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Abstract. We study here the behavior of time periodic weak solutions for the relativistic Viasov-Mazwell
boundary value problem in a three dimensional bounded domain with strictly star-shaped boundary when the light
speed becomes infinite. We prove the convergence toward a time periodic weak solution for the classical Viasov-
Poisson equations.
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1. Introduction.

In this paper we analyze the behavior of weak solutions for the relativistic Vlasov-Maxwell
equations with boundary conditions, when the light speed goes to infinite. We prove the conver-
gence toward a weak solution for the classical Vlasov-Poisson equations. Our main interests focus
on permanent regimes, i.e., stationary or time periodic solutions.

The Vlasov equation describes the kinetic of charged particles of a plasma. This equation is
coupled to evolution equations for the electro-magnetic field. If the magnetic field is neglected,
we end up with the Poisson equation for an electrostatic potential ; this leads to the Vlasov-
Poisson system. Otherwise, if the magnetic field is not small, the full Maxwell equations must be
considered ; this gives the Vlasov-Maxwell system.

Consider 2 an open bounded subset of R3, with boundary 9Q regular. We introduce the
notations ¥ = 902 x Rf, and :

»E = {(z,p) € 9Q x Rg | £ (v(p)-n(z)) >0}, (1.1)

where n(z) is the unit outward normal to 9Q at x and v(p) is the velocity associated to some
energy function £(p) by v(p) = V,E(p), p € R. The functions to be considered are :

=2 =2, (12)

for the classical case and :

2 2 \'"* P 2\
£.(p) = me @+mw) —1,mm=m@+mw) 7 (13)

for the relativistic case, where m is the mass of particles, ¢ is the light speed in the vacuum. We
denote by f(¢,z,p) the particles distribution depending on the time ¢, the position = € Q and the
momentum p € RS and by (E(t, ), B(t,z)) the electro-magnetic field depending on ¢ and . If we
note by F(t,x,p) = q- (E(t,z) + v(p) A B(t,z)) the electro-magnetic force, the Vlasov problem is
given by :

Of +v(p)-Vof +q- (E(t,x) +v(p) AB(t,2)) -V, f =0, (t,2,p) €Ry x QxR (1.4)

fit,z,p) =g(t,z,p), (t,x,p) e Ry x X7, (1.5)
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where ¢ is the charge of particles and g is a given T periodic function representing the distribution

of the incoming particles. The problem (1.4), (1.5) is coupled with the Maxwell equations :

HE—c rot B=—2L, 3B+rot E=0, divE="2, divB=0, (t,z) cR, xQ, (L6)
€0 €0

with the boundary condition :
n(x) AN E(t,z) + c-n(x) A (n(x) A B(t,z)) = h(t,x), (t,z) € Ry x 09, (1.7)

where g is the permittivity of the vacuum, p(t, ) = q [s f(t,x, p)dp is the charge density, j(t, ) =
P
q Jgs f(t,z,p)v(p)dp is the current density and h is a given T' periodic function on the boundary
P

R; x 9Q such that (n - h)|g,x00 = 0. We suppose that the boundary data have finite energy
fonzf [(v(p) - n(x))|E(p)g(t, x, p) dtdodp + fOTfBQ |h(t,z)|? dtdo < +o00 and 0 < g € L®(Ry x ¥7) .

Various results were obtained for the free space system of Vlasov-Poisson. Weak solutions were
constructed by Arseneev [1], Horst and Hunze [21]. The existence of classical solutions has been
studied by Ukai and Okabe [30], Horst [20], Batt [2], Pfaffelmoser [25]. The existence of global
classical solutions for the Vlasov-Poisson equations with small initial data is a result of Bardos and
Degond [3], see also Schaeffer [28], [29]. The propagation of the moments for the three dimensional
Vlasov-Poisson system was studied by Lions and Perthame in [23]. The existence of global weak
solution for the Vlasov-Maxwell system in three dimensions was obtained by DiPerna and Lions
[12], one of the key points being the compactness result of velocity averages (see also [16]). Results
for the relativistic case were obtained by Glassey and Schaeffer [14], Glassey and Strauss [15].

Results for the initial-boundary value problem were obtained by Ben Abdallah [4] for the
Vlasov-Poisson system in three dimensions and Guo [18] for the Vlasov-Maxwell system. The
stationary problem for the Vlasov-Poisson equations was studied by Greengard and Raviart [17]
in one dimension and by Poupaud [26] in three dimensions for the Vlasov-Maxwell system. An
asymptotic analysis of the Vlasov-Poisson system was done by Degond and Raviart [11] in the case
of the plane diode. The regularity of the solutions for the Vlasov-Maxwell system in a half line has
been studied by Guo [19]. The convergence of smooth solutions for the Vlasov-Maxwell equations
toward a solution for the Vlasov-Poisson equations when the light velocity goes to infinity was
proved by Degond [10], Schaeffer [27]. Results for the time periodic case can be found in [5], [6],
(7], [8].

We start by constructing 7" periodic weak solutions for the relativistic Vlasov-Maxwell system
when the light speed c is fixed. The main ingredient are the a priori estimates, which derive from
the conservation laws of the mass, momentum and total energy. As usual we multiply the Vlasov
equation by &.(p) and the Maxwell equations by (E,c? - B) to obtain formally :

d d
dt/ﬂ/]Rg Ec(p)f(t, 2, p) dl‘dp—k@ - (|E(t,1‘)|2 2. |B(t71‘)|2) i

2 dt Jg
+/E+ (velp) - n(@))Eclp)r* (2,2, p) dodp + 5 /BQ(MA E(t,)]* +¢* - [n A B(t,2)|*) do
= [ 1ee) @) IEcplgtt, ) dodp+ 5 [ it do te R
- o0

where vT f represents the trace of f on R; x 7. Note that in the time periodic case the above
formula doesn’t provide bounds for the total (kinetic and electro-magnetic) energy, since we don’t
dispose of initial conditions. Nevertheless, after integration over one period we obtain :

g + oc [T 2, 2 2
[ @ n@)eon® sie.o.p) oty + 5 [ [ (nnB@oP +E nnBe,o)P) dido
0Jx+ 0J0Q

= ! -n(x xT o @ g T 2 o
_ / / (velp) - n@)IEc(p)g(t, x.p) dtdodp + 2 / /m'h“’ P dtdo. s
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Of coarse, the estimate (1.8) is not sufficient, but other a priori estimates can be obtained by using
the momentum conservation law (cf. [6]). For this we need to impose a geometrical hypothesis on
the boundary : we assume that 02 is strictly star-shaped (see also [22]).

Once we have constructed T periodic solutions for every ¢ > 0, in order to study the behavior
of these solutions when ¢ — 400 we are looking for uniform estimates with respect to ¢. Remark
that for ¢ > 1, the inequality (1.8) gives uniform estimates for the tangential traces of the electro-
magnetic field :

€0

T T
L O/@g(|n/\E(t,x)|2+02~|n/\B(t,x)|2) dtdag/o/i|(vc(p)-n(m))|é’c(p)g(t,x,p) dtdodp

9N T
+—// |h(t,2)|?* dtdo. (1.9)
2 JoJoa

In particular, the inequality (1.9) implies that lim. . oo |2 A Bllr2¢0,7[x00)2 = 0. Similarly,
we need to estimate the total electro-magnetic energy = fOTfQ(|E(t,:17)|2 + ¢ - |B(t,z)]?) dtdx
and the normal traces £ foném(Kn - E(t,x))]2 + ¢ - |(n - B(t,x))|?) dtdo in order to conclude
that in the limit model (when ¢ — +o00) the magnetic field vanishes and thus (f, E) verify
the Vlasov-Poisson model. Indeed, following the ideas of [6] the total energy can be estimated
in term of the tangential traces of the electro-magnetic field and the outgoing kinetic energy
Kl = fojf?, (ve(p) - n(x))Ec(P)yT f(t, 2, p) dtdodp, but the problem is that the inequality (1.8)
doesn’t guarantee uniform estimate of KT with respect to ¢ (unless h = 0). One of the main
difficulties is to remove this dependence on c.

For example in the stationary case we write £ = —V,® and by multiplying the Vlasov equation
by E.(p) + q(®(z) + a), a € R we find :

[ 0u0) @) Ex(0) + a0 () + @) drdp = (110
b
By using Sobolev and interpolation inequalities we have :

/E (velp) - n(2))Eclp)rf dodp=— / (0e(p) - n(2))a(+® + @)y f dodyp

b

<|q| inf ||v® + al| L5 (a0) - H/ (ve(p) - ()7 f(,p) dp
a€R R3

5

L7 (80

ol =

<0 I+ allany ( [ Ioe mI(1+ € dodp) - ol
a P

<O AE| 20 - (KX + K, +2M; )3, (1.11)

where M = [ |(ve(p) - n(2))lg(x, p) dodp, K. = [;_ |(ve(p) - n())|Ec(p)g(2, p) dodp. The in-
equalities (1.9), (1.11) imply uniform bounds for K. The time periodic case is more complicated ;
we need to assume more regularity with respect to ¢ for h, for example d;h € L?(]0, T[x0)3. After
establishing uniform estimates with respect to ¢, we conclude by weak stability results (cf. [12]).
The paper is organized as follows: first we establish the a priori estimates for T periodic solu-
tions for the Vlasov-Maxwell system (classical or relativistic case) when the light speed ¢ is fixed.
In section 3 we show that, in fact, the above estimates are uniform with respect to the light speed.
In section 4 we justify the weak convergence toward a T periodic weak solution for the classical
Vlasov-Poisson equations. We end this paper with some remarks concerning other systems.

2. The existence of weak solution for the Vlasov-Maxwell equations.
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In this section we justify the existence of weak solution for the Vlasov-Maxwell equations. We
analyze the permanent regimes (time periodic or stationary solutions). The same method applies
for both relativistic and classical cases. The arguments are standard. First we analyze a regularized
system (the existence of solution for such a system can be obtained by using a fixed point method).
Secondly we deduce a priori estimates for the regularized solutions. We conclude by weak stability
under uniform estimates. We only recall here how to obtain a priori estimates for smooth solutions,
compactly supported in momentum. For the other details the reader can refer to [6], [8], [7]. We
suppose that (f, E, B) is a smooth (C*) T periodic solution for the Vlasov-Maxwell equations in
the relativistic or classical case (we denote by £(p), v(p) the energy and velocity functions in both
cases). For reasons which we will justify later on, it is convenient to start with the analysis of the
perturbed Vlasov-Maxwell system :

af +0f +v(p) - Vaof +q- (E(t,z)+v(p) AB(t,x))-Vpf =0, (t,z,p) €Ry xQ XR?;, (2.1)

a-E(t,x) + 0 E —ci-rot B= —](Z’x), a-B(t,z)+0,B+rot E=0, (t,z) e R, xQ, (2.2)
0

f(taxap) = g(t7xap)a (tax7p) S Rt X 2_7 (23)

n(x) N E(t,z) 4+ ¢ -n(z) A (n(z) A B(t,z)) = h(t,x), (t,z) € Ry x 09, (2.4)

where « > 0 is a small parameter, 0 < g € L°(R; x ¥7) and h are given T periodic functions
verifying :

T T
|10 n@ni+ e@attop) dedodp+ [ [ it dudo <+
0/e- 0Joq
First of all remark that since e f is constant along characteristics (4. e., solutions of 2X = v(P(s)),
48 — ¢ (E(s, X(s)) + v(P(s)) A B(s,X(s))) ) we have :
1l oo @y x2xr2) < 19l Lo R, x5-); (2.5)

and also f > 0. If we denote by v f the trace of f on R; x T we have also :

17 fll Loy sy < 191l Lo (e x5-)5 (2.6)

and v+ f > 0. In order to simplify our computations we suppose also that f is uniformly compacted
supported in momentum, 3R > 0 such that for all (¢,z,p) € Ry x 2 x Rf’, with |p| > R we have
f(t,z,p) = 0. After integration of the Vlasov equations with respect to p € Rg we deduce the
continuity equation :

a-p+op+divi=0, (t,x) € Ry x . (2.7)
By taking the divergence of the Maxwell equations we deduce as usual that :
divj

- ﬁ + at£7
€0 o €0

a-div B+ 0 div E = —

which implies :

a- (divE—p) + 0, (divE—p> =0, (t,z) € R, x Q.
€0 o

By time periodicity we conclude that div E = Eﬁ. Similarly one gets that « - div B 4+ dydiv B =0
which implies by periodicity that div B = 0, Cjt,x) € R; x Q. Notice that the above argument
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fails if « = 0. This is why we introduce the small perturbations a(f, F, B) in the Vlasov-Maxwell
equations. We introduce the notations :

T
w= = [ 16) - nlelatt..p) ddodp. 5= [ / ) )\Eg(t,,p) dedodp,

MT: —//E+ Wt ft,z,p) dtdodp, K : —// -n(x))E(p)yT f(t,z,p) dtdodp,

and H := fOfSQ |h(t,z)|? dtdo. We integrate the Vlasov equation with respect to (z,p) € Q x R3
and we deduce the mass conservation law :

d
o / f(t,z,p) dedp+ & / £(t,2,p) dadp + / (v(p) - (@)1 £ (¢, 2,p) dodp = 0, t € Ry,
o Jr3 dt Jq R3 )

(2.8)
which implies that :

T
Oé-// f(t,z,p) dtdedp + M = M ™. (2.9)
oJa Jrs

Notice that we obtained an estimate of the outgoing mass M uniformly with respect to a > 0, ¢ >
0. We multiply now the Vlasov equation by &€(p) and we integrate with respect to (z,p) € 2 xR :

a./Q/RgE(p) f(t,z,p) dmder*/ /]Rd f(t,z,p) dxdp+/2( v(p) - n(x)EP)vf(t,x,p) dodp
- [ i) Beod @)

We multiply now the Maxwell equations by (F,c?- B) and after integration with respect to z € Q
we deduce that :

o [(B@a)+¢ Bla)P) dot 55 [ (P +c B0 do

1
—02-/ (nANB)-Edo=—— [ j(t,z)  E(t,x) dz.
a0 €0 Jo
A direct computation shows that :

1 1
—c¢(nA\NB)-E= §(|n/\E|2 +c* - |nABJ?) - §|h|2.

Finally one gets :

od
0450-/9 (1B 2+ B2 do+ 5 | (B + e |B(tx)?) do (2.11)
gocC 2 2 2 . goC 2
+— (|n/\E| +¢° - |nA B )do:—/j(t,x)-E(t,m) de + — |h(t, z)| do.
2 Q 2 Joo

By adding (2. 10) (2 11) we deduce the energy conservation law :

/ E(p)f(t, z,p) dudp + aeg / (IE(t,2)* + ¢ |B(t,2)”) dz
o Jrs 0

+= </Q . Ep)f(t,x,p) dedp + 50/9(|E(t’$)|2 LBt dx)

+ [ ) @)E@N 0.0 dodp+ 5 [ (A BE 46 BE) do

=20 [ |h(t,2)? do, tER,. (2.12)
2 Joa
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In particular, after integration on |0, 7| we deduce that :

T T
o [[ [ e@rte disap+ oz [ [ (B + 2 () duds
r T
+//E+(v(p) n(a))E(p)yT f(t,x,p) didodp + % /O/m(m/\ B2+ |n A BJ2) dtdo
T
o 2 g
//_ 2))|E(P)g(t, z,p) dtdodp + = /O/m|h(t,x)| dtdo, t€ Ry, (2.13)

which provides uniform estimates in « > 0 for the outgoing kinetic energy K™ and the tangential
traces of the electro-magnetic field. Remark that the previous inequality allows us to obtain the
following estimates for the tangential traces of the electro-magnetic field :

€0

T
5 / (\n/\E|2—|—02-\n/\B|2)dtd0§K_—|—%OH, a>0, c>1 (2.14)
0Joo

In order to establish a priori estimates for the total energy and the normal traces of the electro-
magnetic field we also use the momentum conservation law. We suppose that 0f is strictly star-
shaped with respect to some point z¢ € Q (i.e., Ir > 0 such that ((x — zg) - n(z)) > r,Va € Q).
After translation we can assume that zo = 0 € Q and thus (z-n(z)) > r, Vo € 0Q. This hypothesis
was used in order to estimate the solutions of the Maxwell equations by using the multiplier method
(see [22]). We multiply the Vlasov equation by (p- ) and integrate with respect to (2,p) € QxR :

//Wp x)f(t,x,p) dxder //Rsp x) tmp)dmder/( (p) - n(z))(p - x)f(t,z,p) dodp

//R f(t,z,p) dxdp+/ﬂ(pE+jAB)(t,x)~xdx.

By using the perturbed Maxwell equations we check by direct computation that :
pE+jAB=¢eo(Ediv E — E Arot E) + eoc®(Bdiv B — B Arot B) — €00:(E A B) — 2aso(E A B),

and therefore we obtain that :

oz./Q/Rg (p-q;)f(t,x,p)dxdp+2a€o/Q(E/\B).xdac—|—(i/Q/Rg(p.x)f(tJm) dadp

+€0% (EAB)-xdx+ /Z(U(p) -n(x))(p-x)f(t,x,p) dodp (2.15)
// fdxderao/{EdlvE E Arot E) 4 ¢*(Bdiv B — B Arot B)} -z dx.
Rd

Remark also that we have the identity :

3
udiv u — (u A rot u); Z 8i (usuy) V1l <i <3, (2.16)

1
2 8
where u = (u;)1<i<3 is a smooth function (in fact this identity still holds in D’(Q) for u €
H(div ;) N H(rot ;)). After integration by parts we deduce that :

3 3
0 10
udiv u—(u Arot u)] - x do = / — (u;u,; r; dr
[ v u—(un rot ) > [\ Xyt 35

L 2 1 2
z/aQ(x~u)(n~u) da—g/aﬂ(n~a:)|u| da+§/9|u| dx. (2.17)




Asymptotic behavior for the three dimensional Vlasov-Maxwell system when ¢ — +oo 7

We use the decomposition u = (n-u)n —n A (n Au) and we can write :
(z-u)(n-u)=(n-2)|(n-w)*—=((nAnAu)-z)(n-u. (2.18)

Since Q is bounded with boundary strictly star-shaped, there are 0 < r < R such that r <
(n(x) - z) < R, Yz € 9. By combining (2.17), (2.18) we deduce that :

ivu—uArot u)-x le n-2)|(n-u)|? 071 n-z)|nAul? do
/Q(udlvu Arot u) -z d 2/39( )|( )| d 2/@39( Yn Aul®d
— nAnAw)- -2)(n-u 0+1 ul? dz

1
_f/ (n~u)2do+f/|u|2dx—5/ |n/\u|2do—R/ nAul-|(n-u)| do
2 Joq 2 Ja 2 Joq o9
1 R R?
Zf/ (n-u)2d0+f/|u|2dx——/ |n/\u|2d0—f/ (n-u)*do — — In A ul? do
2 Joq 2 Ja 2 Jaq 4 Jaq r Joa
1 R R?
:%/ (n-u)? do+§/ |u|? dx — <2+)/ In Aul? do. (2.19)
o0 Q r o0

By taking now u = F and u = B and by observing that (v(p) - p) > E(p), Vp € Rg (relativistic or
classical case), (2.15), (2.19) yield :

// 5(p)fdxdp+%/(\E(t,x)\2+c2~|B(t,x)\2)dx+% (n-E)*+c-(n-B)}) do
Q JR3 Q

V

[219]

§a~/Q/Rg(p-x)fdxdp+2a-ao/Q(E/\B)-xd:lc—i—jt/Q/Rg(p-x)fdxdp

d
+ | eEnB)-ado+ / (v(p) - n(@))(p - ) dodp

R R? 2, 2 2
oo (5 +— (InAE?+¢-|nABJ?) do, teR,. (2.20)
r o0

Note also that there is a constant C' = C(m) > 0 not depending on ¢ such that for ¢ > 1 we have
Ip] < C(m)(1+E.(p)), Vp € R3. Therefore, by using (2.9), (2.13) we obtain the estimate :

T
/0/< v(p) - (@) (p- 2)] didodp //| D)+ R-Cm)(1 +Ep))f didodp
<2 R-C(m)(M~ + K~ )+% R-C(m)-H, (2.21)
and :
’ 2, 2 2 2
go/o/mumm + A BP) dido < 2K + oL (2.22)

After integration of (2.20) with respect to ¢t €]0,7[ and by using the time periodicity finally we
obtain that :

T
// ) f dtdxdp—i——// |E? + ¢|B|?) dtda +807’// (n-E)?+c-(n-B)?) dtdo
0JQ ]R3 OQ

<R-C(m) (M + K~ +// NA+Ep ))fdtdadp)
=+

+<R R2) <2K +€0H>+Ol // IRSC R(1+&(p))f didzdp

+ aggR/O/QﬂE(t,x)F + 2 - |B(t, x)|?) dtdz. (2.23)
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By using (2.9) we have also afOTfQ Jgs f dtdzdp < M~ and by taking aC(m)R < 3, 2 < 1,
¢ > 1, the inequality (2.23) implies :

1 T
7// Ep)f dtdadp+2 / (|E*> + ¢*|B|?) dtdx // n-E)?+ . (n-B)?) dtdo
2 0JQ R3 Q o0

§<2R~C( )+ R+ R2> (M~ +K )+ R-C(m)(Mt +KT)

R R?

The inequalities (2.9), (2.13) assure that :
M*<M~, and K* <K~ +° : Cy. (2.25)

Therefore it is possible to obtain uniform estimates in & > 0 (when ¢ > 1 is fixed) :

T
// Ep)f dtdwdp+f// |E|* +2|BJ%) dtdm+// 2))(1 + E(p)) f dtdodp
0Ja JRS o
Eor// (n A EP +¢*- |n A B?) dtdo +E°—r// n-E)+c - (n-B)?) dtdo
o0 o0
M~ +Cy- KT +Cs3-H (2.26)

where C; = 1+ 6R-C(m) + 2R+ 2 €y, = 14 6R-C(m) + 2R+ . 4 Oy = eo(R+ 2E 4
5+ 5 +cR-C(m)). The total mass can be estimated by using the equatlon div E=£:

T T T T
/// fdtda:dp://pdtda;zso//divEdtdxzso// (n- E) dtdo
0Jo Jr3 0Jo 0JQ 0Jog
. 1/2 1/2
0(// (n- E)? dtda) (T/ da> . (2.27)
0Jon 0

Note that the only dependence in c in the estimate (2.26) comes from the estimate of Kt by
K~ + %°H. In fact, later on we will see that it is possible to estimate the outgoing kinetic energy
K™ uniformly in ¢ and therefore the inequality (2.26) will provide uniform estimates with respect
to ¢. For the moment assume that ¢ is fixed and thus (2.26) allows us to prove the existence of T
periodic weak solution for the Vlasov-Maxwell equations :

THEOREM 2.1. Assume that Q0 is bounded with 02 smooth and strictly star-shaped, g €
L>*(Ry x X7) and h are T periodic such that g > 0, (n-h)|r,xo0 =0 and f()]]zf [(v(p) - n(x))|(1+
E(p))g dtdodp < 400, fg]{m |h|? dtdo < +oo. Then there is a T periodic weak solution (f, E, B) €
L°(R; x @ x R3) x L}

oe(Re; LQ(Q)3)2f0r the Vlasov-Mazwell system (classical or relativistic case) :

atf +U(p) ! vaff+q ' (E(t,I) +’U(p) A B(tvx)) ’ vpf =0, (t,l’,p) € Ry x Q2% Rga

OE —c®-rot B=—

i(t
IGT) ot E=0, divE=". divB=0, (t,z) € Ry x Q,
€0 €0

ft,z,p) =g(t,x,p), (t,z,p) ER;xE", nAE+c-nA(nAB)=h(taz), (t,z)€ R, x 0.
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Moreover, the continuity equation d:;p + div j = 0 is satisfied, there is trace functions vTf =
flroxs+, IV fllzee < llgllne, normal and tangential traces (n- E,n-B), (n A E,n A B) verifying :

T T
[ o) n@yt s didedp = [ [ 10) n(@)lg ddodp =t (228)
0Jx+ 0 -

/T/ (v(p) - n(x))E(p)y +fdtdadp+—// (In A E)? +¢* - |n A B|?) dtdo
/0/7 z))E(p)g dtdadp+—// |h|2dtda:K*+%H, (2.29)

and for some constant C(m, &g, ¢, ) we have :

/OT/Q/RB ()fdtdxdpﬂtf// (B[ + 2| BJ?) dtdz + =2~ /OT/m (n-E2+c-(n-B)?) dtdo

<C(m,ep,c,)- (M~ + K~ + H). (2.30)

Proof. The proof follows by standard arguments. We construct 7" periodic solutions for the
perturbed Vlasov-Maxwell system. When ¢ > 1 is fixed, the estimates (2.5), (2.6), (2.26) allow us
to extract subsequences such that fr — f weakly * in L>®(R; x Q x Rg), v fr — vt f weakly %
in L°(R; x X1), (Ex, Br) — (E, B) weakly in L?(]0,T[; L*(Q)3)?, (n- Ex,n- By) — (n- E,n - B)
weakly in L2(]0,T[; L?(09Q))%, (n A Ex,n A B) — (n A E,n A B) weakly in L2(]0,T; L2(89)3)2
when k& — 400. One of the key points consists of applying the velocity average result of DiPerna
and Lions (cf. [12]) in order to pass to the limit the non linear term of the Vlasov equation :

T T
lim // fxq(Ex +v(p) A By) - Vpp dtdzdp = // fq(E +v(p) A B) - Vo dtdzdp,
k=too JoJa Jr3 oJa Jrs

for all o € C'(R, x Q x R?) T periodic and compactly supported in momentum. The equality
(2.28) and the inequalities (2.29), (2.30) for the solution (f, E, B) follow as usual by weak limit.
0

3. Uniform estimates with respect to c.

As said before, the only dependence in ¢ in (2.30) comes from the estimate of the outgoing
kinetic energy K+. In order to remove this dependence in ¢ we will prove that KT can be esti-
mated uniformly with respect to c. Before analyzing the general time periodic case, let us start by
studying the stationary case, which is much simpler.

3.1. Stationary case.
We need the following lemmas :

LEMMA 3.1. Assume that Q C R2 is a smooth open bounded set simply connected and consider
E e LQ(Q)3 verifying rot E =0 in D'(Q) and n AN E € L2(89)3. Then there is ® € HY(Q) such
that E = =V;®, ¢ :=~y® € H'(39Q) and |y®| m1(a0) < C(Q) - [In A Ellp2(50)s-

Proof. Since rot £ = 0 and €2 is simply connected there is ® € H(Q) such that £ = -V, ®.
We can suppose that [,,¥® do = 0. We take &, € C?*(Q) such that &, — & in H'(Q) (in

particular Ej, := —V,®, — —V,® =: E in LQ(Q)3) and —n AV, P, = nAE, > nAEin
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L2(89)3. We consider also ®; = @), — L [0 ®; do. Since ®p — y® in L?(9Q) we have
o

limg oo [o0 ®y, do = Joq7® do = 0 and thus (®4)x converges to ® in H'(2). Finally we have

B, — @ in HY(Q), B, = —Vo®), — —V,® = Ein L2(Q)>, n AEy = —n AV,®), » nAE
in L2(8Q)3 and [y, @, do = 0, Yk > 1. By construction we have rot Ey = 0 and thus after
multiplication by V,x with x € C?(Q2) one gets :

/ (n/\Ek)-medaz/rotEk-medm—/Ek-rotvwxdx:O.
o0 Q Q

We denote by V., the tangential gradient on 9f). Since for smooth functions we have V,x =
Vix+ %n, finally we deduce that [, (n A Ey) - V.x do =0ornAEj € L2(8Q)3 is a divergence
free tangential field on 9S2. Therefore there is ¢, € H*(99Q) such that n A B, = —n A V, .
This is a consequence of an orthogonal decomposition result for tangential fields of L2(89)3 (see
the Appendix for details). Moreover we can suppose that [, 9q Pk do = 0 and therefore we have

ekl ooy < CKQ) - |n A EkHL2(aQ)3» Vk > 1. Since (n A Eg)r converges in L2(8Q)3, (or)k

is a Cauchy sequence in H'(9€) and thus converges to some ¢ € H'(9Q) with [|¢[ g1 a0) <
CQ) - [n A Ellp2p0)- By writing By = =V, @y — 9.y when z € 92 we deduce that n A

Ey, = —n AV, P and thus V. (Pr — ¢r) = 0 on 99, dthich implies that there is ¢, € R such
that ®p — pr = cx on 9Q. Hence, as [, @ do = [, or do = 0 we deduce that ¢, = 0, or
), = ¢, on 9. We have y® = limy,_, {0 ¥P;, in H'/2(0Q) and therefore in L?(992). On the
other hand limy_ oo Y®r = limy_ 400 x = ¢ in HY(9NQ). Tt follows that v® = ¢ € H'(09Q) and
g'Y(I)HHl(BQ) <) - [[n A Ell 290

LEMMA 3.2. Assume that 0 < f € L>(Q x R3) such that [ [ps(1+ E(p))f dedp < 400
P

(classical or relativistic case). Then we have the interpolation inequality :

<CIfl < || a+ewnsen dxdp>

Proof. As usual we write for R >0 :

f(IC,P) f(l',p) f(xvp) 9 C
dp = d DOP p < 27 B2 flloe + — [ (1+E(p))f dp.
w Pl /|p|<R I p*/lw o PSS et gy | (L E@)S dp

3

P
The conclusion follows by taking the optimal value for R and by integrating with respect to « € Q.
O

1
2

f(.p)
R3 |

dp

L2(Q)

LEMMA 3.3. Assume that Q C Ri is a smooth open bounded set and consider 0 < f €
L>°(Q x R3) a stationary weak solution for the Viasov problem (classical or relativistic case) :

'U(p) : me + Q(_vzq’ + U(p) A B(x)) : vpf = 07 (SE,p) € 0 x R?}? f(xap) = g(xap)v (x7p) € E_a
with finite mass and kinetic energy [, [ps (1 + E(p))f(x,p) dedp < +o00 and trace 0 < T f €

L®(XT), where0 < g € L>®(X7), ® € HY(Q), B € LQ(Q)3 are given functions verifying [y |(v(p)-
n(x))|g(z,p) dodp < +oo. Then, for all function F € C}(R) (i.e., F € C*(R) with F, F' bounded
), we have :

/E (v(p) - (@) 7/ (2, p) F(E(P) + q78(x)) dodp = 0.

Proof. Since f is a weak solution for the Vlasov problem, we have for all test function 6 €
C'(Q x R?), compactly supported in momentum :

- / / (0(p) - Vub + q(E(2) + v(p) A B(x)) - Vo) f dadp + / (v(p) - n())8(x, p) f dodp =0,
QJr3 s
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where E = —V,®. Since E,B € L%(Q)°, f € L=(Q x R3), yTf € L>(XT), by an easy density
argument we deduce that the above formulation holds also for § € H*(Q ><]R13)), compactly supported
in momentum :

— [ ] ) 920+ a(B @) +o0) A Bla)) - V1)1 dodp+ [ (0(0) n(w)n0 2 dodp =0,
P
where 70 € Hz(X) is the trace of § € H(Q x R3). Consider now F € C;(R) and x € C}(R)
such that x(u) = 1if Ju| < 1, x(u) = 01if Ju] > 2, 0 < x < 1 and denote by xg the function
xr(u) = x(%), Yu € R, R > 0. The function Op(z,p) = F(E(p) + ¢®(2)) - xr(lp]), (z,p) € 2 xR}
belongs to H (£ x R;’,) and has compact support in momentum. Remark also that :

o)+ ot + (EG@) 4 0(5) A BL) - ¥y = aE(e) FE) + a2l o' () - 2

and v0g(x,p) = F(E(p) + ¢v®(x))xr(|p|), (z,p) € E. By applying the weak formulation with the
test function 6 we find for every R > 0 :

[ [ o Fewsaren g () i deio= [ ne)PEw s @)atons do.

|p|
(3.1)
Consider for the moment the function F' = 1. We deduce that :
1
—// qF - =X (|p> Ly dxdp+/ (v(p) - n(x))xr(p)y* f dodp
Q JR3 R R \p| =+
— [ 160) n@)xalphg dodp. (32)

; 2(0)\3 I(.p) 2 .
5 . :
Since E € L*(Q)" and [ dp € L*(Q) (see Lemma 3.2) we deduce that

Ipl
LY m)p’ C-lal - .f($7p) 10 3
o5 () Ll <o ip@ K22 e o,

By using the dominated convergence theorem we deduce that :

. 1 p| p
lim E-= -y . f =0.
i / /Rg ¢ N ( ) B dxdp =0

Finally, by letting R — 400 in (3.2) and by applying the monotone convergence theorem we find
that :

[ﬁ(v(p)'n(w))ff(x,p) dadp=/ |(v(p) - n(x))|g(x, p) dodp. (3-3)

Ipl
LY(Z), (v(p) - n(z))g € LY(X7), by passing to the limit for R — +oo in (3.1) we find :

Suppose now that F' € C}(R). By using that E € L2()*, Jas LCp) gn e L2(9), (v(p)-n(z))y* f €

/E+(v(p)~n(w))7+f(x,p) F(E(p)+qy®(x)) dadp:/ |(v(p)-n(x))g(x,p) F(E(p)+qyP(x)) dodp.

a

LeEMMA 3.4. Assume that ' € L>®(X1) ds a non negative function such that [ |(v(p) -
n(x))|(1 + E(p))F(z,p) dodp < +oo (classical or relativistic case), where ¥1 C X. For x € 09
denote by P(x) the set {p € R3 | (z,p) € T1}. Then [y [(v(p) - n(2))|1p F(x,p) dp € L¥*(09)
and we have the inequality : '

5

SC'IIFlém(/E I(v(p)'n(x))(1+5(p))F(z,p)d0dp> ,

Li9)

. [(v(p) - n(-))Lpy F' (- p) dp
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for some constant C not depending on the light speed if ¢ > 1.

There is a constant C' = C(m)

Proof. Observe that for all 0 < ¢ < 400 we have |v(p )| < %
we write :

such that [p| < C(m)-(1+&(p)), pe R, ¢ >1. For R>0

. [(v(p) - () |1 p@) () F(z,p) dp:/ |(v(p) - n(2))|1p) (p)F (2, p) dp

[p|>R

+ / 1(0(p) - (@) Loy (0) F (2, p) dp
[p|<R

. [(v(p) - n(z))| - C(m) - (1 + E(p))F(x, p) dp
+C-R*||F|| .

Take the optimal value for R and integrate with respect to x € Q2. O

PROPOSITION 3.5. Assume that 2 C R3 is a smooth open bounded simply connected set and
consider 0 < f(x,p) € L®(Q x R2) a stationary weak solution for the Viasov problem (classical or
relativistic case) :

v(p) - Vaf +q(E(x) +v(p) AB(x)) - Vpf =0, (x,p) € AxR), f(z,p) = g(x,p), (x,p) €T,

with ﬁm'te mass and kinetic energy and bounded trace 0 < vyt f where 0<ge LOO(E’), E,B e

Lz(Q) are given functions verifying rot E = 0, n AN E € L2(8Q and [, |(v(p) - n(x))|(1 +
E(p))g(z,p) dodp < +o00. Then the outgoing energy is uniformly bounded with respect to the light
speed and we have for some constant C' :

//w(v(p) n(@)E(p)ytf dodp < C- (L4 llgllzee + 7 fllZe) - (M7 + K™ + [0 A El7250))-

Proof. By Lemma 3.1 we can write B = —V,® with ® € H1(Q), v® € H'(99Q), such that
7@z 00) < C(2) - |In A El[12(90)s- By using Sobolev inequalities we deduce that ¢ = 7P €
L7(09), V1 < r < oo and ||| zr@a0) < Cr(2) - ||@l| a1 (s0)- We apply Lemma 3.3 with the function
Fr(u) = u-xgr(u) and we obtain :

/Z+(v(p)'n(m))(g(p)+q7<1>(af))xR(W)7+f dodp = /7 |(v(p)-n(2) (€ (p)+7v®(x))xr(W)g dodp,
(3.4)

where W (z,p) = E(p) + qo(x), VY(z,p) € X. By using Lemma 3.4 we have fv(p) (@))<o [(0(P) -
n(x))|g dp € L°/*(9Q) and therefore we have :

/ (0(p) - n(@)] - la(@) Ixr(W)g dodp < q| - / |so<x>|</ |<v<p>-n<x>>|gdp> do
- o0 (v(p)n(x))<0

’ / (0(p) ()l dp
(v(p)-n(x))<0

1
<ol el ooy Il - ([

Remark that for a.e. x € 9Q the function p — (v(p) - n(x))y* f(z,p)E(p)x rR(W (x,p)) has compact
support in momentum and therefore is integrable on p € R3 such that (v(p) - n(z)) > 0 :

<lal - llellzs o) - (3.5)

L1 09)

(w(p) - (@)1 + E(p))g dadp)

/ (0(9) - nlx)7* Fa,P)E@XR(W (2,9) dp < +00, ac. o € 00
(v(p)-n(2))>0
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As before we can write :

| " )(:gp)%(x))v*f qe(x)xr(W) dp |<|q| - () . )(ggp)‘n(w)h*fXR(W) dp (3.6)

<lg| - |p(z)| - C- ||v+f||§oo - (/( (v(p) - n(x))(1 + E@)V fFxr(W) dp)

v-n)>0

1 €T 5
<C- gl - V" fll i - ('wégfl +455/( )(;)(()p)'n(x))7+fXR(W)(1+€(P)) dp>.

Finally one gets :

/ (v-n)ytF(1+E(p) + qp(z))xr(W) dadp2<1 - 4501) / (v-n)y"f(1+EP))xr(W) dodp
=+ 5 =+
75514 /aQ @) do, 37

where Cy = |q| - C - Hy*f”%oo. By taking into account that [, (v(p) - n(z))y" fxr(W) dodp <
S+ W(p) - n(x))y T f dodp = [y |(v(p) - n(x))|g dodp, the inequalities (3.4), (3.5), (3.7) imply :

(1-26c1) [ omn s+ Env) dodps [ 1(0(p) - n(e)|1 + g dody

Cq z — _
tszr [ 1e@ do+ -l -lellsom ol - (1™ + K%,

il

By taking ¢ small enough we deduce that [, (v(p) - n(x))(1 + E(p))y" fxr(W) dodp is bounded
uniformly with respect to R > 0 and by the Fatou lemma we find that :

4 C
(1 - 55@) /Z+ (0(p) - (@) " F(L+ E(p)) dodp < M~ + K~ + ezl 300

i _ 4
+C gl - lellmron) - gl - (M~ + K7)3

1 1 _ _
SM™+E+C- v flli= - llelznoa) + C - lglli= - (Iellzn on) + M~ +K7),

and the conclusion follows.
d

REMARK 3.6. By using Proposition 3.5 we can now estimate uniformly with respect to c the
solutions constructed in Theorem 2.1 in the stationary case :

[ [ asens dedp+ 3 [ (B +2BF) ot [ (0) - no)(1+ @) * f dodp
Q ]Rf7 Q

>+
€0 2 2 £0c? 2 2
+7/ (nAEP+(n-E)2) do+ 25 [ (InAB]?+ (n-B)?) do<C, (3.8)
2 Jaa 2 Joaa

where C' depends on m,e0, 2, M~ , K, H and ||g||p~(=-)-

3.2. The time periodic case.

In this paragraph we deduce uniform estimates with respect to ¢ for time periodic solutions
of the Vlasov-Maxwell equations. Notice that the same estimates hold for T periodic solutions
of the perturbed Vlasov-Maxwell system (2.1), (2.2), (2.3), (2.4) uniformly with respect to the
regularization parameter « > 0 ; for this just replace the derivative 9, by a + 0;. More precisely
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we need to estimate uniformly the outgoing kinetic energy. This is a direct consequence of (2.13)
in the case h =0 :

T
// v-n)E(p)f dtdodp +7// (InAE|?+¢*-|nAB| )dtdo<// [(v-n)|E(p)g dtdodp.
o+ a0 0Jz-

For the general case we decompose the electro-magnetic field into the self-consistent field (Es, B;)
and the exterior field (Ey, By) :

j(t t
8, Ey — ¢ -rot By = —‘7(57’”3), 8By +rot By, =0, div E, = @, div B, =0, (t,z) € Ry x Q,
0 0
(3.9)
n(xz) A Eg(t,x) + c-n(x) A (n(z) ABs(t,z)) =0, (t,z) € Ry x 09, (3.10)

and :

(9,5E0 — 62 - rot Bo = 0, atBo + rot E() = O7 div EO = 0, div BO = 0, (t,l‘) € Rt X Q, (3.11)

n(x) A Eo(t,z) + c-n(x) A (n(z) A Bo(t,x)) = h(t,z), (t,z) € Ry x 9. (3.12)

PROPOSITION 3.7. Assume that Q is bounded, regular (C') and strictly star-shaped (with
respect to 0 € Q), h € Lloc(Rt;L2(89)3) is T periodic verifying (n-h) = 0, (t,x) € Ry x 0.
Then there is a unique T periodic weak solution (Fo, By) € LlOC(Rt;LQ(Q)?’)2 for the problem
(3.11), (3.12). Moreover the solution (Fo, By) has tangential and normal traces (n A Eg,n A By) €

L? (Rt;L2(8Q)3)2, (n-Eo,n - By) € L} (Ry; L2(02))? and verifies the estimates :

loc

T T
//(|E0|2+02~|BO|2) dtdx+r// (In A Eo|*> + (n- Eg)* + c¢?|n A Bo|? + (n - By)?) dtdo
0J/Q 0J90

Q) /0 T/m Ih[2 dtdo. (3.13)

Proof. The existence part is similar to the existence of time periodic solution for the Vlasov-
Maxwell equations (take g = 0 and thus f = 0). We only sketch the proof. First we regularize h
and for o > 0 we consider the unique 7" periodic smooth solution for :

aE. +0,E. — ¢ -rot B. =0, aB.+ 0;B. +rot E. =0, (t,z) € Ry x Q, (3.14)

n(z) A E-(t,x) + c-n(x) A (n(x) A Be(t,z)) = he(t,z), (t,2) € Ry x 0Q. (3.15)
As before, by taking the divergence in the perturbed Maxwell equations we find that :
(a + at)le EE = 0, (OZ + 8t)le BE =0 (t,(E) S Rt X Q7 (316)

and by periodicity we deduce also that div E. = 0, div B. = 0, (t,z) € R, x Q. After
multiplication of the perturbed Maxwell equations by (E., c?B.) we deduce :

T T T
a//(|EE|2+c2-\Bg|2) dtdm+9// (IR A B2+ nAB.P) dtda:ff/ Ih. 2 dtdo.
0Ja 2 JoJog 2 JoJog
(3.17)

The Maxwell equations (3.14) and div E. = 0, div B. = 0 imply :

E.div E. — E. Arot E. + ¢*(B.div B. — B. Arot B.)=0;(E. A B.) + 2a(E. A B.). (3.18)
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By using the identity (2.16), after multiplication of (3.18) by x and integration by parts one gets
as before that :

T
1// (B2 + & |B.P?) dede + // 24 (n-B.)?) dtdo (3.19)
2 0JQ oQ

<2a// E.NB.)- xdtdm+( )// (In A E-> 4 ¢ - |n A B.|?) dtdo,

where 0 < r < R such that r < (n-z) < R, Vo € 9Q. Remark also that for % < % we have :

T oaR T 1 T
204//(E5/\Bg)~:z:dtdx§—//(|Es|2+cz~|BE\2) dtdx < 7//(|E5|2+02o\35|2) dtdz,

0/ ¢ JoJa 4 JoJa
(3.20)

and finally (3.19) and (3.17) imply that :

1 T T
7//(|E8|2+02-|Bs|2) dtdm+f// (N A B+ (n-E)?+(nA B+ (n- B.)?) dtdo
4 0JQ 4 0JoQ

2 T
S(R+R+T)// (N A B2+ |nAB.P?) dtdo
2 T 4 0.J80
T
gCl(Q)// |he|? dtdo, (3.21)
0J0Q

where C1(Q) = & + R2 + 4. Therefore the solution (E., B.) verify the estimate (3.13) with
C(Q2) =4C1 (), VE > 0 0 < a < 4%. Now by taking h. — h in LZOC(Rt;LZ(GQ)S) and @ = ¢\, 0,
it is clear that (E., B) converges strongly in L7, (Ry; LQ(Q) )2 to a T periodic weak solution (FE, B)

of (3.14) with tangential traces (nAE,nAB) = lim o(nAE:, nAB;) strongly in L? (R;; L? (80)3)2
and normal traces (n- E,n - B) = lim~o(n - E-,n - B:) strongly in L? (Ry; L?(99Q))%. Moreover
the solution verifies :

T T
// (InAEP2+E-[nABP) dtdcr:// Ih[2 dtdo,
0J0o0Q 0JoQ

and the estimate (3.13). In order to prove the uniqueness it is sufficient to show that all T periodic
weak solution verifies the estimate (3.13). This can be done by regularization.
a

loc

PROPOSITION 3.8. Under the hypotheses of Proposition 3.7 assume that the time derivative
Oth belongs to L (Ry; L2(8Q)3). Then the T periodic weak solution of the problem (3.11), (3.12)
verifies (O E, 0, B)eL?(]0, T[; L2(2)3)?, (9:(nAE), 0;(nAB)) € LQ(]O,T[;L2(6Q)3)2, (0r(n-E), O (n-
B)) € L*(]0,T[; L*(09Q))? and the estimate :

T T
//(|8tE|2+02\8tB|2) dtd:v+r// (10(n A E) + 20s(n A B)[2) dtdo
0JQ 0J9oQ

T
+r// (18:(n - E)* + 2|0¢(n - B)|?) dtdo
0J0Q2

T
gC(Q)// |0:h|? dtdo.
0J00Q

Proof. For every real number 7 and function u we denote by D,u the function Dyu(t,z) =
u(t + n,z) — u(t,z). If (E,B) is the T periodic weak solution for the problem (3.11), (3.12),
therefore (D, E, D,B) is T periodic weak solution for :

8DyE —c*-rot D,B =0, 8;DyB+rot D,E =0, div D,E=0, divD,B=0, (t,z)€R, xQ,
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n(x) N DyE(t,x) 4+ c-n(x) A (n(x) A DyB(t,x)) = Dyh(t,x), (t,z) € Ry x 0.

By Proposition 3.7 we have the estimate :
T T
// (|D,E* + ¢*| D, B|?) dtdx+ r// (In A D, E* + |n A D, B|?) dtdo
0/ 0Ja9

T
r [ [ (- Dy + - D, B)P) drde

T
gC(Q)// |Dyyh|? dtdo,
0JoQ
T
<c@-f- [ [ lomP dudo, (3.22)
0JoQ

and our conclusion follows.
d

In the following we establish the divergence equations verified on the boundary R; x 92 by T
periodic weak solutions for the Maxwell equations. We denote by V(; ;) , div(; ;) the gradient and
divergence operator on R; x 92 (see the Appendixz for a brief presentation of these operators).

PROPOSITION 3.9. Assume that ) is reqular and consider (E,B) € LIQOC(IRt;LQ(Q)?’)2 aT
periodic weak solution for the Maxwell equations :

) (¢ t
16T oot E=o, divE="1)
€0 €0

OhE—c*-rot B = —

, dwvB =0, (t,x) € RyxQ, (3.23)

with tangential and normal traces (nANE,nAB) € L? (Ry; L? (9)3)2, respectively ((n-E), (n-B)) €

loc
L2 (Ry; L2(052))2. We assume also that the charge density p belongs to L}, .(Ry; LY(Q)), the current

loc

density belongs to L} (Ry; LI(Q)?’) and that the continuity equation Oip + div j = 0 holds true in

loc
D)y (Ry X Q) (ice., [ofo pOpp dtda + [, 5 - Vg dtdz = [[,(n-j)e dtdo, Yo € C*(R, x ), T
periodic, for some function (n-j) € L} (Rt;L1(6Q)B)). Then the traces of the electro-magnetic

loc

field verify the following divergence equations in D, (Ry x 98) :

per
Wit,ry (- E),c"(nAB)) = o e ((n-B),=(nAE))=0,
i.e.,
T T 1 T
7// (n'E)ﬁtqﬁdtda—cQ// (nAB)-V.¢dtdo = —— / (n-j) dtdo,
0J00Q 0J90Q €o JoJon
and

- /OT/m(n - B)dy dtdo + /OT/m(n AE) -V 4 dtdo = 0,

for all function ¢ € CH(Ry x 9Q), T periodic.

Proof. Consider the test function 7(t)V.p, where n € C*(R;) is T periodic and ¢ € C*(Q).
By using the first equation of (3.23) with this test function, we deduce :

T T T
- // E(t,z)n (t)V.p dtdr — ¢ // (n A B)n(t)Vye dtdo = 1 / n(t)j(t, z) - Vyp dtde.
0/Q 0J8Q €0 JoJa (3.24)
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By using now the third equation of (3.23) with the test function —n'(t)p(t, ) we deduce that :

_/0789(n -E)'(t)p(t, ) dtdo + /OT/Q 0 (t)E(t, x)Vye dtde = —— // (t,z)n ,x) dtdx.

(3.25)
By adding the equations (3.24), (3.25), by observing that (n A B) - V, = (n A B) - V¢ and by
using the continuity equation finally we obtain that :

—/OT/m(n-E)am dtda—cQ/OT/aQ(n/\B)-VTw dtda———//m n - )y dtdo,

for all ¥(t,z) = n(t)p(x). By density we deduce that the previous equality holds for all test
function ¢ € C*(Ry x 99Q), T periodic, or div(; ) ((n- E),c*(n A B)) = % in D) _.(Ry x 99).

per
In order to establish the second divergence equation on the boundary we use the second equation

of (3.23) with the test function 7(t)V e which gives :

// B(t,x) w(pdtdx—i—// Y(nAE)-Vypdtdo = 0.
oQ

By using also the fourth equation of (3.23) one gets finally :

- /OT/QQ(n - B)dy dtdo + /OT/m(n AE) -V 4 dtdo =0,

or divy ;) ((n- B),—(n A E)) =0in D, (R x 09Q).

per
a

We give now an estimate for the outgoing kinetic energy in terms of the total electro-magnetic
field and the exterior electro-magnetic field :

PROPOSITION 3.10. Assume that the hypotheses of Theorem 2.1 hold and consider (f, E, B)
the T' periodic weak solution constructed in Theorem 2.1. We suppose also that O;h belongs to
L? (Rt;LQ(BQ)B) and denote by (Eg, Bo) the T periodic solution for the problem (3.11), (3.12)

loc
(cf. Proposition 3.7) and by (Es, Bs) = (E — Eg, B— By) the self-consistent electro-magnetic field.
Then we have the inequality :

T T
KT+ Egc / (In A Eo? + ¢*|n A B|?) dtdo < K_+5002// (n A B) - By dtdo
00 o0

T
+ €0 // (OeEo - E(t, @) — ¢?0, By - B(t,z)) dtdx.
0JQ

Proof. By using the boundary condition n A E 4+ ¢-n A (n A B) = h and the inequality (2.29)
we have

T
KT —goc? // (nAB)-Edtde < K~. (3.26)
oQ
By using also the boundary condition n A Es 4+ ¢cn A (n A Bs) = 0 we can write :
2 _ ¢ 2, 2 2 2 2
c (n/\B)~E——§[|n/\ES| +cIn A Bg|*] + ¢ (nABs) - Eg+c¢*(n A By) - E. (3.27)

Since 9;h belongs to L?(]0, T[x00Q)3, from Proposition 3.8 we have 9, Eq,rot By € L*(]0, T[x )3
and therefore, after multiplication of 9; Ey — c?rot By = 0 by E we have :

T T
// OiEo - E(t,x) dtdr — c? // rot By - E(t,x) dtdz = 0. (3.28)
0/a 0Ja
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We use also the equation §;B + rot E = 0 with the test function By (which is possible since
6tBO7I‘Ot By € L2(]O,T[XQ)3> :

T T T
7// B(t,z)-0:Bo dtdxf// (n A\ By)- E(t,z) dthJr// E(t,z)-rot By dtdx = 0. (3.29)
0/a 0Joq 0/a

Finally from (3.27), (3.28), (3.29) we obtain :

T T T
sOCQ//(nAB).Edth@// (0 A o2 + 2[n A B, J2) dtda:soc2//(n/\Bs)~E0 dtdo
0Jao 2 JoJog 0Joo

T
+Eo//(<9tEo~E—c26tBo-B) dtdz.
0JQ

The conclusion follows by combining with (3.26) and by taking into account that fojjag(n A By) -

Eodtdo = % [ 14 [ (|Eo(t,2)[2 + ¢ - |Bo(t,z)[?) dx dt = 0. O
In order to estimate the term eoc? fojfaﬂ(n A B) - Eg(t,z) dtdo we need the following represen-
tation for free divergence fields on Ry x 99 (see the Appendiz, Corollary 6.11 for more details).
We denote by H([0,T] x 9€) the closure of {p € C*(R; x 99Q) | ¢ is T periodic} in the H! norm.

LEMMA 3.11. Assume that Q C R2 is smooth, open, bounded with OQ simply connected

=

and consider f = (fo,f) = (fo,f1,for f3) € L2 (Ry; L2(0N)"Y) a T periodic field such that

loc

fonas) fo(t,z) dtdo = 0, (n- f)|g,xo00 = 0 and divi,y [ =0 in Dy, (Ry x 0Q). Then there is

-,

A= (Ag, A) € HL([0,T] x 8Q)* verifying fonaQ Ao(t,x) dtdo =0, (n- A)|r,xo0 =0, divgy A=0
in D, (R x Q) such that :

per
fo=—div, (nANA), f=nA(BA-V, A).
Moreover we have the estimate :

IV (t.7) AollZ2qo.rixa0y + IAll5n go.rxany: < C(Q) - 11F13200,71x00)t>
where the constant C'(2) depends on @ but not on T.

By a straightforward scaling argument we obtain :

PROPOSITION 3.12. Assume that the hypotheses of Proposition 3.7 are verified and denote by

-,

(Eo, Bo) the T periodic weak solution of the problem (3.11), (3.12). Then there is A = (Ag, A) €

-,

HY([0,T] x 9)* with fonaQ Ao(t,z) dtdo =0, (n- A)lr,xo0 =0, such that :

1 - A 1. -
EatAoerm A=0, (n-By) = div, (n/\c> , nANEg=nA (@A—VT A0> )
c
Moreover we have the estimates :
||3tA0||2L2(]0,T[xaQ) <C(Q)- - H, IV~ AO”%%]O,T[xaQ)S <C()-H,

10: A1 720 a0y < C(Q) - - H, | Al1Z200 mix00 + V7 All72g0.11x00) < C(Q) - H.

Proof. From Proposition 3.9 we know that div(, ;) ((n-Bo), —nAEy) = 0. We introduce t = c-t,

T = ¢- T and if u(t) is an arbitrary T periodic function of ¢ we_denote by (t) the T periodic
function given by (t) = u(t/c), t € R. We obtain div @n(c (n-Bo),—n A Ep) = 0. Remark that
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since div ; By = 0 we have div ,Bo = 0 and thus fOT Joa(n- By) dido = 0. Obviously (n A Ep) is a
tangential field and therefore the previous lemma applies for the field (—c(n- By),nAEp). We deduce

—

that there is A = (AO,A) € HY([0,T] x 0Q)* with fo Joq Ao, x) dido = 0, (n- A)|r,xo0 = 0,
div (5)7)/1 = 0 such that :

- -

¢(n-By) =divy (nAA), nAEy=nA(0;A—-V, Ay,

and :
>3 2 S 12
”V(t T)A0||L2 (o, T[><6(2)4+||AHH1 (J0,T[x09)3 < C( ) [”c(n.BO)HL%]O,T[XSQ)+||n/\E0||L2(]O,T[><BQ)3]'

The conclusion follows by taking A(t,z) = (Ao(t,z), A(t,z)) = (Ao(c - t, ), A(c - t,z)).
o

PROPOSITION 3.13. Assume that the hypotheses of Proposition 3.8 are verified and denote by
(Eo, By) the T periodic solution of the problem 3.11, 3.12. Then we have the estimates :

10: Aol 220, 71x00) + IV QeAollF2q0rixan)y + Ve Aolli2qo.rxanys < C(Q) - (H + Hy),

10 A1172 g0 7 00ys + V7 QA7 20 1ixa0ye < C(Q) - Hi,
where Hy := [Jf,, |8:h|? dtdo.
Proof. By Proposition 3.12 we have the estimate :
IV 8 Aol 20, 71x00)s < C(Q) - Hi, (Ve AollZ200,7ixa0)s < C(Q) - H

Since %&AO + div, A =0 we have faﬂ 0yAp do =0, a.e. t € Ry. By using the Poincaré inequality
we have :

0t Ao(t, z) do

T
||6tAOH%2(]0,T[><BQ) <Cp / {/ |V73tAo(t,x)|2 do +
0 o0 o0

2
} dt < C1(Q) - Hy.

The second estimate of our proposition follows directly from Proposition 3.12.
d

PrOPOSITION 3.14. Assume that the hypotheses of Theorem 2.1 and Proposition 3.8 hold
and consider (f, F, B) the T' periodic weak solution constructed in Theorem 2.1. Then we have the
estimates :

/OT/Q/W(1+E( ))fdtdxderf// (IE* + ¢*|BJ) dtdgg+//2+ )1+ Ep))y*f dtdodp

6OT// (In A E? +c* - |n A B|?) dtdo 5°T// n-E)? 4% (n-B)?) dtdo
o 1919)
<C(m,eo, T,Q M, K™, H, Hy,|g|lr)- (3.30)

Proof. We need to estimate the outgoing kinetic energy K. By Proposition 3.10 we have :

T T
K++@// (In A (E = E)[ + A A (B — Bo)P) dtdaSK’+eoc2// (n A B) - Ey dido
2 JoJog 0Joa

T
te <// (0, Eol? + 210, Bo[2) dtdm)
0JQ

1
2

: (/OT/Q(|E|2 +c%BP?) dtd:c> : (3:31)

1
2
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In order to estimate the term eqc? fOTfBQ(n A B) - Ey dtdo = goc? fOTfm (nA(nAB))-(nAEp) dtdo
we use the decomposition n A Eg = n A (%@ff— V., Ap) of Proposition 3.12. By using Proposition
3.13 and the inequality (2.29) we have for ¢ > 1 :

< |le(n A B)||z2qo.rixo0)s - 1864 22 o rixo0)8

T 1.
c2// (A (R A B)) - (n A L0,4) dtdo
0Jon c

N

<C(Q)- (2

1
K‘—i—H) -HP. (3.32)
€0

We want now to estimate the term c? fojfm(n A(nAB))-(nAV; Ag) dtdo. For this we use the
first divergence equation proved in Proposition 3.9 :

divisy ((n-E), *(nAB)) = — (”e'oj ). (3.33)

By using the test function Ay we deduce that :
T T 1 (T
// (n-E)0; Ao dtda+c2// (nA(nAB))-(nAV; Ag) dtdo = —// (n-j)Ao dtdo. (3.34)
0JoQ 0JoQ €0 JoJon

From Proposition 3.13 we obtain :

T
/ / (n - E)d, A dtdo
0J00Q

In order to estimate the term foqfaﬂ(n - j)Aq dtdo we can use Sobolev inequalities. By using
the condition fﬂaﬂ Ag(t,z) dtdo = 0, the Poincaré inequality and Proposition 3.13 we deduce
that ||A0||%{1(]O7T[XBQ) < C(T,Q) - (H + Hy). By Sobolev inequalities we have ||A0H2Ls(]0,T[XaQ) <
C- ||A0|\%1(]0)T[X8m < C(T,9) - (H + Hy). Now by adapting Lemma 3.4 for the time periodic
case we obtain :

T
// (n - §)Ao dtdo
0J9o0Q

< (n- Bl z2qorixon) - C(Q) - (H + Hy)*. (3.35)

< )2 o oy - ollzo 00y (3.36)

1 T ?
<Clgllf s ( [ [ 106 n@nia + e dtdadp> (4 )

M\»—-

Finally, by using (3.31), (3.32), (3.34), (3.35), (3.36) we obtain :

Nl

T
K++506// (In A (E— Eo)|* 4 ¢*In A (B — By)|? )dtda<500H2 (//(E|2+c23|2)dtdx>
o0 0JQ

1
2

1 2
+ K~ + CeoHy - <60K_ +H) +Ceo(H + Hy)* - |(n - E)llz2q0,71x00)

+C gl Foe gy (H+H1)2 - (M~ + K™+ M* +K¥)5. (3.37)
Remember that the solution (f, E, B) verifies the estimate (see (2.24)) :
T
// El)f dtdxdp+f/ (IE]* +¢*|BJ?) dtdx+// 2) (1 + E(p))y T f dtdodp
0/Q JR3 Q >+
+5 / (IR AEP?+ - [nAB[?) +((n- B + - (n- B)?)] dtdo
0Joo

<C(m,e0,Q) - (M~ + K~ + Kt + H). (3.38)
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The conclusion follows easily by combining (3.37), (3.38) (the estimate for the total mass can be
obtained as in (2.27)). Remark also that the previous computations give the estimate :

T
c- // (In A (E — E)|? + c2n A (B — By)|?) dtdo < C, (3.39)
0Jo9a
where C' depends on m,eo, T,Q, M~ , K~ ,H, Hy,||g||1>, but not on ¢. O
Now we can prove that the total energy is uniformly bounded with respect to t € R; and ¢ > 1.

We check this (only) for regular T periodic solutions of the Vlasov-Maxwell system. By using the
energy conservation law (see 2.12) we have for all ¢t € [T,2T] and s € [0,7] :

/ ) dedps P [ (BCP+ - BEoR) do+ [ [ (00) n@)ew)” far dods
—goc? //Em(n A B) - Edr do = /Q - E(p)f(s,x,p) dedp (3.40)

(|E(s x)]? + | B(s, x) da:—|—// x))|E(p)gdr dodp.

We introduce the notations M(t) = [, fRs f(t,z,p) dedp, K(t) = [ [gs E@)f(t,2,p) ddp,

wen(t) = g [o(|Et,2)] + ¢ IB(t 2)?) dz, W™ (t) = 3 [o(|Eol* + ¢* - [Bo|*) dw. By per-
forming similar computations as in the proof of Proposition 3.10 we obtain :

¢ t
—5002//(71/\B)'Ed7'd0'=%// (In A Eq)* + 2|n A Bs|*)dr do — eoc? // (n A B) - Egdt do
5J00Q sJOQ
+W5m< ) W _50// atEO —C atB() )dT dx

—goc? /Q B(t,x) - Bo(t,z) dx + eoc /QB(S, z) - Bo(s,z) dx. (3.41)

By combining (3.40), (3.41) one gets :

K(t)+ Wem(t) EOc/ /m In A Ey|? + c2|n A By ?) dad7+/ /E+ VE(p)yt f dodpdr
= K(5)+ W (s)+ [ [(0) - nl@) E@)g dadpdr+goc7 /8 (WA B) - By dodr + W™ (o)
~epe /Bsx Bo(s,z) dz — W™ (1) + coc® /Bta; Bo(t,) do
+ o / /Q (0:Eq - E — ¢?0,By - B) dxdr. (3.42)

By the Propositions 3.7, 3.8 we deduce easily that (FEg, Bg) € L>(Ry; L?(2))%, (n A Eg,n A By) €
L>®(Ry; L2(0Q))C, (n - Eg,n - By) € L>®(Ry; L?(09))? and we have the estimate :

/(|E0|2+c2~\30|2) da:+r~/ (In A Eol? + ¢ - |n A Byl?) da+r~/ (n-Eo)*>+c*-(n-By)?) do
Q o0 o0
<C-(H + H,), VteR,. (3.43)

Now, after integration of (3.42) with respect to s € [0,T] and by using the estimates of Proposition
3.14 finally one gets :

K@) 4AWe™(t) < C(m,e0, T, M~ K~ H, Hy, ||gl|p=) + Cleo, Q, T, H, Hy) - W™ (¢)2

P / / / (n A B) - Ey dsdrdo, Vt € R,. (3.44)
o0
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We need to estimate the last term of the above inequality. As in the proof of Proposition 3.14 we
write :

I(s)= 6002/ /89(11 A B) - Ey drdo = 5002/ /(m(n/\ (nAB))-(nA (%&gﬁf— V. Ap)) drdo
— Ii(s) + Iu(s). ( (3.45)

The first term can be estimated uniformly with respect to s € [0,7] :

2T
I12(s)| g/ / cocln A B| - 10, Aldt do
0 o0

T % T
<2\/g0 // coc?In A B]* dtdo | - // 0, A dtdo
0J90Q 0J900Q

<C(m,e0, % M~ , K, H, Hy). (3.46)

1
2

For the second term we use (3.33) with the test function Ag on [s,t] x 9Q :

—/St/m(n~E)8tAo(u,a:) du da—l—/aQ(n-E)Ao(t,x) da—/ (n- E)Ao(s,z) do

o0

/:/8902(11/\8)-VT Ao, ) du do
_;/stéﬂ(n.j)Ao(u,x) du do. (3.47)

By using the Propositions 3.13, 3.14 we find that :

1 T
?/0 I5(s) ds

Since ||V, AOH%Z(]O,T{xaQW + 10: V- AOH%Z(]O,T[XBQP < C(R) - (H + Hy), we deduce by peri-
odicity that [V Aol|w g, 200)s) < C(Q.T) « (H + Hy). Since [yf,q Ao(t,2) dtdo = 0 we
have || Ao 12250, rixa0) < C IV @.nAoll72go.rxanys < C - (H + Hi) and from [[Aol|72 o 7ixa0) +
||atA0||2L2(]0,T[><6§2) < C(Q) - (H + Hy) we deduce that ”AOH%OC(Rt;H(aﬂ)) < C(Q,T)-(H+ Hy).
Finally we obtain that ||A0H%OC(R1_H1(89)) < C - (H + Hy). Take now Fy € H'(Q) such that

Y(Fo) = Ao(t) and |[Follmi) < C(Q) - [[Ao@®)llgr200) < CE)Ao()||m100)- By using the
equation div E'= £ we have :

< C(m,eo, T, M~ K~ H,Hy, |lgll1~) + ‘/ (n- E)A(t,z) do|. (3.48)
o

/ (n-E)Ao(t,z) do = / E(t,x) -V, Fy dx +/ div E - Fo(z) de = J1(t) + J2(t).
a0 Q Q
For the first term we can write :
O] < IB®) 2 - 1Follarsy < COQT, H, Hy) - W™ ()% (3.49)
For the second term we can use interpolation and Sobolev inequalities :
3
P 1
|J2(t)] < ||g||L% N Foll L) <C(m, g0, Q2 HQHLM : (/ / 1+E&(p)f(t,z,p) dﬂ?dp) N Folla (@)
<C(m,e0, 0, T, H, Hy, ||gllp~) - (M(t) + K(¢))5. (3.50)
Finally by using (3.44), (3.45), (3.46), (3.48), (3.49), (3.50) we deduce for all t € R; :

K (8) + W™ (1) < Clm, 0,90, T, M~ K=, H, Hy, lgll<) - (14 W™ ()% + (M (1) + K(1)F)
(3.51)



Asymptotic behavior for the three dimensional Vlasov-Maxwell system when ¢ — +oo 23

The conclusion follows easily by observing that M (t) is bounded since we have for s,t € [0,T] :

M(t / / )y f(u, x,p) du dodp,

which implies after integration on s € [0, 7] that :

M<—/M ds+/ds

Sf/o M(s) ds +2M~, Vt e [0,T). (3.52)

// )y f(u,x,p) du dodp

4. Asymptotic behavior when ¢ — +oo.

In this section we study the behavior of the T periodic weak solutions for the relativistic
Vlasov-Maxwell system (cf. Theorem 2.1) when ¢ becomes large. We denote by &.(p), v.(p) the
relativistic energy and velocity functions corresponding to the light speed ¢ > 0. The classical
energy and velocity functions will be denoted by £(p), v(p) respectively. Observe that we have the
convergence :

lim &(p) =&(p), lim wvc(p) =v(p), uniformly on compact sets of R3.

c—+400 c——+0o0

We denote by (f., E., B.) the T periodic weak solutions for the relativistic Vlasov-Maxwell system
constructed in Theorem 2.1 and we introduce the notations :

Kelt)i= [ [ o)t dedp, Wen®)i= 3 [ (B + B de, Welt) = Keolt) + WE(0),
Q Rg Q
T T
K. ;:/ K.(t) dt, Wem ::/ Wen(t) dt, W= K.+ We™,

0 0

T

)= [ [ fedean, M= [ ano an
Q Rg 0

T
/ / (velp) - n(2)yE o didodp, K* = / / (0e(p) - 1(2))|Ec (P o didodp,
PIES 0Ju+

T T
e ::io// (In A Eof? + 2|n A Bo)?) dtdo, We™ = 22 / ((n- E)? + A(n - B.)?) dtdo.
’ 2 JoJon ’ 2 o9

THEOREM 4.1. Assume that Q C R is open, bounded, with boundary 02 smooth, strictly star-
shaped and consider g and h T periodic functions verifying 0 < g € LR, x X7), M~ + K~ =
Jols- 1 (@)(1+E(p)g(t, ., p) dtdodp < +00, (n-h)|r,x00 = 0, [1f,q (A% +]8:h|?) dtdo <
+00. Then for all sequence (¢;), with lim,_, 1o ¢, = +00 there is a subsequence (¢, )i such that
fep, — [ weakly  in L>(Ry x €2 x R3), Ee,, — E weakly x in L (Ry; L?(Q)3) where (f,E) is a
T periodic weak solution for the classical Viasov-Poisson system :

O f+v(p)-Vaf+qBE(t,x)Vpf =0, (t,z,p) € RyxQxRE, f(t,z,p) = g(t,z,p), (t,z,p) € RyxT~,
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rot E=0, divE =", (t,2) € R, x Q.
€0

Moreover the solution (f, E) has traces v+ f € L®(R, xS+), nAE = nAV; hy € L2 _(Ry; L2(09)°)

loc

(where h = V; hi +n AV, ha, hi,he € L2 (Ry; HY(OR)) is the orthogonal decomposition in
L7 (Ry; L2 (89)3) of h into irrotational/rotational parts, cf. Appendiz, Proposition 6.5), (n- E) €

L? (Ry; L2(0S2)) and the following estimates hold :

esszlﬂg {/Q/Rg(l—&-g(p))f(t,x,p) dwdp—i—%/ﬂw(t,x”? dm}

T T
4 / / (w(p) - n(@))(1 + E@))y* f dedodp + =2 / (In A B + (n- E)?) dtdo
0Ju+ 2 JoJoa
SC(m,E(),Q,T,M_,K_,H,Hl,||g||Loo). (41)

Proof. We have ||fcr||Loo(Rt><Q><]R%) < |lgll Lo ®, x5~y ¥r. By observing that K7 < K~ and
M; < M~, Ve >0 we deduce also that :

| Ee, Lo (ry;2(02)2) + ¢ - [ Be, | Lo my;2()3) + 1M, ()l Lo ) + 1 Ke, ()l L&,
+ M+ KL+ W+ W,
SC(maeonaTaM77K7aHvH17||g||L°°)a vor (42)

Therefore there is a subsequence (¢, ) such that fj = fe,, — [ weakly  in L> (Ry x Q x Rf,),
Y& fi = fe,, =T f weakly  in L®(R; x £7), By := E,, — E weakly  in L(Ry; L*(Q)*),
nAEg:=nAE, — nAEweaklyin L*(0,T[x0Q)?, n-Ey, :=n-E., — n-E weakly in
L2(]0, T[x0R), cx By, := ¢r,Be,, — A weakly x in L>=(Ry; L3(Q)3), ck(n A Bg) = ¢ (R A B, )—
n A A weakly in L*(]0, T[x09)%, c(n- B) := ¢ (n- B, ) = (n- A) weakly in L*(]0, T[x99). In
particular we have the convergences :

lim Bp, =0, lim (nABg)=0, lim (n-Bj)=0, (4.3)

k—+oc0 k—+o00 k—+oc0

in the spaces L (Ry; L2()3), L2(]0, T[; L*(99)%), L2(]0, T[; L*(99)) respectively. By weak limits
we deduce that [|fllz~ < lgllz=, 7" fllz= < llgl~ and :

€ss sup {/ / (14+E(p))f(t,x,p) dxdp} <C, (4.4)
teR, | Jo JRS
||E||L00(Rt;L2(Q)3) + HAHL“’(]R”L?(QF) < C, (45)
T
Mtk [ () n@) (1 + )" S dedodp < C. (4.6)
0Js+

||n/\E||%2(]07T[><89)3+H(n'E)”QL?(]O,T[x@Q)+||n/\A||2L2(]O,T[><8Q)3 +||(n'A)||2L2(]o,T[xaQ) <C, (4.7)

where C depends on m,eq, Q, T, M~ , K~ ,H, Hy, ||g||L~. By using the velocity average lemma (see
[12]) we can pass to the limit the non linear term of the Vlasov equation and we deduce that f is
a T periodic weak solution for :

O f+v(p)-Vaf+qBE(t,x)Vypf =0, (t,z,p) € RyxQxRE, f(t,z,p) = g(t,z,p), (t,x,p) € RyxT~.
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Take now a test function (¢, ) = n(t) - ®(x), where n € C1(R;), T periodic and ® € C1(Q2)3. We
have :

T T T
_ /0 /g’(t)@(x)Bk(t,x) dtda+ /0 /8 (RAE(t)B(z) dido+ /0 /g(t)rot BE(t,x) dtdz = 0,k > 1.

By passing to the limit for k¥ — +o00 and by using (4.3) we deduce that :

T
/ n(t) </ (nAE)-®(x)do +/ E(t,z)-rot @ dx) dt =0, ¥ne CY(R,) T periodic,
0 a0 Q

and therefore we obtain that the field E verifies rot £ = 0 and has tangential trace n A E €
L2(]0, T[x02)3. By using the equation div Ej = 2% with the test function n(t)p(z), ¢ € Cc(Q)
we have :

// t)(n- Eg)e dtda—// O EK(t, 2)Vp dtde = — // t)pi(t, ) p(x) dtdz,
N Q €0 Q

and after passing to the limit for k¥ — 400 one gets that the field E(t) verifies div F = % and
has normal trace (n - E) € L*(]0, T[x99), where p(t,x) = q [gs f(t,2,p) dp. In order to identify

the tangential trace of the electric field we use the divergence equations on the boundary (see
Proposition 3.9). For all test function n(t)f(z) where n € C*(R;) periodic and 6 € C1(99) we

have :
T
—// (n- Bp)n'(t dtd0+// t)(nANEy) -V, 0dldo =0, k> 1.
0JoQ o0

After passing to the limit for ¥ — 400 and by using (4.3) we deduce that fﬂag(n ANE)-
V. (n8) dtdo = 0. By density we obtain that fOTfaQ(n/\E)-VT o dtdo =0, p € L*(]0,T[; H1(0%)).

By taking into account that fOTfm(n AV, hg) -V, ¢ dtdo = 0, Ve € L*(]0,T[; H(09)) we can
write :

T
// (MAE—-nAV, hy)-V, ¢dtdo =0, Yo L*(]0,T[; H (09)). (4.8)
09
We have also for all k£ > 1 :
1 T T 1 T
1 / (n- By (4)0(z) dtdo— / / n(t)cx(nABy)-Vx 0 dtdo — ——— / (n-ji)n(0)8(x) dtdo.
Ck JoJoQ 080 €oCk Jo Jon
(4.9)
Remark that :
T T
// n(t)ex(n A By) - Vi, 0 dtdo = // nt)exk(m A (n A Byg)) - (n AV, 0) dtdo
0Joo o9
// h(t,z) —n A Eg(t,z)) - (n AV, 0)) dtdo.
o9
By passing to the limit for &k — 400 in (4.9) we deduce :
T
/ / (Wt 2) — (n A E(L,2)) - (n A Vs (nf)) dtdo = 0. (4.10)
o9

By taking into account that fo?aﬂ V: h1-(n AV, (n8)) dtdo = 0 we have also fo?f(m (mANE—nA
V. ha) - (n AV, (nf)) dtdo = 0 and by density one gets :

/T/ (RAE—=nAV, hy)-(n AV, 1) didoe =0, Vi € L*(J0, T[; H'(99)). (4.11)
o0
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By using (4.8), (4.11) and the orthogonal decomposition of tangential fields of L2(]0,T[; L? (89)3)
into irrotational part V., ¢ and rotational part n A V., ¥ we deduce that n A E = n AV, ho.
Note also that the field A (the weak limit of (¢ By)x) verifies div A = 0 and has normal trace
(n-A) € L*(]0,T[x09). By using the equation 9;Ey, — cirot By, = —z—’;‘ we have :

T T .
—— | [ 700t Bit.2) dtaa— / /a QckmABk)n(tw(x) atdr — [ [ cuBenteyot o ata

Ck
// x)jk(t, x) dtdx, k> 1. (4.12)
eock

After passing to the limit for & — +o0o we obtain that the field A verifies rot A = 0 and has
tangential trace n A A € L2(]0, T[x9Q)3. In fact, by using the boundary condition n A Ey + cxn A
(n A By) = h, k> 1 we deduce easily that n A A= —-n AV, hy.

d

In fact it is possible to show that the tangential traces converge strongly which is equivalent to :

lim (n A EecenA(nAB.)) = (nAV;, hy, V. hy), strongly in L?(]0, T[x09)°.

c——+o00

This follows from the inequality (see (2.29)) :

T
EOC// (In A E.? + En A B.|?) dtdo < K~ +60—C / |h|? dtdo,
o0
and the following easy lemma :

LEMMA 4.2. Consider two sequences (xk)k, (yx )k in a Hilbert space (H,{-,-)) verifying :
(i) Umg— oo xx =z, limp_ 0o yp =y, weakly in H ;
(ii) there is z € H such that xy + yr = 2z,Vk ;
(iii) (x,y) =0 ;
(iv) limsupy ¢ oo {Joel? + [ynl*} <[22
Then we have limg_, 400 T = @, liMg— 400 Y =y, Strongly in H.

Remark also that in the case h = 0 we have :

T _
K 1
3 / (In A E? + En A B.|?) dtdo < — = O () .
2 0J0Q & C

5. Other systems.
The previous analysis applies for other kinetic models. It is possible to treat systems with

several species of charged particles. We can also replace the boundary condition of the Vlasov
problem by the condition :

fta,p) = gt x,p) + alt,z,p) f(t, 2,p = 2(n(z) - p)n(x)), (t,z,p) €Ry x X7, (5.1)

where 0 < a(t,z,p) < ag <1, V(t,z,p) ERy x X~ and 0 < g € L®(R; x ¥7) verifies :

M~ 4K = // (1 + EP))g(t, 2, p) dtdodp < +o0.

In this case we obtain the estimates :

M-

[ 1wt ) st dedodp <
0J2*

— ag

7 (5.2)
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T T
(1—ao) /0/2+ (we(p) - n(x)E(p)yT folt, z,p) dtdadp+% /O/Em(ln AN E.* + |n A Bc|?) dtdo

<K+ %H (5.3)
and :
T €oC T 2 2 2
(1—ap) // [(ve(p) - n(x))|Ec(p)y™ felt, z,p) dtdodp+ a07 // (In A Ec|* + ¢*|n A B.|*) dtdo
0 - 0JoQ
<K+ aO%H. (5.4)

Notice that the inequality (5.3) still gives uniform estimates for the tangential traces of the electro-
magnetic field and thus the other computations (estimates for the total energy, outgoing kinetic
energy, normal traces of the electro-magnetic field) follow in similar way. Note also that the Vlasov-
Maxwell system with initial-boundary conditions can be analyzed by using the same method.

6. Appendix.

For the sake of presentation we give in this section some details concerning the orthogonal
decomposition of tangential fields of L?(92)3 (or L2(]0,T[x0)*). The results are analogous to
the well-known orthogonal decomposition result for fields of L2(2)? (see [13], p. 22). We assume
that 99 is bounded and smooth (generally C'). We denote by (z,,,Tp,, Try) = (20, 21,), With
1 <r < M, asystem of local coordinates i.e., there is o, 8 > 0 such that {(z.,z.,) | ar(z.) — 3 <
py < ar(2y), 2. € A} CRY = Q, {(2], 20,) | 20y = ar(27), 27 € Ar} C OQ, {(2],21,) | ar(2y) <
Try < ap(2l) + B, 2! € A} C Q, where A, = {2/ | |2,.,| < a, |7,,] < a} and a, € C1(A,).
The exterior unit normal is given locally by n(z) = (22, 2ar _1). (1 + |Vz;ar|2)_%. If f

0%y ) OTry )
belongs to C'*(012) the tangential gradient of f is given locally by V. f(x) = A(x) - Vg f,, where
fr(zl) = f(al,ar(z).)), 2, € Ay and A = (a;5) € M3 2, ai; = 0;j —n(z)n;(x), 1 <i<3,1<5<2
(the tangential gradient doesn’t depend on the system of local coordinates). Notice that we have
n-V, f=0. We also define rot , f =n AV, f for f € C1(952). Obviously we have n-rot ,f = 0.

3 .

A direct computation shows that V, and rot , are orthogonal in L?(92)
aQVT f-(nAV,.g)do=0, V fgecC' Q).
Moreover, by density we have also :
8QVT 0 (NnAV, ) do=0, ¥, H (09). (6.1)

For the definition of Sobolev spaces on 99 the reader can refer to [24]. Consider now a tangential
field f € C1(0Q)3, n-f =0, x € 9Q and assume that Q € C2. The divergence of f is given locally

by div, f = nzdiv ./ (f;—;), 2! € A,. By direct computations we check that for f € C*(9Q)3,
n-f=0,pe€CHIN) we have :

/ pdiv, fdo+ f-V:pdo=0.
a0 o0

In particular we have [, div, f do =0, Vf e C'(9Q)*, n- f = 0. The above identities hold also
for f € HY(9Q)3, n- f =0, p € H}(9Q). We can prove the Poincaré inequality :

LEMMA 6.1. Assume that OS2 is bounded, connected and regular (C1). Then there is a constant
Cp(9Q) > 0 such that :

[ let)P do < Cr@ {
o0

2

/ o(x) do +/ IV, <,0|2da}, Yo e H (09).
o0 o0



28 M. BOSTAN

We use the notations : ||u||§,aﬂ = [oolu(x)]* do, |u|iaﬂ = [50|Vr ul? do, Hu”%m) =
||uH% aq + |u|% aq- As a consequence of the Poincaré inequality we obtain the classical result :

LEMMA 6.2. Assume that O is bounded, connected and regular (C1). Denote by K the sub-
space of constant functions and consider the quotient space H*(0Q)/K, endowed with the quotient
norm |6 1 o0)/x = infueq |ullio0. Then | - |100 is a norm on H'(0Q)/K equivalent to the
quotient norm and we have :

=

luli.00 < [l o0)/x < (1+Cp(Q)7 - |uli 00, Yu € H'(09).

By direct computations we check that :

deffwtiA;nAﬁdﬂ (6.2)

where f € C1(0Q)%, n- f =0 and S is a region of 9 such that 95 is a smooth closed path (for
details about integration of differential forms on manifolds and Stokes formulae the reader can
refer to [9]). The following result is classical :

PROPOSITION 6.3. Assume that 0S) is bounded, simply connected and regular (C') and con-
sider f € L2(8Q)3, n- f =0. Then the following statements are equivalent :
(i) divy f=0inD'(0Q) (i.e., [,o [ Vs pdo=0,VYeec H(8Q)) ;
(ii) 3 € HY(OQ) such that f =n AV, 1.

Proof. The implication (i) — (i) follows by formula (6.1). For the implication (i) — (i)
consider first smooth fields f and use the formula (6.2). The general case follows by density.
O
Similarly we have :

PROPOSITION 6.4. Assume that 0S) is bounded, simply connected and regular (C') and con-

sider f € LQ(GQ)S, n- f=0. Then the following statements are equivalent :
(i) div (n A f) =0 in D'(9Q) (i.e., [po(nAf) V. do=0,Y)eH (9Q)) ;
(ii) 3o € H(0Q) such that f =V, .

We introduce the notations : X = {f € L2(3Q)3 |n-flz) =0ae x2e€dN},Y ={V,p|pc
HY O}, Z={nAV. ¢ | e H(0Q)}.

PROPOSITION 6.5. Assume that 9 is bounded, simply connected and regular (C*). Then Y
and Z are closed orthogonal subspaces of X and we have the decomposition :

X=Y+2 (6.3)

Proof. By using formula (6.1) we deduce that Y 1 Z. By the Lemma 6.2 we check easily
that Y, Z are closed subspaces of X. Let us prove now that Y is dense in Z+ : take f € Z* such
that f L Y. By Proposition 6.4 the condition f € Z+ implies that f = V, ¢, o € H*(9). Since
f LY we deduce that [, |f|> do = [, f-V: ¢do=0,or f=0. Therefore we have :

Y+Z=Y+Z=2Z'+2zZHt=X.

The previous proposition has the following direct consequences :
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COROLLARY 6.6. Consider f € X. Under the hypotheses of Proposition 6.5 the following
statements are equivalent ;
(i) div; f =0, div(nA f)=0inD'(0Q) ;
(i) f =0.

We denote by HX(0Q) C H'(0Q)3 the closed subspace of tangential fields f € H!(9%)3,
n-f=0and let L§(0Q) = {u € L*(9Q) | [, u(z) do = 0}. By using the orthogonal decomposi-
tion (6.3) we can deduce the following representation of (H1(9))" :

PROPOSITION 6.7. Assume that OS2 is bounded, simply connected and regular (C?). Then we
have :

(HX09)) = {V, o +n AV, ¥ | o0 € L2(0Q)}.

Moreover, for all | € (HL(9S))', the representation | = V. @ +n AV, ¢, with ¢, € LE(99) is
unique and there is a constant C'(2) > 0 such that ||¢llo,00 + ||¥]l0,00 < C(Q) - ||l]-1,00-

Proof. Denote by W the set W = {V, o +n AV, ¢ | ¢, € L3(0N)} C (HL(9%)). We will
prove that W is closed and dense in (H1(09))". Consider F : (H1(99Q))' — R a linear continuous
form on (H1(952))’, vanishing on W. There is u € H1(9Q) such that F(I) = I(u), VI € (H}(09Q))’
and therefore we have :

—/ ediv, udo+ [ div, (nAu)do =0, Yo, € LE(0Q),
on o

which implies that div, v = div, (n A u) = 0 (for this observe that div, u,div, (n Au) € L3(99)
and thus is possible to take (¢, ) = (div, u,0) and (¢,%) = (0,div,; (n Aw)) ). By Corollary 6.6
we deduce that u = 0 and thus W = (H1(92))’. In order to show that W is closed we will prove
that for all p, v € L3(99Q) we have [¢|lo.00 + |[¢]lo.00 < C(Q) - [V, o+ n AV, |10 for some
constant C'(2). Denote by [ the form V, o + n AV, 9 :

l(v) = —/ ediv, v do + Ydiv, (nAwv)do, Yo e HEOQ). (6.4)
l9) 9
Take 6 € H'(89)/K the unique solution for the variational problem :

V.0V, xdo= / ox do, Vx € H'(00)/K.
oN o

Note that the application ¥ — faQ X do is well defined since ¢ € L3(992). We have ||V 0000
C - |l¢llo.o0. Moreover by elliptic regularity results we have u = V. 6 € H}(9Q) with [Jul|1 a0
C - |l¢llo,0- By taking v = u in (6.4) we obtain that :

[ 1o do == [ v, uwdo = 1) < l-s00 - Julhon < € 100 [eloon.
o0 o0

which implies that [|¢]lo,s0 < C - ||l||-1,00. The analogous estimate for ¢ follows in the same

manner by observing that :

I(nAv) = —/m ediv, (n Av) do — n Ydiv, v do, Vv € HHON).

As a consequence of Proposition 6.7 we obtain :

PROPOSITION 6.8. Assume that O is bounded, simply connected and regular (C?). Then we
have :

HX09Q) = {f € X | div, f e L*09), div, (nA f) € L*(0N)}.
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Moreover there is a constant C(Q) > 0 such that :
||f|\%,09 < C(Q) - {||div, f||(2),aﬂ + || divy (n A f)||8,em}a Vf e HL(09). (6.5)

Proof. Observe that for all [ € (H1(09Q)) and f € H'(9Q) we have :

(f)=(V: p+nAV, w,f>:—/mgodivrfda+/mwdivf (nAf)do

1 . . 1

<(llel3.00 + 1¥13,00) - (Idive flI§ e + dive (2 A £ o)
. . 1
<COQ U100 - (Idive fIE o0 + Idive (A I o)

which implies that || f[l1.00 < C(Q) - ([|div: I sq + divs (n A f)”g,ag)%- The conclusion follows

easily by regularization.

d
We introduce also the differential operators :

rot; A= —ndiv, (nAA)—nAV, (n-A), VAec C' Q)3
V(tﬂ') f = (8tf7 V- f)a vf S Cl(Rt X 8@),
rot(; ) A= (n-tot; A,nA (A~ V, Ay)), VA= (A, A) € C'(Ry x 90)*,

divi, -y A = 8 Ao +div, A, VA = (Ag, A) € C'(Ry x 9™

Note that for tangential fields A € C1(92)® we have rot, A = —n div, (n A A). The following

identities follow by direct computations :

/ rot; A-V, ¢odo =0, YA e CY9Q)>, Vy e CH(09Q),
oN

T
// rot; ) AV @ dtdo =0, VA€ CHRy x 0Q)*, Vo € CH(R; x 99Q), T periodic,
0JoQ

/ rotTA~Bd07/ A-rot; Bdo =0, YA, B c C'(00Q)3,
o0 0

T T
// rot(y -y A- B dtdo — / A-rot ) Bdtdo =0, VA, B € CH(Ry x 0Q)*, T periodic.
0J8Q 0Jo0

Obviously, the above identities hold for functions/fields in the corresponding time periodic Sobolev

spaces H'. We introduce also the notations :

. . T
Xp = {f = (fo, /) € L2(0, T[x0Q)" | n- F =0, /O/m folt, ) dtdo = 0},

T
Yr = (Vi ¢ | o € B'(0,T] x 09), / / p(t,x) dtdo = 0},
0J0Q
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T

Zr = {0t ¥ | ¥ = (o,) € H([0,T] x I0)* div(s .y ¥ =0, n-¢ =0, / , Yo dtdo = 0}.
0

As for 3-component tangential fields we have the analogous result for 4-component tangential fields :

PROPOSITION 6.9. Assume that OS2 is bounded, simply connected and regular (C*) and
consider f € Xrp such that divg .y f € L*(]0,T[x0Q) and roty .y f € L*(]0,T[x0Q)* (in
D'([0,T] x 99Q) periodic). Then f belongs to H([0,T] x dQ)* and there is a constant C(Q) > 0
(depending on  but not on T) such that :

|fol3 jo,1x00 + 1F11% j0,11x00 < C(Q) - {lldive,ry fII5 0.11x00 + 170t FII5 0,1)x00} (6.6

Proof. Tt is sufficient to prove the inequality (6.6) for T' periodic smooth fields. We have :

Idive,ry F15 jo0.71x00 + IX0tct,r) FI3 j0.71x00 = 10:fo + dive FIIF + Idive (n A PIE + 10 = V= foll3
= 110:follg + 1V follg + 19:F15 + lidive FIIF + Idive (n A fIIE-
By using (6.5) we deduce that :

vy FI3 -+ ldive (0PI = g {1715+ 19 713} (6.7)

Finally one gets that :
. . 1 -
v,y £V ysm + 00t A 1w 2 min (1 s ) - (1Al + 112D

o
Now we can prove the orthogonal decomposition result for 4-component fields of L2(]0, T[x92)%.

PRrROPOSITION 6.10. Assume that 92 is bounded, simply connected and reqular. Then Yr and
Zr are closed orthogonal subspaces of X1 and we have the decomposition Xp = Yp + Zp.

Proof. By using the Poincaré inequality we check easily that Y7 is closed. By Proposition 6.9
combined with the Poincaré inequality we deduce also that Zp is closed. An easy computation
shows that Y | Zr. We will prove that Y7 is dense in Z% which implies that :

Xr=Yr+YF =Yr+ (ZFH) =Y +Zr =Yr + Zp.

Indeed, consider f € Xp such that f L Yp, f L Zp. We deduce that fonaﬂ [V odtdo =0,

Vo € HY([0,T] x 9Q)*, or divy.y f = 0 in D'([0,7] x 9). Consider now ) = (o, V) €

HY([0,T] x 00)* with n-¢ = 0. Take ¢ € H2([0,T] x 0Q)* such that —div ;) Vi ¢ =

div 7y ¢ (such a solution exists since fOTfOQ divie, -y ¥ dtdo = Q). Consider now the field ¥ =

¥ — ((¥0),0) + Vi) ¢ € H[0,T] x 0Q)*, where () = %melo%. By construction we
0 99 ag

have div; ) ¥ = 0, n - U = 0 and foqfaa Vg dtdo = 0, or rot(;) ¥ € Zr. We deduce that
fﬂaﬂ [ 1oty ¢ dtdo = foqfasz f 1oty ¥ dtdo = 0 or rot ) f = 0in D'([0,T] x 0€2). By
Proposition 6.9 and the the condition foiyasz fo(t, z) dtdo = 0 we deduce that f=0. 0

Consider now a decomposition f = V( -y ¢ + rot -y ¥ as in Proposition 6.10. We deduce
that :

||f||§,[o,T]xaQ =[|V(t,n) <P||(2),[0,T]xasz + [[rot (- ¢||3,[0,T]xm~
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By using Proposition 6.9 and the condition div(; ;) ¥ = 0 we obtain that

013 j0,m1x00 + [%0lF j0.11x00 + 10113 10 11x00 < C(Q) - I1£115 10,77 x00-

By using also the conditions fo?aﬂ o(t,x) dtdo = 0, fon(?Q Po(t,z) dtdoe = 0 and the Poincaré
inequality we obtain :

lelE jo.r1x00 + 1D0ll? (0 m1xa0 + 19017 10 m1xa0 < CT,Q) - 1 F113 10.71x00-

The previous proposition has the following direct consequences :

COROLLARY 6.11. Consider f € Xp. Under the hypotheses of Proposition 6.10 we have ;
N ) ) T )
](81) d;)(tﬁ) f =0, inD([0,T] x Q) (i.e., [ofoq, [ Vit,r) ¢ ditdo =0, Yo € H*([0,T] x 0Q)) iff

€ 4T ;
(ii) rotry f =0, inD'([0,T] x 8Q) (i.e., [[foe [ - 10t1r) © dtdo =0, Vi € HY([0,T] x 9Q)*) iff
feYr;
(iii) divy,y f =0 and roty - f=0inD'([0,T] x 09) iff f = 0.
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