E € L>*(]0,T[; WH®(R,)), fi£ € L}, (R, x R,). We denote by (X*(s),V*(s)) the
characteristics associated to +E. As usual we say that f* € L} (]0, T[xR, xR,) is a mild solution
for the Vlasov problem (6.1), (6.3) iff :

T T
// / fi(t,x,v)i/)(t,x,v)dtda:dv:/ / foi/1/)(3,Xi(5;0,:c,v),Vi(s;O,x,v))dxdvds,
0JR/R, Ro/ Ry 0

for all test function ¢ € L>°(]0,T[xR, X R,) compactly supported in [0,7] X R, x R,. Assume
now that fif € L'(R, xR,). We say that (f*, E) € L*(]0, T[xR, x R,) x L®(]0, T[; WH>(R,)) is
a mild solution of the 1D Vlasov-Maxwell problem iff f* is a mild solution for the Vlasov problem
(6.1),(6.3) corresponding to the electric field £F such that :

/RIE(t,a:)@(x)dx //fo (z,v) /wX (tO:cv() )dudxdv+/ /fo (z,v) /IX (t0£v() )dudzdv

/EO x)dz, Yo € L'(Ry,).

loc

REMARK 6.1. Note that the previous formula defines a unique function E € L*°(]0, T[xR,).
This definition can be derived formally from the equation (6.2) by using the mild formulation :

/Rf(t,x)so(x)z— AtAmAf(f+(s,x,v) —f‘(s,x,v))g&(az)dsdxdv—&-/RmEo(x)@(x)dx
/Rz/vao*(x,v)/oxt/+(s)<p(x+(s))dsdxdv+/RI/IR{O—(I,U)/O€/(5)¢(X(5))dsdxdv
+[ Botaotws
/ / fif (0 / ey + / / fi (2,0 / e S dududy
e
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As before we define the application F for E € L*°(]0, T[; W1>°(R,)) by :
t
B fE — Bi(0) = FE(O) = B~ | [ (s~ fz)dsdo,
0 Jr,

where fZ are the mild solutions of the Vlasov problem (6.1),(6.3) associated to the field +E, E,
is given by (6.4) and — fngv v(ff — fz)dsdv is defined as in Remark 6.1.

6.1. Estimate of FE.

We assume that there is n : [0, +00[— [0, +0c[ non increasing, such that :

(Hi) fgt(z,v) < n%(\vD, (z,v) € Ry xRy,

(HE) ME ;:/ nZ ([v])dv < +o0,

v

(HE) MZE = [0t | o s, < +00,

(Hpo) MPO ‘= sup
z€ER,

/ ot ) - pa<y>>dy] < too.

PROPOSITION 6.2. Assume that f € L'(R, x R,) satisfy (H*), (HT),(HL). Then for
every E € L=(]0,T[;W"(R,)) we have f& € L>*(]0,T[; L*(R, x R,)), pg5 € L®(]0, T[xR,),
FE € L>=(]0, T[; WH*(R,)). Moreover the following estimates hold :

£ | zoe 10,722 (Ro xRo)) = 0Bl Lo 0,721 (R0)) :/ /ngt(fﬂvv)dxdva

t
105l e qorixe,) < 2ME / VE(3) | e s,y ds + M,
IFEl e oy < C + My + 115 11 xiey + 15 2t x2 e

t
102 F Bl ooy < 200 + Mz) [ NEGlpeiayds + M+ M5
0

lim f;f(t, x,v)dv = 0, uniformly with respect to (t,z) €]0, T[xR,,
Ri=+too Jiy|> Ry

and the mild formulation of the Viasov problem holds for all ¢ € L*°(]0, T[xR, x R,).

Proof. We have :
ijE(t,a:)z/ f]fj,tdv = / ng(Xi(O;t,x,v),Vi(O;t,J;,v))dv
Ry R,

<[ mEvE©t oD < [ ng (ol
Ry

Ry
=2RMZ + M,
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where R = fot | E(s)|| Lo (r,)ds. By the definition of FE, taking into account that Ey(r) = C +
Jy po(y)dy, we deduce that :

IFE) | ®,) < C+ Mpy + 1 f5 ot ®oxry) + 1o 101 o xRy, 0 <t <T.

By using the definition of FE(t) and the mild formulation we check that 9, FE(t) = p(t) in
D'(R,), 0 <t < T and we deduce that |0, FE| = < |pEllze + o5l < 2R(ME + M) +
Mg+ M . The last two assertions follow by standard calculations as it was done for the Vlasov-
Poisson problem. O

REMARK 6.3. Ifwe note Xp = {E S Loo(]O,T[, Wl’oo(Rx)) | HEHLC’O(]QT[XR,;) < ||E0||LOO(R$)+
£ e + 1fg e}, then F(Xr) € X and :

10:F Ell e o,71x80) < 20M55 + M) - T - (1 Boll =y + 15 oo + 1o llzo) + My + My

6.2. Estimate of FA — FB.

PROPOSITION 6.4. Assume that A, B € L>®(]0,T[; WY®(R,)) and fif € L'(R, x R,) verify
the hypothesis (H*), (H), (HZL). Then for all 0 <t < T we have :

¢
|FA®) = FB()l L ®.) < C/O |A(s) = B(5)| L (R, ds,
with C' a constant depending on || Al L1 qo,rw1 . (R.))> HB||L1(]07T[;W1,00(RQE)),Moi,Moio,T,

Proof. Take ¢ € L'(R,) and calculate :

XL (t) X3 (t)
// / dudmdv—i—/ /f / (u)dudxdv
+(t) X5 (1)

Szk:i/R |‘P(U)\/R/Rfg(maU)1{|u—xjg(t)\<\x’g,(t)—x}g(t)|}dUd33dU

Szk:ﬂ:/“p(u”//féc(Xz(07tvy7w)aV:(Oamyaw))lﬂufy\SCR}

/ (FA(t,z) — FB(t,x))p(z)dz|=

t
<l 2CROMG + My +2 / JA(s) | ds(ME + M),

where C' = exp (fg(l + ||31B(s)||Loo(R$))ds) and R = [!||A(s) — B(s)|| =z, )ds. O

We can prove by using the iterated approximations method the theorem :

THEOREM 6.5. Assume that f& € L' (R, xR,) verify the hypothesis (HF), (HF), (HE). Then,
for a fized choice of primitive in (6.4), there is an unique mild solution for the 1D Viasov-Mazwell

inatial value problem.

REMARK 6.6. If in addition we assume that [v[P fE € L*(R, x R,) and :
(Hy) My := /

for some integer p > 1 we can prove that :

v[Pn (|v])dv < +oo,

v

loP f£ € L>°()0, T[; L* (R, x Ry)), / V[P FE(t, x,v)dv € L°°(]0, T[xR,).
R,
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In particular j*= = [euf*dv € L=(]0,T[xR;) and &E = —j, limp, 4o ﬁU|>R1 [oP fEdv = 0
uniformly with respect to (t,x) €]0,T[xR, and the mild formulation of the Vlasov problem holds
for all function | (¢, z,v)| < C(1+ |v|P).

Proof. By multiplying the Vlasov equation by |[v|P we get :

i/ /fi(t,a:,v)|v|pdxdv::|:/ /Efip|v|p72vdxdv.
dt Jg,Jr, Ro/R,

Therefore we deduce that :

t
//fi(t7xvv)|v|pdxdvf//foi(l“,v)lﬂpdxdv+p||E||Lw(]o,T[XRI)// /fﬂ:|v|p—1dxdvd8,
Rz/R, Rz/ R, 0 JR/ R,

and the conclusion follows by induction on p. On the other hand :

/ | fE(t, x,v)dv / [P 35 (XE(0; ¢, 2,0), VE(O; t, 2, 0))dv
Ry

/ fofPn R (o))

<SCR)(In5 Nl oo ey + M0l (0D)llzr ),

with R = f(f |E(s)||Lo(r,)ds. In order to verify that 0;F = —j in D'(]0,T[xR,), take ¢ €
C3(]0, T[xR,) and use the mild formulation with the test function ¥ (¢, z,v) = vp(t,z). O

7. The periodic 1D Vlasov-Poisson problem.

In this section we analyse the space periodic 1D Vlasov-Poisson problem :

OfE+v-0pfF L E-0,fF =0, (t,x,v) €]0,T[x]0,1[xR,, (7.1)

0.E=p(t,z):=p" —p~ :/ (ff(t,z,v) — f(t,z,v))dv, (t,z)€]0,T[x]0,1], (7.2)
Ry
with the space periodic initial conditions :
fEt=0,z,v) = foi(:c,v), (x,v) €]0,1[xR,. (7.3)

The electric field derives from a space periodic potential and thus fol E(t,z)dx = 0. In this case
the Poisson field can be written as :

E(tw):/oxp(t,y)dy—/o (1 =y)p(t,y)dy, = <[0,1], te[0,T]. (7.4)

We introduce the mild formulation as before, by taking space periodic test functions. This time is
convenient to define the application F for 1-periodic with respect to x fields E € L>(]0, T[xR,)
by :

x 1
E— fi5 — pp— /O pE(t,y)dy — /0 (1 —y)pe(t,y)dy = FE.

REMARK 7.1. FE is 1-periodic in x iff fol pe(t,y)dy =0, 0 <t < T and therefore, by the
conservation of the total charge, iff fol fRU [ (z,v)dzdv = fol va fo (z,v)dzdv.
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7.1. Estimate of FE.

We assume that fi verify the hypothesis (H*), (H), (HZ). We suppose also that the neu-

trality condition holds :
1 1
(N) // fJ(ﬂU,U)dedUZ// fo (z,v)dxdv.
0/Ry 0JR,

PROPOSITION 7.2. Assume that fi are 1-periodic in x and satisfy (HT),(HF),(HL) and
(N). Then for every E € L>(]0,T[; W1>(R,)) 1-periodic in x we have :

t
o8l gory < 2205 [ 1E(S)m s + M5
1 1
| FE| Lo o, 1[xRy) < // fgr(x,v)dmdv—i—// fo (z,v)dwdv < Mg+ M,
0JR, 0/Ry

¢
0. F Bl oty < 2005 + M) [ 1B peiayds + M+ M.
0
Moreover imp, 4 flv\>R1 fi(t,z,v)dv = 0 uniformly with respect to (t,x) €]0, T[xR, and the

mild formulation of the Viasov problem holds for all function ¢ € L*=°(]0,T[xR, x R,), 1-periodic
m .

7.2. Estimate of FA — FB.

PROPOSITION 7.3. Assume that A,B € L>*(]0,T[;WY*°(R,)) are 1-periodic in = and the
hypothesis (HF), (HY), (HZ), (N) hold. Then for all 0 <t < T we have :

t
|FA(t) — FBE)| g < C / 1A(s) — B(8) o s,y ds,

where the constant C' depends on || A1 qo, w1 (®,))> ||B\|L1(]O’T[;W1,oo(Rz)),MOi,Mi T

0o+ *

Proof. Take ¢ € L}, _(R;) and calculate :

loc

TH= / o(z) / “(ph (1) — ph () dydz

1
- / /(foi(Xi(O;t,y,v),Vf(O;t,y,v)) FEXE (051, ,0), VE(0: £, 0) / () dudydv
Yy

XE(t;0,6,m)

- [ [ | (@) dadgdn

XE(;0,6,m)

1
S/O W(U”//fgt(&7])1{\u—xf§(t)\<\X}(t)_x§(t)\}d§d7ldu
1
< / o(w) // FECCE 0y, w), VE(O5 1,y )Ly oy dydu
0
t
<CR(2 / JA(S) ] p=ds - ME + MiE) - [l goap,

t

where C' = exp (fo 1+ ||8zB(s)||Loo)ds> and R = fot |A(s) — B(s)||p~ds. In order to estimate
Iy = ’fol(l — ) (pE(ty) — Pt y))dy} take ¢ = 1 in the previous computation. O
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Finally we obtain the existence and uniqueness of the space periodic mild solution :

THEOREM 7.4. Assume that f are 1-periodic in z and satisfy the hypothesis (H*), (HZ),

(HL), (N). Then there is an unique mild solution for the space periodic 1D Vlasov-Poisson
problem. Moreover we have the estimates :

(1]
2]
(3]
(4]
(5]
[6]
[7]
(8]
(9]
(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]

(21]

1% | Lo qo,rxmy) < 2ME T - (Mg + My ) + Mg,

| Ell o qo,7xR,) < My + M, .
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