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Abstract

In this paper we study a special type of solution for the one dimensional

Vlasov-Maxwell equations. We assume that initially the particle density is

constant on its support in the phase space and we are looking for solutions

with particle density having the same property at any time t > 0. More

precisely, for each x the support of the density is assumed to be an interval

[p−, p+] with end-points varying in space and time. We analyze here the

case of weak and strong solutions for the effective equations verified by the

end-points and the electric field (water-bag model) in the relativistic setting.
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1 Introduction

The Vlasov-Maxwell system governs the evolution of an ensemble of charged particles

subject to electro-magnetic fields created by themselves and possibly external sources

in which collisions are typically neglected. Given f the density number of charged

particles at time t ∈ R+, position x ∈ R3 and momentum p ∈ R3, the dynamics of

the particles is described by the Vlasov equation

∂tf+v(p) ·∇xf+q(E(t, x)+v(p)∧B(t, x)) ·∇pf = 0, (t, x, p) ∈ R+×R3×R3, (1)

where the electro-magnetic field (E,B) is defined in a self-consistent way by the

Maxwell equations

∂tE − c2
0curlxB = −j(t, x)

ε0

, j(t, x) = q

∫

R3

v(p)f(t, x, p) dp, (t, x) ∈ R+ ×R3, (2)

∂tB + curlxE = 0, (t, x) ∈ R+ × R3, (3)

divxE =
ρ(t, x)

ε0

, ρ(t, x) = q

∫

R3

f(t, x, p) dp, divxB = 0, (t, x) ∈ R+ × R3, (4)

where q,m are the charge and the mass of the particles, ε0 is the electric permittivity

of the vacuum and v(p) is the relativistic velocity associated to the momentum p

v(p) =
p

m

(
1 +

|p|2
m2c2

0

)− 1
2

,

where c0 is the light speed in the vacuum. Suitable initial conditions for the particle

density and the electro-magnetic field have to be prescribed verifying certain com-

patibility conditions. The existence of global weak solution was obtained in [9] and

the existence of strong solutions has been investigated by different approaches in

[11, 5, 13]. Despite of these advances in the existence theory for the Vlasov-Maxwell

system, many questions concerning qualitative behavior, special solutions or regu-

larity issues, to name a few, are completely open. Recently global existence and

uniqueness results have been proved for reduced models for laser-plasma interaction

[7, 4] leading to particular global solutions of the Vlasov-Maxwell system.
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Neglecting the magnetic field and the relativistic corrections in the Vlasov equa-

tion leads to the Vlasov-Poisson model

∂tf +
p

m
· ∇xf + qE(t, x) · ∇pf = 0, (t, x, p) ∈ R+ × R3 × R3,

curlxE = 0, divxE =
ρ(t, x)

ε0

, (t, x) ∈ R+ × R3,

which is much better understood, see [1, 17, 14] for instance. The Vlasov-Poisson

model can be justified as the limit of the relativistic Vlasov-Maxwell model when

the characteristic speed of the particles remains small compared to the light speed

[8, 3].

In this work, we elaborate on some particular type of solutions of the one-

dimensional version of the Vlasov-Maxwell(Poisson) system which has received the

attention in the plasma physics community [2]. Let us assume that the initial den-

sity is proportional to the characteristic function of some region of the phase space

between the graphs of two functions p±0 : R→ R

f0(x, p) = α 1{p−0 (x)<p<p+
0 (x)}, (x, p) ∈ R2. (5)

We assume that p−0 ≤ p+
0 . We are looking for a density function of the form

f(t, x, p) = α 1{p−(t,x)<p<p+(t,x)}, (6)

where p± : R+ × R → R are unknown functions to be determined such that the

above density f satisfies the Vlasov equation. We have the following immediate

result:

Proposition 1.1 (Smooth Water-bag Solutions) Let E : [0, T [×R → R be a

given electric field which belongs to L1
loc([0, T [×R), with 0 < T ≤ +∞. Assume that

p± : [0, T [×R→ R are smooth functions p± ∈ W 1,∞
loc ([0, T [×R) verifying

∂tp
± + v(p±)∂xp

± = qE(t, x), (t, x) ∈]0, T [×R,

and p− ≤ p+. Then the density f given by (6) is a weak solution (that is, a solution

in distribution sense) of the Vlasov equation associated to the electric field E.
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Observe that the charge and current densities of the distribution in (6) are given

by ρ(t, x) = qα (p+(t, x) − p−(t, x)), j(t, x) = qα(E(p+(t, x)) − E(p−(t, x))), where

the kinetic energy function is given by

E(p) = mc2
0

((
1 +

p2

m2c2
0

) 1
2

− 1

)
.

Notice that we have E ′(p) = v(p). Thus for the initial condition in (5) the one

dimensional Vlasov-Maxwell equations reduce to the system

∂tp
± + ∂xE(p±) = qE(t, x), (t, x) ∈]0, T [×R, (7)

∂tE = −α q
ε0

(E(p+(t, x))− E(p−(t, x))), (8)

∂xE = α
q

ε0

(p+(t, x)− p−(t, x)), (t, x) ∈]0, T [×R, (9)

with the initial conditions

p±(0, x) = p±0 (x), E(0, x) = E0(x), x ∈ R, (10)

satisfying

E ′0 (x) = α
q

ε0

(p+
0 (x)− p−0 (x)), p−0 (x) ≤ p+

0 (x), x ∈ R. (11)

Let us remark that (9) is a consequence of (7), (8) and the equality in (11). The

problem (7), (8), (9), (10) is called the water-bag model and has been introduced in

[2]. The main goal of this paper is to establish existence and uniqueness results for

the water-bag model. In Section 2 we analyze the weak solutions: we study entropy

solutions of the scalar conservation laws (7) coupled to the equations (8), (9) for

the electric field. Smooth solutions are constructed as well for certain class of initial

conditions in Section 3.

2 Weak solutions

For simplicity we assume that all the physical constants q,m, ε0, c0, α are equal to

the unity. We remind the reader the standard existence and uniqueness results
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concerning the entropy solution for scalar conservation laws. We refer to [12, 10] for

details on this topic. We consider here conservation laws with right hand side terms

∂tu+ ∂xF (u) = G(t, x), (t, x) ∈ R+ × R, (12)

u(0, x) = u0(x), x ∈ R. (13)

Theorem 2.1 (Entropy Solutions for Scalar Conservation Laws) Let us as-

sume that F : R → R is a smooth function and G belongs to L1
loc(R+;L∞(R)).

Then for any initial condition u0 ∈ L∞(R) there is a unique entropy solution

u ∈ C(R+;L1
loc(R)) ∩ L∞loc(R+;L∞(R)) for (12), (13) satisfying

‖u(t)‖L∞(R) ≤ ‖u0‖L∞(R) +

∫ t

0

‖G(s)‖L∞(R) ds, t ∈ R+. (14)

Moreover if v is the entropy solution associated to the initial condition v0 ∈ L∞(R),

the source term H ∈ L1
loc(R+;L∞(R)) and the same smooth function F then we have

the inequality

∫

R
|u(t, x)− v(t, x)|1{|x|<R} dx ≤

∫

R
|u0(x)− v0(x)|1{|x|<R+tM(t)} dx (15)

+

∫ t

0

∫

R
|G(s, x)−H(s, x)|1{|x|<R+(t−s)M(t)} dx ds,

where M(t) = max{Mu(t),Mv(t)},

Mu(t) = sup{|F ′(ξ)| : |ξ| ≤ ‖u0‖L∞(R) +

∫ t

0

‖G(s)‖L∞(R) ds}

and

Mv(t) = sup{|F ′(ξ)| : |ξ| ≤ ‖v0‖L∞(R) +

∫ t

0

‖H(s)‖L∞(R) ds}.

It is well known that for conservation laws without source term (G = 0) the solution

operator S(t)u0 = u(t, ·) is order preserving on L1(R) ∩ L∞(R) that is, for any

u0, v0 ∈ L1(R)∩L∞(R) such that u0 ≤ v0 a.e. we have S(t)u0 ≤ S(t)v0 a.e., for any

t ∈ R+. This is a direct consequence of the Crandall-Tartar lemma [12, page 81]. The

same result holds true for conservation laws with source terms G ∈ L1
loc(R+;L∞(R))

and for initial conditions u0 ∈ L∞(R).
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Lemma 2.1 (Comparison Principle with Sources) Assume that the source G ∈
L1

loc(R+;L∞(R)) and denote by SG(t) : L∞(R)→ L∞(R) the solution operator given

by SG(t)u0 = u(t, ·) for any u0 ∈ L∞(R), t ∈ R+ where u is the entropy solution of

(12), (13). For any t ∈ R+ the operator SG(t) is order preserving.

Proof. Since the solutions of (12) with bounded initial conditions propagate

with finite speed (cf. (14), (15)), it is sufficient to prove the result for G ∈
L1

loc(R+;L1(R))∩L1
loc(R+;L∞(R)) and initial conditions in L∞(R)∩L1(R). There-

fore consider u0, v0 ∈ L∞(R) ∩ L1(R) such that u0 ≤ v0. We claim that
∫

R
{SG(t)u0 − SG(t)v0} dx =

∫

R
{u0 − v0} dx, t ∈ R+. (16)

Indeed, by (15) it is sufficient to prove it for compactly supported functions u0, v0 and

this comes easily by interpreting SG(t)u0, SG(t)v0 as the limit of smooth solutions

for approximating viscous problems, as the viscosity vanishes. We denote by (·)+

the positive part function. Combining (15), (16) yields

2

∫

R
(SG(t)u0 − SG(t)v0)+ dx =

∫

R
(SG(t)u0 − SG(t)v0) dx+

∫

R
|SG(t)u0 − SG(t)v0| dx

≤
∫

R
(u0 − v0) dx+

∫

R
|u0 − v0| dx

= 2

∫

R
(u0 − v0)+ dx = 0,

implying that SG(t)u0 ≤ SG(t)v0 a.e. x ∈ R, ∀ t ∈ R+.

Consider p±0 ∈ L∞(R), E0 ∈ L∞(R) satisfying p−0 ≤ p+
0 and E ′0 = p+

0 −p−0 . We define

the application F on L1
loc(R+;L∞(R)) given by FE = Ẽ where

Ẽ(t, x) = E0(x)−
∫ t

0

{E(p+(s, x))− E(p−(s, x))} ds,

and p± are the entropy solutions of

∂tp
± + ∂xE(p±) = E(t, x), (t, x) ∈ R+ × R,

with the initial conditions p±0 . It is easily seen by (14) that

‖Ẽ(t)‖L∞(R) ≤ ‖E0‖L∞(R) +

∫ t

0

{‖p+(s)‖L∞(R) + ‖p−(s)‖L∞(R)} ds (17)

≤ ‖E0‖L∞(R) + t(‖p+
0 ‖L∞(R) + ‖p−0 ‖L∞(R)) + 2t

∫ t

0

‖E(s)‖L∞(R) ds.
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For any t ∈ R+ we denote by eT : [0, T ]→ R the function given by

eT (t) =
(‖E0‖L∞(R) + T (‖p+

0 ‖L∞(R) + ‖p−0 ‖L∞(R))
)
e2Tt.

We check immediately that the set DT = {E ∈ L1(]0, T [;L∞(R)) : ‖E(t)‖L∞(R) ≤
eT (t), ∀ t ∈ [0, T ]} is left invariant by the application FT defined by FTE =

FE|[0,T ]×R for any E ∈ L1
loc(R+;L∞(R)).

A straightforward computation based on the contraction inequality (15) shows

that FT is continuous on C([0, T ];L1
loc(R)). We denote by MT the constant given

by

MT = sup{|E ′(ξ)| : |ξ| ≤ max{‖p−0 ‖L∞(R), ‖p+
0 ‖L∞(R)}+

∫ T

0

eT (t) dt} < 1.

Proposition 2.1 (Continuity of the Map) Assume that p±0 , E0 ∈ L∞(R). For

any T ∈ R+ we have the inequality
∫

R
|FTE1 −FTE2|(t, x)1{|x|<R} dx ≤ 2T

∫ t

0

∫

R
|E1 − E2|(s, x)1{|x|<R+(t−s)MT } dx ds,

for any E1, E2 ∈ DT , ∀ t ∈ [0, T ], R > 0.

Proof. Consider E1, E2 ∈ DT and let us denote by p±1 , p±2 the entropy solutions

corresponding to the fields E1, E2 and the initial conditions p±0 . By the definitions

of FTE1, FTE2 and (15) we deduce easily that
∫ R

−R
|(FTE1 −FTE2)|(t, x) dx ≤

∫ t

0

∫ R

−R
{|p+

1 − p+
2 |(s, x) + |p−1 − p−2 |(s, x)} ds

≤ 2

∫ t

0

∫ s

0

∫

R
|E1 − E2|(τ, x)1{|x|<R+(s−τ)MT } dxdτds

≤ 2T

∫ t

0

∫

R
|E1 − E2|(s, x)1{|x|<R+(t−s)MT } dx ds.

Theorem 2.2 (Global Entropy Solutions for the Water-bag model) Assume

that p±0 , E0 ∈ L∞(R) satisfying E ′0 = p+
0 − p−0 . Then there is a global unique weak

solution (p+, p−, E) ∈ L∞(]0, T [×R)2×W 1,∞(]0, T [×R), ∀ T ∈ R+ for the water-bag

model (7), (8), (9), (10). Moreover if p−0 ≤ p+
0 then p− ≤ p+.
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Proof. It is sufficient to prove the existence of a unique solution (p+, p−, E) on

[0, T ] × R for any T ∈ R+. We define the sequence (En)n≥0 given by E0(t, x) =

E0(x),∀ (t, x) ∈ [0, T ] × R and En+1 = FTEn, ∀ n ∈ N. Observe that (En)n ⊂
DT . For any R > 0 we consider the sequence of functions znR(t) =

∫
R |En+1 −

En|(t, x)1{|x|<R+(T−t)MT } dx, t ∈ [0, T ], n ∈ N. By Proposition 2.1 it is easily seen

that

znR(t) ≤ 2T

∫ t

0

∫

R
|En − En−1|(s, x)1{|x|<R+(T−s)MT } dx ds

= 2T

∫ t

0

zn−1
R (s) ds, t ∈ [0, T ], n ≥ 1,

implying that

znR(t) ≤ (2Tt)n

n!
‖z0

R‖L∞(]0,T [), ∀n ∈ N.

We deduce that (En)n is a Cauchy sequence in C([0, T ];L1
loc(R)) since

∫

R
|En+p − En|(t, x)1{|x|<R} dx ≤ zn(t) + zn+1(t) + ...+ zn+p−1(t).

It follows that (En)n converges in C([0, T ];L1
loc(R)) towards a fixed point E of FT .

Moreover we check easily that E ∈ DT . Take now p+, p− the unique entropy solu-

tions of (7) corresponding to the limit field E and the initial conditions p+
0 , p

−
0 . By

construction (p+, p−, E) is a solution for the water-bag model (7), (8), (10). The

equation (9) is a consequence of (7), (8) and the constraint E ′0 = p+
0 − p−0 . The

bounds for the derivatives of E comes from the bounds of p± (see (14)) and (8), (9).

For the inequality p− ≤ p+ use Lemma 2.1. The uniqueness of the weak solution is

obtained by a straightforward computation involving the Gronwall lemma.

Remark 2.1 (Vlasov-Maxwell Solutions with Defect Measures) A natural

question related to the previous existence result is the following: given (p+, p−, E) a

weak solution for the water-bag model, is it true that f(t, x, p) = 1{p−(t,x)<p<p+(t,x)}

solves the Vlasov equation

∂tf + v(p)∂xf + E(t, x)∂pf = 0, (t, x, p) ∈ R+ × R× R ?
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Generally the answer to this question is negative, but we can prove that f solves

a Vlasov equation with a entropy defect measure. Of course we appeal here to the

kinetic formulation of conservation laws [15, 16]. Indeed, observe that the function

f represents as f(t, x, p) = χ(p, p+(t, x)) − χ(p, p−(t, x)) where the function χ is

given by

χ(ξ, u) =





+ 1, 0 < ξ < u,

− 1, u < ξ < 0,

0, otherwise.

Since p± are entropy solutions we know that there are the non negative kinetic en-

tropy defect measures m± such that




∂tχ(p, p±) + v(p)∂xχ(p, p±)− E(t, x)δ0(p− p±) = ∂pm

±, (t, x, p) ∈ R+ × R2,

χ(p, p±(0, x)) = χ(p, p±0 (x)), (x, p) ∈ R2,

where the notation δ0 stands for the Dirac mass concentrated at the origin. Therefore

we obtain

(∂t+v(p)∂x){χ(p, p+)−χ(p, p−)}−E(t, x){δ0(p−p+)−δ0(p−p−)} = ∂p{m+−m−},

and by taking into account that ∂p{χ(p, p+)−χ(p, p−)} = −{δ0(p−p+)−δ0(p−p−)}
finally we can write




∂tf + v(p)∂xf + E(t, x)∂pf = ∂p{m+ −m−}, (t, x, p) ∈ R+ × R2,

f(0, x, p) = χ(p, p+
0 (x))− χ(p, p−0 (x)) = 1{p−0 (x)<p<p+

0 (x)}, (x, p) ∈ R2.

Another interesting question concerns the behavior of the total energy. For example

if p−(t, x) ≤ 0 ≤ p+(t, x), (t, x) ∈ [0, T ] × R and the initial energy is finite we can

prove that the total energy is not increasing on [0, T ]. Multiplying the above Vlasov

equation by E(p) one gets after integration

d

dt

∫

R2

E(p)f dxdp−
∫

R
E{E(p+(t, x))− E(p−(t, x))} dx =

∫

R2

v(p)m−(t, x, p) dxdp

−
∫

R2

v(p)m+(t, x, p) dxdp.
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Using (8) we deduce also that

1

2

d

dt

∫

R
E(t, x)2 dx+

∫

R
E(t, x){E(p+(t, x))− E(p−(t, x))} dx = 0,

implying that

d

dt

{∫

R2

E(p)f dxdp+
1

2

∫

R
E(t, x)2 dx

}
=

∫

R2

v(p)m−(t, x, p) dxdp

−
∫

R2

v(p)m+(t, x, p) dxdp.

Therefore we are done if we check that m± = 0 on [0, T ] × R × R∓. Take p0 < 0

and let us multiply the kinetic formulation of χ(p, p+) by the derivative of the convex

function Sp0(p) = (p−p0)−. After standard computations involving the usual formula
∫
R χ(ξ, u)S ′(ξ) dξ = S(u)− S(0), ∀ S(·), ∀ u ∈ R we obtain

d

dt

∫

R
Sp0(p+(t, x)) dx = −

∫

R
m+(t, x, p0) dx.

Therefore one gets for any t ∈ [0, T ]

∫

R
Sp0(p+(T, x)) dx+

∫ T

0

∫

R
m+(t, x, p0) dxdt =

∫

R
Sp0(p+

0 (x)) dx = 0,

saying that m+ = 0 on [0, T ]× R× R−. In a similar way we check that m− = 0 on

[0, T ]× R× R+.

Remark 2.2 (Non-relativistic setting) This case is a little bit more difficult

since the non relativistic energy function E(p) = p2

2
is only locally Lipschitz. This

time the analogous of the estimate (17) becomes quadratic

‖Ẽ(t)‖L∞ ≤‖E0‖L∞ +
1

2

∫ t

0

max{‖p+(s)‖2
L∞ , ‖p−(s)‖2

L∞} ds

≤‖E0‖L∞ +

∫ t

0

{
max{‖p+

0 ‖2
L∞ , ‖p−0 ‖2

L∞}+ s

∫ s

0

‖E(τ)‖2
L∞ dτ

}
ds

≤‖E0‖L∞ + tmax{‖p+
0 ‖2

L∞ , ‖p−0 ‖2
L∞}+ t2

∫ t

0

‖E(s)‖2
L∞ ds.

In this case for T > 0 small enough we denote by eT (·) the unique solution of

d

dt
eT = T 2(eT (t))2, 0 < t < T,
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with the initial condition eT (0) = ‖E0‖L∞ + T max{‖p+
0 ‖2

L∞ , ‖p−0 ‖2
L∞}. It is easily

seen that the set DT = {E ∈ L1(]0, T [;L∞(R)) : ‖E(t)‖L∞ ≤ eT (t), ∀ t ∈
[0, T ]} is left invariant by the application FT and following the same arguments

as in the relativistic setting we construct a local unique weak solution (p+, p−, E) ∈
L∞(]0, T [×R)2×W 1,∞(]0, T [×R) for the non relativistic water-bag model. For results

on the multi-water-bag model in this setting see [6].

3 Strong solutions

This section is devoted to the analysis of smooth solutions for the relativistic water-

bag model. We show that smooth non decreasing initial conditions launch global

smooth solutions.

Proposition 3.1 (Non-decreasing initial data for Scalar CL’s) Assume that

F ∈ W 2,∞(R), G ∈ L∞loc(R+;W 1,∞(R)) such that F ′′ ≥ 0, ∂xG ≥ 0. Then for any

non decreasing initial condition u0 ∈ W 1,∞(R) the problem (12), (13) has a unique

strong solution u ∈ W 1,∞(]0, T [×R), ∀ T ∈ R+ which is non decreasing with respect

to x.

Proof. We define the sequence of functions (un)n≥0 where u0(t, x) = u0(x) ∀ (t, x) ∈
R+ × R and for any n ∈ N, un+1 solves the problem

∂tu
n+1 + F ′(un(t, x))∂xu

n+1 = G(t, x), (t, x) ∈ R+ × R, (18)

un+1(0, x) = u0(x), x ∈ R. (19)

Actually we will prove that (un)n are smooth and therefore the above problem is

understood in the classical sense. Assume that un belongs to L∞loc(R+;W 1,∞(R)),

∂xu
n ≥ 0 which is true for n = 0, and let us show that the same holds for un+1. We

denote by Xn(s; t, x) the characteristics associated to F ′(un)

d

ds
Xn(s; t, x) = F ′(un(s,Xn(s; t, x))), Xn(t; t, x) = x.
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Therefore we have

un+1(t, x) = u0(Xn(0; t, x)) +

∫ t

0

G(s,Xn(s; t, x)) ds, (t, x) ∈ R+ × R. (20)

We check easily that un+1 ∈ L∞loc(R+;W 1,∞(R)) and since x → Xn(s; t, x), u0 and

G(s, ·) are non decreasing we deduce that ∂xu
n+1 ≥ 0. Moreover we can find bounds

for the time and space derivatives uniformly with respect to n. For any h > 0 we

have

∂t{un+1(t, x+ h)− un+1(t, x)} + {F ′(un(t, x+ h))− F ′(un(t, x))}∂xun+1(t, x+ h)

+ F ′(un(t, x))∂x{un+1(t, x+ h)− un+1(t, x)}
= G(t, x+ h)−G(t, x).

Since ∂xu
n ≥ 0, ∂xu

n+1 ≥ 0, F ′′ ≥ 0 we have

{F ′(un(t, x+ h))− F ′(un(t, x))}∂xun+1(t, x+ h) ≥ 0,

and therefore

∂tDhu
n+1 + F ′(un(t, x))∂xDhu

n+1 ≤ DhG(t, x),

where the notation Dhz(x) stands for z(x+h)−z(x) for any function z. Integrating

along the characteristics one gets

Dhu
n+1(t, x) ≤ (Dhu0)(Xn(0; t, x)) +

∫ t

0

DhG(s,Xn(s; t, x)) ds,

implying that

Dhu
n+1(t, x)

h
≤ ‖u′0‖L∞(R) +

∫ t

0

‖∂xG(s)‖L∞(R) ds.

Since we know that ∂xu
n+1 ≥ 0 finally we obtain

‖∂xun+1(t)‖L∞(R) ≤ ‖u′0‖L∞(R) +

∫ t

0

‖∂xG(s)‖L∞(R) ds,

and

‖∂tun+1(t)‖L∞(R) ≤ ‖G(t)‖L∞(R) + ‖F ′‖L∞(R)

(
‖u′0‖L∞(R) +

∫ t

0

‖∂xG(s)‖L∞(R) ds

)
.
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We claim that the sequence (un)n converges in C([0, T ] × R), ∀ T ∈ R+. Indeed,

since (∂xu
n)n is bounded in L∞(]0, T [×R), there is a constant CT depending on

‖u′0‖L∞(R),
∫ T

0
‖∂xG(s)‖L∞(R)ds and ‖F ′′‖L∞ such that

|Xn+1(s; t, x)−Xn(s; t, x)| ≤ CT

∫ t

s

‖un+1(τ)− un(τ)‖L∞ dτ, (21)

for any (s, t, x) ∈ [0, T ]2 × R. Combining (20), (21) yields

‖un+2(t)− un+1(t)‖L∞(R) ≤ C̃T

∫ t

0

‖un+1(s)− un(s)‖L∞(R) ds, n ∈ N,

implying that the sequence (un)n converges in C([0, T ]×R) towards some function u.

Since (∂tu
n)n, (∂xu

n)n are bounded we deduce that u ∈ W 1,∞(]0, T [×R). It remains

to prove that u solves (18), (19). There is a subsequence (nk)k, limk→+∞ nk = +∞
such that

lim
k→+∞

(∂tu
nk , ∂xu

nk) = (∂tu, ∂xu), weakly ? in L∞(]0, T [×R)2.

Obviously we have also the convergence limk→+∞ unk−1 = u in C([0, T ]× R). Mul-

tiplying (18) by a test function ϕ ∈ C0
c ([0, T ]× R) one gets

∫ T

0

∫

R
∂tu

nkϕ dxdt+

∫ T

0

∫

R
F ′(unk−1(t, x))∂xu

nkϕ dxdt =

∫ T

0

∫

R
G(t, x)ϕ(t, x) dxdt.

We can pass easily to the limit for k → +∞ and we obtain
∫ T

0

∫

R
∂tu ϕ dxdt+

∫ T

0

∫

R
F ′(u(t, x))∂xu ϕ dxdt =

∫ T

0

∫

R
G(t, x)ϕ(t, x) dxdt,

saying that u is a strong solution of (18). Moreover u verifies the initial condition

(19) since

u(0, x) = lim
n→+∞

un(0, x) = u0(x), x ∈ R.

Since any strong solution coincides with the entropy solution, we have also the

uniqueness of the strong solution.

Theorem 3.1 (Global Smooth Solutions) Assume that p±0 , E0 ∈ W 1,∞(R) sat-

isfying d
dx
p±0 ≥ 0, d

dx
E0 = p+

0 −p−0 ≥ 0. Then there is a global unique strong solution

(p+, p−, E) ∈ W 1,∞(]0, T [×R)2×W 2,∞(]0, T [×R), ∀ T ∈ R+ for the water-bag model.
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Proof. By Theorem 2.2 we know that there is a global weak solution (p+, p−, E) ∈
L∞(]0, T [×R)2 × W 1,∞(]0, T [×R), ∀ T ∈ R+ for the water-bag model satisfying

p− ≤ p+. By (9) we have ∂xE ≥ 0 and thus applying Proposition 3.1 implies that

the entropy solutions p± belong to W 1,∞(]0, T [×R) and are strong solutions for (7).

The bounds for the second order derivatives of the electric fields follow immediately

from the bounds of the first order derivatives for p± and (8), (9). The uniqueness

of the strong solution (p+, p−, E) for the water-bag model is a direct consequence of

the uniqueness of the weak solution.
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Mathématiques et Applications, Ellipses 1991.

[13] S. Klainerman, G. Staffilani, A new approach to study the Vlasov-Maxwell

system, Commun. Pure Appl. Anal. 1(2002) 103-125.

[14] P.-L. Lions, B. Perthame, Propagation of moments and regularity for the 3-

dimensional Vlasov-Poisson system, Invent. Math. 105(1991) 415-430.

[15] P.-L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidimen-

sional scalar conservation laws and related equations, J. Amer. Math. Soc.

7(1994) 169-191.

[16] B. Perthame, Kinetic formulation of conservation laws, Oxford University

Press 2002.

15



[17] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in

three dimensions for general initial data, J. Differential Equations 95(1992)

281-303.

16


