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Abstract

The subject matter of this paper concerns the Vlasov-Poisson equations in
the framework of magnetic confinement. We study the behavior of the Vlasov-
Poisson system with strong external magnetic field, when neglecting the curva-
ture of the magnetic lines. The arguments rely on averaging techniques. We
intend to determine second order approximations and to retrieve the usual elec-
tric cross field drift, the magnetic gradient drift.
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1 Introduction

Let f = f(t, x, v) be the phase space density of a population of charged particles of
mass m, charge q, depending on time t, position x and velocity v. Motivated by the
magnetic confinement, we study the Vlasov-Poisson equations, with a strong external
non vanishing magnetic field. Neglecting the curvature of the magnetic lines, we assume
that the external magnetic field is orthogonal to Ox1, Ox2. In the two dimensional
setting x = (x1, x2), v = (v1, v2), the Vlasov equation writes

∂tf
ε+v ·∇xf

ε+
q

m

{
E[f ε(t)](x) +Bε(x) ⊥v

}
·∇vf

ε = 0, (t, x, v) ∈ R+×R2×R2. (1)

Here the notation ⊥(·) stands for the rotation of angle −π/2, i.e., ⊥v = R(−π/2)v =
(v2,−v1), v = (v1, v2) ∈ R2 and the magnetic field writes Bε(x) = (0, 0, Bε(x)) =
(0, 0, B(x)/ε), where B(x) is a given function and ε > 0 is a small parameter related
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to the ratio between the cyclotronic period and the advection time scale. The electric
field E[f ε(t)] = −∇xΦ[f ε(t)] derives from the potential

Φ[f ε(t)](x) = − q

2πε0

∫
R2

∫
R2

ln |x− x′|f ε(t, x′, v′) dv′dx′ (2)

satisfying the Poisson equation

−ε0∆xΦ[f ε(t)] = q

∫
R2

f ε(t, x, v) dv, (t, x) ∈ R+ × R2

whose fundamental solution is z → − 1
2π

ln |z|, z ∈ R2 \ {0}. Here ε0 represents the
electric permittivity. For any particle density f = f(x, v), the notation E[f ] stands for
the Poisson electric field

E[f ](x) =
q

2πε0

∫
R2

∫
R2

f(x′, v′)
x− x′

|x− x′|2
dv′dx′ (3)

and ρ[f ], j[f ] are the charge and current densities respectively

ρ[f ] = q

∫
R2

f(·, v) dv, j[f ] = q

∫
R2

f(·, v)v dv.

We complete the above system by the initial condition

f ε(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2. (4)

We intend to investigate the asymptotic behavior of the problem (1), (3), (4) when ε
goes to 0, by studying the well posedness of the limit models and establishing second
error estimates. We refer to [19, 20, 21, 29, 30, 12, 15, 27, 3, 5, 6, 7] for previous results
on this topic where, most of the time, the authors studied the case of uniform magnetic
fields (see also [17, 22] for results with magnetic field of constant direction but variable
strength and with magnetic field of constant strength but variable direction).

Solving numerically (1), (2), when ε becomes small, requires a huge amount of
computations. For example, when explicit numerical methods are used, CFL stability
conditions apply, leading to a small time step of order ε. One alternative is to construct
suitable numerical schemes, preserving the asymptotic cf. [16, 18, 14]. Here we have in
mind another possibility. Instead of solving the problem (1), (2), which appears in a
singular form, due to the large magnetic field, we are looking for a regular reformulation
of it, whose numerical resolution is not penalized anymore by the smallness of the
parameter ε. Certainly, the new problem will not be equivalent to the original one,
but up to a second order term with respect to ε, the solutions will coincide. Therefore,
when ε becomes small we can obtain very good approximations for the Vlasov-Poisson
system with large external magnetic field, with a numerical cost not depending on ε.

As usual, the starting point for such analysis is to look for quantities which have
small time variations, like the guiding center, the rotation of the relative velocity with
respect to the electric cross field drift [17, 27, 30]. Taking the average with respect to
the fast cyclotronic motion, we obtain the model (6) for well prepared initial particle
densities, which corresponds to the asymptotic model in [17] (where the authors also
proposed asymptotically preserving particle-in-cell methods for solving it numerically).
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Its well posedness is established : a classical solution exists globally in time and it is
unique. The main properties of this solution are detailed cf. Remark 4.1. For any
k ∈ N, the notation Ck

b stands for k times continuously differentiable functions, whose
all partial derivatives, up to order k, are bounded.

Theorem 1.1
Consider a non negative, smooth, compactly supported initial particle density f̃in ∈
C1
c (R2×R2) and a smooth magnetic field Bε = B

ε
∈ C2

b (R2) such that infx∈R2 |Bε(x)| =
Bε

0 > 0 (that is Bε
0 = B0

ε
, infx∈R2 |B(x)| = B0 > 0). There is a unique particle density

f̃ ∈ C1(R+×R2×R2) whose restriction on [0, T ]×R2×R2 is compactly supported for
any T ∈ R+, whose Poisson electric field belongs to C1(R+ × R2)

E[f̃(t)](x) =
q

2πε0

∫
R2

∫
R2

f̃(t, x′, ṽ′)
x− x′

|x− x′|2
dṽ′dx′, (t, x) ∈ R+ × R2 (5)

satisfying

∂tf̃ +

(
⊥E[f̃(t)]

Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
· ∇xf̃ +

1

2

(
⊥E[f̃(t)]

Bε
· ∇xB

ε

Bε

)
ṽ · ∇ṽf̃ = 0 (6)

f̃(0, x, ṽ) = f̃in(x, ṽ), (x, ṽ) ∈ R2 × R2.

Moreover, if for some integer k ≥ 2 we have f̃in ∈ Ck
c (R2 × R2), Bε ∈ Ck+1(R2), then

f̃ ∈ Ck(R+ × R2 × R2) and E[f̃ ] ∈ Ck(R+ × R2).

It is easily seen that the three dimensional case, with magnetic field of fixed direction,
comes similarly. Indeed, when the particle density f ε depends on (t, x1, x2, x3, v1, v2, v3),
the Vlasov equation (1) also contains the terms v3∂x3f

ε+ q
m
E3[f

ε(t)]∂v3f
ε and the model

(6) becomes

∂tf̃ + v3∂x3 f̃ +
q

m
E3[f̃(t)]∂v3 f̃ +

(
⊥E[f̃(t)]

Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
· ∇x1,x2 f̃

+
1

2

(
⊥E[f̃(t)]

Bε
· ∇xB

ε

Bε

)
ṽ · ∇ṽf̃ = 0, (t, x, ṽ, v3) ∈ R+ × R3 × R3

where ⊥E = (E2,−E1), ∇Bε = (∂x1B
ε, ∂x2B

ε), ⊥∇Bε = (∂x2B
ε,−∂x1Bε). For more

general results involving curved magnetic field lines, we refer to [10, 11], where the
well posedness of these asymptotic regimes is investigated, together with the error
estimates.
We concentrate on the error estimates, which is the most difficult part of this study,
since we deal with non linear models, perturbed by stiff terms. The error estimates
require a considerable effort : we need to construct a suitable corrector and to perform
accurate balance computations, in order to cancel all the stiff terms. We prove that
the solution of (6) approximates the solution of the Vlasov-Poisson system (1), (2)
up to a second order term with respect to ε. We mention that most of the studies
presents convergence results, without indicating error estimates. The main idea is to
split the advection field of the Vlasov equation into a fast and slow dynamics, such that
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the guiding center is left (exactly) invariant by the fast dynamics. To the best of our
knowledge this idea is new. The advantages are multiple. The fast dynamics becomes
periodic (even for a non homogeneous magnetic field). Accordingly, the homogenization
procedure comes easily, by averaging over one period, instead of taking ergodic means.

Theorem 1.2
Let B ∈ C3

b (R2) be a smooth magnetic field, such that infx∈R2 |B(x)| = B0 > 0. Con-
sider a family of non negative, smooth, uniformly compactly supported particle densities
(gε)ε>0 ⊂ C2

c (R2 × R2)

∃ Rx̃, Rṽ > 0 : supp gε ⊂ {(x̃, ṽ) ∈ R2×R2 : |x̃| ≤ Rx̃ and |ṽ| ≤ Rṽ}, sup
ε>0
‖gε‖C2 < +∞.

We assume that the particle densities are well prepared i.e.,

sup
ε>0

‖⊥ṽ · ∇ṽg
ε‖L2(R2×R2)

ε2
< +∞.

We denote by (f ε)ε>0 the solutions of the Vlasov-Poisson equations with external mag-
netic field (1), (2) corresponding to the initial conditions

f ε(0, x, v) = gε
(
x+ ε

⊥v

ωc
, v − ε

⊥E[gε]

B

)
, (x, v) ∈ R2 × R2, ε > 0.

Then for any T ∈ R+, there is εT > 0 and CT > 0 such that for any 0 < ε ≤ εT

sup
t∈[0,T ]


∫
R2

∫
R2

[
f ε(t, x, v)− f̃

(
t, x+ ε

⊥v

ωc
, v − ε

⊥E[f̃(t)]

B

)]2
dvdx


1/2

≤ CT ε
2

where f̃ is the solution of (6), (5) corresponding to the initial condition f̃(0) = 〈gε〉
(here the notation 〈·〉 stands for the average along the characteristic flow of the vector
field ωc(x) ⊥v · ∇v, see Proposition 3.1).

Our paper is organized as follows. In Section 2 we discuss the well posedness of
the Vlasov-Poisson problem with external magnetic field. The regular reformulation of
the Vlasov-Poisson problem is derived by formal computations in Section 3. Its well
posedness is established in Section 4. The error estimate, when the initial conditions
are well prepared, is shown in Section 5 and relies on the construction of a corrector
term. More general results, for initial conditions not necessarily well prepared, or the
three dimensional setting with curved magnetic lines, are discussed in the last section.
These extensions will be the topic of future works.

2 Strong solutions for the Vlasov-Poisson problem

with external magnetic field

The well posedness of the Vlasov-Poisson problem is well known. We refer to [1] for
weak solutions, and to [31, 24, 28] for strong solutions. Using essentially the same
arguments, leads to global existence and uniqueness for the strong solution of the
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Vlasov-Poisson problem with external magnetic field. Moreover, we establish uniform
estimates with respect to the magnetic field, which will be crucial when studying the
asymptotic behavior with strong magnetic fields. More exactly we prove the following
result, see Appendix A for the main lines of the proof.

Theorem 2.1
Consider a non negative, smooth, compactly supported initial particle density fin ∈
C1
c (R2 × R2) and a smooth magnetic field B ∈ C1

b (R2). There is a unique particle
density f ∈ C1(R+ × R2 × R2), whose restriction on [0, T ] × R2 × R2 is compactly
supported for any T ∈ R+, whose Poisson electric field is smooth E[f ] ∈ C1(R+×R2),
satisfying

∂tf + v · ∇xf +
q

m

(
E[f(t)] +B ⊥v

)
· ∇vf = 0, (t, x, v) ∈ R+ × R2 × R2 (7)

E[f(t)](x) =
q

2πε0

∫
R2

∫
R2

f(t, x′, v′)
x− x′

|x− x′|2
dv′dx′, (t, x) ∈ R+ × R2 (8)

f(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2. (9)

Moreover, if for some integer k ≥ 2 we have fin ∈ Ck
c (R2 × R2), B ∈ Ck

b (R2), then
f ∈ Ck(R× R2 × R2) and E[f ] ∈ Ck(R+ × R2).

Remark 2.1
1. The solution constructed in Theorem 2.1 satisfies the conservation of the particle
number and total energy

d

dt

∫
R2

∫
R2

f(t, x, v) dvdx = 0, t ∈ R+

d

dt

{∫
R2

∫
R2

m|v|2

2
f(t, x, v) dvdx− 1

4πε0

∫
R2

∫
R2

ρ[f(t)](x)ρ[f(t)](x′) ln |x− x′| dx′dx
}

= 0.

2. Notice also that we have the following balance for the total momentum

d

dt

∫
R2

∫
R2

f(t, x, v)mv dvdx− q
∫
R2

∫
R2

f(t, x, v)B(x) ⊥v dvdx =

∫
R2

ρ[f(t)]E[f(t)] dx

= ε0

∫
R2

1supp ρ[f(t)] divxE[f(t)] E[f(t)] dx

= ε0

∫
R2

1supp ρ[f(t)] divx

(
E[f(t)]⊗ E[f(t)]− |E[f(t)]|2

2
I2

)
dx = 0.

When the magnetic field is uniform, we obtain

d

dt

∫
R2

∫
R2

f(t, x, v)mv dvdx =
qB

m
⊥
(∫

R2

∫
R2

f(t, x, v)mv dvdx

)
saying that the total momentum rotates at the cyclotronic frequency ωc = qB

m∫
R2

∫
R2

f(t, x, v)mv dvdx = R(−ωct)
∫
R2

∫
R2

fin(x, v)mv dvdx, t ∈ R+.
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3. By direct computation, when the magnetic field is uniform, we obtain

[
v · ∇x +

q

m
(E[f ] +B ⊥v) · ∇v

](1

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 − 1

2

|v|2

ω2
c

)
= −E[f ]

B
· ⊥x.

Therefore, after integration by parts, we deduce

d

dt

∫
R2

∫
R2

f(t, x, v)

(
1

2

∣∣∣∣x+
⊥v

ωc

∣∣∣∣2 − 1

2

|v|2

ω2
c

)
dvdx = −

∫
R2

∫
R2

f
E[f ]

B
· ⊥x dvdx

= − ε0
Bq

∫
R2

1supp ρ[f(t)] divxE[f(t)] E[f(t)] · ⊥x dx

= − ε0
Bq

∫
R2

1supp ρ[f(t)] divx

(
E[f(t)]⊗ E[f(t)]− |E[f(t)]|2

2
I2

)
· ⊥x dx

=
ε0
Bq

∫
R2

1supp ρ[f(t)]

(
E[f(t)]⊗ E[f(t)]− |E[f(t)]|2

2
I2

)
: ∂⊥x x dx = 0.

3 Asymptotic analysis by formal arguments

We are interested on the asymptotic behavior of the particle densities (f ε)ε>0 satisfying
(1), (2), (4) when ε > 0 becomes small. We assume that the initial particle density
and the external magnetic field Bε(x) = B(x)/ε are smooth

fin ≥ 0, fin ∈ C1
c (R2 × R2), B ∈ C1

b (R2). (10)

Under the above assumptions, we know by Theorem 2.1 that for every ε > 0, there is
a unique strong solution f ε ∈ C1(R+×R2×R2) (whose restriction on [0, T ]×R2×R2

is compactly supported for any T ∈ R+), Eε := E[f ε] ∈ C1(R+ × R2) for the Vlasov-
Poisson problem with external magnetic field Bε = B/ε. By the arguments in the
proof of Theorem 2.1 we also have uniform estimates with respect to ε > 0 for the L∞

norm of the electric field Eε and the size of the support of the particle density f ε. Let
us denote by (Xε, V ε)(t; t0, x, v) the characteristics associated to (1)

dXε

dt
=V ε(t; t0, x, v),

dV ε

dt
=
q

m

[
Eε(t,Xε(t; t0, x, v)) +

B

ε
(Xε(t; t0, x, v)) ⊥V ε(t; t0, x, v)

]
Xε(t; t0, x, v) = x, V ε(t; t0, x, v) = v.

Clearly, the strong external magnetic field induces a large cyclotronic frequency with
respect to the reciprocal advection time scale, and therefore a fast dynamics. Indeed,
by introducing the characteristic scales (t, x, v) for time, length, velocity, we have
t = x/v and ωεct ∼ 1/ε. We use the notations ωεc = qBε/m = ωc/ε, ωc = qB/m ∼ 1/t.
The key point is to find out quantities which are left invariant with respect to the
fast motion. It is well known that the guiding center, Xε(t) + ε ⊥V ε(t)/ωc(X

ε(t))
has small variations in time [17, 27, 30]. Another quantity having small variations is

R
(∫ t

0
ωc(Xε(σ))

ε
dσ
)

[V ε(t)− ε
⊥Eε(t,Xε(t))
B(Xε(t))

], see [23].
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Lemma 3.1
The following quantities

Xε(t) + ε ⊥V ε(t)/ωc(X
ε(t)), R

(∫ t

0

ωc(X
ε(σ))

ε
dσ

)[
V ε(t)− ε

⊥Eε(t,Xε(t))

B(Xε(t))

]
have small variations in time.

Proof.
By direct computations we have

d

dt

[
Xε(t) + ε

⊥V ε(t)

ωc(Xε(t))

]
= ε

[⊥Eε(t,Xε(t))

B(Xε(t))
−
⊥V ε(t)⊗ V ε(t)

ωc(Xε(t))2
∇xωc(X

ε(t))

]
.

Notice also that

d

dt

[
V ε(t)− ε

⊥Eε(t,Xε(t))

B(Xε(t))

]
=
ωc(X

ε(t))

ε
⊥
[
V ε(t)− ε

⊥Eε(t,Xε(t))

B(Xε(t))

]
− ε d

dt

[⊥Eε(t,Xε(t))

B(Xε(t))

]
and therefore

d

dt

{
R
(∫ t

0

ωc(X
ε(σ))

ε
dσ

)[
V ε(t)− ε

⊥Eε(t,Xε(t))

B(Xε(t))

]}
(11)

= −εR
(∫ t

0

ωc(X
ε(σ))

ε
dσ

)
d

dt

[⊥Eε(t,Xε(t))

B(Xε(t))

]
.

Certainly, the above quantities are not exactly left invariant. The idea will be to
split the advection field appearing in the Vlasov equation (1) into a fast and slow
dynamics in such a way that the previous quantities become invariant. A consequence
of this invariance is that the fast dynamics becomes periodic, which simplifies the
averaging procedure. First of all, in order to simplify our computations, we perform a
change of coordinates. Motivated by the calculation in (11), we introduce the relative
velocity with respect to the electric cross field drift

ṽ = v − ε
⊥Eε(t, x)

B(x)
. (12)

Accordingly, at any time t ∈ R+, we consider the new particle density

f̃ ε(t, x, ṽ) = f ε
(
t, x, ṽ + ε

⊥E[f ε(t)](x)

B(x)

)
, (x, ṽ) ∈ R2 × R2. (13)

Notice that this change of coordinates, which depends on the particle density through
the electric field, does not change the charge density

ρ[f̃ ε(t)] = q

∫
R2

f̃ ε(t, ·, ṽ) dṽ = q

∫
R2

f ε(t, ·, v) dv = ρ[f ε(t)], t ∈ R+.
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Therefore the Poisson electric fields corresponding to the particle densities f ε, f̃ ε coin-
cide

E[f ε(t)] = E[f̃ ε(t)], t ∈ R+

and we can use the same notation Eε(t) for denoting them. For further use, see (16),
notice that we have the following equality between the current densities j[f ε], j[f̃ ε]

j[f ε(t)] = q
∫
R2 f

ε(t, ·, v)v dv = q
∫
R2 f̃

ε(t, ·, ṽ)
(
ṽ + ε

⊥Eε(t)
B(x)

)
dṽ

= j[f̃ ε(t)] + ε
⊥Eε(t)
B(x)

ρ[f̃ ε(t)], t ∈ R+.

We add to (10) the hypothesis

B0 := inf
x∈R2
|B(x)| > 0 or equivalently ω0 := inf

x∈R2
|ωc(x)| > 0 (14)

such that (12), (13) are well defined. Observe that the new particle densities (f̃ ε)ε>0

are smooth, f̃ ε ∈ C1(R+ × R2 × R2) and that the restrictions to [0, T ] × R2 × R2 are
compactly supported, uniformly with respect to ε ∈]0, 1], for any T ∈ R+. The last
statement comes from the similar property of the particle densities (f ε)ε>0, together
with the uniform bound for the electric fields (Eε)ε>0 and the hypothesis (14). A
straightforward computation leads to the following problem in the new coordinates
(x, ṽ)

∂tf̃
ε +

(
ṽ + ε

⊥Eε

B

)
· ∇xf̃

ε − ε
[
∂t

(⊥Eε

B

)
+ ∂x

(⊥Eε

B

)(
ṽ + ε

⊥Eε

B

)]
· ∇ṽf̃

ε (15)

+
ωc(x)

ε
⊥ṽ · ∇ṽf̃

ε = 0, (t, x, ṽ) ∈ R+ × R2 × R2

f̃ ε(0, x, ṽ) = fin

(
x, ṽ + ε

⊥E[fin](x)

B(x)

)
, (x, ṽ) ∈ R2 × R2.

Notice that the time derivative of the electric field Eε can be written in terms of the
particle density f ε (or f̃ ε). Indeed, thanks to the continuity equation

∂tρ[f ε] + divxj[f
ε] = 0

we have

∂tE[f ε] =
1

2πε0

∫
R2

∂tρ[f ε(t)](x− x′) x′

|x′|2
dx′ (16)

= − 1

2πε0

∫
R2

divxj[f
ε](x− x′) x′

|x′|2
dx′

= − 1

2πε0
divx

∫
R2

x′

|x′|2
⊗ j[f ε(t)](x− x′) dx′

= − 1

2πε0
divx

∫
R2

x− x′

|x− x′|2
⊗
(
j[f̃ ε(t)](x′) + ε

⊥Eε(t, x′)

B(x′)
ρ[f̃ ε(t)](x′)

)
dx′.

Finally the Vlasov equation (15) writes

∂tf̃
ε + εaε[f̃ ε(t)] · ∇x,ṽf̃

ε +
bε(x, ṽ)

ε
· ∇x,ṽf̃

ε = 0, (t, x, ṽ) ∈ R+ × R2 × R2 (17)
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where bε · ∇x,ṽ = (εṽ + ε2Aεx(x, ṽ)) · ∇x + ωc(x) ⊥ṽ · ∇ṽ and for any particle density f̃ ,
aε[f̃ ] · ∇x,ṽ stands for the vector field

aε[f̃ ] · ∇x,ṽ =

(
⊥E[f̃ ]

B
− Aεx

)
· ∇x +

[
−∂x

(
⊥E[f̃ ]

B

)(
ṽ + ε

⊥E[f̃ ]

B

)

+
1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗

(
j[f̃ ] + ε

⊥E[f̃ ]

B
ρ[f̃ ]

)
(x′) dx′

]
· ∇ṽ.

Here Aεx(x, ṽ) · ∇x is a vector field, to be determined later on, not depending on the
particle density f̃ . We will distinguish between the fast dynamics along the vector field
bε

ε
· ∇x,ṽ and the slow dynamics along the vector field εaε · ∇x,ṽ. We pick the vector

field Aεx(x, ṽ) · ∇x entering the corrections in aε · ∇x,ṽ and bε · ∇x,ṽ such that x+ ε
⊥ṽ
ωc(x)

is left invariant by the fast dynamics

bε · ∇x,ṽ

(
x+ ε

⊥ṽ

ωc(x)

)
= 0

that is (
I2 − ε

⊥ṽ ⊗∇ωc
ω2
c (x)

)
Aεx(x, ṽ) =

⊥ṽ ⊗ ṽ
ω2
c (x)

∇xωc. (18)

Obviously, when the magnetic field is uniform, i.e., ∇xωc = 0, there is no correction,
Aεx = 0. Notice that Aεx is well defined for any (x, ṽ) such that ε

⊥ṽ·∇ωc
ω2
c (x)

6= 1, that

is, for almost all (x, ṽ) ∈ R2 × R2. By construction, the guiding center x + ε
⊥ṽ
ωc(x)

is

left invariant by the fast dynamics along bε

ε
· ∇x,ṽ and it is easily seen that |ṽ| is left

invariant as well. Therefore, any function which is left invariant by the fast dynamics,
depends only on the guiding center x+ ε

⊥ṽ
ωc(x)

and |ṽ|.

Remark 3.1 The vector field in the Vlasov equation (17) is divergence free

divx,ṽ

(
εaε[f̃ ] +

bε

ε

)
= εdivx

(
⊥E[f̃ ]

B

)
− εdivṽ

[
∂x

(
⊥E[f̃ ]

B

)
ṽ

]
= 0.

Studying the asymptotic behavior of (17), when ε goes to 0 reduces to averaging with

respect to the flow of the fast dynamics generated by the advection field bε(x,ṽ)
ε
·∇x,ṽ cf.

[3, 5, 8, 6, 7]. Notice that, when the magnetic field is uniform, this characteristic flow
is periodic, and therefore the averaging comes easily. This is the main reason why most
of the mathematical studies concern uniform magnetic fields. Nevertheless, by taking
into account the vector field Aεx ·∇x, even when the magnetic field is non homogeneous,
the characteristic flow associated to bε(x, ṽ) ·∇x,ṽ is periodic, which simplifies a lot the
asymptotic analysis. Not only it allows us to derive formally the asymptotic regimes,
but it will provide us a very useful tool for performing the error analysis. In particular,
in the periodic setting it is possible to construct explicitly the corrector (and therefore
to check its smoothness) that we need when establishing the error estimate.
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Proposition 3.1 We denote by (Xε(s;x, ṽ), Ṽε(s;x, ṽ)) the characteristic flow of the
autonomous vector field bε(x, ṽ) · ∇x,ṽ

dXε

ds
= εṼε(s;x, ṽ) + ε2Aεx(X

ε(s;x, ṽ), Ṽε(s;x, ṽ)),
dṼε

ds
= ωc(X

ε(s;x, ṽ)) ⊥Ṽε(s;x, ṽ)

Xε(0;x, ṽ) = x, Ṽε(0;x, ṽ) = ṽ

and by (X(s;x, ṽ), Ṽ(s;x, ṽ)) the characteristic flow of the autonomous vector field
b(x, ṽ) · ∇x,ṽ = ωc(x) ⊥ṽ · ∇ṽ

dX

ds
= 0,

dṼ

ds
= ωc(X(s;x, ṽ)) ⊥Ṽ(s;x, ṽ), X(0;x, ṽ) = x, Ṽ(0;x, ṽ) = ṽ.

1. For ε > 0 small enough, the flow (Xε, Ṽε) is periodic. More exactly for any

(x, ṽ) ∈ R2 × R2 and ε > 0 such that ε |ṽ| ‖∇ωc‖L∞
ω2
0

< 1, the characteristic s →
(Xε, Ṽε)(s;x, ṽ) is periodic, with smallest period Sε(x, ṽ) > 0.

2. For any (x, ṽ) ∈ R2 × R2 and ε > 0 such that ε |ṽ| ‖∇ωc‖L∞
ω2
0

≤ 1
2

we have

|Xε(s;x, ṽ)− X(s;x, ṽ)| = |Xε(s;x, ṽ)− x| ≤ ε
4π

ω0

|ṽ|, s ∈ R

Sε(x, ṽ) ≤ 2π

ω0

, |Sε(x, ṽ)− S(x, ṽ)| ≤ ε‖∇ωc‖L∞
8π2|ṽ|
ω3
0

, S(x, ṽ) =
2π

|ωc(x)|
≤ 2π

ω0

and

|Ṽε(s;x, ṽ)−Ṽ(s;x, ṽ)| = |Ṽε(s;x, ṽ)−R(−sωc(x))ṽ| ≤ ε‖∇ωc‖L∞
8π2

ω2
0

|ṽ|2, s ∈
[
0,

2π

ω0

]
.

3. For any continuous function u ∈ C(R2 × R2) we define the averages along the
flows of b · ∇x,ṽ, b

ε · ∇x,ṽ

〈u〉 (x, ṽ) =
1

S(x, ṽ)

∫ S(x,ṽ)

0

u(X(s;x, ṽ), Ṽ(s;x, ṽ)) ds, (x, ṽ) ∈ R2 × R2

〈u〉ε (x, ṽ) =
1

Sε(x, ṽ)

∫ Sε(x,ṽ)

0

u(Xε(s;x, ṽ), Ṽε(s;x, ṽ)) ds, (x, ṽ) ∈ R2 × R2.

For any Rx, Rṽ ∈ R+ we have

‖ 〈u〉 ‖L∞(B(Rx)×B(Rṽ)) ≤ ‖u‖L∞(B(Rx)×B(Rṽ))

‖ 〈u〉ε ‖L∞(B(Rx)×B(Rṽ)) ≤ ‖u‖L∞(B(Rεx)×B(Rṽ)), Rε
x = Rx + 2εRṽ/ω0

where B(R) stands for the closed ball of radius R in R2.

4. If u is Lipschitz continuous, then for any (x, ṽ) ∈ R2 × R2 and ε > 0 such that

ε |ṽ| ‖∇ωc‖L∞
ω2
0

≤ 1
2

we have

| 〈u〉ε (x, ṽ)− 〈u〉 (x, ṽ)|
ε

≤ Lip(u)
4π

ω0

|ṽ|
[
1 + ‖∇ωc‖L∞

2π

ω0

|ṽ|
]

+ sup
|ṽ′|=|ṽ|

|u(x, ṽ′)|‖∇ωc‖L∞
8π

ω2
0

|ṽ|.
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5. For any function u ∈ C1
c (R2 × R2) we have the inequality

‖u− 〈u〉 ‖L2(R2×R2) ≤
2π

ω0

‖b · ∇x,ṽu‖L2(R2×R2).

6. For any function u ∈ C1(R2 × R2), we have 〈u〉 ∈ C1(R2 × R2) and

〈∇xu〉 = ∇x 〈u〉 , ṽ · ∇ṽ 〈u〉 = 〈ṽ · ∇ṽu〉 , ⊥ṽ · ∇ṽ 〈u〉 = 0.

Proof.
1. For any s ∈ R we have

Ṽε(s) = R
(
−
∫ s

0

ωc(X
ε(σ)) dσ

)
ṽ

and therefore |Ṽε(s)| = |ṽ|. By hypothesis (14) we know that ωc has constant sign, and
there is a unique Sε(x, ṽ) > 0 such that

sgn ωc

∫ Sε(x,ṽ)

0

ωc(X
ε(σ;x, ṽ)) dσ =

∫ Sε(x,ṽ)

0

|ωc(Xε(σ;x, ṽ))| dσ = 2π.

Clearly we have Ṽε(Sε(x, ṽ);x, ṽ) = ṽ and we claim that, for small ε, we also have
Xε(Sε(x, ṽ);x, ṽ) = x saying that the flow (Xε(s;x, ṽ), Ṽε(s;x, ṽ)) is Sε(x, ṽ) periodic.
The main ingredient when justifying this periodicity is the invariance of the guiding
center, see the definition of the vector field Aεx(x, ṽ) · ∇x

Xε(Sε) + ε
⊥Ṽε(Sε)

ωc(Xε(Sε))
= x+ ε

⊥ṽ

ωc(x)

we deduce

|Xε(Sε)− x| ≤ ε
|ṽ|
ω2
0

|ωc(Xε(Sε))− ωc(x)| ≤ ε|ṽ| ‖∇ωc‖L∞

ω2
0

|Xε(Sε)− x|.

Therefore, if ε|ṽ| ‖∇ωc‖L∞
ω2
0

< 1, we obtain Xε(Sε(x, ṽ)) = x.

2. Notice that for any s ∈ R

det

(
I2 − ε

⊥Ṽε(s)⊗∇ωc(Xε(s))

ω2
c (X

ε(s))

)
= 1− ε

⊥Ṽε(s) · ∇ωc(Xε(s))

ω2
c (X

ε(s))

≥ 1− ε |Ṽ
ε(s)| |∇ωc(Xε(s))|
ω2
c (X

ε(s))

≥ 1− ε|ṽ| ‖∇ωc‖L∞

ω2
0

≥ 1

2

and therefore Aεx(X
ε(s), Ṽε(s)) is well defined for any s ∈ R. Moreover (18) implies

|Aεx(Xε(s), Ṽε(s))| ≤ |Ṽε(s)|2

ω2
c (X

ε(s))
|∇ωc(Xε(s))|+ ε

|Ṽε(s)| |∇ωc(Xε(s))|
ω2
c (X

ε(s))
|Aεx(Xε(s), Ṽε(s))|

≤ |ṽ|
2

ω2
0

‖∇ωc‖L∞ +
1

2
|Aεx(Xε(s), Ṽε(s))|
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and thus

ε|Aεx(Xε(s), Ṽε(s))| ≤ 2
ε|ṽ|2 ‖∇ωc‖L∞

ω2
0

≤ |ṽ|.

By the previous point we know that s→ Xε(s;x, ṽ) is Sε(x, ṽ) periodic, where

Sε(x, ṽ) ≤ 1

ω0

∫ Sε(x,ṽ)

0

|ωc(Xε(σ))| dσ =
2π

ω0

.

Finally we write for any s ∈ [0, Sε(x, ṽ)] ⊂ [0, 2π/ω0]

|Xε(s;x, ṽ)− x| =
∣∣∣∣∫ s

0

{εṼε(σ) + ε2Aεx(X
ε(σ), Ṽε(σ))} dσ

∣∣∣∣
≤ 2εSε(x, ṽ)|ṽ| ≤ ε

4π

ω0

|ṽ|.

By periodicity we have

|Xε(s;x, ṽ)− X(s;x, ṽ)| = |Xε(s;x, ṽ)− x| ≤ ε
4π

ω0

|ṽ|, s ∈ R.

Let us compare now Sε(x, ṽ) to S(x, ṽ) = 2π/|ωc(x)|, which is the smallest period of
the flow (X, Ṽ). Integrating over [0, Sε(x, ṽ)] the inequality

|ωc(x)| − ‖∇ωc‖L∞
ε4π|ṽ|
ω0

≤ |ωc(Xε(σ)| ≤ |ωc(x)|+ ‖∇ωc‖L∞
ε4π|ṽ|
ω0

one gets

Sε(x, ṽ)

(
|ωc(x)| − ‖∇ωc‖L∞

ε4π|ṽ|
ω0

)
≤ 2π ≤ Sε(x, ṽ)

(
|ωc(x)|+ ‖∇ωc‖L∞

ε4π|ṽ|
ω0

)
implying that ∣∣∣∣ 1

Sε(x, ṽ)
− 1

S(x, ṽ)

∣∣∣∣ ≤ ε‖∇ωc‖L∞
2|ṽ|
ω0

and

|Sε(x, ṽ)− S(x, ṽ)| = Sε(x, ṽ)S(x, ṽ)

∣∣∣∣ 1

Sε(x, ṽ)
− 1

S(x, ṽ)

∣∣∣∣ ≤ ε‖∇ωc‖L∞
8π2|ṽ|
ω3
0

.

Thanks to the inequality ‖R(θ) − R(θ′)‖ ≤ |θ − θ′|, θ, θ′ ∈ R, we obtain for any
s ∈ [0, 2π/ω0]

|Ṽε(s;x, ṽ)− Ṽ(s;x, ṽ)| =
∣∣∣∣R(−∫ s

0

ωc(X
ε(σ)) dσ

)
ṽ −R

(
−
∫ s

0

ωc(X(σ)) dσ

)
ṽ

∣∣∣∣
≤
∫ s

0

|ωc(Xε(σ))− ωc(X(σ))| dσ |ṽ|

≤ ε‖∇ωc‖L∞
8π2

ω2
0

|ṽ|2.

12



3. The first inequality is obvious, sice X(s;x, ṽ) = x and |Ṽ(s;x, ṽ)| = |ṽ|, for any
(s, x, ṽ) ∈ R × R2 × R2. For the second one use |Ṽε(s;x, ṽ)| = |ṽ| and notice that by
the invariance of the center

Xε(s;x, ṽ) + ε
⊥Ṽε(s;x, ṽ)

ωc(Xε(s;x, ṽ))
= x+ ε

⊥ṽ

ωc(x)

we have

|Xε(s;x, ṽ)| ≤ |x|+ |Xε(s;x, ṽ)− x| ≤ |x|+ 2ε
|ṽ|
ω0

, (s, x, ṽ) ∈ R× R2 × R2.

4. When analyzing the asymptotic regimes with ε ↘ 0, it is worth noticing that the
average 〈·〉ε converges toward the average 〈·〉. It means that, although the average 〈·〉ε
is not explicit (because we do not have formulae for the flow (Xε, Ṽε)), its contribution
in the limit model can be determined by averaging along the flow (X, Ṽ), which is
completely explicit. Based on the previous statements, we have

| 〈u〉ε (x, ṽ)− 〈u〉 (x, ṽ)| ≤ 1

Sε(x, ṽ)

∫ Sε(x,ṽ)

0

|u(Xε(s), Ṽε(s))− u(X(s), Ṽ(s))| ds

+

∣∣∣∣ 1

Sε(x, ṽ)
− 1

S(x, ṽ)

∣∣∣∣ ∫ Sε(x,ṽ)

0

|u(X(s), Ṽ(s))| ds+
1

S(x, ṽ)

∣∣∣∣∣
∫ Sε(x,ṽ)

S(x,ṽ)

|u(X(s), Ṽ(s))| ds

∣∣∣∣∣
≤ Lip(u) sup

0≤s≤2π/ω0

(
|Xε(s)− X(s)|+ |Ṽε(s)− Ṽ(s)|

)
+

[∣∣∣∣ 1

Sε(x, ṽ)
− 1

S(x, ṽ)

∣∣∣∣Sε(x, ṽ) +
|Sε(x, ṽ)− S(x, ṽ)|

S(x, ṽ)

]
sup
|ṽ′|=|ṽ|

|u(x, ṽ′)|

≤ ε Lip(u)
4π

ω0

|ṽ|
[
1 + ‖∇ωc‖L∞

2π

ω0

|ṽ|
]

+ ε sup
|ṽ′|=|ṽ|

|u(x, ṽ′)|‖∇ωc‖L∞
8π

ω2
0

|ṽ|.

5. We can write for any (x, ṽ) ∈ R2 × R2

〈u〉 (x, ṽ)− u(x, ṽ) =
1

S(x, ṽ)

∫ S(x,ṽ)

0

[u(X(s;x, ṽ), Ṽ(s;x, ṽ))− u(x, ṽ)] ds

=
1

S(x, ṽ)

∫ S(x,ṽ)

0

∫ s

0

d

dσ
u(X(σ;x, ṽ), Ṽ(σ;x, ṽ)) dσds

=
1

S(x, ṽ)

∫ S(x,ṽ)

0

∫ s

0

(b · ∇u)(X(σ;x, ṽ), Ṽ(σ;x, ṽ)) dσds

=
1

2π

∫ 2π

0

∫ θ
|ωc(x)|

0

(b · ∇u)(X(σ;x, ṽ), Ṽ(σ;x, ṽ)) dσdθ.

As u has compact support, its average 〈u〉 is also compactly supported and therefore
u− 〈u〉 belongs to L2(R2 × R2). By the previous computation we have

| 〈u〉 (x, ṽ)− u(x, ṽ)| ≤ 1

2π

∫ 2π

0

∫ 2π
ω0

0

|(b · ∇u)(X(σ;x, ṽ), Ṽ(σ;x, ṽ))| dσdθ

and therefore

‖ 〈u〉 − u‖L2 ≤ 1

2π

∫ 2π

0

∫ 2π
ω0

0

‖(b · ∇u)(X(σ; ·, ·), Ṽ(σ; ·, ·))‖L2 dσdθ =
2π

ω0

‖b · ∇u‖L2 .

13



The above Poincaré inequality still holds true for any u ∈ L2(R2 × R2) such that
b · ∇u ∈ L2(R2×R2), see [3] for details about the average of Lp functions, 1 ≤ p ≤ ∞.
6. Observe that for any (x, ṽ) ∈ R2 × R2 we have

〈u〉 (x, ṽ) =
1

2π

∫ 2π

0

u(x,R(−θ)ṽ) dθ

and therefore 〈u〉 ∈ C1(R2×R2). Taking the derivatives with respect to x, ṽ under the
integral sign, one gets

(∇x 〈u〉)(x, ṽ) =
1

2π

∫ 2π

0

(∇xu)(x,R(−θ)ṽ) dθ = 〈∇xu〉 (x, ṽ)

and

ṽ · (∇ṽ 〈u〉)(x, ṽ) =
1

2π

∫ 2π

0

R(−θ)ṽ · (∇ṽu)(x,R(−θ)ṽ) dθ = 〈ṽ · ∇ṽu〉 (x, ṽ).

By the definition, the average 〈u〉 is constant along the flow of b · ∇x,ṽ, and therefore
belongs to the kernel of b · ∇x,ṽ, that is ⊥ṽ · ∇ṽ 〈u〉 = 0.

It is easily seen that the periods S, Sε are invariant along the flows of b · ∇x,ṽ, b
ε · ∇x,ṽ

as well as the averages 〈u〉 , 〈u〉ε. If u is a C1 function, we have by periodicity

〈b · ∇x,ṽu〉 (x, ṽ) =
1

S(x, ṽ)

∫ S(x,ṽ)

0

d

ds
u(X(s), Ṽ(s)) ds = 0, (x, ṽ) ∈ R2 × R2

and similarly 〈bε · ∇x,ṽu〉ε = 0.
In the sequel we derive formally the limit model of (17), as ε goes to 0. The

rigorous arguments will be discussed in Section 5. As we are interested by a second
order model, we keep all the first order corrections. When ε becomes small, we expect

that bε(x, ṽ) · ∇x,ṽf̃
ε will vanish, saying that f̃ ε behaves like its average

〈
f̃ ε
〉
ε

along

the flow (Xε, Ṽε). Taking the average of (17) along the flow (Xε, Ṽε) we obtain

∂t

〈
f̃ ε(t)

〉
ε

+ ε
〈
aε[f̃ ε(t)] · ∇x,ṽf̃

ε(t)
〉
ε

= 0, (t, x, ṽ) ∈ R+ × R2 × R2.

As the difference between the averages along bε(x, ṽ) ·∇x,ṽ and b(x, ṽ) ·∇x,ṽ is of order ε

cf. Proposition 3.1, up to a second order term, we can replace ε
〈
aε[f̃ ε(t)] · ∇x,ṽf̃

ε(t)
〉
ε

by ε
〈
a[f̃(t)] · ∇x,ṽf̃(t)

〉
where

a[f̃ ] · ∇x,ṽ =

(
⊥E[f̃ ]

B
− Ax

)
· ∇x

+

[
1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ − ∂x

(
⊥E[f̃ ]

B

)
ṽ

]
· ∇ṽ

and Ax(x, ṽ) =
⊥ṽ⊗ṽ
ω2
c (x)
∇ωc. More exactly, we expect that solving

∂tf̃ + ε
〈
a[f̃(t)] · ∇x,ṽf̃(t)

〉
= 0, b · ∇x,ṽf̃ = 0, (t, x, ṽ) ∈ R+ × R2 × R2 (19)
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for a suitable (well prepared) initial condition (see Section 5), will provide a second
order approximation for (1), (2). Although the above solution depends on ε, we use
the notation f̃ , for saying that it is an approximation of f̃ ε, when ε becomes small.
It remains to compute the average of a[f̃(t)] · ∇x,ṽf̃(t), where the particle density
f̃(t) satisfies the constraint b · ∇x,ṽf̃(t) = 0, that is, f̃(t) depends only on x and
|ṽ|. By the definition of the average operator along b · ∇x,ṽ, it is easily seen that〈⊥ṽ ⊗ ṽ〉 = |ṽ|2

2
R(−π/2) and therefore

ε

〈(
⊥E[f̃ ]

B
− Ax

)
· ∇xf̃

〉
= ε

⊥E[f̃ ]

B(x)
· ∇xf̃ − ε 〈Ax〉 · ∇xf̃

= ε

(
⊥E[f̃ ]

B(x)
− |ṽ|2

2ω2
c (x)

⊥∇ωc

)
· ∇xf̃ .

We recognize here the electric cross field drift ε
⊥E[f̃ ]
B

=
⊥E[f̃ ]
Bε

and the magnetic gradient
drift

−ε |ṽ|
2

2ω2
c (x)

⊥∇ωc = −m|ṽ|
2

2qBε

⊥∇Bε

Bε
.

As
〈
∇ṽf̃

〉
= 0, we have〈

1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ · ∇ṽf̃

〉
= 0.

It remains to compute the average −ε
〈
∂x

(
⊥E[f̃ ]
B

)
ṽ · ∇ṽf̃

〉
. As f̃ satisfies the con-

straint b · ∇x,ṽf̃ = 0, we have ∇ṽf̃ = ∇ṽ f̃ ·ṽ
|ṽ|2 ṽ and therefore

−ε

〈
∂x

(
⊥E[f̃ ]

B

)
ṽ · ∇ṽf̃

〉
= ε

〈
∂x

(
E[f̃ ]

B

)
ṽ · ⊥ṽ

〉
∇ṽf̃ · ṽ
|ṽ|2

= ε∂x

(
E[f̃ ]

B

)
:
〈⊥ṽ ⊗ ṽ〉 ∇ṽf̃ · ṽ

|ṽ|2

=
ε

2

(
⊥E[f̃ ]

B
· ∇B
B

)
ṽ · ∇ṽf̃ .

Finally, the particle density f̃ satisfies

∂tf̃ +

(
⊥E[f̃ ]

Bε(x)
− m|ṽ|2

2qBε

⊥∇Bε

Bε(x)

)
· ∇xf̃ +

1

2

(
⊥E[f̃ ]

Bε(x)
· ∇B

ε

Bε(x)

)
ṽ · ∇ṽf̃ = 0. (20)

Remark 3.2
The above model can also be obtained by working at the characteristic level. Indeed,

at least formally, when ε is small, the solution of (19) is approximated by the solution
g̃ (which depends on ε) of

∂tg̃ + εa[g̃(t)] · ∇x,ṽg̃ +
b(x, ṽ)

ε
· ∇x,ṽg̃ = 0, (t, x, ṽ) ∈ R+ × R2 × R2 (21)
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whose characteristics, denoted by (X, Ṽ ) (and depending on ε), verify

dX

dt
= εax[g̃(t)](X(t), Ṽ (t)) (22)

dṼ

dt
= εaṽ[g̃(t)](X(t), Ṽ (t)) +

ωc(X(t))

ε
⊥Ṽ (t). (23)

Studying the asymptotic behavior, when ε becomes small, of (19) or (21), reduces to
determining the effective characteristic system coming from (22), (23), when averaging
with respect to the fast rotation in velocity. More exactly, (23) writes

d

dt

{
R

(∫ t
0
ωc(X(s)) ds

ε

)
Ṽ (t)

}
= εR

(∫ t
0
ωc(X(s)) ds

ε

)
aṽ[g̃(t)](X(t), Ṽ (t))

saying that V (t) := R
(∫ t

0 ωc(X(s)) ds

ε

)
Ṽ (t) has no fast oscillations. Moreover, when ε

is small, the time variation of V (t) can be approximated by

ε

2π

∫ 2π

0

R(θ)aṽ[g̃(t)](X(t),R(−θ)V (t)) dθ

= − ε

2π

∫ 2π

0

R(θ)∂x

(⊥E[g̃]

B

)
(X(t))R(−θ)V (t) dθ

= −ε
2

divx

(⊥E[g̃]

B

)
(X(t)) V (t)− ε

2
divx

(
E[g̃]

B

)
(X(t)) ⊥V (t).

In the above computation we have used the formula

1

2π

∫ 2π

0

R(θ)MR(−θ) dθ =
trace(M)

2
I2 +

trace(R(π
2
)M)

2
R
(
−π

2

)
(24)

for any square matrix M of size 2. As the limit density g̃ satisfies the constraint
ωc(x) ⊥ṽ · ∇ṽg̃ = 0, the velocity advection in the effective Vlasov equation is

−ε
2

divx

(⊥E[g̃]

B

)
ṽ · ∇ṽg̃ =

1

2

(⊥E[g̃]

Bε(x)
· ∇B

ε

Bε(x)

)
ṽ · ∇ṽg̃.

Notice that the acceleration 1
2

(
⊥E
Bε(x)

· ∇Bε
Bε(x)

)
ṽ comes by smoothing out the fast velocity

rotation, when computing the average

− ε

2π

∫ 2π

0

R(θ)∂x

(⊥E
B

)
(X(t))R(−θ) dθ V (t).

Similarly, the time variation of X(t) can be approximated by

ε

2π

∫ 2π

0

ax[g̃(t)](X(t),R(−θ)V (t)) dθ
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and therefore, by using one more time (24), one gets

ε

2π

∫ 2π

0

[(⊥E[g̃]

B

)
(X(t))− R(−θ) ⊥V (t)⊗R(−θ)V (t)

ω2
c (X(t))

∇ωc(X(t))

]
dθ

= ε

(⊥E[g̃]

B

)
(X(t))− ε

2π

∫ 2π

0

R(−θ)
⊥V (t)⊗ V (t)

ω2
c (X(t))

R(θ) dθ ∇ωc(X(t))

= ε

(⊥E[g̃]

B

)
(X(t))− ε

2
trace

(⊥V (t)⊗ V (t)

ω2
c (X(t))

)
∇ωc(X(t))

− ε

2
trace

(
R
(π

2

) ⊥V (t)⊗ V (t)

ω2
c (X(t))

)
⊥∇ωc(X(t))

= ε

(⊥E[g̃]

B

)
(X(t))− ε |V (t)|2

2ω2
c (X(t))

⊥∇ωc(X(t)).

The space advection in the effective Vlasov equation is given by the electric cross field
drift and the magnetic gradient drift(⊥E[g̃]

Bε(x)
− m|ṽ|2

2qBε(x)

⊥∇Bε

Bε(x)

)
· ∇xg̃

and therefore we retrieve (20). Observe that the drift velocities come by smoothing out
the fast velocity rotation, when computing the average

ε

2π

∫ 2π

0

[(⊥E
B

)
(X(t))− R(−θ) ⊥V (t)⊗R(−θ)V (t)

ω2
c (X(t))

∇ωc(X(t))

]
dθ.

4 Well posedness of the limit model

In this section we focus on the existence, uniqueness and other properties of the limit
model

∂tf̃ +

(
⊥E[f̃ ]

Bε(x)
− m|ṽ|2

2qBε

⊥∇Bε

Bε(x)

)
· ∇xf̃ +

1

2

(
⊥E[f̃ ]

Bε(x)
· ∇B

ε

Bε(x)

)
ṽ · ∇ṽf̃ = 0 (25)

where E[f̃ ] stands for the Poisson electric field

E[f̃(t)](x) =
q

2πε0

∫
R2

∫
R2

f̃(t, x′, v′)
x− x′

|x− x′|2
dv′dx′, (t, x) ∈ R+ × R2. (26)

Although the well posedness of this limit model is analogous to that of the Vlasov-
Poisson system, it is instructive to detail it there. A very important consequence of
the uniqueness is the invariance of the solution under the rotations in the velocity
space, cf. 6. Remark 4.1. In particular we justify the propagation of the constraint
b · ∇x,ṽf̃ = 0. We supplement our model by the initial condition

f̃(0, x, ṽ) = f̃in(x, ṽ), (x, ṽ) ∈ R2 × R2 (27)

where f̃in is a smooth compactly supported particle density. The parameter ε > 0 is
fixed and Bε is a smooth external magnetic field.
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Proof. (of Theorem 1.1)
We follow the same arguments as in the well posedness proof for the Vlasov-Poisson
problem with external magnetic field. It is enough to establish the existence and
uniqueness on any time interval [0, T ], T ∈ R+. We construct a map acting on elec-
tric fields. Given a C1 electric field E on [0, T ] × R2 such that E, ∂xE are bounded,
divx

⊥E = 0, we consider the solution by characteristics of the Vlasov problem (25),
(27) on [0, T ]× R2 × R2, corresponding to the electric field E

f̃E(t, x, ṽ) = f̃in(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ)), (t, x, ṽ) ∈ [0, T ]× R2 × R2

where this time the characteristics (XE(s; t, x, ṽ), V E(s; t, x, ṽ)) are given by

dXE

ds
=
⊥E(s,XE(s))

Bε(XE(s))
− m|Ṽ E(s)|2

2qBε(XE(s))

⊥∇Bε(XE(s))

Bε(XE(s))
(28)

dṼ E

ds
=

1

2

(⊥E(s,XE(s))

Bε(XE(s))
· ∇B

ε(XE(s))

Bε(XE(s))

)
Ṽ E(s) (29)

XE(s; t, x, ṽ) = x, Ṽ E(s; t, x, ṽ) = ṽ, (s, t, x, ṽ) ∈ [0, T ]× [0, T ]× R2 × R2.

Notice that the magnetic moment µε(x, ṽ) = m|ṽ|2
2Bε(x)

is left invariant along these char-
acteristics :

dµε

ds
= − m|Ṽ E(s)|2

2Bε(XE(s))

∇Bε(XE(s))

Bε(XE(s))
·

(
⊥E(s,XE(s))

Bε(XE(s))
− m|Ṽ E(s)|2

2qBε(XE(s))

⊥∇Bε(XE(s))

Bε(XE(s))

)

+
m|Ṽ E(s)|2

2Bε(XE(s))

(⊥E(s,XE(s))

Bε(XE(s))
· ∇B

ε(XE(s))

Bε(XE(s))

)
= 0

and therefore the velocity remains bounded, independently with respect to the electric
field

|Ṽ E(s)| ≤
(
‖Bε‖L∞

Bε
0

)1/2

|ṽ| =
(
‖B‖L∞

B0

)1/2

|ṽ|, s ∈ R.

We deduce that (28) also writes

dXE

ds
=
⊥E(s,XE(s))

Bε(XE(s))
− m|ṽ|2

2qBε(x)

⊥∇Bε(XE(s))

Bε(XE(s))
(30)

whose right hand side remains bounded for s ∈ [0, T ] and thus XE exists globally on
[0, T ] and has C1 regularity in all the arguments. Once that XE is determined, Ṽ E

comes easily by solving (29), which is linear with respect to Ṽ E, and therefore Ṽ E

exists also globally on [0, T ], and has C1 regularity in all the arguments. As before, we
consider the map F̃ , whose fixed point gives the solution of the limit model (25), (26),
(27)

E → F̃(E) :=
q

2πε0

∫
R2

∫
R2

f̃E(t, x′, ṽ′)
x− x′

|x− x′|2
dv′dx′.

We are looking for a set X̃T of smooth electric fields, which is left invariant by the map
F̃ and for an estimate like

‖F̃E(t)−F̃E ′(t)‖L∞ ≤ εC̃T

∫ t

0

‖E(s)−E ′(s)‖L∞ ds, E,E ′ ∈ X̃T , t ∈ [0, T ], ε ∈]0, 1]

(31)
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for some constant C̃T , not depending on E,E ′. Assume that

suppf̃in ⊂ {(x, ṽ) ∈ R2 × R2 : |x| ≤ R̃in
x and |ṽ| ≤ R̃in

ṽ }.

By the conservation of the magnetic moment and of the particle number (thanks to
the condition divx

⊥E = 0), it is easily seen that at any time t ∈ [0, T ] we have

suppf̃E(t) ⊂ {(x, ṽ) ∈ R2 × R2 : |ṽ| ≤ R̃ṽ := R̃in
ṽ (‖B‖L∞/B0)

1/2}

implying that

‖ρ[f̃(t)]‖L∞ ≤ |q| ‖f̃in‖L∞π(R̃in
ṽ )2
‖B‖L∞

B0

.

Therefore, as in (49) we obtain the L∞ bound for the electric field

‖E[f̃(t)]‖L∞(R2) ≤
1

ε0
‖ρ[f̃(t)]‖1/2L∞(R2)

(
|q|
2π
‖f̃in‖L1(R2×R2)

)1/2

≤ α :=
|q|√
2ε0
‖f̃in‖1/2L∞(R2×R2)R

in
ṽ

(
‖B‖L∞

B0

)1/2

‖f̃in‖1/2L1(R2×R2), t ∈ [0, T ].

Integrating in time (30) leads immediately to

suppf̃(t) ⊂ {(x, ṽ) ∈ R2 × R2 : |x| ≤ R̃x(t) and |ṽ| ≤ R̃ṽ}

where

R̃x(t) = R̃in
x + εt

[
α

B0

+
m(R̃in

ṽ )2

2|q|B0

‖B‖L∞

B0

‖∇B‖L∞

B0

]
, t ∈ [0, T ].

Taking the derivative with respect to x in (30), (29) we deduce that there is a constant
C5(m, ε0, q, T, ‖B‖W 2,∞(R2), B0) such that for any (x, ṽ) ∈ R2 × R2, |ṽ| ≤ R̃ṽ

|∂xXE(0; t, x, ṽ)|+ |∂xṼ E(0; t, x, ṽ)| ≤ C5 exp

(
ε

∫ t

0

‖∂xE(s)‖L∞ ds

)
, t ∈ [0, T ].

(32)
As before we write

∇xρ[f̃E(t)] = q∇x

∫
R2

f̃in(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ)) dṽ

= q

∫
R2

1{|ṽ|≤R̃ṽ}
t∂xX

E(0; t, x, ṽ)(∇X f̃in)(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ)) dṽ

+ q

∫
R2

1{|ṽ|≤R̃ṽ}
t∂xṼ

E(0; t, x, ṽ)(∇V f̃in)(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ)) dṽ

and by coming back to (32), we obtain

‖∇xρ[f̃E(t)]‖L∞ ≤ C6 exp

(
ε

∫ t

0

‖∂xE(s)‖L∞ ds

)
, t ∈ [0, T ]

for some constant C6(m, ε0, q, T, ‖B‖W 2,∞(R2), B0) ≥ 1 and thus

ln+ ‖∇xρ[f̃E(t)]‖L∞ ≤ lnC6 + ε

∫ t

0

‖∂xE(s)‖L∞ ds, t ∈ [0, T ], ε ∈]0, 1].
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Combining with (54) yields

‖∂xE[f̃E(t)]‖L∞ ≤ C7

(
1 + ε

∫ t

0

‖∂xE(s)‖L∞ ds

)
, t ∈ [0, T ], ε ∈]0, 1]

for some constant C7(m, ε0, q, T, ‖B‖W 2,∞(R2), B0). The previous computations allow
us to consider the set

X̃T = {E ∈ C1([0, T ]× R2) :

divx
⊥E = 0, ‖E(t)‖L∞ ≤ α, ‖∂xE(t)‖L∞ ≤ C7 exp(εtC7), t ∈ [0, T ]}.

It remains to establish (31). Let us consider E,E ′ ∈ X̃T and denote by f̃E, f̃E
′

the solutions by characteristics of (25), (27) corresponding to the electric fields E,E ′

respectively. Recall that at any time t ∈ [0, T ], the densities f̃E(t), f̃E
′
(t) are supported

in {(x, ṽ) ∈ R2 × R2 : |x| ≤ R̃x(t) and |ṽ| ≤ R̃ṽ} and therefore at any time t ∈ [0, T ],
the charge densities ρ[f̃E(t)], ρ[f̃E

′
(t)] are supported in {x ∈ R2 : |x| ≤ R̃x(t)}. It is

easily seen by (49) that

‖F̃(E)(t)− F̃(E ′)(t)‖L∞(R2) = ‖E[f̃E(t)]− E[f̃E
′
(t)]‖L∞(R2)

≤ 1

ε0
‖ρ[f̃E(t)]− ρ[f̃E

′
(t)]‖1/2L∞(R2)

(
1

2π
‖ρ[f̃E(t)]− ρ[f̃E

′
(t)]‖L1(R2)

)1/2

≤ 1

ε0

|q|√
2
R̃x(t)

∥∥∥∥1{|x|≤R̃x(t)} ∫
R2

1{|ṽ|≤R̃ṽ}(f̃
E − f̃E′

)(t, ·, ṽ) dṽ

∥∥∥∥
L∞(R2)

.

By standard computations, one gets for any (t, x, ṽ) ∈ [0, T ] × R2 × R2 such that
|x| ≤ R̃x(t) and |ṽ| ≤ R̃ṽ

|(f̃E − f̃E′
)(t, x, ṽ)| =

∣∣∣f̃in(XE(0; t, x, ṽ), Ṽ E(0; t, x, ṽ))− f̃in(XE′
(0; t, x, ṽ), Ṽ E′

(0; t, x, ṽ))
∣∣∣

≤ Lip(fin)[|XE −XE′|(0; t, x, ṽ) + |Ṽ E − Ṽ E′|(0; t, x, ṽ)]

≤ εLip(fin)C8

∫ t

0

‖E(s)− E ′(s)‖L∞(R2) ds exp(εtC8)

for some constant C8(m, ε0, q, T, ‖B‖W 2,∞(R2), B0) and (31) follows.

Remark 4.1
Under the hypotheses of Theorem 1.1, let us consider the solution (f̃ , E = E[f̃ ]) of
(25), (26). Therefore

1. The total number of particles is conserved. Indeed, as div⊥xE = 0, we have

divx

(⊥E
Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
+ divṽ

[
1

2

(⊥E
Bε
· ∇B

ε

Bε

)
ṽ

]
= 0

and thus
d

dt

∫
R2

∫
R2

f̃(t, x, ṽ) dṽdx = 0, t ∈ R+.
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2. The continuity equation writes

∂t

∫
R2

f̃(t, x, ṽ) dṽ + divx

∫
R2

(⊥E
Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
f̃ dṽ = 0

and, when the magnetic field is uniform, becomes

∂tρ[f̃(t)] +
⊥E[f̃(t)]

Bε
· ∇xρ[f̃(t)] = 0, (t, x) ∈ R+ × R2

that is, the vorticity formulation of the two dimensional Euler equations, with

velocity ⊥E/Bε and vorticity divx
⊥(

⊥E
Bε

) = − ρ[f̃ ]
ε0Bε

see also [12, 4, 27].

3. The balance of the total momentum is

d

dt

∫
R2

∫
R2

f̃(t, x, ṽ)mṽ dṽdx+
1

2

∫
R2

∫
R2

m divx

(
⊥E[f̃ ]

Bε(x)

)
f̃(t, x, ṽ)ṽ dṽdx = 0.

In particular, the total momentum is conserved when the magnetic field is uni-
form.

4. As the magnetic moment µε is left invariant along the characteristics of (25)(
⊥E[f̃ ]

Bε
− µε

⊥∇Bε

Bε

)
· ∇xµ

ε +
1

2

(
⊥E[f̃ ]

Bε
· ∇B

ε

Bε

)
ṽ · ∇ṽµ

ε = 0

we deduce the conservation of the total magnetic moment

d

dt

∫
R2

∫
R2

m|ṽ|2

2Bε
f̃(t, x, ṽ) dṽdx = 0, t ∈ R+.

5. The total, i.e., kinetic and electric energy is conserved. Indeed, by using the
fundamental solution of the Poisson equation in R2, we have

d

dt

1

2ε0

∫
R2

∫
R2

e(x− x′)ρ[f̃(t)](x)ρ[f̃(t)](x′) dx′dx

=
1

ε0

∫
R2

∫
R2

e(x− x′)ρ[f̃(t)](x′)∂tρ[f̃(t)](x) dx′dx

=

∫
R2

Φ[f̃(t)](x)∂tρ[f̃(t)](x) dx

= −
∫
R2

Φ[f̃(t)](x)divx

∫
R2

qf̃(t, x, ṽ)

(
⊥E[f̃(t)]

Bε
− m|ṽ|2

2qBε

⊥∇Bε

Bε

)
dṽ dx

=

∫
R2

∫
R2

(
E[f̃(t)]

Bε
·
⊥∇Bε

Bε

)
m|ṽ|2

2
f̃ dṽdx

= − d

dt

∫
R2

∫
R2

m|ṽ|2

2
f̃(t, x, ṽ) dṽdx

and therefore

d

dt

[∫
R2

∫
R2

m|ṽ|2

2
f̃ dṽdx− 1

4πε0

∫
R2

∫
R2

ρ[f̃ ](x)ρ[f̃ ](x′) ln |x− x′| dx′dx
]

= 0, t ∈ R+.
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6. The model (25), (26), (27) is invariant under rotation in the velocity space. More
exactly, if f̃ solves (25), (26), (27), then f̃θ(t, x, Ṽ ) = f̃(t, x, ṽ = R(θ)Ṽ ) solves
(25), (26) as well, together with the initial condition f̃θ(0, x, Ṽ ) = f̃in(x, ṽ =
R(θ)Ṽ ). Indeed, we have Ṽ · ∇Ṽ f̃θ = ṽ · ∇ṽf̃ |ṽ=R(θ)Ṽ and E[f̃θ(t)] = E[f̃(t)],
implying that

∂tf̃θ +

(
⊥E[f̃θ]

Bε
− m|Ṽ |2

2qBε

⊥∇Bε

Bε

)
· ∇xf̃θ +

1

2

(
⊥E[f̃θ(t)]

Bε
· ∇B

ε

Bε

)
(Ṽ · ∇Ṽ f̃θ) = 0.

In particular, if the initial particle density depends only on x and |ṽ| i.e., b ·
∇x,ṽf̃in = 0, then at any time t ∈ R+ the particle density f̃(t) depends only on
x and |ṽ|, that is b · ∇x,ṽf̃(t) = 0. Indeed, for any θ ∈ R the particle densities
f̃ , f̃θ satisfy the problem (25), (26), (27) and thanks to the uniqueness, we obtain
f̃ = f̃θ, saying that at any time t ∈ R+, f̃(t) depends only on x and |ṽ|.

5 Error analysis

In many of the previous works concerning the asymptotic regimes for the magnetic con-
finement, the authors indicate convergence results, based on compactness arguments.
We intend to perform here the error analysis. In this section we study rigorously the
error when replacing the Vlasov-Poisson problem with strong external magnetic field
(1), (2) by the model (25), (26). We expect an error of order ε2, when the initial parti-
cle density fin is well prepared. The case with general initial particle densities is more
elaborated, but can be handled by similar arguments cf. [9]. As usual when performing
the error analysis in homogenization theory, we need to construct a corrector. We will
use the following easy lemma, see also (24).

Lemma 5.1 Let M be a square matrix of size 2. Then we have the equalities

〈Mṽ · ṽ〉 = trace(M)
|ṽ|2

2

Mṽ · ṽ − 〈Mṽ · ṽ〉+ b · ∇x,ṽ

(
MR(−π/2) +R(π/2)M

4ωc(x)
ṽ · ṽ

)
= 0〈

MR(−π/2) +R(π/2)M

4ωc(x)
ṽ · ṽ

〉
= 0.

Proof. By direct computations we check that 〈ṽ21〉 = 〈ṽ22〉 = |ṽ|2/2, 〈ṽ1ṽ2〉 = 0,

b · ∇x,ṽ(ṽ
2
1 − ṽ22) = 4ωc(x)ṽ2ṽ1, b · ∇x,ṽ(ṽ2ṽ1) = ωc(x)(ṽ22 − ṽ21)

and the first and second statements follow easily. The last statement is a consequence
of the first one〈

MR(−π/2) +R(π/2)M

4ωc(x)
ṽ · ṽ

〉
= trace

(
MR

(
−π

2

)
+R

(π
2

)
M
) |ṽ|2

8ωc(x)
= 0.
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Looking for second order estimates is a difficult task. Indeed, this can not be achieved
directly, by comparing f̃ ε and f̃ , but requires the construction of a corrector f̃ 2. Since
the smoothness of the corrector is crucial when analyzing the error, we indicate below
its exact expression.

Proposition 5.1 Assume that f̃ = f̃(x, ṽ) ∈ C1
c (R2 × R2), E = E(x) ∈ C1(R2), B =

B(x) ∈ C1(R2) such that b · ∇x,ṽf̃ = 0, divx
⊥E = 0, infx∈R2 |B(x)| > 0. Then we have

the equality(⊥E
B
− Ax

)
· ∇xf̃ +

[
1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ − ∂x
(⊥E
B

)
ṽ

]
· ∇ṽf̃

−
(⊥E
B
− m|ṽ|2

2qB

⊥∇B
B

)
· ∇xf̃ −

1

2

(⊥E
B
· ∇B
B

)
ṽ · ∇ṽf̃ + b · ∇x,ṽf̃

2 = 0

where Ax(x, ṽ) =
⊥ṽ⊗ṽ
ω2
c
∇ωc and

f̃ 2(x, ṽ) =
∇ωc ⊗∇xf̃ − ⊥∇ωc ⊗ ⊥∇xf̃

4ω3
c (x)

ṽ · ṽ (33)

+
1

2πε0B

(
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ ·
⊥ṽ

ωc(x)

)
ṽ · ∇ṽf̃

|ṽ|2

−

∂x
(

⊥E
B

)
R
(
−π

2

)
+R

(
π
2

)
∂x

(
⊥E
B

)
4ωc(x)

ṽ · ṽ

 ṽ · ∇ṽf̃

|ṽ|2
.

Proof. Notice that

−Ax(x, ṽ) · ∇xf̃ = −(⊥ṽ · ∇xf̃)(ṽ · ∇ωc)
ω2
c (x)

=
(ṽ · ⊥∇xf̃)(ṽ · ∇ωc)

ω2
c (x)

=
∇ωc ⊗ ⊥∇xf̃

ω2
c (x)

ṽ · ṽ

and therefore, thanks to Lemma 5.1, we have

−Ax(x, ṽ) · ∇xf̃ +
m|ṽ|2

2qB(x)

⊥∇B
B(x)

· ∇xf̃ =
∇ωc ⊗ ⊥∇xf̃

ω2
c (x)

ṽ · ṽ −

〈
∇ωc ⊗ ⊥∇xf̃

ω2
c (x)

ṽ · ṽ

〉
= −b · ∇x,ṽf̃

2
I

with

f̃ 2
I :=

(
∇ωc ⊗ ⊥∇xf̃

4ω3
c (x)

R
(
−π

2

)
+R

(π
2

) ∇ωc ⊗ ⊥∇xf̃

4ω3
c (x)

)
ṽ · ṽ

=
∇ωc ⊗∇xf̃ − ⊥∇ωc ⊗ ⊥∇xf̃

4ω3
c (x)

ṽ · ṽ.

Observing that b · ∇x,ṽ(−⊥ṽ/ωc) = ṽ and that ∇ṽf̃ = ∇ṽ f̃ ·ṽ
|ṽ|2 ṽ, it is easily seen that

1

2πε0B
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ · ∇ṽf̃ = −b · ∇x,ṽf̃
2
II
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with

f̃ 2
II :=

1

2πε0B

(
divx

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ ·
⊥ṽ

ωc(x)

)
ṽ · ∇ṽf̃

|ṽ|2
.

Using one more time Lemma 5.1, yields

−∂x
(⊥E
B

)
ṽ · ∇ṽf̃ −

1

2

(⊥E
B
· ∇B
B

)
(ṽ · ∇ṽf̃)

= − ṽ · ∇ṽf̃

|ṽ|2

[
∂x

(⊥E
B

)
ṽ · ṽ −

〈
∂x

(⊥E
B

)
ṽ · ṽ

〉]
= −b · ∇x,ṽf̃

2
III

with

f̃ 2
III = − ṽ · ∇ṽf̃

|ṽ|2
∂x

(
⊥E
B

)
R
(
−π

2

)
+R

(
π
2

)
∂x

(
⊥E
B

)
4ωc(x)

ṽ · ṽ.

Our conclusion follows by taking f̃ 2 = f̃ 2
I + f̃ 2

II + f̃ 2
III .

Remark 5.1 Notice that f̃ 2 ∈ Cc(R2 × R2) and if there is k ≥ 2 such that f̃ ∈
Ck
c (R2 × R2), E ∈ Ck(R2), B ∈ Ck(R2), then f̃ 2 ∈ Ck−1

c (R2 × R2).

One of the main difficulties when comparing f̃ ε, f̃ is that these particle densities belong
to different constraint spaces. Indeed, the corresponding Vlasov like equations involve
different stiff transport terms bε

ε
·∇x,ṽ,

b
ε
·∇x,ṽ. The idea is to map the above constraint

spaces in order to bring f̃ in the constraint space of f̃ ε. In the sequel we will use the
map T ε : R2 × R2 → R2 × R2, given by

T ε(x, ṽ) =

(
x+ ε

⊥ṽ

ωc(x)
, ṽ

)
.

Notice that for any application ϕ(x, ṽ) in the kernel of b · ∇x,ṽ i.e., ϕ(x, ṽ) = ψ(x, |ṽ|),
the composition product ϕ ◦ T ε depends only on x+ ε

⊥ṽ
ωc(x)

, |ṽ|

(ϕ ◦ T ε)(x, ṽ) = ϕ

(
x+ ε

⊥ṽ

ωc(x)
, ṽ

)
= ψ

(
x+ ε

⊥ṽ

ωc(x)
, |ṽ|
)

and therefore belongs to the kernel of bε · ∇x,ṽ. Actually, by direct computations we
check that

∂x,ṽT
εbε = λεb ◦ T ε, λε(x, ṽ) =

ωc(x)

ωc(x̃)
, x̃ = x+ ε

⊥ṽ

ωc(x)
. (34)

Another difficulty comes by the inhomogeneity of the magnetic field, which accounts
for a weight function λε, close to 1. We are ready to prove our main result.

Proof. (of Theorem 1.2)
As gε belongs to C2

c (R2×R2), it is easily seen that 〈gε〉 ∈ C2
c (R2×R2). We deduce by

Theorem 1.1 that the restriction on [0, T ] of the solution f̃ for (25), (26) corresponding
to the initial condition 〈gε〉 belongs to C2

c ([0, T ]×R2×R2). The restriction on [0, T ] of
the Poisson electric field E[f̃ ] belongs to C2([0, T ]×R2). As b · ∇ 〈gε〉 = 0, we deduce
by the last statement in Remark 4.1 that b · ∇f̃(t) = 0, t ∈ R+. Applying Proposition
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5.1 with the particle density f̃(t) ∈ C2
c (R2 × R2), the electric field E[f̃(t)] ∈ C2(R2),

which verify b · ∇x,ṽf̃(t) = 0, divx
⊥E[f̃(t)] = 0, one gets for any t ∈ R+[

⊥E[f̃(t)]

B
− Ax

]
· ∇xf̃ +

[
divx

2πε0B

∫
R2

⊥(x− x′)
|x− x′|2

⊗ j[f̃ ](x′) dx′ − ∂x

(
⊥E[f̃(t)]

B

)
ṽ

]
· ∇ṽf̃

(35)

−

(
⊥E[f̃(t)]

B
− m|ṽ|2

2qB

⊥∇B
B

)
· ∇xf̃ −

1

2

(
⊥E[f̃(t)]

B
· ∇B
B

)
ṽ · ∇ṽf̃ + b · ∇x,ṽf̃

2(t) = 0

where f̃ 2(t) ∈ C1
c (R2 × R2) is given by the formula (33) which corresponds to the

particle density f̃(t) and the electric field E[f̃(t)]. Multiplying (35) by ε and adding
to (25) yield

∂tf̃ + εa[f̃(t)] · ∇f̃(t) + εb · ∇f̃ 2(t) = 0 (36)

and thus the corrector f̃ 2 allowed us to write the limit model (6) into a form similar to
that in (17). Nevertheless the transport operators entering the terms b

ε
·∇(ε2f̃ 2), b

ε

ε
·∇f̃ ε

are not exactly the same, which will prevent us for obtaining error estimates by usual
L2 balances. Therefore we appeal to the map T ε and weight λε. Notice that thanks to
(34) we can write

λε(b · ∇f̃ 2) ◦ T ε = ∂T εbε · (∇f̃ 2) ◦ T ε = bε · ∇(f̃ 2 ◦ T ε)

and therefore, after composition with T ε and multiplication by λε, the equation (36)
becomes

λε(∂tf̃) ◦ T ε + ελε(a[f̃(t)] · ∇f̃(t)) ◦ T ε + εbε · ∇(f̃ 2 ◦ T ε) = 0

or equivalently

∂t(〈λε〉 f̃◦T ε)+ελε(a[f̃(t)]·∇f̃(t))◦T ε+εbε·∇(f̃ 2◦T ε) = −ε(〈λε〉−λε)(〈a〉 [f̃(t)]·∇f̃(t))◦T ε
(37)

where we have used the notation

〈a〉 [f̃ ] :=

(
⊥E[f̃ ]

B
− m|ṽ|2

2qB

⊥∇B
B

,
1

2

(
⊥E[f̃ ]

B
· ∇B
B

)
ṽ

)
.

Notice that, as f̃(t) belongs to the kernel of b · ∇, then f̃ ◦ T ε belongs to the kernel of
bε · ∇, as well as 〈λε〉 f̃ ◦ T ε. Combining (17), (37) we obtain

∂t{f̃ ε − 〈λε〉 f̃ ◦ T ε − ε2f̃ 2 ◦ T ε}+ εaε[f̃ ε(t)] · ∇(〈λε〉 f̃ ◦ T ε)− ελε(a[f̃(t)] · ∇f̃(t)) ◦ T ε

+

(
εaε[f̃ ε(t)] +

bε

ε

)
· ∇{f̃ ε − 〈λε〉 f̃ ◦ T ε − ε2f̃ 2 ◦ T ε} = −ε2(∂tf̃ 2) ◦ T ε

− ε3aε[f̃ ε(t)] · ∇(f̃ 2 ◦ T ε)− ε(λε − 〈λε〉)(〈a〉 [f̃(t)] · ∇f̃(t)) ◦ T ε. (38)

By Remark 3.1 we know that div(εaε[f̃ ε(t)] + bε/ε) = 0 and therefore, multiplying (38)
by rε := f̃ ε − 〈λε〉 f̃ ◦ T ε − ε2f̃ 2 ◦ T ε yields

1

2

d

dt
‖rε‖2L2≤ε‖rε(t)‖L2‖aε[f̃ ε(t)] · ∇(〈λε〉 f̃ ◦ T ε)− λε(a[f̃(t)] · ∇f̃(t)) ◦ T ε‖L2 +‖rε(t)‖L2

× ‖ε2(∂tf̃ 2) ◦ T ε + ε3aε[f̃ ε(t)] · ∇(f̃ 2 ◦ T ε) + ε(λε − 〈λε〉)(〈a〉 [f̃(t)] · ∇f̃(t)) ◦ T ε‖L2 .
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By Bellman lemma one gets

‖rε(t)‖L2≤‖rε(0)‖L2 +ε

∫ t

0

‖aε[f̃ ε(s)] · ∇(〈λε〉 f̃(s) ◦ T ε)− λε(a[f̃(s)] · ∇f̃(s)) ◦ T ε‖L2 ds

+ ε2
∫ t

0

‖(∂tf̃ 2(s)) ◦ T ε‖L2 ds+ ε3
∫ t

0

‖aε[f̃ ε(s)] · ∇(f̃ 2(s) ◦ T ε)‖L2 ds

+ ε

∫ t

0

‖(λε − 〈λε〉)(〈a〉 [f̃(s)] · ∇f̃(s)) ◦ T ε‖L2 ds. (39)

We need to analyze one by one all the terms in the right hand side of the previous
inequality, for any t ∈ [0, T ], T ∈ R+. We will denote by C any constant depending on
m, ε0, q, T, B and the uniform bounds satisfied by the particle densities (gε)ε>0, but not
on ε. As (gε)ε>0 are uniformly compactly supported in R2×R2 and uniformly bounded
in C2(R2 ×R2), it is easily seen that so are (〈gε〉)ε>0. By Theorem 1.1 the solutions f̃
for (25), (26) associated to the initial conditions (〈gε〉)ε>0, remain uniformly compactly
supported in [0, T ]×R2×R2, T ∈ R+, and uniformly bounded in C2([0, T ]×R2), T ∈ R+.
Clearly, at least for ε small enough 0 < ε ≤ εT we have

ε2‖f̃ 2(t) ◦ T ε‖L2 ≤ Cε2, t ∈ [0, T ].

As B ∈ C2(R2), infx∈R2 |B(x)| > 0, for any compact set B(Rx) × B(Rṽ) there is a
constant C(Rx, Rṽ) such that∣∣∣∣ ωc(x)

ωc(x+ ε⊥ṽ/ωc(x))
− 1 + ε

∇ωc(x) ·⊥ ṽ
ω2
c (x)

∣∣∣∣ ≤ C(Rx, Rṽ)ε
2, (x, ṽ) ∈ B(Rx)×B(Rṽ)

(40)
and by the third statement in Proposition 3.1, we deduce

| 〈λε〉−1| =
∣∣∣∣〈ωc(x)

ωc(x̃)
− 1 + ε

∇ωc · ⊥ṽ
ω2
c

〉∣∣∣∣ ≤ C(Rx, Rṽ)ε
2, (x, ṽ) ∈ B

(
Rx − ε

Rṽ

ω0

)
×B(Rṽ).

(41)
Notice that ‖f ε(0)− gε‖L2 , and therefore ‖ρ[f ε(0)]− ρ[gε]‖L2 are of order ε, implying
that

‖E[f ε(0)]− E[gε] ‖L2(R2) ≤ Cε.

We intend to compare f̃ ε(0) with respect to f̃(0) ◦ T ε. We have

f̃ ε(0, x, ṽ) = f ε
(

0, x, ṽ + ε
⊥E[f ε(0)]

B(x)

)
= gε

(
x+

ε

ωc(x)

⊥
(
ṽ + ε

⊥E[f ε(0)]

B(x)

)
, ṽ + ε

⊥E[f ε(0)]

B(x)
− ε

⊥E[gε]

B(x)

)
and therefore ‖f̃ ε(0)− gε ◦ T ε‖L2 ≤ Cε2. Combining the previous arguments, together
with the inequality

‖gε − 〈gε〉 ‖L2 ≤ 2π

ω0

‖b · ∇gε‖L2 ≤ ε2
2π

ω0

sup
η>0

‖b · ∇gη‖L2

η2
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cf. statement 5 in Proposition 3.1, we obtain

‖rε(0)‖L2 ≤ ‖f̃ ε(0)− 〈λε〉 f̃(0) ◦ T ε‖L2 + ε2‖f̃ 2(0) ◦ T ε‖L2

≤ ‖f̃ ε(0)− gε ◦ T ε‖L2 + ‖gε ◦ T ε − 〈gε〉 ◦ T ε‖L2

+ ‖(1− 〈λε〉) 〈gε〉 ◦ T ε‖L2 + ε2‖f̃ 2(0) ◦ T ε‖L2 ≤ Cε2.

Notice that (40), (41) also imply that
(
λε−〈λε〉

ε

)
ε>0

is bounded on compact sets of

R2 × R2, and thus

ε

∫ t

0

‖(λε − 〈λε〉)(〈a〉 [f̃(s)] · ∇f̃(s)) ◦ T ε‖L2 ds ≤ Cε2.

Using the C1
c regularity of f̃ 2, and therefore the C2

c regularity of f̃ , it is straightforward
that

ε2
∫ t

0

‖(∂tf̃ 2(s)) ◦ T ε‖L2 ds+ ε3
∫ t

0

‖aε[f̃ ε(s)] · ∇(f̃ 2(s) ◦ T ε)‖L2 ds ≤ Cε2, t ∈ [0, T ].

We claim that

ε

∫ t

0

‖aε[f̃ ε(s)] · ∇(〈λε〉 f̃(s) ◦ T ε)− λε(a[f̃(s)] · ∇f̃(s)) ◦ T ε‖L2 ≤ Cε2

+ Cε

∫ t

0

‖f̃ ε(s)− f̃(s) ◦ T ε‖L2 ds, t ∈ [0, T ], 0 < ε ≤ εT .

These arguments are technical and come by the smoothness and uniform bounds of the
family (f̃ ε)ε>0, combined to the asymptotic behavior of Aεx, T

ε, λε when ε↘ 0. Indeed,

recall that for any (x, ṽ) ∈ R2×B(R) and any ε > 0 such that εR‖∇ωc‖L∞
ω2
0

≤ 1
2
, we have

|Aεx(x, ṽ)| ≤ 2|Ax(x, ṽ)|, |Aεx(x, ṽ)− Ax(x, ṽ)| ≤ ε|ṽ| ‖∇ωc‖L∞

ω2
0

|Aεx(x, ṽ)| ≤ |A
ε
x(x, ṽ)|

2

implying that

|Aεx(x, ṽ)| ≤ 2|Ax(x, ṽ)| ≤ 2R2‖∇ωc‖L∞

ω2
0

, |Aεx(x, ṽ)− Ax(x, ṽ)| ≤ 2ε
R3‖∇ωc‖2L∞

ω4
0

.

As {f̃ ε(t), t ∈ [0, T ], 0 < ε ≤ 1} are uniformly compactly supported in R2 × R2, and
thanks to the uniform bounds

sup
ε>0,t∈[0,T ]

{‖f̃ ε(t)‖C1(R2×R2) + ‖E[f̃ ε(t)]‖C1(R2)} < +∞

we have
‖(aε[f̃ ε(t)]− a[f̃ ε(t)]) · ∇(〈λε〉 f̃(t) ◦ T ε)‖L2 ≤ Cε, t ∈ [0, T ].

Using elliptic regularity results, the quantity

‖(a[f̃ ε(t)]− a[f̃(t) ◦ T ε]) · ∇(〈λε〉 f̃(t) ◦ T ε)‖L2(R2×R2)
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is bounded by the L2 norms of the charge and current densities

‖ρ[f̃ ε(t)]− ρ[f̃(t) ◦ T ε]‖L2(R2) + ‖j[f̃ ε(t)]− j[f̃(t) ◦ T ε]‖L2(R2)

and thus by the L2 norm of the particle densities ‖f̃ ε(t)− f̃(t)◦T ε‖L2(R2×R2). Therefore
we have the inequality

‖(a[f̃ ε(t)]−a[f̃(t)◦T ε])·∇(〈λε〉 f̃(t)◦T ε)‖L2(R2×R2) ≤ C‖f̃ ε(t)−f̃(t)◦T ε‖L2(R2×R2), t ∈ [0, T ].

We are done if we prove that

‖a[f̃(t)◦T ε]·∇(〈λε〉 f̃(t)◦T ε)−λε(a[f̃(t)]·∇f̃(t))◦T ε‖L2(R2×R2) ≤ Cε, t ∈ [0, T ], ε > 0

which comes easily by the C2 regularity of f̃ and the compactness of its support, and

the boundedness of
(
λε−〈λε〉

ε

)
ε>0

,
(
∇〈λε〉
ε

)
ε>0

on compact sets of R2 × R2. We only

have to check the boundedness of
(
∇〈λε〉
ε

)
ε>0

, because that of
(
λε−〈λε〉

ε

)
ε>0

has been

established before. By the statement 6 in Proposition 3.1 we know that

∇x 〈λε〉 = 〈∇xλ
ε〉 , ∇ṽ 〈λε〉 =

ṽ ⊗ ṽ
|ṽ|2
∇ṽ 〈λε〉 =

〈
ṽ · ∇ṽλ

ε

|ṽ|

〉
ṽ

|ṽ|
.

Notice that

∇xλ
ε(x, ṽ) =

∇ωc(x)

ωc(x̃)
− ωc(x)

ω2
c (x̃)

t

(
I2 − ε

⊥ṽ ⊗∇ωc(x)

ω2
c (x)

)
∇ωc(x̃)

and∇xλ
ε(x, ṽ)|ε=0 = 0, implying that

(
∇x〈λε〉

ε

)
ε>0

, and therefore
(
〈∇xλε〉

ε

)
ε>0

=
(
∇x〈λε〉

ε

)
ε>0

is bounded on compact sets of R2 × R2. Similarly we have

ṽ · ∇ṽλ
ε = −ε ⊥ṽ · ∇xωc(x̃)

ω2
c (x̃)

and therefore∣∣∣∣∇ṽ 〈λε〉
ε

∣∣∣∣ =

∣∣∣∣ ṽ · ∇ṽ 〈λε〉
ε

ṽ

|ṽ|2

∣∣∣∣ =

∣∣∣∣〈ṽ · ∇ṽλ
ε〉

ε

ṽ

|ṽ|2

∣∣∣∣ ≤ ‖∇ωc‖L∞

ω2
0

, ε > 0.

Collecting all the previous estimates into (39) leads to the inequality

‖f̃ ε(t)− f̃(t) ◦ T ε‖L2 ≤ ‖rε(t)‖L2 + ‖(〈λε〉 − 1)f̃(t) ◦ T ε‖L2 + ε2‖f̃ 2(t) ◦ T ε‖L2

≤ Cε2 + Cε

∫ t

0

‖f̃ ε(s)− f̃(s) ◦ T ε‖L2 ds, t ∈ [0, T ], 0 < ε ≤ εT

and by Gronwall lemma we deduce that

‖f̃ ε(t)− f̃(t) ◦ T ε‖L2(R2×R2) ≤ Cε2 exp(Cεt), t ∈ [0, T ], 0 < ε ≤ εT .

In particular, as the L2 norm of the Poisson electric field is controlled by the L2 norm
of the charge density, and therefore by the L2 norm of the particle density (because of
the compactness of its support), we have

‖E[f̃ ε(t)]− E[f̃(t) ◦ T ε]‖L2(R2) ≤ Cε2, t ∈ [0, T ], 0 < ε ≤ εT .
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It is easily seen that, thanks to the inequality ‖f̃(t) ◦ T ε − f̃(t)‖L2(R2×R2) ≤ Cε that

‖E[f̃(t) ◦ T ε]− E[f̃(t)]‖L2(R2) ≤ Cε, t ∈ [0, T ]

and therefore

‖E[f ε(t)]− E[f̃(t)]‖L2(R2) = ‖E[f̃ ε(t)]− E[f̃(t)]‖L2(R2) ≤ Cε, t ∈ [0, T ], 0 < ε ≤ εT .

Finally we obtain for any t ∈ [0, T ], 0 < ε ≤ εT
∫
R2

∫
R2

[
f ε(t, x, v)− f̃

(
t, x+ ε

⊥v

ωc(x)
, v − ε

⊥E[f̃(t)]

B(x)

)]2
dvdx


1/2

=

{∫
R2

∫
R2

[
f̃ ε(t, x, ṽ)

−f̃

(
t, x+

ε

ωc(x)
⊥
(
ṽ + ε

⊥E[f ε(t)]

B(x)

)
, ṽ + ε

⊥E[f ε(t)]− ⊥E[f̃(t)]

B(x)

)]2
dṽdx


1/2

≤ ‖f̃ ε(t)− f̃(t) ◦ T ε‖L2(R2×R2) +

{∫
R2

∫
R2

[
f̃

(
t, x+ ε

⊥ṽ

ωc(x)
, ṽ

)

−f̃

(
t, x+ ε

⊥ṽ

ωc(x)
− ε2

ωc(x)

E[f ε(t)]

B(x)
, ṽ + ε

⊥E[f ε(t)]− ⊥E[f̃(t)]

B(x)

)]2
dṽdx


1/2

≤ Cε2 + Cε‖E[f ε(t)]− E[f̃(t)]‖L2(R2) ≤ Cε2.

6 Toward more general results

When the magnetic field is uniform, it is possible to go further in our analysis, by
considering smooth initial particle densities, not necessarily well prepared. We mention
that most of the studies concentrate only on models with well prepared initial particle
densities. We intend to extend the previous analysis for general initial conditions. The
asymptotic behavior is more complicated because the particle densities (f̃ ε)ε>0 present
fast oscillations in time. We appeal to a two scale approach by working in a extended
phase space supplemented by a fast time variable. For any non negative initial particle
density fin ∈ C2

c (R2 × R2), let us denote by f ε ∈ C2(R+ × R2 × R2) the solution of
(1), (2), with E[f ε] ∈ C2(R+ ×R2), where the magnetic field writes Bε = B

ε
, for some

constant B 6= 0. As before, the change of coordinates (12), (13) leads to the problem

∂tf̃
ε + εaε[f̃ ε(t)] · ∇x,ṽf̃

ε +
bε(x, ṽ)

ε
· ∇x,ṽf̃

ε = 0, (t, x, ṽ) ∈ R+ × R2 × R2 (42)

f̃ ε(0, x, ṽ) = fin

(
x, ṽ + ε

⊥E[fin](x)

B

)
, (x, ṽ) ∈ R2 × R2.

Notice that there is no correction Aεx when the magnetic field is uniform, since in
that case the solution of (18) is Aεx = 0. The characteristic flow of the vector field
bε · ∇x,ṽ = εṽ · ∇x + ωc

⊥ṽ · ∇ṽ is given by

Xε(s;x, ṽ) = x+ ε[I2 −R(−ωcs)]
⊥v

ωc
, Ṽε(s;x, ṽ) = R(−ωcs)ṽ, ωc =

qB

m
. (43)
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In order to filter out the fast oscillations corresponding to the vector field bε(x,ṽ)
ε
· ∇x,ṽ,

we perform one more change of coordinates

f̃ ε(t, x, ṽ) = F̃ ε(t,X, Ṽ ), (X, Ṽ ) = (Xε, Ṽε)(−t/ε;x, ṽ). (44)

By applying the chain rule, we obtain

∂tF̃
ε + ε∂x,ṽ(X

ε, Ṽε)(−t/ε; (Xε, Ṽε)(t/ε;X, Ṽ ))aε[F̃ ε(t)−t/ε]t/ε · ∇X,Ṽ F̃
ε = 0 (45)

where we have used the notations

F̃ ε(t)−t/ε = F̃ ε(t)◦(Xε, Ṽε)(− t
ε

), aε[F̃ ε(t)−t/ε]t/ε = aε[F̃ ε(t)◦(Xε, Ṽε)(− t
ε

)]◦(Xε, Ṽε)(
t

ε
).

As the characteristic flow (Xε, Ṽε) in (43) is linear, the jacobian matrix simply writes
for any (x, ṽ) ∈ R2 × R2

∂x,ṽ(X
ε, Ṽε)(−t/ε;x, ṽ) =

(
I2

ε
ωc
R(−π/2)[I2 −R(ωct/ε)]

O2 R(ωct/ε)

)
and therefore (45) becomes

∂tF̃
ε + ε

{
aεx[F̃

ε(t)−t/ε]t/ε +
ε

ωc
R(−π/2)[I2 −R(ωct/ε)]a

ε
ṽ[F̃

ε(t)−t/ε]t/ε

}
· ∇XF̃

ε

+ εR(ωct/ε)a
ε
ṽ[F̃

ε(t)−t/ε]t/ε · ∇Ṽ F̃
ε = 0, (t,X, Ṽ ) ∈ R+ × R2 × R2.

We have obtained a two scale problem and we expect that the asymptotic behavior
when ε becomes small will follow by averaging with respect to the fast time variable
s = t/ε. After several computations, up to second order terms, we are led to the model

∂tF̃ +ε
⊥E[F̃ (t)]

B
·∇XF̃ +ε

⊥{j[F̃ (t)]− ρ[F̃ (t)]Ṽ }
2ε0B

·∇Ṽ F̃ = 0, (t,X, Ṽ ) ∈ R+×R2×R2

(46)
which is supplemented by the initial condition

F̃ (0, X, Ṽ ) = fin

(
X − ε

⊥Ṽ

ωc
, Ṽ + ε

⊥E[fin](X)

B

)
, (X, Ṽ ) ∈ R2 × R2. (47)

We expect that solving (46) together with the initial condition (47), will provide a
second order approximation for (1), (2). Although the above solution depends on ε, we
use the notation F̃ , saying that it is an approximation, when ε becomes small. The well
posedness of the limit model (46), (47) is a direct consequence of the well posedness of
the vorticity formulation for the 2D incompressible Euler equations, see also Lemma
3.3 [30]. The solution of (46), (47) will allow us to describe the asymptotic behavior
of the family (f ε)ε>0 corresponding to the initial condition fin, when ε becomes small,
see [9] for the proof details.

Theorem 6.1 Let fin ∈ C2
c (R2 × R2) be a non negative, smooth, compactly supported

particle density. We denote by (f ε)ε>0 the solutions of the Vlasov-Poisson equations
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(1), (2) with uniform external magnetic field B
ε
6= 0, corresponding to the initial con-

dition fin. Then for any T ∈ R+, there is a constant CT > 0 such that for any ε > 0

sup
t∈[0,T ]


∫
R2

∫
R2

[
f ε(t, x, v)− F̃

(
t, x+ ε

⊥v

ωc
,R(ωc

t

ε
)

(
v − ε

⊥E[F̃ (t)]

B

))]2
dvdx


1/2

≤ CT ε
2

where F̃ is the solution of (46), (47).

The previous results extend to the three dimensional Vlasov-Poisson system, when the
curvature of the magnetic lines is not neglected anymore. The regular reformulations of
this problem will be the topic of a future work [10, 11]. The previous method provides
limit models for both well prepared and general initial particle densities. Indeed,
following the same steps, it is possible to emphasize a periodic fast dynamics, preserving
the guiding center. Averaging with respect to this fast dynamics leads to regular
reformulations taking into account all the curvature effects of the magnetic field. We
mention that few mathematical studies investigate the three dimensional setting, with
curved magnetic fields. We intend to study the well posedness of these reformulations
and to establish second order estimates, following the technique employed in the two
dimensional framework.

Another important direction will be to investigate models with self-consistent mag-
netic field, that is, to consider the Vlasov-Maxwell equations with strong external
magnetic field. It will be very interesting to derive, at least formally, the effective
equations, up to second order terms. Taking into account the effect of collisions, or the
mass ratio between ions and electrons, could be tackled by similar arguments.

A very interesting issue will concern the comparison of the above models with
respect to the results obtained by plasma physicists. As in the two dimensional setting,
the periodic framework is extremely favorable, since it allows us to get completely
explicit models. Nevertheless the analysis is much more difficult due to the combination
between the parallel and perpendicular dynamics and to the curvature effects. A
preliminary work in the two dimensional setting, by neglecting the curvature of the
magnetic lines, was a very instructive starting point in order to tackle the general three
dimensional setting. We also mention that these arguments, leading to similar models
as those in the plasma physics literature [13, 25, 26], are based on standard results
in the theory of PDEs. Indeed, our methods do not appeal to notions of hamiltonian
mechanics and thus they are accessible to readers which are not familiar with the
hamiltonian formalism.

A Well posedness of the Vlasov-Poisson problem

with external magnetic field

Proof. (of Theorem 2.1)
We are done if we prove the well posedness on any time interval [0, T ], T ∈ R+. We
construct a map acting on electric fields. Given a C1 electric field E on [0, T ] × R2

such that E, ∂xE are bounded, we consider the solution by characteristics of the Vlasov
problem (7), (9) on [0, T ]× R2, that is

fE(t, x, v) = fin(XE(0; t, x, v), V E(0; t, x, v)), (t, x, v) ∈ [0, T ]× R2 × R2
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where the characteristics (XE, V E)(s; t, x, v) are given by

dXE

ds
= V E(s),

dV E

ds
=

q

m

(
E(s,XE(s)) +B(XE(s)) ⊥V E(s)

)
(XE, V E)(s = t; t, x, v) = (x, v), (s, t, x, v) ∈ [0, T ]× [0, T ]× R2 × R2.

Notice that the right hand side terms in the characteristic equations have at most
linear growth at infinity (i.e., when s, t ∈ [0, T ], |x| + |v| → +∞), and therefore the
characteristics exist globally on [0, T ] and have C1 regularity in all the arguments.
Considering now the Poisson electric field corresponding to the particle density f ,
leads to a map F , whose fixed point gives the solution of the Vlasov-Poisson problem
(7), (8), (9) on [0, T ]

E → F(E) =
q

2πε0

∫
R2

∫
R2

fE(t, x′, v′)
x− x′

|x− x′|2
dv′dx′.

We need to find a set XT of smooth electric fields, which is left invariant by the map
F , and to establish an estimate like

‖FE(t)−FẼ(t)‖L∞(R2) ≤ CT

∫ t

0

‖E(s)− Ẽ(s)‖L∞(R2) ds, E, Ẽ ∈ XT , t ∈ [0, T ] (48)

for some constant CT , not depending on E, Ẽ. After that, the well posedness of the
Vlasov-Poisson system follows immediately, by iterating the map F . We are not indi-
cating all the details of this construction, but only the a priori estimates, for smooth
solutions of (7), (8), (9). Let f be a smooth solution corresponding to the non nega-
tive initial particle density fin ∈ C1

c (R2 × R2). We are looking for estimating E, ∂xE
in C([0, T ]× R2). Notice that for any R > 0 we have

|ε0E[f(t)](x)| ≤ 1

2π

∫
R2

1{|x−x′|<R}
ρ[f(t)](x′)

|x− x′|
dx′ +

1

2π

∫
R2

1{|x−x′|≥R}
ρ[f(t)](x′)

|x− x′|
dx′

≤ R‖ρ[f(t)]‖L∞(R2) +
1

2πR
‖ρ[f(t)]‖L1(R2).

As the total charge is conserved, after minimization with respect to R, that is by taking
R = (‖ρ[fin]‖L1(R2)/2π‖ρ[f(t)]‖L∞(R2))

1/2, we obtain

ε0‖E[f(t)]‖L∞(R2) ≤ ‖ ρ[f(t)] ‖1/2L∞(R2)

(
|q|
2π
‖fin‖L1(R2×R2)

)1/2

. (49)

For estimating the L∞ norm of the charge density, we analyze the support of the
particle density f . By the characteristic equations we have for any 0 ≤ s ≤ t ≤ T

|X(s; t, x, v)− x| ≤
∫ t

s

|V (σ; t, x, v)| dσ (50)

and
1

2

d

ds
|V (s; t, x, v)|2 =

q

m
E[f(s)](X(s; t, x, v)) · V (s; t, x, v) (51)
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implying that

| |V (s; t, x, v)| − |v| | ≤ |q|
m

∫ t

s

‖E[f(σ)]‖L∞(R2) dσ.

Assume that supp fin ⊂ {(x, v) ∈ R2 × R2 : |x| ≤ Rin
x and |v| ≤ Rin

v }. Clearly, for

any (x, v) ∈ R2 × R2 such that |v| > Rv(t) := Rin
v + |q|

m

∫ t
0
‖E[f(s)]‖L∞(R2) ds we have

|V (0; t, x, v)| ≥ |v| − |q|
m

∫ t

0

‖E[f(s)]‖L∞(R2) ds > Rin
v

and therefore
f(t, x, v) = fin(X(0; t, x, v), V (0; t, x, v)) = 0.

Consider now (x, v) ∈ R2 × R2 such that

|x| > Rx(t) := Rin
x + tRv(t) +

∫ t

0

|q|
m

∫ t

s

‖E[f(σ)]‖L∞(R2) dσ ds.

If |v| > Rv(t) we already know that f(t, x, v) = 0. If |v| ≤ Rv(t), we have by (50), (51)

|X(0; t, x, v)| ≥ |x| −
∫ t

0

|V (s; t, x, v)| ds

≥ |x| −
∫ t

0

[
|v|+ |q|

m

∫ t

s

‖E[f(σ)]‖L∞(R2) dσ

]
ds

≥ |x| − tRv(t)−
∫ t

0

|q|
m

∫ t

s

‖E[f(σ)]‖L∞(R2) dσ ds > Rin
x

implying that f(t, x, v) = fin(X(0; t, x, v), V (0; t, x, v)) = 0. We have proved that f is
compactly supported

supp f(t) ⊂ {(x, v) ∈ R2 × R2 : |x| ≤ Rx(t) and |v| ≤ Rv(t)}, t ∈ [0, T ].

Notice that the above computations are not depending on the magnetic field B; more
exactly the equations (51) will be the same when considering an external magnetic
field or not. This is why the arguments used for the Vlasov-Poisson problem also apply
for the Vlasov-Poisson problem with external magnetic field. The charge density is
bounded by

|ρ[f(t)](x)| = |q|
∫
R2 fin(X(0; t, x, v), V (0; t, x, v)) dv ≤ |q|‖fin‖L∞(R2×R2)πR

2
v(t).(52)

The a priori bound for the L∞ norm of the electric field comes by Gronwall lemma.
Actually, combining (49), (52) yields

ε0‖E[f(t)]‖L∞(R2) ≤
(
|q|
2π
‖fin‖L1(R2×R2)

)1/2 (
|q|‖fin‖L∞(R2×R2)π

)1/2
Rv(t)

=
|q|√

2
‖fin‖1/2L1(R2×R2)‖fin‖

1/2

L∞(R2×R2)

(
Rin
v +
|q|
m

∫ t

0

‖E[f(s)]‖L∞(R2) ds

)
.

Notice that once that we have obtained a L∞ bound for the electric field, we also get a
bound for the support size of the particle density f . The derivation of the L∞ a priori
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estimate for ∂xE is more elaborated. It was shown in [2] that there is a constant C̃
(depending only on m, ε0) such that

‖∂xE[f(t)]‖L∞ ≤ C̃
[
(1 + ‖ρ[f(t)]‖L∞)(1 + ln+ ‖∇xρ[f(t)]‖L∞) + ‖ρ[f(t)]‖L1

]
. (53)

Here the notation ln+ stands for the positive part of ln. We already have a priori
bounds for the L∞ norm of ρ[f(t)] (use the estimate for the size of the support of f)
and for the L1 norm of ρ[f(t)] (use the conservation of the total charge), and therefore
(53) becomes

‖∂xE[f(t)]‖L∞ ≤ C1(1 + ln+ ‖∇xρ[f(t)]‖L∞), t ∈ [0, T ] (54)

for some constant C1 depending on m, ε0, q, T . We need to estimate the L∞ norm of
∇xρ[f(t)] which writes

∇xρ[f(t)] = q∇x

∫
R2

fin(X(0; t, x, v), V (0; t, x, v)) dv (55)

= q

∫
R2

1{|v|≤Rv(t)}
t∂xX(0; t, x, v)(∇Xfin)(X(0; t, x, v), V (0; t, x, v)) dv

+ q

∫
R2

1{|v|≤Rv(t)}
t∂xV (0; t, x, v)(∇V fin)(X(0; t, x, v), V (0; t, x, v)) dv.

A straightforward computation on the characteristic equations shows that there is a
constant C2(m, q, T, ‖B‖W 1,∞) ≥ 1 such that for any (x, v) ∈ R2 × R2, |v| ≤ Rv(t), we
have

|∂xX(0; t, x, v)|+ |∂xV (0; t, x, v)| ≤ C2 exp

(∫ t

0

‖∂xE[f(s)]‖L∞ ds

)
, t ∈ [0, T ].

Coming back to (55) we obtain

‖∇xρ[f(t)]‖L∞ ≤ C3 exp

(∫ t

0

‖∂xE[f(s)]‖L∞ ds

)
, t ∈ [0, T ]

for some constant C3(m, q, T, ‖B‖W 1,∞) ≥ 1, and therefore

ln+ ‖∇xρ[f(t)]‖L∞ ≤ lnC3 +

∫ t

0

‖∂xE[f(s)]‖L∞ ds, t ∈ [0, T ].

Finally, combining with (54) yields

‖∂xE[f(t)]‖L∞ ≤ C4

(
1 +

∫ t

0

‖∂xE[f(s)]‖L∞ ds

)
, t ∈ [0, T ]

and the a priori estimate for the L∞ norm of ∂xE[f ] follows by Gronwall lemma.
Based on the L∞ estimates for the electric field together with its spatial derivatives,
and also on the compactness of the particle density support, the inequality (48) comes
immediately.
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