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Abstract. We study here the behavior of time periodic weak solutions for the relativistic Vlasov-Maxwell
boundary value problem in a three dimensional bounded domain with strictly star-shaped boundary when the light
speed becomes infinite. We prove the convergence toward a time periodic weak solution for the classical Vlasov-
Poisson equations.
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1. Introduction.

In this paper we analyze the behavior of weak solutions for the relativistic Vlasov-Maxwell
equations with boundary conditions, when the light speed goes to infinite. We prove the conver-
gence toward a weak solution for the classical Vlasov-Poisson equations. Our main interests focus
on permanent regimes, i.e., stationary or time periodic solutions.

The Vlasov equation describes the kinetic of charged particles of a plasma. This equation is
coupled to evolution equations for the electro-magnetic field. If the magnetic field is neglected,
we end up with the Poisson equation for an electrostatic potential ; this leads to the Vlasov-
Poisson system. Otherwise, if the magnetic field is not small, the full Maxwell equations must be
considered ; this gives the Vlasov-Maxwell system.

Consider Ω an open bounded subset of R3
x, with boundary ∂Ω regular. We introduce the

notations Σ = ∂Ω× R3
p and :

Σ± = {(x, p) ∈ ∂Ω× R3
p | ± (v(p) · n(x)) > 0}, (1.1)

where n(x) is the unit outward normal to ∂Ω at x and v(p) is the velocity associated to some
energy function E(p) by v(p) = ∇pE(p), p ∈ R3

p. The functions to be considered are :

E(p) =
|p|2
2m

, v(p) =
p

m
, (1.2)

for the classical case and :

Ec(p) = mc2

((
1 +

|p|2
m2c2

)1/2

− 1

)
, vc(p) =

p

m

(
1 +

|p|2
m2c2

)−1/2

, (1.3)

for the relativistic case, where m is the mass of particles, c is the light speed in the vacuum. We
denote by f(t, x, p) the particles distribution depending on the time t, the position x ∈ Ω and the
momentum p ∈ R3

p and by (E(t, x), B(t, x)) the electro-magnetic field depending on t and x. If we
note by F (t, x, p) = q · (E(t, x) + v(p) ∧B(t, x)) the electro-magnetic force, the Vlasov problem is
given by :

∂tf + v(p) · ∇xf + q · (E(t, x) + v(p) ∧B(t, x)) · ∇pf = 0, (t, x, p) ∈ Rt × Ω× R3
p, (1.4)

f(t, x, p) = g(t, x, p), (t, x, p) ∈ Rt × Σ−, (1.5)
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where q is the charge of particles and g is a given T periodic function representing the distribution
of the incoming particles. The problem (1.4), (1.5) is coupled with the Maxwell equations :

∂tE − c2 · rot B = − j

ε0
, ∂tB + rot E = 0, div E =

ρ

ε0
, div B = 0, (t, x) ∈ Rt × Ω, (1.6)

with the boundary condition :

n(x) ∧ E(t, x) + c · n(x) ∧ (n(x) ∧B(t, x)) = h(t, x), (t, x) ∈ Rt × ∂Ω, (1.7)

where ε0 is the permittivity of the vacuum, ρ(t, x) = q
∫
R3
p
f(t, x, p)dp is the charge density, j(t, x) =

q
∫
R3
p
f(t, x, p)v(p)dp is the current density and h is a given T periodic function on the boundary

Rt × ∂Ω such that (n · h)|Rt×∂Ω = 0. We suppose that the boundary data have finite energy∫ T
0

∫
Σ− |(v(p) · n(x))|E(p)g(t, x, p) dtdσdp+

∫ T
0

∫
∂Ω
|h(t, x)|2 dtdσ < +∞ and 0 ≤ g ∈ L∞(Rt × Σ−) .

Various results were obtained for the free space system of Vlasov-Poisson. Weak solutions were
constructed by Arseneev [1], Horst and Hunze [21]. The existence of classical solutions has been
studied by Ukai and Okabe [30], Horst [20], Batt [2], Pfaffelmoser [25]. The existence of global
classical solutions for the Vlasov-Poisson equations with small initial data is a result of Bardos and
Degond [3], see also Schaeffer [28], [29]. The propagation of the moments for the three dimensional
Vlasov-Poisson system was studied by Lions and Perthame in [23]. The existence of global weak
solution for the Vlasov-Maxwell system in three dimensions was obtained by DiPerna and Lions
[12], one of the key points being the compactness result of velocity averages (see also [16]). Results
for the relativistic case were obtained by Glassey and Schaeffer [14], Glassey and Strauss [15].

Results for the initial-boundary value problem were obtained by Ben Abdallah [4] for the
Vlasov-Poisson system in three dimensions and Guo [18] for the Vlasov-Maxwell system. The
stationary problem for the Vlasov-Poisson equations was studied by Greengard and Raviart [17]
in one dimension and by Poupaud [26] in three dimensions for the Vlasov-Maxwell system. An
asymptotic analysis of the Vlasov-Poisson system was done by Degond and Raviart [11] in the case
of the plane diode. The regularity of the solutions for the Vlasov-Maxwell system in a half line has
been studied by Guo [19]. The convergence of smooth solutions for the Vlasov-Maxwell equations
toward a solution for the Vlasov-Poisson equations when the light velocity goes to infinity was
proved by Degond [10], Schaeffer [27]. Results for the time periodic case can be found in [5], [6],
[7], [8].

We start by constructing T periodic weak solutions for the relativistic Vlasov-Maxwell system
when the light speed c is fixed. The main ingredient are the a priori estimates, which derive from
the conservation laws of the mass, momentum and total energy. As usual we multiply the Vlasov
equation by Ec(p) and the Maxwell equations by (E, c2 ·B) to obtain formally :

d

dt

∫

Ω

∫

R3
p

Ec(p)f(t, x, p) dxdp+
ε0

2
· d
dt

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dx

+
∫

Σ+
(vc(p) · n(x))Ec(p)γ+f(t, x, p) dσdp+

ε0c

2

∫

∂Ω

(|n ∧ E(t, x)|2 + c2 · |n ∧B(t, x)|2) dσ

=
∫

Σ−
|(vc(p) · n(x))|Ec(p)g(t, x, p) dσdp+

ε0c

2

∫

∂Ω

|h(t, x)|2 dσ, t ∈ Rt,

where γ+f represents the trace of f on Rt × Σ+. Note that in the time periodic case the above
formula doesn’t provide bounds for the total (kinetic and electro-magnetic) energy, since we don’t
dispose of initial conditions. Nevertheless, after integration over one period we obtain :

∫ T

0

∫

Σ+
(vc(p) · n(x))Ec(p)γ+f(t, x, p) dtdσdp+

ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ E(t, x)|2 + c2 · |n ∧B(t, x)|2) dtdσ

=
∫ T

0

∫

Σ−
|(vc(p) · n(x))|Ec(p)g(t, x, p) dtdσdp+

ε0c

2

∫ T

0

∫

∂Ω

|h(t, x)|2 dtdσ. (1.8)
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Of coarse, the estimate (1.8) is not sufficient, but other a priori estimates can be obtained by using
the momentum conservation law (cf. [6]). For this we need to impose a geometrical hypothesis on
the boundary : we assume that ∂Ω is strictly star-shaped (see also [22]).

Once we have constructed T periodic solutions for every c > 0, in order to study the behavior
of these solutions when c→ +∞ we are looking for uniform estimates with respect to c. Remark
that for c ≥ 1, the inequality (1.8) gives uniform estimates for the tangential traces of the electro-
magnetic field :

ε0

2

∫ T

0

∫

∂Ω

(|n ∧ E(t, x)|2 + c2 · |n ∧B(t, x)|2) dtdσ≤
∫ T

0

∫

Σ−
|(vc(p) · n(x))|Ec(p)g(t, x, p) dtdσdp

+
ε0

2

∫ T

0

∫

∂Ω

|h(t, x)|2 dtdσ. (1.9)

In particular, the inequality (1.9) implies that limc→+∞ ‖n ∧ B‖L2(]0,T [×∂Ω)3 = 0. Similarly,
we need to estimate the total electro-magnetic energy ε0

2

∫ T
0

∫
Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dtdx

and the normal traces ε0
2

∫ T
0

∫
∂Ω

(|(n · E(t, x))|2 + c2 · |(n · B(t, x))|2) dtdσ in order to conclude
that in the limit model (when c → +∞) the magnetic field vanishes and thus (f,E) verify
the Vlasov-Poisson model. Indeed, following the ideas of [6] the total energy can be estimated
in term of the tangential traces of the electro-magnetic field and the outgoing kinetic energy
K+
c :=

∫ T
0

∫
Σ+(vc(p) · n(x))Ec(p)γ+f(t, x, p) dtdσdp, but the problem is that the inequality (1.8)

doesn’t guarantee uniform estimate of K+
c with respect to c (unless h = 0). One of the main

difficulties is to remove this dependence on c.
For example in the stationary case we write E = −∇xΦ and by multiplying the Vlasov equation

by Ec(p) + q(Φ(x) + a), a ∈ R we find :
∫

Σ

(vc(p) · n(x))(Ec(p) + q(γΦ(x) + a))γf dσdp = 0. (1.10)

By using Sobolev and interpolation inequalities we have :
∫

Σ

(vc(p) · n(x))Ec(p)γf dσdp=−
∫

Σ

(vc(p) · n(x))q(γΦ + a)γf dσdp

≤|q| inf
a∈R
‖γΦ + a‖L5(∂Ω) ·

∥∥∥∥∥
∫

R3
p

(vc(p) · n(·))γf(·, p) dp
∥∥∥∥∥
L

5
4 (∂Ω)

≤ C · inf
a∈R
‖γΦ + a‖H1(∂Ω)

(∫

Σ

|(vc · n)|(1 + Ec(p))γf dσdp
) 4

5

· ‖g‖
1
5
L∞

≤ C · ‖n ∧ E‖L2(∂Ω)3 · (K+
c +K−c + 2M−c )

4
5 , (1.11)

where M−c :=
∫

Σ− |(vc(p) · n(x))|g(x, p) dσdp, K−c :=
∫

Σ− |(vc(p) · n(x))|Ec(p)g(x, p) dσdp. The in-
equalities (1.9), (1.11) imply uniform bounds for K+

c . The time periodic case is more complicated ;
we need to assume more regularity with respect to t for h, for example ∂th ∈ L2(]0, T [×∂Ω)3. After
establishing uniform estimates with respect to c, we conclude by weak stability results (cf. [12]).

The paper is organized as follows: first we establish the a priori estimates for T periodic solu-
tions for the Vlasov-Maxwell system (classical or relativistic case) when the light speed c is fixed.
In section 3 we show that, in fact, the above estimates are uniform with respect to the light speed.
In section 4 we justify the weak convergence toward a T periodic weak solution for the classical
Vlasov-Poisson equations. We end this paper with some remarks concerning other systems.

2. The existence of weak solution for the Vlasov-Maxwell equations.
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In this section we justify the existence of weak solution for the Vlasov-Maxwell equations. We
analyze the permanent regimes (time periodic or stationary solutions). The same method applies
for both relativistic and classical cases. The arguments are standard. First we analyze a regularized
system (the existence of solution for such a system can be obtained by using a fixed point method).
Secondly we deduce a priori estimates for the regularized solutions. We conclude by weak stability
under uniform estimates. We only recall here how to obtain a priori estimates for smooth solutions,
compactly supported in momentum. For the other details the reader can refer to [6], [8], [7]. We
suppose that (f,E,B) is a smooth (C1) T periodic solution for the Vlasov-Maxwell equations in
the relativistic or classical case (we denote by E(p), v(p) the energy and velocity functions in both
cases). For reasons which we will justify later on, it is convenient to start with the analysis of the
perturbed Vlasov-Maxwell system :

αf + ∂tf + v(p) · ∇xf + q · (E(t, x) + v(p) ∧B(t, x)) · ∇pf = 0, (t, x, p) ∈ Rt × Ω× R3
p, (2.1)

α · E(t, x) + ∂tE − c20 · rot B = −j(t, x)
ε0

, α ·B(t, x) + ∂tB + rot E = 0, (t, x) ∈ Rt × Ω, (2.2)

f(t, x, p) = g(t, x, p), (t, x, p) ∈ Rt × Σ−, (2.3)

n(x) ∧ E(t, x) + c · n(x) ∧ (n(x) ∧B(t, x)) = h(t, x), (t, x) ∈ Rt × ∂Ω, (2.4)

where α > 0 is a small parameter, 0 ≤ g ∈ L∞(Rt × Σ−) and h are given T periodic functions
verifying :

∫ T

0

∫

Σ−
|(v(p) · n(x))|(1 + E(p))g(t, x, p) dtdσdp+

∫ T

0

∫

∂Ω

|h(t, x)|2 dtdσ < +∞.

First of all remark that since eαtf is constant along characteristics (i. e., solutions of dXds = v(P (s)),
dP
ds = q · (E(s,X(s)) + v(P (s)) ∧B(s,X(s))) ) we have :

‖f‖L∞(Rt×Ω×R3
p) ≤ ‖g‖L∞(Rt×Σ−), (2.5)

and also f ≥ 0. If we denote by γ+f the trace of f on Rt × Σ+ we have also :

‖γ+f‖L∞(Rt×Σ+) ≤ ‖g‖L∞(Rt×Σ−), (2.6)

and γ+f ≥ 0. In order to simplify our computations we suppose also that f is uniformly compacted
supported in momentum, ∃R > 0 such that for all (t, x, p) ∈ Rt × Ω × R3

p with |p| > R we have
f(t, x, p) = 0. After integration of the Vlasov equations with respect to p ∈ R3

p we deduce the
continuity equation :

α · ρ+ ∂tρ+ div j = 0, (t, x) ∈ Rt × Ω. (2.7)

By taking the divergence of the Maxwell equations we deduce as usual that :

α · div E + ∂tdiv E = −div j
ε0

= α · ρ
ε0

+ ∂t
ρ

ε0
,

which implies :

α ·
(

div E − ρ

ε0

)
+ ∂t

(
div E − ρ

ε0

)
= 0, (t, x) ∈ Rt × Ω.

By time periodicity we conclude that div E = ρ
ε0

. Similarly one gets that α · div B + ∂tdiv B = 0
which implies by periodicity that div B = 0, (t, x) ∈ Rt × Ω. Notice that the above argument
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fails if α = 0. This is why we introduce the small perturbations α(f,E,B) in the Vlasov-Maxwell
equations. We introduce the notations :

M− :=
∫ T

0

∫

Σ−
|(v(p) · n(x))|g(t, x, p) dtdσdp, K− :=

∫ T

0

∫

Σ−
|(v(p) · n(x))|E(p)g(t, x, p) dtdσdp,

M+ :=
∫ T

0

∫

Σ+
(v(p) · n(x))γ+f(t, x, p) dtdσdp, K+ :=

∫ T

0

∫

Σ+
(v(p) · n(x))E(p)γ+f(t, x, p) dtdσdp,

and H :=
∫ T

0

∫
∂Ω
|h(t, x)|2 dtdσ. We integrate the Vlasov equation with respect to (x, p) ∈ Ω × R3

p

and we deduce the mass conservation law :

α ·
∫

Ω

∫

R3
p

f(t, x, p) dxdp+
d

dt

∫

Ω

∫

R3
p

f(t, x, p) dxdp+
∫

Σ

(v(p) · n(x))γf(t, x, p) dσdp = 0, t ∈ Rt,
(2.8)

which implies that :

α ·
∫ T

0

∫

Ω

∫

R3
p

f(t, x, p) dtdxdp+M+ = M−. (2.9)

Notice that we obtained an estimate of the outgoing mass M+ uniformly with respect to α > 0, c >
0. We multiply now the Vlasov equation by E(p) and we integrate with respect to (x, p) ∈ Ω×R3

p :

α ·
∫

Ω

∫

R3
p

E(p)f(t, x, p) dxdp+
d

dt

∫

Ω

∫

R3
p

E(p)f(t, x, p) dxdp+
∫

Σ

(v(p) · n(x))E(p)γf(t, x, p) dσdp

=
∫

Ω

j(t, x) · E(t, x) dx. (2.10)

We multiply now the Maxwell equations by (E, c2 ·B) and after integration with respect to x ∈ Ω
we deduce that :

α ·
∫

Ω

(|E(t, x)|2+ c2 · |B(t, x)|2) dx+
1
2
d

dt

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dx

− c2 ·
∫

∂Ω

(n ∧B) · E dσ = − 1
ε0

∫

Ω

j(t, x) · E(t, x) dx.

A direct computation shows that :

−c(n ∧B) · E =
1
2

(|n ∧ E|2 + c2 · |n ∧B|2)− 1
2
|h|2.

Finally one gets :

αε0 ·
∫

Ω

(|E(t, x)|2+c2 · |B(t, x)|2) dx+
ε0

2
d

dt

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dx (2.11)

+
ε0c

2

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dσ = −
∫

Ω

j(t, x) · E(t, x) dx+
ε0c

2

∫

∂Ω

|h(t, x)|2 dσ.

By adding (2.10), (2.11) we deduce the energy conservation law :

α

∫

Ω

∫

R3
p

E(p)f(t, x, p) dxdp+ αε0

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dx

+
d

dt

(∫

Ω

∫

R3
p

E(p)f(t, x, p) dxdp+
ε0

2

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dx

)

+
∫

Σ

(v(p) · n(x))E(p)γf(t, x, p) dσdp+
ε0c

2

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dσ

=
ε0c

2

∫

∂Ω

|h(t, x)|2 dσ, t ∈ Rt. (2.12)
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In particular, after integration on ]0, T [ we deduce that :

α ·
∫ T

0

∫

Ω

∫

R3
p

E(p)f(t, x, p) dtdxdp+ αε0

∫ T

0

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dtdx

+
∫ T

0

∫

Σ+
(v(p) · n(x))E(p)γ+f(t, x, p) dtdσdp+

ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dtdσ

=
∫ T

0

∫

Σ−
|(v(p) · n(x))|E(p)g(t, x, p) dtdσdp+

ε0c

2

∫ T

0

∫

∂Ω

|h(t, x)|2 dtdσ, t ∈ Rt, (2.13)

which provides uniform estimates in α > 0 for the outgoing kinetic energy K+ and the tangential
traces of the electro-magnetic field. Remark that the previous inequality allows us to obtain the
following estimates for the tangential traces of the electro-magnetic field :

ε0

2

∫ T

0

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dtdσ ≤ K− +
ε0

2
H, α > 0, c ≥ 1. (2.14)

In order to establish a priori estimates for the total energy and the normal traces of the electro-
magnetic field we also use the momentum conservation law. We suppose that ∂Ω is strictly star-
shaped with respect to some point x0 ∈ Ω (i.e., ∃r > 0 such that ((x − x0) · n(x)) ≥ r,∀x ∈ ∂Ω).
After translation we can assume that x0 = 0 ∈ Ω and thus (x ·n(x)) ≥ r, ∀x ∈ ∂Ω. This hypothesis
was used in order to estimate the solutions of the Maxwell equations by using the multiplier method
(see [22]). We multiply the Vlasov equation by (p ·x) and integrate with respect to (x, p) ∈ Ω×R3

p :

α ·
∫

Ω

∫

R3
p

(p · x)f(t, x, p) dxdp+
d

dt

∫

Ω

∫

R3
p

(p · x)f(t, x, p) dxdp+
∫

Σ

(v(p) · n(x))(p · x)f(t, x, p) dσdp

=
∫

Ω

∫

R3
p

(v(p) · p)f(t, x, p) dxdp+
∫

Ω

(ρE + j ∧B)(t, x) · x dx.

By using the perturbed Maxwell equations we check by direct computation that :

ρE + j ∧B = ε0(Ediv E −E ∧ rot E) + ε0c
2(Bdiv B −B ∧ rot B)− ε0∂t(E ∧B)− 2αε0(E ∧B),

and therefore we obtain that :

α ·
∫

Ω

∫

R3
p

(p · x)f(t, x, p) dxdp+ 2αε0

∫

Ω

(E ∧B) · x dx+
d

dt

∫

Ω

∫

R3
p

(p · x)f(t, x, p) dxdp

+ε0
d

dt

∫

Ω

(E ∧B) · x dx+
∫

Σ

(v(p) · n(x))(p · x)f(t, x, p) dσdp (2.15)

=
∫

Ω

∫

R3
p

(v(p) · p)f dxdp+ ε0

∫

Ω

{(Ediv E − E ∧ rot E) + c2(Bdiv B −B ∧ rot B)} · x dx.

Remark also that we have the identity :

uidiv u− (u ∧ rot u)i =
3∑

j=1

∂

∂xj
(uiuj)− 1

2
∂

∂xi
|u|2, ∀1 ≤ i ≤ 3, (2.16)

where u = (ui)1≤i≤3 is a smooth function (in fact this identity still holds in D′(Ω) for u ∈
H(div ; Ω) ∩H(rot ; Ω)). After integration by parts we deduce that :

∫

Ω

[udiv u−(u ∧ rot u)] · x dx =
3∑

i=1

∫

Ω




3∑

j=1

∂

∂xj
(uiuj)− 1

2
∂

∂xi
|u|2

xi dx

=
∫

∂Ω

(x · u)(n · u) dσ − 1
2

∫

∂Ω

(n · x)|u|2 dσ +
1
2

∫

Ω

|u|2 dx. (2.17)
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We use the decomposition u = (n · u)n− n ∧ (n ∧ u) and we can write :

(x · u)(n · u) = (n · x)|(n · u)|2 − ((n ∧ (n ∧ u)) · x)(n · u). (2.18)

Since Ω is bounded with boundary strictly star-shaped, there are 0 < r ≤ R such that r ≤
(n(x) · x) ≤ R, ∀x ∈ ∂Ω. By combining (2.17), (2.18) we deduce that :
∫

Ω

(udiv u−u ∧ rot u) · x dx=
1
2

∫

∂Ω

(n · x)|(n · u)|2 dσ − 1
2

∫

∂Ω

(n · x)|n ∧ u|2 dσ

−
∫

∂Ω

((n ∧ (n ∧ u)) · x)(n · u) dσ +
1
2

∫

Ω

|u|2 dx

≥r
2

∫

∂Ω

(n · u)2 dσ +
1
2

∫

Ω

|u|2 dx− R

2

∫

∂Ω

|n ∧ u|2 dσ −R
∫

∂Ω

|n ∧ u| · |(n · u)| dσ

≥r
2

∫

∂Ω

(n · u)2 dσ +
1
2

∫

Ω

|u|2 dx− R

2

∫

∂Ω

|n ∧ u|2 dσ − r

4

∫

∂Ω

(n · u)2 dσ − R2

r

∫

∂Ω

|n ∧ u|2 dσ

=
r

4

∫

∂Ω

(n · u)2 dσ +
1
2

∫

Ω

|u|2 dx−
(
R

2
+
R2

r

)∫

∂Ω

|n ∧ u|2 dσ. (2.19)

By taking now u = E and u = B and by observing that (v(p) · p) ≥ E(p), ∀p ∈ R3
p (relativistic or

classical case), (2.15), (2.19) yield :
∫

Ω

∫

R3
p

E(p)f dxdp+
ε0

2

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dx+
ε0r

4

∫

∂Ω

((n · E)2 + c2 · (n ·B)2) dσ

≤α ·
∫

Ω

∫

R3
p

(p · x)f dxdp+ 2α · ε0

∫

Ω

(E ∧B) · x dx+
d

dt

∫

Ω

∫

R3
p

(p · x)f dxdp

+
d

dt

∫

Ω

ε0(E ∧B) · x dx+
∫

Σ

(v(p) · n(x))(p · x)γf dσdp

+ε0

(
R

2
+
R2

r

)∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dσ, t ∈ Rt. (2.20)

Note also that there is a constant C = C(m) > 0 not depending on c such that for c ≥ 1 we have
|p| ≤ C(m)(1 + Ec(p)), ∀p ∈ R3

p. Therefore, by using (2.9), (2.13) we obtain the estimate :
∣∣∣∣∣
∫ T

0

∫

Σ

(v(p) · n(x))(p · x)f dtdσdp

∣∣∣∣∣≤
∫ T

0

∫

Σ

|(v(p) · n(x))| ·R · C(m)(1 + E(p))f dtdσdp

≤2 ·R · C(m)(M− +K−) +
ε0c

2
·R · C(m) ·H, (2.21)

and :

ε0

∫ T

0

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dtdσ ≤ 2
c
K− + ε0H. (2.22)

After integration of (2.20) with respect to t ∈]0, T [ and by using the time periodicity finally we
obtain that :
∫ T

0

∫

Ω

∫

R3
p

E(p)f dtdxdp+
ε0

2

∫ T

0

∫

Ω

(|E|2 + c2|B|2) dtdx+
ε0r

4

∫ T

0

∫

∂Ω

((n · E)2 + c2 · (n ·B)2) dtdσ

≤R · C(m)

(
M− +K− +

∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))f dtdσdp

)

+
(
R

2
+
R2

r

)
·
(

2
c
K− + ε0H

)
+ α ·

∫ T

0

∫

Ω

∫

R3
p

C(m) ·R(1 + E(p))f dtdxdp

+
αε0R

c

∫ T

0

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dtdx. (2.23)
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By using (2.9) we have also α
∫ T

0

∫
Ω

∫
R3
p
f dtdxdp ≤ M− and by taking αC(m)R < 1

2 , αR
c < 1

4 ,
c ≥ 1, the inequality (2.23) implies :

1
2

∫ T

0

∫

Ω

∫

R3
p

E(p)f dtdxdp+
ε0

4

∫ T

0

∫

Ω

(|E|2 + c2|B|2) dtdx+
ε0r

4

∫ T

0

∫

∂Ω

((n · E)2 + c2 · (n ·B)2) dtdσ

≤
(

2R · C(m) +R+
2R2

r

)
(M− +K−) +R · C(m)(M+ +K+)

+ε0

(
R

2
+
R2

r

)
H. (2.24)

The inequalities (2.9), (2.13) assure that :

M+ ≤M−, and K+ ≤ K− +
ε0c

2
H. (2.25)

Therefore it is possible to obtain uniform estimates in α > 0 (when c ≥ 1 is fixed) :

∫ T

0

∫

Ω

∫

R3
p

E(p)f dtdxdp+
ε0

2

∫ T

0

∫

Ω

(|E|2 + c2|B|2) dtdx+
∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))f dtdσdp

+
ε0r

2

∫ T

0

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dtdσ +
ε0r

2

∫ T

0

∫

∂Ω

((n · E)2 + c2 · (n ·B)2) dtdσ

≤C1 ·M− + C2 ·K− + C3 ·H, (2.26)

where C1 = 1 + 6R · C(m) + 2R + 4R2

r , C2 = 1 + 6R · C(m) + 2R + 4R2

r + r, C3 = ε0(R + 2R2

r +
r
2 + c

2 + cR · C(m)). The total mass can be estimated by using the equation div E = ρ
ε0

:

∫ T

0

∫

Ω

∫

R3
p

f dtdxdp=
∫ T

0

∫

Ω

ρ dtdx = ε0

∫ T

0

∫

Ω

div E dtdx=ε0

∫ T

0

∫

∂Ω

(n · E) dtdσ

≤ε0

(∫ T

0

∫

∂Ω

|(n · E)|2 dtdσ
)1/2(

T ·
∫

∂Ω

dσ

)1/2

. (2.27)

Note that the only dependence in c in the estimate (2.26) comes from the estimate of K+ by
K−+ ε0c

2 H. In fact, later on we will see that it is possible to estimate the outgoing kinetic energy
K+ uniformly in c and therefore the inequality (2.26) will provide uniform estimates with respect
to c. For the moment assume that c is fixed and thus (2.26) allows us to prove the existence of T
periodic weak solution for the Vlasov-Maxwell equations :

Theorem 2.1. Assume that Ω is bounded with ∂Ω smooth and strictly star-shaped, g ∈
L∞(Rt ×Σ−) and h are T periodic such that g ≥ 0, (n · h)|Rt×∂Ω = 0 and

∫ T
0

∫
Σ− |(v(p) · n(x))|(1 +

E(p))g dtdσdp < +∞,
∫ T

0

∫
∂Ω
|h|2 dtdσ < +∞. Then there is a T periodic weak solution (f,E,B) ∈

L∞(Rt×Ω×R3
p)×L2

loc(Rt;L2(Ω)3)2for the Vlasov-Maxwell system (classical or relativistic case) :

∂tf + v(p) · ∇xf + q · (E(t, x) + v(p) ∧B(t, x)) · ∇pf = 0, (t, x, p) ∈ Rt × Ω× R3
p,

∂tE − c2 · rot B = −j(t, x)
ε0

, ∂tB + rot E = 0, div E =
ρ

ε0
, div B = 0, (t, x) ∈ Rt × Ω,

f(t, x, p) = g(t, x, p), (t, x, p) ∈ Rt × Σ−, n ∧ E + c · n ∧ (n ∧B) = h(t, x), (t, x) ∈ Rt × ∂Ω.
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Moreover, the continuity equation ∂tρ + div j = 0 is satisfied, there is trace functions γ+f =
f |Rt×Σ+ , ‖γ+f‖L∞ ≤ ‖g‖L∞ , normal and tangential traces (n ·E, n ·B), (n∧E, n∧B) verifying :

∫ T

0

∫

Σ+
(v(p) · n(x))γ+f dtdσdp =

∫ T

0

∫

Σ−
|(v(p) · n(x))|g dtdσdp = M−, (2.28)

∫ T

0

∫

Σ+
(v(p) · n(x))E(p)γ+f dtdσdp+

ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dtdσ

≤
∫ T

0

∫

Σ−
|(v(p) · n(x))E(p)g dtdσdp+

ε0c

2

∫ T

0

∫

∂Ω

|h|2 dtdσ = K− +
ε0c

2
H, (2.29)

and for some constant C(m, ε0, c,Ω) we have :

∫ T

0

∫

Ω

∫

R3
p

E(p)f dtdxdp+
ε0

2

∫ T

0

∫

Ω

(|E|2 + c2|B|2) dtdx+
ε0r

2

∫ T

0

∫

∂Ω

((n · E)2 + c2 · (n ·B)2) dtdσ

≤C(m, ε0, c,Ω) · (M− +K− +H). (2.30)

Proof. The proof follows by standard arguments. We construct T periodic solutions for the
perturbed Vlasov-Maxwell system. When c ≥ 1 is fixed, the estimates (2.5), (2.6), (2.26) allow us
to extract subsequences such that fk ⇀ f weakly ? in L∞(Rt × Ω × R3

p), γ+fk ⇀ γ+f weakly ?
in L∞(Rt × Σ+), (Ek, Bk) ⇀ (E,B) weakly in L2(]0, T [;L2(Ω)3)2, (n ·Ek, n ·Bk) ⇀ (n ·E,n ·B)
weakly in L2(]0, T [;L2(∂Ω))2, (n ∧ Ek, n ∧ Bk) ⇀ (n ∧ E,n ∧ B) weakly in L2(]0, T [;L2(∂Ω)3)2

when k → +∞. One of the key points consists of applying the velocity average result of DiPerna
and Lions (cf. [12]) in order to pass to the limit the non linear term of the Vlasov equation :

lim
k→+∞

∫ T

0

∫

Ω

∫

R3
p

fkq(Ek + v(p) ∧Bk) · ∇pϕ dtdxdp =
∫ T

0

∫

Ω

∫

R3
p

fq(E + v(p) ∧B) · ∇pϕ dtdxdp,

for all ϕ ∈ C1(Rt × Ω × R3
p) T periodic and compactly supported in momentum. The equality

(2.28) and the inequalities (2.29), (2.30) for the solution (f,E,B) follow as usual by weak limit.

3. Uniform estimates with respect to c.

As said before, the only dependence in c in (2.30) comes from the estimate of the outgoing
kinetic energy K+. In order to remove this dependence in c we will prove that K+ can be esti-
mated uniformly with respect to c. Before analyzing the general time periodic case, let us start by
studying the stationary case, which is much simpler.

3.1. Stationary case.

We need the following lemmas :

Lemma 3.1. Assume that Ω ⊂ R3
x is a smooth open bounded set simply connected and consider

E ∈ L2(Ω)3 verifying rot E = 0 in D′(Ω) and n ∧ E ∈ L2(∂Ω)3. Then there is Φ ∈ H1(Ω) such
that E = −∇xΦ, ϕ := γΦ ∈ H1(∂Ω) and ‖γΦ‖H1(∂Ω) ≤ C(Ω) · ‖n ∧ E‖L2(∂Ω)3 .

Proof. Since rot E = 0 and Ω is simply connected there is Φ ∈ H1(Ω) such that E = −∇xΦ.
We can suppose that

∫
∂Ω
γΦ dσ = 0. We take Φ̃k ∈ C2(Ω) such that Φ̃k → Φ in H1(Ω) (in

particular Ẽk := −∇xΦ̃k → −∇xΦ =: E in L2(Ω)3) and −n ∧ ∇xΦ̃k = n ∧ Ẽk → n ∧ E in
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L2(∂Ω)3. We consider also Φk = Φ̃k − 1R
∂Ω 1 dσ

∫
∂Ω

Φ̃k dσ. Since Φ̃k → γΦ in L2(∂Ω) we have

limk→+∞
∫
∂Ω

Φ̃k dσ =
∫
∂Ω
γΦ dσ = 0 and thus (Φk)k converges to Φ in H1(Ω). Finally we have

Φk → Φ in H1(Ω), Ek := −∇xΦk → −∇xΦ =: E in L2(Ω)3, n ∧ Ek = −n ∧ ∇xΦk → n ∧ E
in L2(∂Ω)3 and

∫
∂Ω

Φk dσ = 0, ∀k ≥ 1. By construction we have rot Ek = 0 and thus after
multiplication by ∇xχ with χ ∈ C2(Ω) one gets :

∫

∂Ω

(n ∧ Ek) · ∇xχ dσ =
∫

Ω

rot Ek · ∇xχ dx−
∫

Ω

Ek · rot ∇xχ dx = 0.

We denote by ∇τ the tangential gradient on ∂Ω. Since for smooth functions we have ∇xχ =
∇τχ+ ∂χ

∂nn, finally we deduce that
∫
∂Ω

(n ∧Ek) · ∇τχ dσ = 0 or n ∧Ek ∈ L2(∂Ω)3 is a divergence
free tangential field on ∂Ω. Therefore there is ϕk ∈ H1(∂Ω) such that n ∧ Ek = −n ∧ ∇τϕk.
This is a consequence of an orthogonal decomposition result for tangential fields of L2(∂Ω)3 (see
the Appendix for details). Moreover we can suppose that

∫
∂Ω
ϕk dσ = 0 and therefore we have

‖ϕk‖H1(∂Ω) ≤ C(Ω) · ‖n ∧ Ek‖L2(∂Ω)3 , ∀k ≥ 1. Since (n ∧ Ek)k converges in L2(∂Ω)3, (ϕk)k
is a Cauchy sequence in H1(∂Ω) and thus converges to some ϕ ∈ H1(∂Ω) with ‖ϕ‖H1(∂Ω) ≤
C(Ω) · ‖n ∧ E‖L2(∂Ω)3 . By writing Ek = −∇τΦk − ∂Φk

∂n n when x ∈ ∂Ω we deduce that n ∧
Ek = −n ∧ ∇τΦk and thus ∇τ (Φk − ϕk) = 0 on ∂Ω, which implies that there is ck ∈ R such
that Φk − ϕk = ck on ∂Ω. Hence, as

∫
∂Ω

Φk dσ =
∫
∂Ω
ϕk dσ = 0 we deduce that ck = 0, or

Φk = ϕk on ∂Ω. We have γΦ = limk→+∞ γΦk in H1/2(∂Ω) and therefore in L2(∂Ω). On the
other hand limk→+∞ γΦk = limk→+∞ ϕk = ϕ in H1(∂Ω). It follows that γΦ = ϕ ∈ H1(∂Ω) and
‖γΦ‖H1(∂Ω) ≤ C(Ω) · ‖n ∧ E‖L2(∂Ω)3 .

Lemma 3.2. Assume that 0 ≤ f ∈ L∞(Ω × R3
p) such that

∫
Ω

∫
R3
p
(1 + E(p))f dxdp < +∞

(classical or relativistic case). Then we have the interpolation inequality :
∥∥∥∥∥
∫

R3
p

f(·, p)
|p| dp

∥∥∥∥∥
L2(Ω)

≤ C · ‖f‖
1
2
L∞ ·

(∫

Ω

∫

R3
p

(1 + E(p))f(x, p) dxdp

) 1
2

.

Proof. As usual we write for R > 0 :
∫

R3
p

f(x, p)
|p| dp =

∫

|p|≤R

f(x, p)
|p| dp+

∫

|p|>R

f(x, p)
|p| dp ≤ 2πR2‖f‖L∞ +

C

R2

∫

R3
p

(1 + E(p))f dp.

The conclusion follows by taking the optimal value for R and by integrating with respect to x ∈ Ω.

Lemma 3.3. Assume that Ω ⊂ R3
x is a smooth open bounded set and consider 0 ≤ f ∈

L∞(Ω× R3
p) a stationary weak solution for the Vlasov problem (classical or relativistic case) :

v(p) · ∇xf + q(−∇xΦ + v(p) ∧B(x)) · ∇pf = 0, (x, p) ∈ Ω× R3
p, f(x, p) = g(x, p), (x, p) ∈ Σ−,

with finite mass and kinetic energy
∫

Ω

∫
R3
p
(1 + E(p))f(x, p) dxdp < +∞ and trace 0 ≤ γ+f ∈

L∞(Σ+), where 0 ≤ g ∈ L∞(Σ−), Φ ∈ H1(Ω), B ∈ L2(Ω)3 are given functions verifying
∫

Σ− |(v(p)·
n(x))|g(x, p) dσdp < +∞. Then, for all function F ∈ C1

b (R) (i.e., F ∈ C1(R) with F, F ′ bounded
), we have :

∫

Σ

(v(p) · n(x)) γf(x, p) F (E(p) + qγΦ(x)) dσdp = 0.

Proof. Since f is a weak solution for the Vlasov problem, we have for all test function θ ∈
C1(Ω× R3

p), compactly supported in momentum :

−
∫

Ω

∫

R3
p

(v(p) · ∇xθ + q(E(x) + v(p) ∧B(x)) · ∇pθ)f dxdp+
∫

Σ

(v(p) · n(x))θ(x, p)γf dσdp = 0,
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where E = −∇xΦ. Since E,B ∈ L2(Ω)3, f ∈ L∞(Ω × R3
p), γ

+f ∈ L∞(Σ+), by an easy density
argument we deduce that the above formulation holds also for θ ∈ H1(Ω×R3

p), compactly supported
in momentum :

−
∫

Ω

∫

R3
p

(v(p) · ∇xθ + q(E(x) + v(p) ∧B(x)) · ∇pθ)f dxdp+
∫

Σ

(v(p) · n(x))γθ γf dσdp = 0,

where γθ ∈ H
1
2 (Σ) is the trace of θ ∈ H1(Ω × R3

p). Consider now F ∈ C1
b (R) and χ ∈ C1

c (R)
such that χ(u) = 1 if |u| ≤ 1, χ(u) = 0 if |u| ≥ 2, 0 ≤ χ ≤ 1 and denote by χR the function
χR(u) = χ( uR ), ∀u ∈ R, R > 0. The function θR(x, p) = F (E(p) + qΦ(x)) ·χR(|p|), (x, p) ∈ Ω×R3

p

belongs to H1(Ω× R3
p) and has compact support in momentum. Remark also that :

v(p) · ∇xθR + q(E(x) + v(p) ∧B(x)) · ∇pθR = qE(x) F (E(p) + qΦ(x)) · 1
R
· χ′
( |p|
R

)
· p|p| ,

and γθR(x, p) = F (E(p) + qγΦ(x))χR(|p|), (x, p) ∈ Σ. By applying the weak formulation with the
test function θR we find for every R > 0 :
∫

Ω

∫

R3
p

qE F (E(p)+qΦ(x))
1
R
χ′
( |p|
R

)
· p|p|f dxdp =

∫

Σ

(v(p)·n(x))F (E(p)+qγΦ(x))χR(|p|)γf dσdp.
(3.1)

Consider for the moment the function F = 1. We deduce that :

−
∫

Ω

∫

R3
p

qE · 1
R
· χ′
( |p|
R

)
· p|p|f dxdp+

∫

Σ+
(v(p) · n(x))χR(|p|)γ+f dσdp

=
∫

Σ−
|(v(p) · n(x))|χR(|p|)g dσdp. (3.2)

Since E ∈ L2(Ω)3 and
∫
R3
p

f(·,p)
|p| dp ∈ L2(Ω) (see Lemma 3.2) we deduce that :

∣∣∣∣qE ·
1
R
· χ′
( |p|
R

)
· p|p|f

∣∣∣∣ ≤ C · |q| · |E(x)| · f(x, p)
|p| ∈ L1(Ω× R3

p).

By using the dominated convergence theorem we deduce that :

lim
R→+∞

∫

Ω

∫

R3
p

qE · 1
R
· χ′
( |p|
R

)
· p|p|f dxdp = 0.

Finally, by letting R → +∞ in (3.2) and by applying the monotone convergence theorem we find
that : ∫

Σ+
(v(p) · n(x))γ+f(x, p) dσdp =

∫

Σ−
|(v(p) · n(x))|g(x, p) dσdp. (3.3)

Suppose now that F ∈ C1
b (R). By using that E ∈ L2(Ω)3,

∫
R3
p

f(·,p)
|p| dp ∈ L2(Ω), (v(p) ·n(x))γ+f ∈

L1(Σ+), (v(p) · n(x))g ∈ L1(Σ−), by passing to the limit for R→ +∞ in (3.1) we find :
∫

Σ+
(v(p)·n(x))γ+f(x, p) F (E(p)+qγΦ(x)) dσdp =

∫

Σ−
|(v(p)·n(x))|g(x, p) F (E(p)+qγΦ(x)) dσdp.

Lemma 3.4. Assume that F ∈ L∞(Σ1) is a non negative function such that
∫

Σ1
|(v(p) ·

n(x))|(1 + E(p))F (x, p) dσdp < +∞ (classical or relativistic case), where Σ1 ⊂ Σ. For x ∈ ∂Ω
denote by P (x) the set {p ∈ R3

p | (x, p) ∈ Σ1}. Then
∫
R3
p
|(v(p) · n(x))|1P (x)F (x, p) dp ∈ L5/4(∂Ω)

and we have the inequality :
∥∥∥∥∥
∫

R3
p

|(v(p) · n(·))|1P (·)F (·, p) dp
∥∥∥∥∥
L

5
4 (∂Ω)

≤ C·‖F‖
1
5
L∞ ·

(∫

Σ1

|(v(p) · n(x))|(1 + E(p))F (x, p) dσdp
) 4

5

,
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for some constant C not depending on the light speed if c ≥ 1.

Proof. Observe that for all 0 < c ≤ +∞ we have |v(p)| ≤ |p|m . There is a constant C = C(m)
such that |p| ≤ C(m) · (1 + E(p)), p ∈ R3

p, c ≥ 1. For R > 0 we write :
∫

R3
p

|(v(p) · n(x))|1P (x)(p)F (x, p) dp=
∫

|p|>R
|(v(p) · n(x))|1P (x)(p)F (x, p) dp

+
∫

|p|≤R
|(v(p) · n(x))|1P (x)(p)F (x, p) dp

≤C
R

∫

R3
p

|(v(p) · n(x))| · C(m) · (1 + E(p))F (x, p) dp

+ C ·R4 · ‖F‖L∞ .
Take the optimal value for R and integrate with respect to x ∈ Ω.

Proposition 3.5. Assume that Ω ⊂ R3
x is a smooth open bounded simply connected set and

consider 0 ≤ f(x, p) ∈ L∞(Ω×R3
p) a stationary weak solution for the Vlasov problem (classical or

relativistic case) :

v(p) · ∇xf + q(E(x) + v(p) ∧B(x)) · ∇pf = 0, (x, p) ∈ Ω× R3
p, f(x, p) = g(x, p), (x, p) ∈ Σ−,

with finite mass and kinetic energy and bounded trace 0 ≤ γ+f where 0 ≤ g ∈ L∞(Σ−), E,B ∈
L2(Ω)3 are given functions verifying rot E = 0, n ∧ E ∈ L2(∂Ω)3 and

∫
Σ− |(v(p) · n(x))|(1 +

E(p))g(x, p) dσdp < +∞. Then the outgoing energy is uniformly bounded with respect to the light
speed and we have for some constant C :
∫

Σ+
(v(p) · n(x))E(p)γ+f dσdp ≤ C · (1 + ‖g‖

1
5
L∞ + ‖γ+f‖

1
5
L∞) · (M− +K− + ‖n ∧ E‖5L2(∂Ω)3).

Proof. By Lemma 3.1 we can write E = −∇xΦ with Φ ∈ H1(Ω), γΦ ∈ H1(∂Ω), such that
‖γΦ‖H1(∂Ω) ≤ C(Ω) · ‖n ∧ E‖L2(∂Ω)3 . By using Sobolev inequalities we deduce that ϕ = γΦ ∈
Lr(∂Ω), ∀1 ≤ r <∞ and ‖ϕ‖Lr(∂Ω) ≤ Cr(Ω) · ‖ϕ‖H1(∂Ω). We apply Lemma 3.3 with the function
FR(u) = u · χR(u) and we obtain :
∫

Σ+
(v(p)·n(x))(E(p)+qγΦ(x))χR(W )γ+f dσdp =

∫

Σ−
|(v(p)·n(x))|(E(p)+qγΦ(x))χR(W )g dσdp,

(3.4)
where W (x, p) = E(p) + qϕ(x), ∀(x, p) ∈ Σ. By using Lemma 3.4 we have

∫
(v(p)·n(x))<0

|(v(p) ·
n(x))|g dp ∈ L5/4(∂Ω) and therefore we have :

∫

Σ−
|(v(p) · n(x))| · |qϕ(x)|χR(W )g dσdp ≤ |q| ·

∫

∂Ω

|ϕ(x)|
(∫

(v(p)·n(x))<0

|(v(p) · n(x))|g dp
)
dσ

≤|q| · ‖ϕ‖L5(∂Ω) ·
∥∥∥∥∥
∫

(v(p)·n(x))<0

|(v(p) · n(x))|g dp
∥∥∥∥∥
L

5
4 (∂Ω)

(3.5)

≤C · |q| · ‖ϕ‖H1(∂Ω) · ‖g‖
1
5
L∞ ·

(∫

Σ−
|(v(p) · n(x))|(1 + E(p))g dσdp

) 4
5

.

Remark that for a.e. x ∈ ∂Ω the function p→ (v(p) ·n(x))γ+f(x, p)E(p)χR(W (x, p)) has compact
support in momentum and therefore is integrable on p ∈ R3

p such that (v(p) · n(x)) > 0 :
∫

(v(p)·n(x))>0

(v(p) · n(x))γ+f(x, p)E(p)χR(W (x, p)) dp < +∞, a.e. x ∈ ∂Ω.



Asymptotic behavior for the three dimensional Vlasov-Maxwell system when c→ +∞ 13

As before we can write :

|
∫

(v·n)>0

(v(p) · n(x))γ+f qϕ(x)χR(W ) dp |≤|q| · |ϕ(x)|
∫

(v·n)>0

(v(p) · n(x))γ+fχR(W ) dp (3.6)

≤|q| · |ϕ(x)| · C · ‖γ+f‖
1
5
L∞ ·

(∫

(v·n)>0

(v(p) · n(x))(1 + E(p))γ+fχR(W ) dp

) 4
5

≤C · |q| · ‖γ+f‖
1
5
L∞ ·

(
|ϕ(x)|5

5δ4
+

4δ
5

∫

(v·n)>0

(v(p) · n(x))γ+fχR(W )(1 + E(p)) dp

)
.

Finally one gets :
∫

Σ+
(v · n)γ+f(1 + E(p) + qϕ(x))χR(W ) dσdp≥

(
1− 4

5
δC1

)∫

Σ+
(v · n)γ+f(1 + E(p))χR(W ) dσdp

−C1

5δ4

∫

∂Ω

|ϕ(x)|5 dσ, (3.7)

where C1 = |q| · C · ‖γ+f‖
1
5
L∞ . By taking into account that

∫
Σ+(v(p) · n(x))γ+fχR(W ) dσdp ≤∫

Σ+(v(p) · n(x))γ+f dσdp =
∫

Σ− |(v(p) · n(x))|g dσdp, the inequalities (3.4), (3.5), (3.7) imply :

(
1− 4

5
δC1

) ∫

Σ+
(v · n)γ+f(1 + E(p))χR(W ) dσdp≤

∫

Σ−
|(v(p) · n(x))|(1 + E(p))g dσdp

+
C1

5δ4

∫

∂Ω

|ϕ(x)|5 dσ + C · |q| · ‖ϕ‖H1(∂Ω) · ‖g‖
1
5
L∞ · (M− +K−)

4
5 .

By taking δ small enough we deduce that
∫

Σ+(v(p) · n(x))(1 + E(p))γ+fχR(W ) dσdp is bounded
uniformly with respect to R > 0 and by the Fatou lemma we find that :
(

1− 4
5
δC1

) ∫

Σ+
(v(p) · n(x))γ+f(1 + E(p)) dσdp ≤M− +K− +

C1

5δ4
‖ϕ‖5L5(∂Ω)

+ C · |q| · ‖ϕ‖H1(∂Ω) · ‖g‖
1
5
L∞ · (M− +K−)

4
5

≤M− +K− + C · ‖γ+f‖
1
5
L∞ · ‖ϕ‖5H1(∂Ω) + C · ‖g‖

1
5
L∞ · (‖ϕ‖5H1(∂Ω) +M− +K−),

and the conclusion follows.

Remark 3.6. By using Proposition 3.5 we can now estimate uniformly with respect to c the
solutions constructed in Theorem 2.1 in the stationary case :

∫

Ω

∫

R3
p

(1+E(p))f dxdp+
ε0

2

∫

Ω

(|E|2 + c2|B|2) dx+
∫

Σ+
(v(p) · n(x))(1 + E(p))γ+f dσdp

+
ε0

2

∫

∂Ω

(|n ∧ E|2 + (n · E)2) dσ +
ε0c

2

2

∫

∂Ω

(|n ∧B|2 + (n ·B)2) dσ≤C, (3.8)

where C depends on m, ε0,Ω,M−,K−, H and ‖g‖L∞(Σ−).

3.2. The time periodic case.

In this paragraph we deduce uniform estimates with respect to c for time periodic solutions
of the Vlasov-Maxwell equations. Notice that the same estimates hold for T periodic solutions
of the perturbed Vlasov-Maxwell system (2.1), (2.2), (2.3), (2.4) uniformly with respect to the
regularization parameter α > 0 ; for this just replace the derivative ∂t by α + ∂t. More precisely
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we need to estimate uniformly the outgoing kinetic energy. This is a direct consequence of (2.13)
in the case h = 0 :
∫ T

0

∫

Σ+
(v ·n)E(p)f dtdσdp+

ε0c

2

∫ T

0

∫

∂Ω

(|n∧E|2 + c2 · |n∧B|2) dtdσ ≤
∫ T

0

∫

Σ−
|(v ·n)|E(p)g dtdσdp.

For the general case we decompose the electro-magnetic field into the self-consistent field (Es, Bs)
and the exterior field (E0, B0) :

∂tEs − c2 · rot Bs = −j(t, x)
ε0

, ∂tBs + rot Es = 0, div Es =
ρ(t, x)
ε0

, div Bs = 0, (t, x) ∈ Rt ×Ω,

(3.9)

n(x) ∧ Es(t, x) + c · n(x) ∧ (n(x) ∧Bs(t, x)) = 0, (t, x) ∈ Rt × ∂Ω, (3.10)

and :

∂tE0 − c2 · rot B0 = 0, ∂tB0 + rot E0 = 0, div E0 = 0, div B0 = 0, (t, x) ∈ Rt × Ω, (3.11)

n(x) ∧ E0(t, x) + c · n(x) ∧ (n(x) ∧B0(t, x)) = h(t, x), (t, x) ∈ Rt × ∂Ω. (3.12)

Proposition 3.7. Assume that Ω is bounded, regular (C1) and strictly star-shaped (with
respect to 0 ∈ Ω), h ∈ L2

loc(Rt;L2(∂Ω)3) is T periodic verifying (n · h) = 0, (t, x) ∈ Rt × ∂Ω.
Then there is a unique T periodic weak solution (E0, B0) ∈ L2

loc(Rt;L2(Ω)3)2 for the problem
(3.11), (3.12). Moreover the solution (E0, B0) has tangential and normal traces (n∧E0, n∧B0) ∈
L2
loc(Rt;L2(∂Ω)3)2, (n · E0, n ·B0) ∈ L2

loc(Rt;L2(∂Ω))2 and verifies the estimates :

∫ T

0

∫

Ω

(|E0|2 + c2 · |B0|2) dtdx+ r

∫ T

0

∫

∂Ω

(|n ∧ E0|2 + (n · E0)2 + c2|n ∧B0|2 + c2(n ·B0)2) dtdσ

≤ C(Ω)
∫ T

0

∫

∂Ω

|h|2 dtdσ. (3.13)

Proof. The existence part is similar to the existence of time periodic solution for the Vlasov-
Maxwell equations (take g = 0 and thus f = 0). We only sketch the proof. First we regularize h
and for α > 0 we consider the unique T periodic smooth solution for :

αEε + ∂tEε − c2 · rot Bε = 0, αBε + ∂tBε + rot Eε = 0, (t, x) ∈ Rt × Ω, (3.14)

n(x) ∧ Eε(t, x) + c · n(x) ∧ (n(x) ∧Bε(t, x)) = hε(t, x), (t, x) ∈ Rt × ∂Ω. (3.15)

As before, by taking the divergence in the perturbed Maxwell equations we find that :

(α+ ∂t)div Eε = 0, (α+ ∂t)div Bε = 0 (t, x) ∈ Rt × Ω, (3.16)

and by periodicity we deduce also that div Eε = 0, div Bε = 0, (t, x) ∈ Rt × Ω. After
multiplication of the perturbed Maxwell equations by (Eε, c2Bε) we deduce :

α

∫ T

0

∫

Ω

(|Eε|2 + c2 · |Bε|2) dtdx+
c

2

∫ T

0

∫

∂Ω

(|n ∧ Eε|2 + c2 · |n ∧Bε|2) dtdσ=
c

2

∫ T

0

∫

∂Ω

|hε|2 dtdσ.
(3.17)

The Maxwell equations (3.14) and div Eε = 0, div Bε = 0 imply :

Eεdiv Eε − Eε ∧ rot Eε + c2(Bεdiv Bε −Bε ∧ rot Bε)= ∂t(Eε ∧Bε) + 2α(Eε ∧Bε). (3.18)
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By using the identity (2.16), after multiplication of (3.18) by x and integration by parts one gets
as before that :

1
2

∫ T

0

∫

Ω

(|Eε|2 + c2 · |Bε|2) dtdx+
r

4

∫ T

0

∫

∂Ω

((n · Eε)2 + c2 · (n ·Bε)2) dtdσ (3.19)

≤2α
∫ T

0

∫

Ω

(Eε ∧Bε) · x dtdx+
(
R

2
+
R2

r

)∫ T

0

∫

∂Ω

(|n ∧ Eε|2 + c2 · |n ∧Bε|2) dtdσ,

where 0 < r ≤ R such that r ≤ (n · x) ≤ R, ∀x ∈ ∂Ω. Remark also that for αR
c ≤ 1

4 we have :

2α
∫ T

0

∫

Ω

(Eε ∧Bε) · x dtdx≤αR
c

∫ T

0

∫

Ω

(|Eε|2 + c2 · |Bε|2) dtdx ≤ 1
4

∫ T

0

∫

Ω

(|Eε|2 + c2 · |Bε|2) dtdx,

(3.20)

and finally (3.19) and (3.17) imply that :

1
4

∫ T

0

∫

Ω

(|Eε|2 + c2 · |Bε|2) dtdx+
r

4

∫ T

0

∫

∂Ω

(|n ∧ Eε|2 + (n · Eε)2 + c2(|n ∧Bε|2 + (n ·Bε)2)) dtdσ

≤
(
R

2
+
R2

r
+
r

4

)∫ T

0

∫

∂Ω

(|n ∧ Eε|2 + c2 · |n ∧Bε|2) dtdσ

≤C1(Ω)
∫ T

0

∫

∂Ω

|hε|2 dtdσ, (3.21)

where C1(Ω) = R
2 + R2

r + r
4 . Therefore the solution (Eε, Bε) verify the estimate (3.13) with

C(Ω) = 4C1(Ω), ∀ε > 0, 0 < α ≤ c
4R . Now by taking hε → h in L2

loc(Rt;L2(∂Ω)3) and α = ε↘ 0,
it is clear that (Eε, Bε) converges strongly in L2

loc(Rt;L2(Ω)3)2 to a T periodic weak solution (E,B)
of (3.14) with tangential traces (n∧E, n∧B) = limε↘0(n∧Eε, n∧Bε) strongly in L2

loc(Rt;L2(∂Ω)3)2

and normal traces (n · E, n · B) = limε↘0(n · Eε, n · Bε) strongly in L2
loc(Rt;L2(∂Ω))2. Moreover

the solution verifies :
∫ T

0

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dtdσ =
∫ T

0

∫

∂Ω

|h|2 dtdσ,

and the estimate (3.13). In order to prove the uniqueness it is sufficient to show that all T periodic
weak solution verifies the estimate (3.13). This can be done by regularization.

Proposition 3.8. Under the hypotheses of Proposition 3.7 assume that the time derivative
∂th belongs to L2

loc(Rt;L2(∂Ω)3). Then the T periodic weak solution of the problem (3.11), (3.12)
verifies (∂tE, ∂tB)∈L2(]0, T [;L2(Ω)3)2, (∂t(n∧E), ∂t(n∧B)) ∈ L2(]0, T [;L2(∂Ω)3)2, (∂t(n·E), ∂t(n·
B)) ∈ L2(]0, T [;L2(∂Ω))2 and the estimate :

∫ T

0

∫

Ω

(|∂tE|2 + c2|∂tB|2) dtdx+ r

∫ T

0

∫

∂Ω

(|∂t(n ∧ E)|2 + c2|∂t(n ∧B)|2) dtdσ

+ r

∫ T

0

∫

∂Ω

(|∂t(n · E)|2 + c2|∂t(n ·B)|2) dtdσ

≤ C(Ω)
∫ T

0

∫

∂Ω

|∂th|2 dtdσ.

Proof. For every real number η and function u we denote by Dηu the function Dηu(t, x) =
u(t + η, x) − u(t, x). If (E,B) is the T periodic weak solution for the problem (3.11), (3.12),
therefore (DηE,DηB) is T periodic weak solution for :

∂tDηE − c2 · rot DηB = 0, ∂tDηB+ rot DηE = 0, div DηE = 0, div DηB = 0, (t, x) ∈ Rt×Ω,
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n(x) ∧DηE(t, x) + c · n(x) ∧ (n(x) ∧DηB(t, x)) = Dηh(t, x), (t, x) ∈ Rt × ∂Ω.

By Proposition 3.7 we have the estimate :

∫ T

0

∫

Ω

(|DηE|2 + c2|DηB|2) dtdx+ r

∫ T

0

∫

∂Ω

(|n ∧DηE|2 + c2|n ∧DηB|2) dtdσ

+ r

∫ T

0

∫

∂Ω

(|(n ·DηE)|2 + c2|(n ·DηB)|2) dtdσ

≤ C(Ω)
∫ T

0

∫

∂Ω

|Dηh|2 dtdσ,

≤ C(Ω) · |η|2 ·
∫ T

0

∫

∂Ω

|∂th|2 dtdσ, (3.22)

and our conclusion follows.

In the following we establish the divergence equations verified on the boundary Rt × ∂Ω by T
periodic weak solutions for the Maxwell equations. We denote by ∇(t,τ) , div(t,τ) the gradient and
divergence operator on Rt × ∂Ω (see the Appendix for a brief presentation of these operators).

Proposition 3.9. Assume that Ω is regular and consider (E,B) ∈ L2
loc(Rt;L2(Ω)3)2 a T

periodic weak solution for the Maxwell equations :

∂tE−c2 ·rot B = −j(t, x)
ε0

, ∂tB+rot E = 0, div E =
ρ(t, x)
ε0

, div B = 0, (t, x) ∈ Rt×Ω, (3.23)

with tangential and normal traces (n∧E, n∧B) ∈ L2
loc(Rt;L2(Ω)3)2, respectively ((n ·E), (n ·B)) ∈

L2
loc(Rt;L2(∂Ω))2. We assume also that the charge density ρ belongs to L1

loc(Rt;L1(Ω)), the current
density belongs to L1

loc(Rt;L1(Ω)3) and that the continuity equation ∂tρ + div j = 0 holds true in
D′per(Rt × Ω) (i.e.,

∫ T
0

∫
Ω
ρ∂tϕ dtdx+

∫ T
0

∫
Ω
j · ∇xϕ dtdx =

∫ T
0

∫
∂Ω

(n · j)ϕ dtdσ, ∀ϕ ∈ C1(Rt × Ω), T
periodic, for some function (n · j) ∈ L1

loc(Rt;L1(∂Ω)3)). Then the traces of the electro-magnetic
field verify the following divergence equations in D′per(Rt × ∂Ω) :

div(t,τ) ((n · E), c2(n ∧B)) = − (n · j)
ε0

, div(t,τ) ((n ·B),−(n ∧ E)) = 0,

i.e.,

−
∫ T

0

∫

∂Ω

(n · E)∂tψ dtdσ − c2
∫ T

0

∫

∂Ω

(n ∧B) · ∇τψ dtdσ = − 1
ε0

∫ T

0

∫

∂Ω

(n · j)ψ dtdσ,

and

−
∫ T

0

∫

∂Ω

(n ·B)∂tψ dtdσ +
∫ T

0

∫

∂Ω

(n ∧ E) · ∇τψ dtdσ = 0,

for all function ψ ∈ C1(Rt × ∂Ω), T periodic.

Proof. Consider the test function η(t)∇xϕ, where η ∈ C1(Rt) is T periodic and ϕ ∈ C1(Ω).
By using the first equation of (3.23) with this test function, we deduce :

−
∫ T

0

∫

Ω

E(t, x)η′(t)∇xϕ dtdx− c2
∫ T

0

∫

∂Ω

(n ∧B)η(t)∇xϕ dtdσ = − 1
ε0

∫ T

0

∫

Ω

η(t)j(t, x) · ∇xϕ dtdx.
(3.24)
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By using now the third equation of (3.23) with the test function −η′(t)ϕ(t, x) we deduce that :

−
∫ T

0

∫

∂Ω

(n · E)η′(t)ϕ(t, x) dtdσ +
∫ T

0

∫

Ω

η′(t)E(t, x)∇xϕ dtdx = − 1
ε0

∫ T

0

∫

Ω

ρ(t, x)η′(t)ϕ(t, x) dtdx.

(3.25)
By adding the equations (3.24), (3.25), by observing that (n ∧ B) · ∇xϕ = (n ∧ B) · ∇τϕ and by
using the continuity equation finally we obtain that :

−
∫ T

0

∫

∂Ω

(n · E)∂tψ dtdσ − c2
∫ T

0

∫

∂Ω

(n ∧B) · ∇τψ dtdσ = − 1
ε0

∫ T

0

∫

∂Ω

(n · j)ψ dtdσ,

for all ψ(t, x) = η(t)ϕ(x). By density we deduce that the previous equality holds for all test
function ψ ∈ C1(Rt × ∂Ω), T periodic, or div(t,τ) ((n · E), c2(n ∧ B)) = − (n·j)

ε0
in D′per(Rt × ∂Ω).

In order to establish the second divergence equation on the boundary we use the second equation
of (3.23) with the test function η(t)∇xϕ which gives :

−
∫ T

0

∫

Ω

η′(t)B(t, x) · ∇xϕ dtdx+
∫ T

0

∫

∂Ω

η(t)(n ∧ E) · ∇xϕ dtdσ = 0.

By using also the fourth equation of (3.23) one gets finally :

−
∫ T

0

∫

∂Ω

(n ·B)∂tψ dtdσ +
∫ T

0

∫

∂Ω

(n ∧ E) · ∇τψ dtdσ = 0,

or div(t,τ) ((n ·B),−(n ∧ E)) = 0 in D′per(Rt × ∂Ω).

We give now an estimate for the outgoing kinetic energy in terms of the total electro-magnetic
field and the exterior electro-magnetic field :

Proposition 3.10. Assume that the hypotheses of Theorem 2.1 hold and consider (f,E,B)
the T periodic weak solution constructed in Theorem 2.1. We suppose also that ∂th belongs to
L2
loc(Rt;L2(∂Ω)3) and denote by (E0, B0) the T periodic solution for the problem (3.11), (3.12)

(cf. Proposition 3.7) and by (Es, Bs) = (E−E0, B−B0) the self-consistent electro-magnetic field.
Then we have the inequality :

K+ +
ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ Es|2 + c2|n ∧Bs|2) dtdσ≤K− + ε0c
2

∫ T

0

∫

∂Ω

(n ∧B) · E0 dtdσ

+ ε0

∫ T

0

∫

Ω

(∂tE0 · E(t, x)− c2∂tB0 ·B(t, x)) dtdx.

Proof. By using the boundary condition n ∧ E + c · n ∧ (n ∧B) = h and the inequality (2.29)
we have

K+ − ε0c
2

∫ T

0

∫

∂Ω

(n ∧B) · E dtdσ ≤ K−. (3.26)

By using also the boundary condition n ∧ Es + cn ∧ (n ∧Bs) = 0 we can write :

c2(n ∧B) · E = − c
2

[|n ∧ Es|2 + c2|n ∧Bs|2] + c2(n ∧Bs) · E0 + c2(n ∧B0) · E. (3.27)

Since ∂th belongs to L2(]0, T [×∂Ω)3, from Proposition 3.8 we have ∂tE0, rot B0 ∈ L2(]0, T [×Ω)3

and therefore, after multiplication of ∂tE0 − c2rot B0 = 0 by E we have :
∫ T

0

∫

Ω

∂tE0 · E(t, x) dtdx− c2
∫ T

0

∫

Ω

rot B0 · E(t, x) dtdx = 0. (3.28)
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We use also the equation ∂tB + rot E = 0 with the test function B0 (which is possible since
∂tB0, rot B0 ∈ L2(]0, T [×Ω)3) :

−
∫ T

0

∫

Ω

B(t, x) · ∂tB0 dtdx−
∫ T

0

∫

∂Ω

(n∧B0) ·E(t, x) dtdσ+
∫ T

0

∫

Ω

E(t, x) · rot B0 dtdx = 0. (3.29)

Finally from (3.27), (3.28), (3.29) we obtain :

ε0c
2

∫ T

0

∫

∂Ω

(n ∧B) · E dtdσ+
ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ Es|2 + c2|n ∧Bs|2) dtdσ=ε0c
2

∫ T

0

∫

∂Ω

(n ∧Bs) · E0 dtdσ

+ ε0

∫ T

0

∫

Ω

(∂tE0 · E − c2∂tB0 ·B) dtdx.

The conclusion follows by combining with (3.26) and by taking into account that
∫ T

0

∫
∂Ω

(n ∧ B0) ·
E0 dtdσ = 1

c2

∫ T
0

1
2
d
dt

∫
Ω

(|E0(t, x)|2 + c2 · |B0(t, x)|2) dx dt = 0.

In order to estimate the term ε0c
2
∫ T

0

∫
∂Ω

(n ∧ B) · E0(t, x) dtdσ we need the following represen-
tation for free divergence fields on Rt × ∂Ω (see the Appendix, Corollary 6.11 for more details).
We denote by H1([0, T ]× ∂Ω) the closure of {ϕ ∈ C1(Rt × ∂Ω) | ϕ is T periodic} in the H1 norm.

Lemma 3.11. Assume that Ω ⊂ R3
x is smooth, open, bounded with ∂Ω simply connected

and consider f = (f0, ~f) := (f0, f1, f2, f3) ∈ L2
loc(Rt;L2(∂Ω)4) a T periodic field such that∫ T

0

∫
∂Ω
f0(t, x) dtdσ = 0, (n · ~f)|Rt×∂Ω = 0 and div(t,τ) f = 0 in D′per(Rt × ∂Ω). Then there is

A = (A0, ~A) ∈ H1([0, T ]× ∂Ω)4 verifying
∫ T

0

∫
∂Ω
A0(t, x) dtdσ = 0, (n · ~A)|Rt×∂Ω = 0, div(t,τ) A = 0

in D′per(Rt × ∂Ω) such that :

f0 = −divτ (n ∧ ~A), ~f = n ∧ (∂t ~A−∇τ A0).

Moreover we have the estimate :

‖∇(t,τ) A0‖2L2(]0,T [×∂Ω)4 + ‖ ~A‖2H1(]0,T [×∂Ω)3 ≤ C(Ω) · ‖f‖2L2(]0,T [×∂Ω)4 ,

where the constant C(Ω) depends on Ω but not on T .

By a straightforward scaling argument we obtain :

Proposition 3.12. Assume that the hypotheses of Proposition 3.7 are verified and denote by
(E0, B0) the T periodic weak solution of the problem (3.11), (3.12). Then there is A = (A0, ~A) ∈
H1([0, T ]× ∂Ω)4 with

∫ T
0

∫
∂Ω
A0(t, x) dtdσ = 0, (n · ~A)|Rt×∂Ω = 0, such that :

1
c
∂tA0 + divτ ~A = 0, (n ·B0) = divτ

(
n ∧

~A

c

)
, n ∧ E0 = n ∧

(
1
c
∂t ~A−∇τ A0

)
.

Moreover we have the estimates :

‖∂tA0‖2L2(]0,T [×∂Ω) ≤ C(Ω) · c2 ·H, ‖∇τ A0‖2L2(]0,T [×∂Ω)3 ≤ C(Ω) ·H,

‖∂t ~A‖2L2(]0,T [×∂Ω)3 ≤ C(Ω) · c2 ·H, ‖ ~A‖2L2(]0,T [×∂Ω)3 + ‖∇τ ~A‖2L2(]0,T [×∂Ω)9 ≤ C(Ω) ·H.

Proof. From Proposition 3.9 we know that div(t,τ) ((n·B0),−n∧E0) = 0. We introduce t̃ = c·t,
T̃ = c · T and if u(t) is an arbitrary T periodic function of t we denote by ũ(t) the T̃ periodic
function given by ũ(t̃) = u(t̃/c), t̃ ∈ R. We obtain div (t̃,τ)(c · (n · B̃0),−n∧ Ẽ0) = 0. Remark that
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since div xB0 = 0 we have div xB̃0 = 0 and thus
∫ T̃

0

∫
∂Ω

(n · B̃0) dt̃dσ = 0. Obviously (n∧ Ẽ0) is a
tangential field and therefore the previous lemma applies for the field (−c(n·B̃0), n∧Ẽ0). We deduce

that there is Ã = (Ã0,
~̃A) ∈ H1([0, T̃ ] × ∂Ω)4 with

∫ T̃
0

∫
∂Ω
Ã0(t̃, x) dt̃dσ = 0, (n · ~̃A)|Rt×∂Ω = 0,

div (t̃,τ)Ã = 0 such that :

c(n · B̃0) = divτ (n ∧ ~̃A), n ∧ Ẽ0 = n ∧ (∂t̃
~̃A−∇τ Ã0),

and :

‖∇(t̃,τ)Ã0‖2L2(]0,T̃ [×∂Ω)4 +‖ ~̃A‖2
H1(]0,T̃ [×∂Ω)3 ≤ C(Ω) · [‖c(n ·B̃0)‖2

L2(]0,T̃ [×∂Ω)
+‖n∧Ẽ0‖2L2(]0,T̃ [×∂Ω)3 ].

The conclusion follows by taking A(t, x) = (A0(t, x), ~A(t, x)) = (Ã0(c · t, x), ~̃A(c · t, x)).

Proposition 3.13. Assume that the hypotheses of Proposition 3.8 are verified and denote by
(E0, B0) the T periodic solution of the problem 3.11, 3.12. Then we have the estimates :

‖∂tA0‖2L2(]0,T [×∂Ω) + ‖∇τ ∂tA0‖2L2(]0,T [×∂Ω)3 + ‖∇τ A0‖2L2(]0,T [×∂Ω)3 ≤ C(Ω) · (H +H1),

‖∂t ~A‖2L2(]0,T [×∂Ω)3 + ‖∇τ ∂t ~A‖2L2(]0,T [×∂Ω)9 ≤ C(Ω) ·H1,

where H1 :=
∫ T

0

∫
∂Ω
|∂th|2 dtdσ.

Proof. By Proposition 3.12 we have the estimate :

‖∇τ ∂tA0‖2L2(]0,T [×∂Ω)3 ≤ C(Ω) ·H1, ‖∇τ A0‖2L2(]0,T [×∂Ω)3 ≤ C(Ω) ·H.

Since 1
c∂tA0 + divτ ~A = 0 we have

∫
∂Ω
∂tA0 dσ = 0, a.e. t ∈ Rt. By using the Poincaré inequality

we have :

‖∂tA0‖2L2(]0,T [×∂Ω) ≤ CP ·
∫ T

0

{∫

∂Ω

|∇τ∂tA0(t, x)|2 dσ +
∣∣∣∣
∫

∂Ω

∂tA0(t, x) dσ
∣∣∣∣
2
}
dt ≤ C1(Ω) ·H1.

The second estimate of our proposition follows directly from Proposition 3.12.

Proposition 3.14. Assume that the hypotheses of Theorem 2.1 and Proposition 3.8 hold
and consider (f,E,B) the T periodic weak solution constructed in Theorem 2.1. Then we have the
estimates :

∫ T

0

∫

Ω

∫

R3
p

(1+ E(p))f dtdxdp+
ε0

2

∫ T

0

∫

Ω

(|E|2 + c2|B|2) dtdx+
∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))γ+f dtdσdp

+
ε0r

2

∫ T

0

∫

∂Ω

(|n ∧ E|2 + c2 · |n ∧B|2) dtdσ +
ε0r

2

∫ T

0

∫

∂Ω

((n · E)2 + c2 · (n ·B)2) dtdσ

≤ C(m, ε0, T,Ω,M−,K−,H,H1, ‖g‖L∞). (3.30)

Proof. We need to estimate the outgoing kinetic energy K+. By Proposition 3.10 we have :

K++
ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ (E − E0)|2 + c2|n ∧ (B −B0)|2) dtdσ ≤ K− + ε0c
2

∫ T

0

∫

∂Ω

(n ∧B) · E0 dtdσ

+ ε0

(∫ T

0

∫

Ω

(|∂tE0|2 + c2|∂tB0|2) dtdx

) 1
2

·
(∫ T

0

∫

Ω

(|E|2 + c2|B|2) dtdx

) 1
2

. (3.31)
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In order to estimate the term ε0c
2
∫ T

0

∫
∂Ω

(n∧B) ·E0 dtdσ = ε0c
2
∫ T

0

∫
∂Ω

(n∧ (n∧B)) · (n∧E0) dtdσ
we use the decomposition n∧E0 = n∧ ( 1

c∂t
~A−∇τ A0) of Proposition 3.12. By using Proposition

3.13 and the inequality (2.29) we have for c ≥ 1 :
∣∣∣∣∣c

2

∫ T

0

∫

∂Ω

(n ∧ (n ∧B)) · (n ∧ 1
c
∂t ~A) dtdσ

∣∣∣∣∣≤ ‖c(n ∧B)‖L2(]0,T [×∂Ω)3 · ‖∂t ~A‖L2(]0,T [×∂Ω)3

≤ C(Ω) ·
(

2
ε0
K− +H

) 1
2

·H
1
2
1 . (3.32)

We want now to estimate the term c2
∫ T

0

∫
∂Ω

(n ∧ (n ∧ B)) · (n ∧ ∇τ A0) dtdσ. For this we use the
first divergence equation proved in Proposition 3.9 :

div(t,τ) ((n · E), c2(n ∧B)) = − (n · j)
ε0

. (3.33)

By using the test function A0 we deduce that :
∫ T

0

∫

∂Ω

(n ·E)∂tA0 dtdσ+c2
∫ T

0

∫

∂Ω

(n∧(n∧B)) ·(n∧∇τ A0) dtdσ =
1
ε0

∫ T

0

∫

∂Ω

(n ·j)A0 dtdσ. (3.34)

From Proposition 3.13 we obtain :
∣∣∣∣∣
∫ T

0

∫

∂Ω

(n · E)∂tA0 dtdσ

∣∣∣∣∣ ≤ ‖(n · E)‖L2(]0,T [×∂Ω) · C(Ω) · (H +H1)
1
2 . (3.35)

In order to estimate the term
∫ T

0

∫
∂Ω

(n · j)A0 dtdσ we can use Sobolev inequalities. By using
the condition

∫ T
0

∫
∂Ω
A0(t, x) dtdσ = 0, the Poincaré inequality and Proposition 3.13 we deduce

that ‖A0‖2H1(]0,T [×∂Ω) ≤ C(T,Ω) · (H + H1). By Sobolev inequalities we have ‖A0‖2L5(]0,T [×∂Ω) ≤
C · ‖A0‖2H1(]0,T [×∂Ω) ≤ C(T,Ω) · (H + H1). Now by adapting Lemma 3.4 for the time periodic
case we obtain :
∣∣∣∣∣
∫ T

0

∫

∂Ω

(n · j)A0 dtdσ

∣∣∣∣∣≤‖(n · j)‖L 5
4 (]0,T [×∂Ω)

· ‖A0‖L5(]0,T [×∂Ω) (3.36)

≤C‖g‖
1
5
L∞(Rt×Σ−)

(∫ T

0

∫

Σ

|(v(p) · n(x))|(1 + E(p))γf dtdσdp

) 4
5

· (H +H1)
1
2 .

Finally, by using (3.31), (3.32), (3.34), (3.35), (3.36) we obtain :

K+ +
ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ (E−E0)|2 + c2|n ∧ (B −B0)|2) dtdσ ≤ ε0CH
1
2
1 ·
(∫ T

0

∫

Ω

(|E|2 + c2|B|2) dtdx

) 1
2

+K− + Cε0H
1
2
1 ·
(

2
ε0
K− +H

) 1
2

+ Cε0(H +H1)
1
2 · ‖(n · E)‖L2(]0,T [×∂Ω)

+C · ‖g‖
1
5
L∞(Rt×Σ−) · (H +H1)

1
2 · (M− +K− +M+ +K+)

4
5 . (3.37)

Remember that the solution (f,E,B) verifies the estimate (see (2.24)) :
∫ T

0

∫

Ω

∫

R3
p

E(p)f dtdxdp+
ε0

2

∫ T

0

∫

Ω

(|E|2 + c2|B|2) dtdx+
∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))γ+f dtdσdp

+
ε0r

2

∫ T

0

∫

∂Ω

[(|n ∧ E|2 + c2 · |n ∧B|2) + ((n · E)2 + c2 · (n ·B)2)] dtdσ

≤C(m, ε0,Ω) · (M− +K− +K+ +H). (3.38)
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The conclusion follows easily by combining (3.37), (3.38) (the estimate for the total mass can be
obtained as in (2.27)). Remark also that the previous computations give the estimate :

c ·
∫ T

0

∫

∂Ω

(|n ∧ (E − E0)|2 + c2|n ∧ (B −B0)|2) dtdσ ≤ C, (3.39)

where C depends on m, ε0, T,Ω,M−,K−, H,H1, ‖g‖L∞ , but not on c.

Now we can prove that the total energy is uniformly bounded with respect to t ∈ Rt and c ≥ 1.
We check this (only) for regular T periodic solutions of the Vlasov-Maxwell system. By using the
energy conservation law (see 2.12) we have for all t ∈ [T, 2T ] and s ∈ [0, T ] :
∫

Ω

∫

R3
p

E(p)f(t, x, p) dxdp+
ε0

2

∫

Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dx+
∫ t

s

∫

Σ+
(v(p) · n(x))E(p)γ+fdτ dσdp

− ε0c
2

∫ t

s

∫

∂Ω

(n ∧B) · Edτ dσ =
∫

Ω

∫

R3
p

E(p)f(s, x, p) dxdp (3.40)

+
ε0

2

∫

Ω

(|E(s, x)|2 + c2|B(s, x)|2) dx+
∫ t

s

∫

Σ−
|(v(p) · n(x))|E(p)gdτ dσdp.

We introduce the notations M(t) =
∫

Ω

∫
R3
p
f(t, x, p) dxdp, K(t) =

∫
Ω

∫
R3
p
E(p)f(t, x, p) dxdp,

W em(t) = ε0
2

∫
Ω

(|E(t, x)|2 + c2 · |B(t, x)|2) dx, W em
0 (t) = ε0

2

∫
Ω

(|E0|2 + c2 · |B0|2) dx. By per-
forming similar computations as in the proof of Proposition 3.10 we obtain :

−ε0c
2

∫ t

s

∫

∂Ω

(n ∧B) · Edτ dσ=
ε0c

2

∫ t

s

∫

∂Ω

(|n ∧ Es|2 + c2|n ∧Bs|2)dτ dσ − ε0c
2

∫ t

s

∫

∂Ω

(n ∧B) · E0dτ dσ

+W em
0 (t)−W em

0 (s)− ε0

∫ t

s

∫

Ω

(∂tE0 · E − c2∂tB0 ·B)dτ dx

− ε0c
2

∫

Ω

B(t, x) ·B0(t, x) dx+ ε0c
2

∫

Ω

B(s, x) ·B0(s, x) dx. (3.41)

By combining (3.40), (3.41) one gets :

K(t)+W em(t) +
ε0c

2

∫ t

s

∫

∂Ω

(|n ∧ Es|2 + c2|n ∧Bs|2) dσdτ +
∫ t

s

∫

Σ+
(v(p) · n(x))E(p)γ+f dσdpdτ

=K(s) +W em(s) +
∫

Σ−
|(v(p) · n(x))|E(p)g dσdpdτ + ε0c

2

∫ t

s

∫

∂Ω

(n ∧B) · E0 dσdτ +W em
0 (s)

− ε0c
2

∫

Ω

B(s, x) ·B0(s, x) dx−W em
0 (t) + ε0c

2

∫

Ω

B(t, x) ·B0(t, x) dx

+ ε0

∫ t

s

∫

Ω

(∂tE0 · E − c2∂tB0 ·B) dxdτ. (3.42)

By the Propositions 3.7, 3.8 we deduce easily that (E0, B0) ∈ L∞(Rt;L2(Ω))6, (n ∧ E0, n ∧B0) ∈
L∞(Rt;L2(∂Ω))6, (n · E0, n ·B0) ∈ L∞(Rt;L2(∂Ω))2 and we have the estimate :
∫

Ω

(|E0|2 + c2 · |B0|2) dx+ r ·
∫

∂Ω

(|n ∧ E0|2 + c2 · |n ∧B0|2) dσ + r ·
∫

∂Ω

((n · E0)2 + c2 · (n ·B0)2) dσ

≤C · (H +H1), ∀t ∈ Rt. (3.43)

Now, after integration of (3.42) with respect to s ∈ [0, T ] and by using the estimates of Proposition
3.14 finally one gets :

K(t)+W em(t) ≤ C(m, ε0, T,Ω,M−,K−,H,H1, ‖g‖L∞) + C(ε0,Ω, T,H,H1) ·W em(t)
1
2

+
ε0c

2

T

∫ T

0

∫ t

s

∫

∂Ω

(n ∧B) · E0 dsdτdσ, ∀t ∈ Rt. (3.44)
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We need to estimate the last term of the above inequality. As in the proof of Proposition 3.14 we
write :

I(s)= ε0c
2

∫ t

s

∫

∂Ω

(n ∧B) · E0 dτdσ = ε0c
2

∫ t

s

∫

∂Ω

(n ∧ (n ∧B)) · (n ∧ (
1
c
∂t ~A−∇τ A0)) dτdσ

= I1(s) + I2(s). (3.45)

The first term can be estimated uniformly with respect to s ∈ [0, T ] :

|I1(s)|≤
∫ 2T

0

∫

∂Ω

ε0c|n ∧B| · |∂t ~A|dt dσ

≤ 2
√
ε0

(∫ T

0

∫

∂Ω

ε0c
2|n ∧B|2 dtdσ

) 1
2

·
(∫ T

0

∫

∂Ω

|∂t ~A|2 dtdσ
) 1

2

≤C(m, ε0,Ω,M−,K−,H,H1). (3.46)

For the second term we use (3.33) with the test function A0 on [s, t]× ∂Ω :

−
∫ t

s

∫

∂Ω

(n · E)∂tA0(u, x) du dσ+
∫

∂Ω

(n · E)A0(t, x) dσ −
∫

∂Ω

(n · E)A0(s, x) dσ

−
∫ t

s

∫

∂Ω

c2(n ∧B) · ∇τ A0(u, x) du dσ

=− 1
ε0

∫ t

s

∫

∂Ω

(n · j)A0(u, x) du dσ. (3.47)

By using the Propositions 3.13, 3.14 we find that :
∣∣∣∣∣

1
T

∫ T

0

I2(s) ds

∣∣∣∣∣ ≤ C(m, ε0, T,Ω,M−,K−,H,H1, ‖g‖L∞) +
∣∣∣∣
∫

∂Ω

(n · E)A0(t, x) dσ
∣∣∣∣ . (3.48)

Since ‖∇τ A0‖2L2(]0,T [×∂Ω)3 + ‖∂t∇τ A0‖2L2(]0,T [×∂Ω)3 ≤ C(Ω) · (H + H1), we deduce by peri-

odicity that ‖∇τ A0‖2L∞(Rt;L2(∂Ω)3) ≤ C(Ω, T ) · (H + H1). Since
∫ T

0

∫
∂Ω
A0(t, x) dtdσ = 0 we

have ‖A0‖2L2(]0,T [×∂Ω) ≤ C · ‖∇(t,τ)A0‖2L2(]0,T [×∂Ω)4 ≤ C · (H + H1) and from ‖A0‖2L2(]0,T [×∂Ω) +
‖∂tA0‖2L2(]0,T [×∂Ω) ≤ C(Ω) · (H + H1) we deduce that ‖A0‖2L∞(Rt;L2(∂Ω)) ≤ C(Ω, T ) · (H + H1).
Finally we obtain that ‖A0‖2L∞(Rt;H1(∂Ω)) ≤ C · (H + H1). Take now F0 ∈ H1(Ω) such that
γ(F0) = A0(t) and ‖F0‖H1(Ω) ≤ C(Ω) · ‖A0(t)‖H1/2(∂Ω) ≤ C(Ω)‖A0(t)‖H1(∂Ω). By using the
equation div E = ρ

ε0
we have :

∫

∂Ω

(n · E)A0(t, x) dσ =
∫

Ω

E(t, x) · ∇xF0 dx+
∫

Ω

div E · F0(x) dx = J1(t) + J2(t).

For the first term we can write :

|J1(t)| ≤ ‖E(t)‖L2(Ω)3 · ‖F0‖H1(Ω) ≤ C(Ω, T,H,H1) ·W em(t)
1
2 . (3.49)

For the second term we can use interpolation and Sobolev inequalities :

|J2(t)|≤ ‖ ρ
ε0
‖
L

4
3
· ‖F0‖L4(Ω)≤C(m, ε0,Ω) · ‖g‖

1
4
L∞ ·

(∫

Ω

∫

R3
p

(1 + E(p))f(t, x, p) dxdp

) 3
4

· ‖F0‖H1(Ω)

≤C(m, ε0,Ω, T,H,H1, ‖g‖L∞) · (M(t) +K(t))
3
4 . (3.50)

Finally by using (3.44), (3.45), (3.46), (3.48), (3.49), (3.50) we deduce for all t ∈ Rt :

K(t) +W em(t) ≤ C(m, ε0,Ω, T,M−,K−,H,H1, ‖g‖L∞) ·
(

1 +W em(t)
1
2 + (M(t) +K(t))

3
4

)
.

(3.51)
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The conclusion follows easily by observing that M(t) is bounded since we have for s, t ∈ [0, T ] :

M(t) = M(s)−
∫ t

s

∫

Σ

(v(p) · n(x))γf(u, x, p) du dσdp,

which implies after integration on s ∈ [0, T ] that :

M(t)≤ 1
T

∫ T

0

M(s)ds+
1
T

∫ T

0

ds

∣∣∣∣
∫ t

s

∫

Σ

(v(p) · n(x))γf(u, x, p) du dσdp
∣∣∣∣

≤ 1
T

∫ T

0

M(s) ds+ 2M−, ∀t ∈ [0, T ]. (3.52)

4. Asymptotic behavior when c→ +∞.

In this section we study the behavior of the T periodic weak solutions for the relativistic
Vlasov-Maxwell system (cf. Theorem 2.1) when c becomes large. We denote by Ec(p), vc(p) the
relativistic energy and velocity functions corresponding to the light speed c > 0. The classical
energy and velocity functions will be denoted by E(p), v(p) respectively. Observe that we have the
convergence :

lim
c→+∞

Ec(p) = E(p), lim
c→+∞

vc(p) = v(p), uniformly on compact sets of R3
p.

We denote by (fc, Ec, Bc) the T periodic weak solutions for the relativistic Vlasov-Maxwell system
constructed in Theorem 2.1 and we introduce the notations :

Kc(t) :=
∫

Ω

∫

R3
p

Ec(p)fc dxdp, W em
c (t) :=

ε0

2

∫

Ω

(|Ec|2 + c2|Bc|2) dx, Wc(t) = Kc(t) +W em
c (t),

Kc :=
∫ T

0

Kc(t) dt, W em
c :=

∫ T

0

W em
c (t) dt, Wc := Kc +W em

c ,

Mc(t) :=
∫

Ω

∫

R3
p

fc dxdp, Mc :=
∫ T

0

Mc(t) dt,

M±c :=
∫ T

0

∫

Σ±
|(vc(p) · n(x))|γ±fc dtdσdp, K±c :=

∫ T

0

∫

Σ±
|(vc(p) · n(x))|Ec(p)γ±fc dtdσdp,

W em
c,τ :=

ε0

2

∫ T

0

∫

∂Ω

(|n ∧ Ec|2 + c2|n ∧Bc|2) dtdσ, W em
c,n :=

ε0

2

∫ T

0

∫

∂Ω

((n · Ec)2 + c2(n ·Bc)2) dtdσ.

Theorem 4.1. Assume that Ω ⊂ R3
x is open, bounded, with boundary ∂Ω smooth, strictly star-

shaped and consider g and h T periodic functions verifying 0 ≤ g ∈ L∞(Rt × Σ−), M− + K− =∫ T
0

∫
Σ− |(v(p) ·n(x))|(1 +E(p))g(t, x, p) dtdσdp < +∞, (n ·h)|Rt×∂Ω = 0,

∫ T
0

∫
∂Ω

(|h|2 + |∂th|2) dtdσ <
+∞. Then for all sequence (cr)r with limr→+∞ cr = +∞ there is a subsequence (crk)k such that
fcrk ⇀ f weakly ? in L∞(Rt × Ω× R3

p), Ecrk ⇀ E weakly ? in L∞(Rt;L2(Ω)3) where (f,E) is a
T periodic weak solution for the classical Vlasov-Poisson system :

∂tf+v(p)·∇xf+qE(t, x)·∇pf = 0, (t, x, p) ∈ Rt×Ω×R3
p, f(t, x, p) = g(t, x, p), (t, x, p) ∈ Rt×Σ−,
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rot E = 0, div E =
ρ

ε0
, (t, x) ∈ Rt × Ω.

Moreover the solution (f,E) has traces γ+f ∈ L∞(Rt×Σ+), n∧E = n∧∇τ h2 ∈ L2
loc(Rt;L2(∂Ω)3)

(where h = ∇τ h1 + n ∧ ∇τ h2, h1, h2 ∈ L2
loc(Rt;H1(∂Ω)) is the orthogonal decomposition in

L2
loc(Rt;L2(∂Ω)3) of h into irrotational/rotational parts, cf. Appendix, Proposition 6.5), (n ·E) ∈

L2
loc(Rt;L2(∂Ω)) and the following estimates hold :

ess sup
t∈Rt

{∫

Ω

∫

R3
p

(1 + E(p))f(t, x, p) dxdp+
ε0

2

∫

Ω

|E(t, x)|2 dx
}

+
∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))γ+f dtdσdp+

ε0r

2

∫ T

0

∫

∂Ω

(|n ∧ E|2 + (n · E)2) dtdσ

≤ C(m, ε0,Ω, T,M−,K−,H,H1, ‖g‖L∞). (4.1)

Proof. We have ‖fcr‖L∞(Rt×Ω×R3
p) ≤ ‖g‖L∞(Rt×Σ−) ∀r. By observing that K−c ≤ K− and

M−c ≤M−, ∀c > 0 we deduce also that :

‖Ecr‖L∞(Rt;L2(Ω)3) + cr · ‖Bcr‖L∞(Rt;L2(Ω)3) + ‖Mcr (·)‖L∞(Rt) + ‖Kcr (·)‖L∞(Rt)

+M+
cr +K+

cr +W em
cr,τ +W em

cr,n

≤ C(m, ε0,Ω, T,M−,K−, H,H1, ‖g‖L∞), ∀ r. (4.2)

Therefore there is a subsequence (crk) such that fk := fcrk ⇀ f weakly ? in L∞(Rt × Ω × R3
p),

γ+fk := γ+fcrk ⇀ γ+f weakly ? in L∞(Rt × Σ+), Ek := Ecrk ⇀ E weakly ? in L∞(Rt;L2(Ω)3),
n ∧ Ek := n ∧ Ecrk ⇀ n ∧ E weakly in L2(]0, T [×∂Ω)3, n · Ek := n · Ecrk ⇀ n · E weakly in
L2(]0, T [×∂Ω), ckBk := crkBcrk ⇀ A weakly ? in L∞(Rt;L2(Ω)3), ck(n ∧Bk) := crk(n ∧Bcrk ) ⇀
n ∧A weakly in L2(]0, T [×∂Ω)3, ck(n ·Bk) := crk(n ·Bcrk ) ⇀ (n ·A) weakly in L2(]0, T [×∂Ω). In
particular we have the convergences :

lim
k→+∞

Bk = 0, lim
k→+∞

(n ∧Bk) = 0, lim
k→+∞

(n ·Bk) = 0, (4.3)

in the spaces L∞(Rt;L2(Ω)3), L2(]0, T [;L2(∂Ω)3), L2(]0, T [;L2(∂Ω)) respectively. By weak limits
we deduce that ‖f‖L∞ ≤ ‖g‖L∞ , ‖γ+f‖L∞ ≤ ‖g‖L∞ and :

ess sup
t∈Rt

{∫

Ω

∫

R3
p

(1 + E(p))f(t, x, p) dxdp

}
≤ C, (4.4)

‖E‖L∞(Rt;L2(Ω)3) + ‖A‖L∞(Rt;L2(Ω)3) ≤ C, (4.5)

M+ +K+ :=
∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))γ+f dtdσdp ≤ C, (4.6)

‖n∧E‖2L2(]0,T [×∂Ω)3 +‖(n ·E)‖2L2(]0,T [×∂Ω) +‖n∧A‖2L2(]0,T [×∂Ω)3 +‖(n ·A)‖2L2(]0,T [×∂Ω) ≤ C, (4.7)

where C depends on m, ε0,Ω, T,M−,K−,H,H1, ‖g‖L∞ . By using the velocity average lemma (see
[12]) we can pass to the limit the non linear term of the Vlasov equation and we deduce that f is
a T periodic weak solution for :

∂tf+v(p)·∇xf+qE(t, x)·∇pf = 0, (t, x, p) ∈ Rt×Ω×R3
p, f(t, x, p) = g(t, x, p), (t, x, p) ∈ Rt×Σ−.
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Take now a test function ψ(t, x) = η(t) ·Φ(x), where η ∈ C1(Rt), T periodic and Φ ∈ C1(Ω)3. We
have :

−
∫ T

0

∫

Ω

η′(t)Φ(x)Bk(t, x) dtdx+
∫ T

0

∫

∂Ω

(n∧Ek)η(t)Φ(x) dtdσ+
∫ T

0

∫

Ω

η(t)rot ΦEk(t, x) dtdx = 0, k ≥ 1.

By passing to the limit for k → +∞ and by using (4.3) we deduce that :
∫ T

0

η(t)
(∫

∂Ω

(n ∧ E) · Φ(x) dσ +
∫

Ω

E(t, x) · rot Φ dx

)
dt = 0, ∀η ∈ C1(Rt) T periodic,

and therefore we obtain that the field E verifies rot E = 0 and has tangential trace n ∧ E ∈
L2(]0, T [×∂Ω)3. By using the equation div Ek = ρk

ε0
with the test function η(t)ϕ(x), ϕ ∈ C1(Ω)

we have :
∫ T

0

∫

∂Ω

η(t)(n · Ek)ϕ(x) dtdσ −
∫ T

0

∫

Ω

η(t)Ek(t, x)∇xϕ dtdx =
1
ε0

∫ T

0

∫

Ω

η(t)ρk(t, x)ϕ(x) dtdx,

and after passing to the limit for k → +∞ one gets that the field E(t) verifies div E = ρ
ε0

and
has normal trace (n · E) ∈ L2(]0, T [×∂Ω), where ρ(t, x) = q

∫
R3
p
f(t, x, p) dp. In order to identify

the tangential trace of the electric field we use the divergence equations on the boundary (see
Proposition 3.9). For all test function η(t)θ(x) where η ∈ C1(Rt) periodic and θ ∈ C1(∂Ω) we
have :

−
∫ T

0

∫

∂Ω

(n ·Bk)η′(t)θ(x) dtdσ +
∫ T

0

∫

∂Ω

η(t)(n ∧ Ek) · ∇τ θ dtdσ = 0, k ≥ 1.

After passing to the limit for k → +∞ and by using (4.3) we deduce that
∫ T

0

∫
∂Ω

(n ∧ E) ·
∇τ (ηθ) dtdσ = 0. By density we obtain that

∫ T
0

∫
∂Ω

(n∧E) ·∇τ ϕ dtdσ = 0, ϕ ∈ L2(]0, T [;H1(∂Ω)).
By taking into account that

∫ T
0

∫
∂Ω

(n ∧ ∇τ h2) · ∇τ ϕ dtdσ = 0, ∀ϕ ∈ L2(]0, T [;H1(∂Ω)) we can
write :

∫ T

0

∫

∂Ω

(n ∧ E − n ∧∇τ h2) · ∇τ ϕ dtdσ = 0, ∀ϕ ∈ L2(]0, T [;H1(∂Ω)). (4.8)

We have also for all k ≥ 1 :

− 1
ck

∫ T

0

∫

∂Ω

(n·Ek)η′(t)θ(x) dtdσ−
∫ T

0

∫

∂Ω

η(t)ck(n∧Bk)·∇τ θ dtdσ = − 1
ε0ck

∫ T

0

∫

∂Ω

(n·jk)η(t)θ(x) dtdσ.

(4.9)
Remark that :

∫ T

0

∫

∂Ω

η(t)ck(n ∧Bk) · ∇τ θ dtdσ=
∫ T

0

∫

∂Ω

η(t)ck(n ∧ (n ∧Bk)) · (n ∧∇τ θ) dtdσ

=
∫ T

0

∫

∂Ω

η(t)(h(t, x)− n ∧ Ek(t, x)) · (n ∧∇τ θ)) dtdσ.

By passing to the limit for k → +∞ in (4.9) we deduce :
∫ T

0

∫

∂Ω

(h(t, x)− (n ∧ E(t, x))) · (n ∧∇τ (ηθ)) dtdσ = 0. (4.10)

By taking into account that
∫ T

0

∫
∂Ω
∇τ h1 · (n ∧∇τ (ηθ)) dtdσ = 0 we have also

∫ T
0

∫
∂Ω

(n ∧ E − n ∧
∇τ h2) · (n ∧∇τ (ηθ)) dtdσ = 0 and by density one gets :

∫ T

0

∫

∂Ω

(n ∧ E − n ∧∇τ h2) · (n ∧∇τ ψ) dtdσ = 0, ∀ψ ∈ L2(]0, T [;H1(∂Ω)). (4.11)
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By using (4.8), (4.11) and the orthogonal decomposition of tangential fields of L2(]0, T [;L2(∂Ω)3)
into irrotational part ∇τ ϕ and rotational part n ∧ ∇τ ψ we deduce that n ∧ E = n ∧ ∇τ h2.
Note also that the field A (the weak limit of (ckBk)k) verifies div A = 0 and has normal trace
(n ·A) ∈ L2(]0, T [×∂Ω). By using the equation ∂tEk − c2krot Bk = − jkε0 we have :

− 1
ck

∫ T

0

∫

Ω

η′(t)ϕ(x)Ek(t, x) dtdx−
∫ T

0

∫

∂Ω

ck(n ∧Bk)η(t)ϕ(x) dtdσ −
∫ T

0

∫

Ω

ckBkη(t)rot ϕ dtdx

=− 1
ε0ck

∫ T

0

∫

Ω

η(t)ϕ(x)jk(t, x) dtdx, k ≥ 1. (4.12)

After passing to the limit for k → +∞ we obtain that the field A verifies rot A = 0 and has
tangential trace n∧A ∈ L2(]0, T [×∂Ω)3. In fact, by using the boundary condition n∧Ek + ckn∧
(n ∧Bk) = h, k ≥ 1 we deduce easily that n ∧A = −n ∧∇τ h1.

In fact it is possible to show that the tangential traces converge strongly which is equivalent to :

lim
c→+∞

(n ∧ Ec, cn ∧ (n ∧Bc)) = (n ∧∇τ h2,∇τ h1), strongly in L2(]0, T [×∂Ω)6.

This follows from the inequality (see (2.29)) :

ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ Ec|2 + c2|n ∧Bc|2) dtdσ ≤ K− +
ε0c

2

∫ T

0

∫

∂Ω

|h|2 dtdσ,

and the following easy lemma :

Lemma 4.2. Consider two sequences (xk)k, (yk)k in a Hilbert space (H, 〈·, ·〉) verifying :
(i) limk→+∞ xk = x, limk→+∞ yk = y, weakly in H ;
(ii) there is z ∈ H such that xk + yk = z, ∀k ;
(iii) 〈x, y〉 = 0 ;
(iv) lim supk→+∞{|xk|2 + |yk|2} ≤ |z|2.
Then we have limk→+∞ xk = x, limk→+∞ yk = y, strongly in H.

Remark also that in the case h = 0 we have :

ε0

2

∫ T

0

∫

∂Ω

(|n ∧ Ec|2 + c2|n ∧Bc|2) dtdσ ≤ K−

c
= O

(
1
c

)
.

5. Other systems.

The previous analysis applies for other kinetic models. It is possible to treat systems with
several species of charged particles. We can also replace the boundary condition of the Vlasov
problem by the condition :

f(t, x, p) = g(t, x, p) + a(t, x, p)f(t, x, p− 2(n(x) · p)n(x)), (t, x, p) ∈ Rt × Σ−, (5.1)

where 0 ≤ a(t, x, p) ≤ a0 < 1, ∀(t, x, p) ∈ Rt × Σ− and 0 ≤ g ∈ L∞(Rt × Σ−) verifies :

M− +K− =
∫ T

0

∫

Σ−
|(v(p) · n(x))|(1 + E(p))g(t, x, p) dtdσdp < +∞.

In this case we obtain the estimates :
∫ T

0

∫

Σ±
|(vc(p) · n(x))|γ±fc(t, x, p) dtdσdp ≤ 1

1− a0
M−, (5.2)
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(1− a0)
∫ T

0

∫

Σ+
(vc(p) · n(x))Ec(p)γ+fc(t, x, p) dtdσdp+

ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ Ec|2 + c2|n ∧Bc|2) dtdσ

≤K− +
ε0c

2
H, (5.3)

and :

(1− a0)
∫ T

0

∫

Σ−
|(vc(p) · n(x))|Ec(p)γ−fc(t, x, p) dtdσdp+ a0

ε0c

2

∫ T

0

∫

∂Ω

(|n ∧ Ec|2 + c2|n ∧Bc|2) dtdσ

≤K− + a0
ε0c

2
H. (5.4)

Notice that the inequality (5.3) still gives uniform estimates for the tangential traces of the electro-
magnetic field and thus the other computations (estimates for the total energy, outgoing kinetic
energy, normal traces of the electro-magnetic field) follow in similar way. Note also that the Vlasov-
Maxwell system with initial-boundary conditions can be analyzed by using the same method.

6. Appendix.

For the sake of presentation we give in this section some details concerning the orthogonal
decomposition of tangential fields of L2(∂Ω)3 (or L2(]0, T [×∂Ω)4). The results are analogous to
the well-known orthogonal decomposition result for fields of L2(Ω)3 (see [13], p. 22). We assume
that ∂Ω is bounded and smooth (generally C1). We denote by (xr1 , xr2 , xr3) = (x′r, xr3), with
1 ≤ r ≤M , a system of local coordinates i.e., there is α, β > 0 such that {(x′r, xr3) | ar(x′r)− β <
xr3 < ar(x′r), x′r ∈ ∆r} ⊂ R3

x − Ω, {(x′r, xr3) | xr3 = ar(x′r), x′r ∈ ∆r} ⊂ ∂Ω, {(x′r, xr3) | ar(x′r) <
xr3 < ar(x′r) + β, x′r ∈ ∆r} ⊂ Ω, where ∆r = {x′r | |xr1 | < α, |xr2 | < α} and ar ∈ C1(∆r).
The exterior unit normal is given locally by n(x) = ( ∂ar∂xr1

, ∂ar∂xr2
,−1) · (1 + |∇x′rar|2)−

1
2 . If f

belongs to C1(∂Ω) the tangential gradient of f is given locally by ∇τ f(x) = A(x) · ∇x′rfr, where
fr(x′r) = f(x′r, ar(x

′
r)), x

′
r ∈ ∆r and A = (aij) ∈M3,2, aij = δij−ni(x)nj(x), 1 ≤ i ≤ 3, 1 ≤ j ≤ 2

(the tangential gradient doesn’t depend on the system of local coordinates). Notice that we have
n · ∇τ f = 0. We also define rot τf = n∧∇τ f for f ∈ C1(∂Ω). Obviously we have n · rot τf = 0.
A direct computation shows that ∇τ and rot τ are orthogonal in L2(∂Ω)3 :

∫

∂Ω

∇τ f · (n ∧∇τ g) dσ = 0, ∀ f, g ∈ C1(∂Ω).

Moreover, by density we have also :
∫

∂Ω

∇τ ϕ · (n ∧∇τ ψ) dσ = 0, ∀ ϕ,ψ ∈ H1(∂Ω). (6.1)

For the definition of Sobolev spaces on ∂Ω the reader can refer to [24]. Consider now a tangential
field f ∈ C1(∂Ω)3, n ·f = 0, x ∈ ∂Ω and assume that ∂Ω ∈ C2. The divergence of f is given locally
by divτ f = n3div x′r

(
fr
n3

)
, x′r ∈ ∆r. By direct computations we check that for f ∈ C1(∂Ω)3,

n · f = 0, ϕ ∈ C1(∂Ω) we have :
∫

∂Ω

ϕ divτ f dσ +
∫

∂Ω

f · ∇τ ϕ dσ = 0.

In particular we have
∫
∂Ω

divτ f dσ = 0, ∀f ∈ C1(∂Ω)3, n · f = 0. The above identities hold also
for f ∈ H1(∂Ω)3, n · f = 0, ϕ ∈ H1(∂Ω). We can prove the Poincaré inequality :

Lemma 6.1. Assume that ∂Ω is bounded, connected and regular (C1). Then there is a constant
CP (Ω) > 0 such that :

∫

∂Ω

|ϕ(x)|2 dσ ≤ CP (Ω)

{∣∣∣∣
∫

∂Ω

ϕ(x) dσ
∣∣∣∣
2

+
∫

∂Ω

|∇τ ϕ|2 dσ
}
, ∀ ϕ ∈ H1(∂Ω).
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We use the notations : ‖u‖20,∂Ω =
∫
∂Ω
|u(x)|2 dσ, |u|21,∂Ω =

∫
∂Ω
|∇τ u|2 dσ, ‖u‖21,∂Ω =

‖u‖20,∂Ω + |u|21,∂Ω. As a consequence of the Poincaré inequality we obtain the classical result :

Lemma 6.2. Assume that ∂Ω is bounded, connected and regular (C1). Denote by K the sub-
space of constant functions and consider the quotient space H1(∂Ω)/K, endowed with the quotient
norm ‖û‖H1(∂Ω)/K = infu∈û ‖u‖1,∂Ω. Then | · |1,∂Ω is a norm on H1(∂Ω)/K equivalent to the
quotient norm and we have :

|u|1,∂Ω ≤ ‖û‖H1(∂Ω)/K ≤ (1 + CP (Ω))
1
2 · |u|1,∂Ω, ∀u ∈ H1(∂Ω).

By direct computations we check that :
∫

S

divτ f dσ =
∫

∂S

(n ∧ f) dτ, (6.2)

where f ∈ C1(∂Ω)3, n · f = 0 and S is a region of ∂Ω such that ∂S is a smooth closed path (for
details about integration of differential forms on manifolds and Stokes formulae the reader can
refer to [9]). The following result is classical :

Proposition 6.3. Assume that ∂Ω is bounded, simply connected and regular (C1) and con-
sider f ∈ L2(∂Ω)3, n · f = 0. Then the following statements are equivalent :
(i) divτ f = 0 in D′(∂Ω) (i.e.,

∫
∂Ω
f · ∇τ ϕ dσ = 0, ∀ϕ ∈ H1(∂Ω)) ;

(ii) ∃ψ ∈ H1(∂Ω) such that f = n ∧∇τ ψ.

Proof. The implication (ii) → (i) follows by formula (6.1). For the implication (i) → (ii)
consider first smooth fields f and use the formula (6.2). The general case follows by density.

Similarly we have :

Proposition 6.4. Assume that ∂Ω is bounded, simply connected and regular (C1) and con-
sider f ∈ L2(∂Ω)3, n · f = 0. Then the following statements are equivalent :
(i) div τ (n ∧ f) = 0 in D′(∂Ω) (i.e.,

∫
∂Ω

(n ∧ f) · ∇τ ψ dσ = 0, ∀ψ ∈ H1(∂Ω)) ;
(ii) ∃ϕ ∈ H1(∂Ω) such that f = ∇τ ϕ.

We introduce the notations : X = {f ∈ L2(∂Ω)3 | n · f(x) = 0 a.e. x ∈ ∂Ω}, Y = {∇τ ϕ | ϕ ∈
H1(∂Ω)}, Z = {n ∧∇τ ψ | ψ ∈ H1(∂Ω)}.

Proposition 6.5. Assume that ∂Ω is bounded, simply connected and regular (C1). Then Y
and Z are closed orthogonal subspaces of X and we have the decomposition :

X = Y + Z. (6.3)

Proof. By using formula (6.1) we deduce that Y ⊥ Z. By the Lemma 6.2 we check easily
that Y, Z are closed subspaces of X. Let us prove now that Y is dense in Z⊥ : take f ∈ Z⊥ such
that f ⊥ Y . By Proposition 6.4 the condition f ∈ Z⊥ implies that f = ∇τ ϕ, ϕ ∈ H1(∂Ω). Since
f ⊥ Y we deduce that

∫
∂Ω
|f |2 dσ =

∫
∂Ω
f · ∇τ ϕ dσ = 0, or f = 0. Therefore we have :

Y + Z = Y + Z = Z⊥ + (Z⊥)⊥ = X.

The previous proposition has the following direct consequences :
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Corollary 6.6. Consider f ∈ X. Under the hypotheses of Proposition 6.5 the following
statements are equivalent ;
(i) divτ f = 0, div τ (n ∧ f) = 0 in D′(∂Ω) ;
(ii) f = 0.

We denote by H1
τ (∂Ω) ⊂ H1(∂Ω)3 the closed subspace of tangential fields f ∈ H1(∂Ω)3,

n · f = 0 and let L2
0(∂Ω) = {u ∈ L2(∂Ω) | ∫

∂Ω
u(x) dσ = 0}. By using the orthogonal decomposi-

tion (6.3) we can deduce the following representation of (H1
τ (∂Ω))′ :

Proposition 6.7. Assume that ∂Ω is bounded, simply connected and regular (C2). Then we
have :

(H1
τ (∂Ω))′ = {∇τ ϕ+ n ∧∇τ ψ | ϕ,ψ ∈ L2

0(∂Ω)}.
Moreover, for all l ∈ (H1

τ (∂Ω))′, the representation l = ∇τ ϕ + n ∧ ∇τ ψ, with ϕ,ψ ∈ L2
0(∂Ω) is

unique and there is a constant C(Ω) > 0 such that ‖ϕ‖0,∂Ω + ‖ψ‖0,∂Ω ≤ C(Ω) · ‖l‖−1,∂Ω.

Proof. Denote by W the set W = {∇τ ϕ+ n ∧ ∇τ ψ | ϕ,ψ ∈ L2
0(∂Ω)} ⊂ (H1

τ (∂Ω))′. We will
prove that W is closed and dense in (H1

τ (∂Ω))′. Consider F : (H1
τ (∂Ω))′ → R a linear continuous

form on (H1
τ (∂Ω))′, vanishing on W . There is u ∈ H1

τ (∂Ω) such that F (l) = l(u), ∀l ∈ (H1
τ (∂Ω))′

and therefore we have :

−
∫

∂Ω

ϕdivτ u dσ +
∫

∂Ω

ψdivτ (n ∧ u) dσ = 0, ∀ϕ,ψ ∈ L2
0(∂Ω),

which implies that divτ u = divτ (n ∧ u) = 0 (for this observe that divτ u,divτ (n ∧ u) ∈ L2
0(∂Ω)

and thus is possible to take (ϕ,ψ) = (divτ u, 0) and (ϕ,ψ) = (0,divτ (n ∧ u)) ). By Corollary 6.6
we deduce that u = 0 and thus W = (H1

τ (∂Ω))′. In order to show that W is closed we will prove
that for all ϕ,ψ ∈ L2

0(∂Ω) we have ‖ϕ‖0,∂Ω + ‖ψ‖0,∂Ω ≤ C(Ω) · ‖∇τ ϕ+ n ∧∇τ ψ‖−1,∂Ω for some
constant C(Ω). Denote by l the form ∇τ ϕ+ n ∧∇τ ψ :

l(v) = −
∫

∂Ω

ϕdivτ v dσ +
∫

∂Ω

ψdivτ (n ∧ v) dσ, ∀v ∈ H1
τ (∂Ω). (6.4)

Take θ̂ ∈ H1(∂Ω)/K the unique solution for the variational problem :
∫

∂Ω

∇τ θ · ∇τ χ dσ =
∫

∂Ω

ϕχ dσ, ∀χ̂ ∈ H1(∂Ω)/K.

Note that the application χ̂→ ∫
∂Ω
ϕχ dσ is well defined since ϕ ∈ L2

0(∂Ω). We have ‖∇τ θ‖0,∂Ω ≤
C · ‖ϕ‖0,∂Ω. Moreover by elliptic regularity results we have u = ∇τ θ ∈ H1

τ (∂Ω) with ‖u‖1,∂Ω ≤
C · ‖ϕ‖0,∂Ω. By taking v = u in (6.4) we obtain that :

∫

∂Ω

|ϕ|2 dσ = −
∫

∂Ω

ϕdivτ u dσ = l(u) ≤ ‖l‖−1,∂Ω · ‖u‖1,∂Ω ≤ C · ‖l‖−1,∂Ω · ‖ϕ‖0,∂Ω,

which implies that ‖ϕ‖0,∂Ω ≤ C · ‖l‖−1,∂Ω. The analogous estimate for ψ follows in the same
manner by observing that :

l(n ∧ v) = −
∫

∂Ω

ϕdivτ (n ∧ v) dσ −
∫

∂Ω

ψdivτ v dσ, ∀v ∈ H1
τ (∂Ω).

As a consequence of Proposition 6.7 we obtain :

Proposition 6.8. Assume that ∂Ω is bounded, simply connected and regular (C2). Then we
have :

H1
τ (∂Ω) = {f ∈ X | divτ f ∈ L2(∂Ω), divτ (n ∧ f) ∈ L2(∂Ω)}.
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Moreover there is a constant C(Ω) > 0 such that :

‖f‖21,∂Ω ≤ C(Ω) · {‖divτ f‖20,∂Ω + ‖divτ (n ∧ f)‖20,∂Ω}, ∀f ∈ H1
τ (∂Ω). (6.5)

Proof. Observe that for all l ∈ (H1
τ (∂Ω))′ and f ∈ H1(∂Ω) we have :

l(f)= 〈∇τ ϕ+ n ∧∇τ ψ, f〉 = −
∫

∂Ω

ϕdivτ f dσ +
∫

∂Ω

ψdivτ (n ∧ f) dσ

≤(‖ϕ‖20,∂Ω + ‖ψ‖20,∂Ω)
1
2 · (‖divτ f‖20,∂Ω + ‖divτ (n ∧ f)‖20,∂Ω)

1
2

≤C(Ω)‖l‖−1,∂Ω · (‖divτ f‖20,∂Ω + ‖divτ (n ∧ f)‖20,∂Ω)
1
2 ,

which implies that ‖f‖1,∂Ω ≤ C(Ω) · (‖divτ f‖20,∂Ω + ‖divτ (n ∧ f)‖20,∂Ω)
1
2 . The conclusion follows

easily by regularization.

We introduce also the differential operators :

rotτ A = −n divτ (n ∧A)− n ∧∇τ (n ·A), ∀A ∈ C1(∂Ω)3,

∇(t,τ) f = (∂tf,∇τ f), ∀f ∈ C1(Rt × ∂Ω),

rot(t,τ) A = (n · rotτ ~A, n ∧ (∂t ~A−∇τ A0)), ∀A = (A0, ~A) ∈ C1(Rt × ∂Ω)4,

div(t,τ) A = ∂tA0 + divτ ~A, ∀A = (A0, ~A) ∈ C1(Rt × ∂Ω)4.

Note that for tangential fields A ∈ C1(∂Ω)3 we have rotτ A = −n divτ (n ∧ A). The following
identities follow by direct computations :

∫

∂Ω

rotτ A · ∇τ ϕ dσ = 0, ∀A ∈ C1(∂Ω)3, ∀ϕ ∈ C1(∂Ω),

∫ T

0

∫

∂Ω

rot(t,τ) A · ∇(t,τ) ϕ dtdσ = 0, ∀A ∈ C1(Rt × ∂Ω)4, ∀ϕ ∈ C1(Rt × ∂Ω), T periodic,

∫

∂Ω

rotτ A ·B dσ −
∫

∂Ω

A · rotτ B dσ = 0, ∀A,B ∈ C1(∂Ω)3,

∫ T

0

∫

∂Ω

rot(t,τ) A ·B dtdσ −
∫ T

0

∫

∂Ω

A · rot(t,τ) B dtdσ = 0, ∀A,B ∈ C1(Rt × ∂Ω)4, T periodic.

Obviously, the above identities hold for functions/fields in the corresponding time periodic Sobolev
spaces H1. We introduce also the notations :

XT = {f = (f0, ~f) ∈ L2(]0, T [×∂Ω)4 | n · ~f = 0,
∫ T

0

∫

∂Ω

f0(t, x) dtdσ = 0},

YT = {∇(t,τ) ϕ | ϕ ∈ H1([0, T ]× ∂Ω),
∫ T

0

∫

∂Ω

ϕ(t, x) dtdσ = 0},
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ZT = {rot(t,τ) ψ | ψ = (ψ0, ~ψ) ∈ H1([0, T ]× ∂Ω)4 , div(t,τ) ψ = 0, n · ~ψ = 0,
∫ T

0

∫

∂Ω

ψ0 dtdσ = 0}.

As for 3-component tangential fields we have the analogous result for 4-component tangential fields :

Proposition 6.9. Assume that ∂Ω is bounded, simply connected and regular (C2) and
consider f ∈ XT such that div(t,τ) f ∈ L2(]0, T [×∂Ω) and rot(t,τ) f ∈ L2(]0, T [×∂Ω)4 (in
D′([0, T ] × ∂Ω) periodic). Then f belongs to H1([0, T ] × ∂Ω)4 and there is a constant C(Ω) > 0
(depending on Ω but not on T ) such that :

|f0|21,[0,T ]×∂Ω + ‖~f‖21,[0,T ]×∂Ω ≤ C(Ω) · {‖div(t,τ) f‖20,[0,T ]×∂Ω + ‖rot(t,τ) f‖20,[0,T ]×∂Ω}. (6.6)

Proof. It is sufficient to prove the inequality (6.6) for T periodic smooth fields. We have :

‖div(t,τ) f‖20,[0,T ]×∂Ω + ‖rot(t,τ) f‖20,[0,T ]×∂Ω = ‖∂tf0 + divτ ~f‖20 + ‖divτ (n ∧ ~f)‖20 + ‖∂t ~f −∇τ f0‖20
= ‖∂tf0‖20 + ‖∇τ f0‖20 + ‖∂t ~f‖20 + ‖divτ ~f‖20 + ‖divτ (n ∧ ~f)‖20.

By using (6.5) we deduce that :

‖divτ ~f‖20 + ‖divτ (n ∧ ~f)‖20 ≥
1

C(Ω)

{
‖~f‖20 + ‖∇τ ~f‖20

}
. (6.7)

Finally one gets that :

‖div(t,τ) f‖20,[0,T ]×∂Ω + ‖rot(t,τ) f‖20,[0,T ]×∂Ω ≥ min
(

1,
1

C(Ω)

)
· (|f0|21 + ‖~f‖21).

Now we can prove the orthogonal decomposition result for 4-component fields of L2(]0, T [×∂Ω)4.

Proposition 6.10. Assume that ∂Ω is bounded, simply connected and regular. Then YT and
ZT are closed orthogonal subspaces of XT and we have the decomposition XT = YT + ZT .

Proof. By using the Poincaré inequality we check easily that YT is closed. By Proposition 6.9
combined with the Poincaré inequality we deduce also that ZT is closed. An easy computation
shows that YT ⊥ ZT . We will prove that YT is dense in Z⊥T which implies that :

XT = YT + Y ⊥T = YT + (Z⊥T )⊥ = YT + ZT = YT + ZT .

Indeed, consider f ∈ XT such that f ⊥ YT , f ⊥ ZT . We deduce that
∫ T

0

∫
∂Ω
f · ∇(t,τ) ϕ dtdσ = 0,

∀ϕ ∈ H1([0, T ] × ∂Ω)4, or div(t,τ) f = 0 in D′([0, T ] × ∂Ω). Consider now ψ = (ψ0, ~ψ) ∈
H1([0, T ] × ∂Ω)4 with n · ~ψ = 0. Take ϕ ∈ H2([0, T ] × ∂Ω)4 such that −div(t,τ) ∇(t,τ) ϕ =
div(t,τ) ψ (such a solution exists since

∫ T
0

∫
∂Ω

div(t,τ) ψ dtdσ = 0). Consider now the field Ψ =

ψ − (〈ψ0〉, 0) + ∇(t,τ) ϕ ∈ H1([0, T ] × ∂Ω)4, where 〈ψ0〉 =
R T
0

R
∂Ω ψ0 dtdσR T

0

R
∂Ω 1 dtdσ

. By construction we

have div(t,τ) Ψ = 0, n · ~Ψ = 0 and
∫ T

0

∫
∂Ω

Ψ0 dtdσ = 0, or rot(t,τ) Ψ ∈ ZT . We deduce that∫ T
0

∫
∂Ω
f · rot(t,τ) ψ dtdσ =

∫ T
0

∫
∂Ω
f · rot(t,τ) Ψ dtdσ = 0 or rot(t,τ) f = 0 in D′([0, T ] × ∂Ω). By

Proposition 6.9 and the the condition
∫ T

0

∫
∂Ω
f0(t, x) dtdσ = 0 we deduce that f = 0.

Consider now a decomposition f = ∇(t,τ) ϕ + rot(t,τ) ψ as in Proposition 6.10. We deduce
that :

‖f‖20,[0,T ]×∂Ω = ‖∇(t,τ) ϕ‖20,[0,T ]×∂Ω + ‖rot(t,τ) ψ‖20,[0,T ]×∂Ω.
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By using Proposition 6.9 and the condition div(t,τ) ψ = 0 we obtain that :

|ϕ|21,[0,T ]×∂Ω + |ψ0|21,[0,T ]×∂Ω + ‖~ψ‖21,[0,T ]×∂Ω ≤ C(Ω) · ‖f‖20,[0,T ]×∂Ω.

By using also the conditions
∫ T

0

∫
∂Ω
ϕ(t, x) dtdσ = 0,

∫ T
0

∫
∂Ω
ψ0(t, x) dtdσ = 0 and the Poincaré

inequality we obtain :

‖ϕ‖21,[0,T ]×∂Ω + ‖ψ0‖21,[0,T ]×∂Ω + ‖~ψ‖21,[0,T ]×∂Ω ≤ C(T,Ω) · ‖f‖20,[0,T ]×∂Ω.

The previous proposition has the following direct consequences :

Corollary 6.11. Consider f ∈ XT . Under the hypotheses of Proposition 6.10 we have ;
(i) div(t,τ) f = 0, in D′([0, T ] × ∂Ω) (i.e.,

∫ T
0

∫
∂Ω
f · ∇(t,τ) ϕ dtdσ = 0, ∀ϕ ∈ H1([0, T ] × ∂Ω)) iff

f ∈ ZT ;
(ii) rot(t,τ) f = 0, in D′([0, T ]× ∂Ω) (i.e.,

∫ T
0

∫
∂Ω
f · rot(t,τ) ψ dtdσ = 0, ∀ψ ∈ H1([0, T ]× ∂Ω)4) iff

f ∈ YT ;
(iii) div(t,τ) f = 0 and rot(t,τ) f = 0 in D′([0, T ]× ∂Ω) iff f = 0.
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