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Periodic solutions of the 1D Vlasov-Maxwell system
with boundary conditions

Summary. We study the 1D Viasov-Mazwell system with time periodic
boundary conditions in its classical and relativistic form. We are mainly
concerned with existence of periodic weak solutions. We shall begin with
the definitions of weak and mild solutions in the periodic case. The main
mathematical difficulty in dealing with the Vlasov-Maxwell system consist
of establihing L> estimates for the charge and current densities. In order
to obtain this kind of estimates, we impose non vanishing conditions for
the incoming velocities, which assure a finite life-time of all particles in the
computational domain |0, L]. The definition of the mild solution requires
lipschitz reqularity for the electromagnetic field. Thus, in the first time, the
Vlasov equation has to be reqularized. This procedure leads to the study of
a sequence of approzimate solutions. In the same time, an absorption term
15 introduced in the Vlasov equation, which guarantees the uniqueness of the
mild solution of the reqularized problem. In order to preserve the periodicity
of the solution, a time averaging vanishing condition of the incoming current
1S 1mposed :

T T
/ dt/ / vmgo(t,vx,vy)dv—l—/ dt/ / VgL (t, v, vy)do =0, (1)
0 v >0 Juy 0 <0 Juy

where gy, gr, are the incoming distributions :

f(t,0,vz,0y) = go(t, vz, vy), te R, vy, >0,v, € IR, (2)

f(t, L,vg,vy) = gr(t,vg,vy), t€ R v, <0,0, € R,. (3)

The existence proof utilizes the Schauder fixed point theorem and also the
velocity average lemma of DiPerna and Lions [10]. In the last section we
treat the relativistic case.



1 Introduction

The coupled nonlinear system presented by the Vlasov-Maxwell equations
is a classical model in the kinetic theory of plasma. The main assumption
underlying the model is that collisions are so rare that they may be neglected.
In one dimension of space the Vlasov-Maxwell system (VM) writes:

8tf + Vg - aa:f + %(Em + Uy : Bz) : avxf + %(Ey — Uy - Bz) : avyf - 07

(t,x,v5,0,) € IRx]0,L[xIR2, (4)

OE, = —ij:c = —1[vaf(t,x,vx,vy) dv, (t,z) € IR;x]0, L[,

(5)

OE, + c*0,B, = —ijy = —i/vvyf(t,x,vz,vy) dv, (t,z) € IR;x]0, L[,
(6)

B, +0,E, =0, (t,z) € IR;x]0,L[.

The variables (¢, z,v,,v,) are respectively the time, the position and the ve-
locity. The non-negative function f is the distribution of the charged particles
of charge ¢ and mass m, (E,, Ey,, B,) is the electro-magnetic field, ¢ is the
electric permitivity of the vacuum and c is the light velocity in the vacuum.
A reduced description of the plasma is obtained by neglecting the magnetic
field B. The associated model constitutes the Vlasov-Poisson system (V' P)
and it can be justified ( at least for small time ) by a non-relativistic limit
[13]. The main result in this field has been obtained in 1989 by R.J.DiPerna
and P.L.Lions [10]. They prove existence of global weak solutions for the
Cauchy problem with arbitrary data. The global existence of strong solution
is still an open problem. In the case of the Vlasov-Poisson system weak global
solution for the Cauchy problem has been obtained by Arsenev [1]. Existence
of strong solution in 2D is a result due to Degond [12] and Ukai Ohabe [2].
The same result in 3D has been proved by Pfaffelmoser [18]. For applications
like vacuum diodes, tube discharges, cold plasma, solar wind, satellite ioni-
sation, thrusters, etc... boundary conditions have to be taken into account.
For the transient regime global weak solutions of the Vlasov-Maxwell system
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has been proved to exist by Y.Guo [16] and independently by M.Bezart [5].
The same problem for the Vlasov-Poisson system has been investigated by
Y.Guo [17] and N.Ben Abdallah [4]. Permanent regimes are particularly im-
portant. They are of two types and they are modeled by stationary solutions
or time periodic solutions for boundary value problems. Results concerning
stationary problems can be found in the paper of C.Greengard P.A.Raviart
[15] for the Vlasov-Poisson system in 1D and in the paper of F.Poupaud for
the Vlasov-Maxwell system [19]. For the periodic problems, results can be
found in [8]. We now describe precisely the boundary condition. Let ]0, L]
representing the device geometry. We denote by >~ the set of initial positions
in phase space of incoming particles :

¥ = {(0,vs,vy) |v, > 0,0, € R}

U {(L,vs,vy) |v, <0,v, € R}. (8)
The distribution of incoming particles is prescribed :
o 9o, (t,z,v5,v)) € Ry x X ,x=0, ()
1 gz, (t,x,v5,0,) € Ry x X", x=L.

We impose Silver-Miiller condition on the electro-magnetic field (E,, E,, B.) :
no/\E—l—C'nQ/\(no/\B):ho, (10)
nL/\E—i-c-nL/\(nL/\B):hL, (11)

where ng = (—1,0,0) and n;, = (1,0,0) are the outward unit normals of
10,L] in = 0 and « = L. Here, the boundary data gy, gr, ho, hy are T
periodic functions and we look for T periodic solutions (f, E,, E,, B.) of the
(VM) problem (4), (5), (6), (7), (9), (10) and (11). The formulas (10) and

(11) model incoming waves in the device and can be written:

E,(t,0) + ¢B.(t,0) = ho(t),  te R, (12)

B,(t,L) — ¢B.(t,L) = hy(t),  te R, (13)

One of the key point of our proof of existence of such solutions is to control
the life-time of particles in the domain |0, L[. Therefore we impose a non-
vanishing condition of incoming velocities which reads :

SUpp(go) C {(t,l’,’l)x,'liy) ; te Rtwr - OaO < Vo S Vg, \/Ug +’U§ S Ul}a
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supp(gr) C {(t,x,vz,vy); t € Ry, x = L,0 > —vg > vy, /02 +v2 < v1},
(14)

for 0 < vy < vy given. On the other hand, in order to preserve the periodicity
of E, given by (5), a time averaging vanishing condition of the incoming
current is imposed:

/ dt/ / V3 G0(t, Vgy Uy dv—l—/ dt/ / V291 (t, Vg, vy )dv = 0. (15)
V>0 Juy vz <0 Juy

Let us remark that even if the electro-magnetic field (E,, E,, B,) is "a priori”
known, there is no uniqueness of the 7" periodic solution of the Vlasov prob-
lem (V) : (4) and (9). Indeed, the distribution function can take arbitrary
(constant) values on the characteristics which remain in the domain (trapped
characteristics). In order to select physical solution we introduce as in [15]
and [19] the concept of minimal solution of (V') which are the solutions which
vanish on the trapped characteristics. These solutions can be obtained as the
limit of the (unique ) solution of the modified Vlasov problem (V,,) when an
absorption term a > 0 is introduced and tends to zero :

ozf—l—@lgf—i-vx.fo—i—%(Em—i—vy.Bz).&sz 4 %(Ey—vx.Bz).avyfzo,
(t,2,v,,v,) € IRx]0, L[xIR2. (16)

This limit absorption principle has been developped by the author to obtain
numerical periodic solutions of Partial Differential Equation, see [9]. We also
stress that these results has been announced in [7].

The paper is organized as followed. In Section 2 we define weak solutions
and minimal mild solution of the Vlasov problem (V). We also proved that
the weak solution of the modified Vlasov problem (V,,) is unique and coincide
with the minimal mild solution. In section 3 we prove existence of weak pe-
riodic solution for the classical 1D Vlasov-Maxwell system. We introduce a
regularized problem. The existence theorem is obtained by using Schauder’s
theorem for the modified problem. Then we pass to the limit in the regu-
larization parameter to obtain our main result. Section 4 is devoted to the
relativistic 1D Vlasov-Maxwell system.



2 Definitions and bounds for the Vlasov equa-
tion.

In this section we assume that the electro-magnetic field (E,, E,, B,) is T
periodic in time and we look for a solution f of the Vlasov equation:

Oif vy O f + %(Em + Uy - B.)- 0w f + %(Ey — v, - B.) - a’vyf =0,
(t,x,v5,0,) € IRx]0, L[xIR2, (17)
f(t,0,v,,vy) = golt, va, vy), te R v, >0,v, € R, (18)
f(t, L,vg,vy) = gr(t,vs,vy), t€ R v, <0,v, € R,. (19)

Here g(> 0) and m are the charge and the mass of particles. Moreover, we
suppose that the given distribution functions gy, g1, of the in-flowing particles
are T periodic in time, too. Now we briefly recall the notions of mild and
weak solutions for this type of problem.

2.1 Weak and mild solution of the Vlasov equation

Definition 1 Let E,, E,, B, € L*(R;x]0,L[) and go, g1 € L}, (IR; x ¥7)
be T periodic functions in time, where:

¥ = {lt,x,v,vy) |t € R,x=0,v, > 0,0, € R}
U {(t,z,v,,v,) |t € R,z = L,v, <0,v, € R}. (20)

We say that f € L}, (IRx]0, L[x IR?) is a T periodic weak solution of problem
(17), (18), (19) iff:

/OT/OL/IR%(&:G%—% 0,0 + %(Ex + vy - B.) - 0,,0

+ g(Ey — vy - B.) - 0,,0)f(t, 7, v,, vy)dvdzdt
m :

T

= // /vIgL(t,vgg,vy)Q(t,L,Um,vy)dvdt
0 Juge<0 Juy
T

- // /vxgo(t,vx,vy)G(t,O,vx,vy)dvdﬁ(ﬂ)
0 Jvge>0 Juy
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for all T periodic function 0 € V', where:

V={n € W"*(IR;x]0, L|xIR?) ; n(t,0,v, < 0,v,) = n(t,L,v, > 0,v,) =0,
supp(n) bounded set of IR; x [0, L] x IR>}

In other words, a weak solution of problem (17), (18), (19) is a distribution
function satisfying:

T
< fip> = / / / Uy - gL (t, v, vy) - O(t, L, vy, vy)dvdt
0 Jvg<0 Juy
T
- / / / Vs - Go(t, vg, vy) - 0(t, 0, vy, vy )dodt (22)
0 vz >0 Juy

for all T" periodic function ¢, where 6 denote the solution of the problem:

8,0 + v, - 0,0 + %(Ex Yu, B 0,0 + %(Ey — v, B.) 0,0 =0,

(t,z,v:,v,) € IRyx]0, L[x IR (23)
6(t,0,v,,v,) =0, te R v, <0,v, € R, (24)
0(t,L,vy,v,) =0, te R v,>0,v,€R,. (25)

Remark 1 In the above definition we can assume that the electro-magnetic
field is only in (LP(IR;x]0, L]))® by requiring more reqularity on f (and go, gz,
), namely f in LL (IR;x]0, L[x IR?) where q is the conjugate exponent.

If the electro-magnetic field satisfies (E,, E,, B,) € (L®(R; W'>(]0, L[)))?,
we can express a solution in terms of characteristics. Let (t,z,v,,v,) be-
long to IR;x]0, L[x IR?, we denote by X (s;z,v,,v,,t), Vi(s;z, vz, 0v,,t) and
Vy(s;x, vy, vy, t) the solution of the system:



dX
s = Vu(s;2, 05,0y, 1), s € [1i, 7o
X(t;z,vp,0,1) =
dV,
is = L(B(s XD+ Vo) B, X)), s € [17)
V;(t;x7vatavy7t) = Uz
Wy = L(B(5,X(s)) = Vals) B, X(5)), s € [m7)
ds m
V;/(t;l',’l)x,'l}y,t) = ,Uy'

(26)

where [7;(x, vy, vy, t), To(x, Vg, vy, t)] is the life-time of the particle in the do-
main |0, L[:
(X(73), Va(73), Vy(73)) € £7 (27)
and
(X (7,), Va(70), Vi (15)) € T U S, (28)

The subsets of {0, L} x IR? ¥ and XY are respectively defined by:

>t o= {(t,z,v,v,) |t € R,z =0,v, <0,v, € R}
U {(t,z,v,,vy) |t € R,z =L,v, >0,v, € R},
¥ = {(t,z,vs,v,) |t € Rz =0,v, =0,v, € R}
U {(t,z,vvy)|te R x=L,v,=0,v, € R}

Using the Cauchy-Lipschitz theorem, we notice that the characteristics are
well defined. By integration along the characteristics curves, the solution of
the problem (23), (24),(25) writes:

To
0(t, z,v,,vy) = —/t o5, X (852,05, 0y,1), Va(s; 2, vz, vy, 1), Vy(S; T, 0y, vy, t)ds

Now, (22) implies that:

T To
< f,p> = / dt/ / dv/ Vg - Go(t, Vg, Uy)
0 vz >0 Juy t



o(s, X (85;0,vs,vy,1), Vi(s;0,vz,0y,1), Vy(s;0,vs, vy, t)ds

T To
— / dt/ / dv/ Uy - g1 (t, vy, vy)
0 V2 <0 Juy t

()0(87 X(Sv La Uy, Uy7 t)a V;?(Sa L7 Vg, Uy7 t)a ‘/y(S, La Vg, Uy7 t)d87
(29)

which is equivalent to:
9o(7, Va(Tis @, vy, 0y, 1), V(T35 2, Vs, 0y, 1))

if 7, > —oo and X (7352, vy, vy,t) = 0,
[t x,vp,0y) =8 g0(7, Va(Tis 2, vy, vy, 1), Vy (T35, U5, 0y, 1))

if , > —oo and X (7352, v,,v,,t) = L,

0. otherwise.

(30)
Definition 2 Let E,, E,, B, € L™(IR;; W"*(]0, L])) and go, g1, € L}, .(IR; X
¥7) be T periodic functions. The function f € Li,.(IR;x]0, L[x IR?) which is
the mild periodic solution of problem (17), (18), (19) is given by (29).

Remark 2 There is in general no uniqueness of the weak solution because f
can take arbitrarily values on the characteristics such that 7, = —oo. But it
18 possible to prove that the mild solution is the ununique minimal solution
of the transport equation. We refer to [P, VM] for the concept of the minimal
solution and to [Bod, PhD] for a proof of this assertion.

Remark 3 We have that X (s+1;x,v,,v,,t+T) = X(s;2, 05,0y, 1), Va(s+
T2, 0p, 0y, t4+T) = Vo552, 05, vy, 1), Vy(s+T5 2,0, vy, t+T) = V(s 2,04, vy, 1)
and Ti(x, vy, vyt + T) = 7(2, 05,0y, t) + T because of the periodicity of
E,, E,, B,. Using this equality it is easy to check that the mild solution is
periodic.

Remark 4 If gy,g; € CY(IR; x ¥7) then the mild solution is a classical
solution of (17), (18), (19).



2.2 Estimation of the life-time of particles

In order to assure L*° estimates for the charge and current densities, we
assume that the following conditions are satisfied:

q 2L> muv?
Ellp= + || Bz - —||E||lpe— ) < —= 31
Bl + 1Bl - (w1 + LB~ ) < T2 (31)
(Es, By, B2) € (L™ (IR WH(]0, L[))?, (32)

supp(go) C {(t,z,v2,vy) ; t € Ry, = 0,0 < vy < vy, (/02402 <oy},

Supp(gL> - {(tal‘vaavy); te Rtal‘ = L70 > =1 Z Uy, \/Ug + U; S Ul}-
(33)

Here, |E|p~ is the L> norm of /E? 4+ EZ and vg,v; are constants which will
be chosen in the next section. With these assumptions, we get:

Lemma 1 Assume that the electro-magnetic field and the boundary data sat-
isfy (31),(32) and (33). Then, the life-time in |0, L[ of particles starting from
the support of gy and gy, is finite:

L

To(2, Vg, vy, t) — T3(2, 05,0, 1) <20 — V(t, 2,05, 0y) € supp(go) U supp(gr)-
Vo

(34)

Proof Suppose that there is a particle starting from the support of gy at
2L
t = 7, and which is still in |0, L[ at 7; + — < 7,

Vo
X (n - 2L) €)0, L. (35)
Yo
According to (33), we have:
0 <wvg < Vp(m) (36)
V() + V() <o (37)
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We multiply the velocity equations of (26) by V,(s) and V,(s) to get for
S € 13, 7o)

Ca)? = LB, X () - Vals) + V(o) - Vils) - Bols, X(5)) ),

N | —

; . jsm(s)p = L(B,(5. X(5)) - Vy(s) = Vy(s) - Vals) - B(s, X(5)) ).

and therefore:

& VG + V) < LR, X () + BRs, X (),

which yields:

VR4 Vi) = i o] < VB B o)
< \WEMEQHLW w O

0

Integrating (26) on [7;,t] C [7, 7i + 2L /v|, we obtain:

= X(r) + [ Vals)ds (39)
Vi(t) = V() + Tj %(Ex(s) + V,(s) - B.(s))ds, (40)
WO =V + [ LB V) B (4

From (38) and (37) we deduce that for all s € |7, 7; + 2L /vg]:
4q
Vi) < vt (s = 7) || Bl (42)

Now using (36), (40), (42) and (31) we find for all ¢ € [r;, 7 + 2L /vy

11



tq

V) = v [ L)+ B.(5)] V(o)) ds
'q q
> = [ L (Bl + 1Bl - (o1 4+ (s =) Ll ) ) ds
T M m
2L 2L
> = L (B + 1Bl (14 LB )
vg m m Vo
Yo _ Vo
> - — = 4
<= Vo 9 5 (43)

Now, from (97) we deduce:

Ti+2L/vo
X(r; +2L/vy) = 0+/ Va(s)ds

2L Vo
Vo 2

> =L, (44)

which contradicts (35). If the particle starts from the support of g, using

2L
the same ideas as previous we prove that 7, < 7; + — also holds.
Vo

Corollary 1 Assuming the same hypotheses as in Lemma 1 and let f be the
mild solution of Definition 2. Then we have:

supp(f) C {(t, vz, v,)|t € Ry, x € [0, L], % < ve], /02402 <o+ %}
(45)

™
ol < 5 (o + v0/2)* - q+ (llgollz= + llgrllz=). (46)

and

. . ™
max{|jefle, [lGylle=} < S (01 +00/2)" - ¢ (gl + llgello=), — (47)

where p(t,x) = q [z f(t, 2, v5,0y) dv and ju (¢, T) = q [ Ve [ (8, 2,02, vy) do.
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Proof The estimate (45) follow from the previous Lemma. Indeed, according
to (38), (33) and (31), we obtain:

VO V0 < V2R V) + [ LI X 0)lds

S Ul‘i_(t_Ti)'%’E‘Lm

2L
< v+ i | E |1
muvgy
< u+ % (48)

Using (40) and (33) we get for t € [y, 7o):

V) 2 Valr) = [ LB (s, X )]+ V(1B X (5)) s

i

2L
> = (o= 7)o (Bl + Bl - (004 LBl ))
0

2L 2L
> = L (B + Bl (04 LB )

vg m m Vg

Yo _ Vo
S S 19
Z Vo 9 9 (49)

If the particle starts from the support of g, (48) are the same and (49)
change in:

~Va(t) > —w@n—ﬁ;ywuaanwwwmean@mmS
> w- g =y (50)

Now, (46) and (47) can be easily checked. For (¢,z) € IR;x]0, L[ we have:

plt) = q [ flt.av.,)d
R,2

= o | fewee)dorg| | pta,) d
vz >0 v v, <0 v

™
S0+ 00/2)" - (goll > + llgellz=), (51)

IN

T .
and therefore [|pllz= < (01 +00/2)* - (ol + [l gz ). Obviously, (47)

follows in the same way.
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Remark 5 Assuming the same hypotheses as in Lemma 1. Then the mild
solution f of Definition 2 can be split in two mild solutions f = fo+ fr given

by:

T To
< fo, o> = / dt/ / dv / Vs - Go(t, Vg, vy)
0 V>0 Juy t

@(57 X<S7 Oa Uz, Uy, t)a ‘/Yac(sa 07 Vg Uy, t)) V;/(Sa 07 Vg Uy, t)dS
(52)

and:

T To
< fr,p> = —/ dt/ / dv/ Uy - g1 (t, Vg, vy)
0 <0 Juy t

o(s, X (s; L, vy, vy,1), Vi(s; L, vy, vy, 1), V(85 L, vy, vy, )ds.
(53)

In the same time fy, f; are weak periodic solutions for the problems:

0tf0+vz.8xf0+%(Ex+vy-Bz).(9vzf0 n %(Ey—%.Bz) 0y, fo =0,
(t,x,vz,0,) € lRtx]O,L[x]Rz,

fo(t,0,v,0) = go(t,vg,vy), t€ R v, >0,0, € R,

fo(t,L,vgz,vy) =0, teR v, <0,v, € R,

and:

8th+vx'afo+%<Em+vy'Bz)'avsz + %(Ey_vx'BZ)'avnyzoa
(t,r,v,,v,) € IRx]0,L[xIR2,

fo(t,0,v,,v,) =0, te R v, >0,0, € R,,

14



fo(t, Lyvg,vy) = gr(t,vs,vy), t€ R v, <0,v, € IR,.
Moreover we have :

[y v
Su’pp(f()) - {(t’x7vwavy)|t € th € [OaL]a 50 S Vg, \/U;% +U§ S U1 + 50}7

(54)
and :
Supp(fL) - {(t7x7vxavy)|t € Rtal‘ € [07[/]’ _% Z Vg, \//U;% +U§ S (%] + %}
(55)

3 Weak periodic solutions for the modified
1D Vlasov-Maxwell system.

Our goal is to establish existence result for the weak periodic solution of the
1D Vlasov-Maxwell problem:

atf+vxaxf+ 1 (Ex+Usz) 8vrf + %(Ey_vaz) 67)1,.]8:0)

m

(t,r,v5,0,) € IRx]0,L[xIR2, (56)
1. 1
OFE, = —gjz = —f/vxf(t,m,vx,vy) dv, (t,z) € IR;x]0, L[,
(57)
1 1
o E, + 20,B, = —gjy = —g/vvyf(t,x,vx,vy) dv, (t,z) € IR;x]0, L[,
(58)
(9th + @;Ey = 0, (t, iL’) € BtX}O, L[,
(59)

with the boundary conditions:

f(t,0,v,,vy) = golt, va, vy), te R v, >0,v, € R, (60)
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f(t, L,vg,vy) = gr(t, va, vy), te R v, <0,v, € R, (61)

E,(t,0) + ¢B.(t,0) = ho(t),  te R, (62)

E,(t,L) — cB.(t,L) = hp(t), te€ R, (63)

Here, the boundary data g¢o, gz, ho, h, are T— periodic functions and c is
the light velocity in the vacuum. We look for a weak periodic solution
(f(t,z,vg,vy), Eyx(t,x), Ey(t,z), B,(t,x)). The Schauder fixed point theo-
rem is used. We define an application which maps a periodic electro-magnetic
field (E,, By, B.) to an other one (E,, E}, B]) where (E,, E,, B]) is defined
as follows. Let f be the mild periodic solution of Definition 2 corresponding
to the electro-magnetic field (E,, E,, B,). The new electro-magnetic field
(E,, E,, Bl) is determined as the solution of the Maxwell problem with the
current density ji,(t, ) = [pe Voyf(t, T, vy, v,)dv. Unfortunately this pro-
cedure cannot be used directlgf. Indeed the Definiton 2 requires that the
electro-magnetic field is Lipschitz with respect to x and we cannot expect
such a regularity in the general case. Therefore we have to regularize the
field. We also have to use an absorption term in the Vlasov equation in
order to have uniqueness of the weak solution. Then the strategy of proof
is as follows. We first show the existence of weak periodic solution for the
regularized problem by using the Schauder fixed point theorem. Next we
pass to the limit when the regularization parameter vanishes.

3.1 Fixed point for the regularized problem
Let X be the set of fields (£, £, B,) which verify:

X = {(E, B, B.) € (LX(R,x]0, L))" ; || Elli= < K.+ | Billp < K.

(E,,E,,B.)(t) = (E,, E,, B.)(t + T) Vt € IR,}
(64)
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where K is a positive constant. Because of time periodicity, X is a compact
set of (LA(IR;x]0, L[))? with the weak topology, where:
T L
L2(R, %0, L[) = {u ;/ / lu(t, @) |2 dedt < oo, ult, ) = u(t +T,-) Vt € Ry}
0o Jo
(65)

We now introduce a regularization mapping:

R, : L®(IR,x]0, L) — L>(IR,;;C*([0, L]),

00 L
(RaBos RoByy RaB)(t2) = [ [ Galt = s, = y) - (Be, By B.) (s y)dsdy,
(66)

where (, > 0 is a mollifier:

Gltr) = ¢ (2.2) L ez

a

supp(¢) C [-1,1] x [-1,1] /_O:O /_O:O C(u,v)dudv = 1

It is easy to see that (R,E,, R,E,, R,B,) are also time periodic :

o0 L
(R RaBy RaB)(t2) = [ ["Guls,0 =) (Bu By Bt = 5.y)dsdy,
(67

and therefore R, (X) C X. Next, we consider the application:
F:(E, E, B.) € X — (E,,E, B)), (68)

where:

1 t ) T L
Eal:(tax) = - 7/ <]x,a(57x) —|—Ol/0 pO,Oc(Say)dy - Oé/ pL,a(Say>dy> ds

€.Jo
1

+ g/0 p(0,y) dy,  (t,x) € R;x]0, L
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Elt) = S(holt —/c) + hult — (L —)/c)

1 rt )
%/t Jya(s,x —c(t—s)) ds

—z/c

1t .
- 5 /t_(L_gC)/c]y,a(S,x +c(t — s)) ds, (t,z) € R,x]0, L[

z

Blt,w) = o (holt /) — hult — (L~ 2)/c))

1 t ]
= 9 /t_x/cjyva(s,x —c(t—s)) ds

1

t
m/t_(L_m)/cjy,a(s,Hc(t —$)ds,  (tx) € Rix)0,L]

(69)

and jy o = [, Vafa dv, jyo = [, vyfa dv and f, is the mild periodic solution
for the following modified Vlasov problem:

Qo+ Oy fo+ Vs Oufo + %(RaEm + v, - RaB.) - 0y, fa

+ E(RaEy — Uy * RaBz) : avyfa = 07
m
(t, 7, v,,v,) € Ryx]0, L[x IR
(70)
falt,0,v,,vy) = go(t, va, vy), te R, v, >0,v, € R, (71)
fo(t,Lyvg,vy) = gr(t,vg,vy), t€ R v, <0,v, € IR,. (72)

The term « - f, changes the formulas (29) and (30) in the following way:
T To,a

<fop> = [t [ [ oav [T gt v et
0 v >0 Juy t
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(8, Xa (550,05, 0y, 1), Via(8; 0,05, vy, 1), Vi o (550,05, vy, t)ds

T To,x
— / dt/ / dv / vx-gL(t,vx,vy)e’a(t’S)
0 <0 Juy t

' 90<87 XOc(S; L7 Vg, Uya t)v Vm,a(s; L7 Vg, Uy7 t)a ‘/;L/,CX(S; L7 Vg, Uya t)dS,
(73)

gO(Tia) Vx,a(Tzq; Ty Vg, Uy, t)v V;/,Q(Tzq; T, Vg, Uy, t))G

—a(t—75)

if 7 > —o0 and X, (77 @, vy, vy, t) = 0,

(67

fa(t7 .T, Ux; /Uy) = gL(Ti 9 %,a(Tia; l‘, UI? Uy7 t)a ‘/y,a(T@'a; I? Ux7 Uya t))e_a(t_Tia)

if 7 > —oo0 and X, (77 2, 05,0y, 1) = L,

0. otherwise.

(74)
Moreover, for the modified Vlasov problem, the law for the conservation of
the total mass, obtained by multiplying and integrating over all (v, v,) € R,
produces:

AP + 8tpoc + a:cj;r,a =0, (ta x) € th]ov L[?
or:

Bypa + Do + / padz) = 0, (t,z) € R,x]0, L]. (75)

Now, if we want to preserve the divergence equation, it is clear that we have
to add the extra term « [ p,dz in the definition of E} of (69). In order to
assure the time periodicity for (E}, E,, B!), a supplementarily condition will
be assumed.

Proposition 1 We assume that the following condition holds for t € IR;:

T T
/ dt / V20(t, Vg, vy )dv +/ dt / V2918, vy, vy)dv =0 (76)
0 v >0 Juy 0 V<0 Juy

Then, (E}, E;, Bl) given by (69) are T periodic and verify the Mazwell equa-
tions (58), (59) and the boundary conditions (62) and (63).
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Proof Using Remark 3, we deduce that the mild solution of the modified
Vlasov problem is T" periodic too. Now it is easy to check that E; and B!
given by (69) are T" periodic and verify the Maxwell equations (58), (59) and
the boundary conditions (62), (63). In order to prove the periodicity of E,,
we use the continuity equation (75) for problem (70) whose solution is split
in fo and fr, as in Remark 5. By integration on [0, 7] we deduce:

O </0T (a /Ox po(t, y)dy +jx,0(t>$)) dt) =0, (77)

and therefore:
T « T T

T
= / dt/ /vxgo(t,vx,vy)dv,

0 v >0 Juy
(78)

where we have used (54). In the same way we obtain:

ax ([}T <_a/xL pL(t7y)dy +jx,L(t7x)> dt) = 07 (79)

and:
T L T T
_a/() dt/ pL(ta y>dy + /0 j:v,L(t? l’)dt = /0 jx,L(t7 L)dt

T
= / dt/ / V91T, vy, 0, | 30)
0 V<0 Juy
Now, using (78), (80) and (76) we deduce:

/OT (jx,a(t, y) + &/Om po(t, y)dy — a/j prt, y)dy> dt =0, (81)

and so E}! given by (69) is also T periodic.

Remark 6 The electric field verifies the divergence equation.:
1
0, Bl = gp(t,x), (t,x) € Ry x]0, L] (82)
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and the modified Maxwell equation:

1. a [T a (L
8tE:B = ——Jz,a — */ pO,a(tv y)dy + 7/ pL,a(ta y)dya
€ g Jo g Jx

(t,x) € R, x]0,L[ (83)
Proof From (57) we have:

1

t 1
amE; = _E/O (Onjzal(s,x) + apo(s,x) +apr(s,z))ds + gp(O,x)

1

t 1
= _5/0 (Orza(s,®) + apa(s,x))ds + gp(O,x)

1 rt 1
= 7/ atpa(swx)ds—i_*p(oax)
g Jo 3
1
= pt, ).
~r(t,z)

The second formula can be easily checked using (57). We prove that the
application F' maps X into itself and is continuous in L?*(IR;x]0, L[) in respect
with the weak topology.

Lemma 2 We assume (33), (76), that the constant K which defines the set
X wverifies:

K q 2L mu?
K+ —- — K - — )< — 4
+c <U1+m U0>_4qL (84)

Then Zf Yo, 9L, h07 hL satisfy

1 =« %

=5 0 llgolle + llgelluee) - (o1 +v0/2)*( T(v1+v9/2) + aLT + L) < 7
(85)

1 L « 1 K

52 o5 dlgollz= +llgrllz=) - (v +v0/2)% + 5 (lhollz + s ll) < 7
(86)

the set X is invariant by the application F ( F(X) C X).
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Proof From Corollary 2 applied to the regularized field (66) we obtain the
following estimates:

1 =«
IE |~ < 5'5"1( Igollzoe + llgLllze) - (v1 + vo/2)?
K
T(vy +v9/2)+al T+ L) < —
( T(v1+vo/2) )_\/5
1 L =
1B e < 5o el ol + llgelae) - (1 + o/

1 K
+ = hollre + ||h o) < —
Mol + ) < 2

Therefore, we have:

1B = = V1B + B, < K

T
B e < — L.
1B~ < o 5

1
+ 5( o[z + ||AL|L~) < K

1 L
=+ 54U lgollze + llgellzee) - (o1 +vo/2)°

Moreover, using Proposition 1 we deduce that F(E,, E,, B,) is also T' peri-
odic, so F(X) C X.

For the proof of the continuity we need the following Lemma concerning the
uniqueness of weak solution for the modified Vlasov equation :

Lemma 3 Let (E,, E,, B,) € (L>(R;; W">=(]0, L[)))?* and go, g1 € L (IR x
¥.7) be T periodic functions which verify (31), (33). Then a weak periodic so-
lution in L= (IR;x]0, L[x IR?) of the modified Viasov equation (70) is unique
and therefore is the mild solution given by (73).

Proof Assume that f, is a solution in L>(IR;x]0, L[x IR?) with g = 0 and
gr, = 0. We have :

atfa + (O amfa + %(RaEx + Uy : RaBz) : avzfa
+ %(RaEy vy RaB.) - Oy, fo = —aufa € L%(IR,x]0, L[x R2),
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and therefore( cf. [3], [11]) we obtain:

a2 = fu(Ofn + Um.ﬁxfa—b—%(RaEm—i—vy-RaBz) 0y fo

+ %(RaEy - Ug - RaBZ) ’ avyfa)
1
= SO+ 00 0uf2 + L (RaBs + v, RaB.) - O, f
m
+ %(RaEy - Ug - RaBz> ’ 8’ny2)

Integrating this relation on ]0, T'[x]0, L[x IR? gives:

T L 1 (T
O‘/ / / fidvdwdt: - f/ / /vxffy(t,L,vw,vy)dvdt
0o Jo JR2 2Jo Ju.>0Ju,
1 /T 9
+ */ / / vy f5 (8,0, 05, vy )dvdt < 0.
2Jo Ju.<0Ju,

Now we can prove the continuity of the application F'. We have the following
proposition:

Proposition 2 Let gy, g1, ho, hy € L>®(IR; xX7) be T periodic functions and
v, v1, K constants which verify (33), (84) and (76). Then the application F
is continuous with respect to the weak topology of L% (IRyx]0, L[)3.

Proof. Let (E}, £, BY),>1 C & such as:
(EY,Ey),Bl) — (B, E,, B.), weak in(L7)’ (87)
For the regularized field we have the pointwise convergence :
(Ro B, RoEy, Ry BY)(t,2) — (Ro By, Ro By, RoB.)(t, 1), Y(t,x) €[0,T] x [0, L],
and therefore, by the dominate convergence theorem we obtain:
(RoEZ, R\E), RyB.) — (RoEy, RoEy, Ry B.), strong in(L7)’ (88)

Denote by f™, f the mild solution given by (73) associated to the field (R, E”,
R.Ey, R,B}) and (RyE;, Ry Ey, R, B,). We recall that g, g;, are bounded
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in L>, and therefore, (f"),>1 is uniformly bounded in L (IR;x]0, L[x IR,2).
After extracting a subsequence if necessary, we have:

" — f, weak % in L™. (89)

Moreover, because f™ have uniformly bounded support in v, we deduce that:
P = q/ ffdv—p:= q/ f dv weak * in L, (90)
R, R»

and:

e Vg [ AV = Jpy = / Uy f dv weak % in L. 91
By [ wf" oy =a [ veod (o1)

Now we can prove that f is the mild solution of the modified Vlasov prob-
lem corresponding to the field (R, E,, RoEy, Ry B.). Because f" is the mild
solution, it is also a weak solution:

T rL
L[] (a6 +00+0-0.0 + L(RE;+v, RaBY)- 0,0
0 Jo JR2 m

+ L(R,E" — v, - R,BI) - 0,,0) f"dvdxdt
m

T
= // /vx-gLH(t,L,vx,vy)dvdt
0 Jvy<0 Juy

T
— // /vz-gOH(t,O,vx,vy)dvdt
0 Juz>0 Juy
(92)

for all T periodic function # € V. We have:

n—oo

. T L n
lim /O /0 [ 1 (20040 4 v, 0.0) dvdad
T L -
= / / / f- (—a-0+4 00+ v, -0.0) dvdzxdt (93)
o Jo Jm2

For the other terms we remark that [jg. 0,,6- f"dv and [ 0,,0- f"dv converge
in L2 weak. Therefore using (88) we get:

T rL
lim / / / L (RoE" + v, - RaB™),,0 - f dudadt
o Jo JrR2 m

n—oo
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— lim < gRQE;;,/ 0,0 f" dv > 2
m R2 T

n—oo

n—oo

4 lim < iRaBg,/ vy 000 7 dv >
m R2 T
= < gRaEx,/ 0,0 f dv >
m R2 T

0 _
+ < %RQBZ, - vy Oy, 0 f dv>p2
T pL q ~
_ / / / L (R.E, + v, RuB.)0,,0 - f dvdzdt (94)
o Jo JRZMm

Therefore, f is a weak solution for the modified Vlasov problem correspond-
ing to the field (RyE,, Ry E,, R.B.):
T (L q
/m/‘/ (—a-0+00+v,-0,0 + —(RoEy+ v, R.B,)0,,0
0Jo Jm2 m
L(RuE, — v, - RyB.) - 0,,0) fdvdadt
m
T
_ / / / Ve - gO(t, L, vy, v,)dvdt
0 Jvg<0 Juy

T
— // /vx-QOH(t,O,vx,vy)dvdt
0 Juz>0 Juy
(95)

for all T periodic function # € V. But using Lemma 3 we deduce that f is the
mild solution corresponding to the field (R, E,, RoEy, Ry B.) ( uniqueness of
the weak solution for the modified Vlasov problem ), so f = f and we have:

Jay = q/ Vg [ dU — gy 1= q/ vy f dv weak % in L. (96)
’ R Ry

Now, it is easy to check that we can pass to the limit in (69) to obtain:

lim F(E",E", B") = F(E,, E,, B,), weak in L2.
T Y z Y T

n—oo

Proposition 3 Let g, g, ho, hr, € L>®(IR, xX7) be T periodic functions and
v, v1, X constants which verify (33), (84), (85), (86) and (76). Then the
modified 1D Viasov-Maxwell system has at least one weak periodic solution.

Proof. It is an immediate consequence of Schauder fixed point theorem.
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3.2 Weak periodic solutions for the classical 1D Vlasov-
Maxwell system.

We prove the existence of periodic weak solution for the Vlasov-Maxwell
system. Obviously, this result is a direct consequence of Proposition 3.

Theorem 1 Let go, gr, ho,hy, € L®(IR; X ¥7) be T periodic functions and
Vg, U1, K constants which verify:

supp(go) C {(t, 7, vz,vy) 5 t € Rz = 0,0 < vg < vy, (/02 + 02 < vr},
Supp<gL) C {<taxvvxavy); t € Rtax = L,O > —o Z Vg, \/Ug% + U; S Ul}a
2L> < mu?

K q
K4, 4 g.2=
+ c (vl+m vo/) ~ 4qL’

1 K

e g - q( lgollzee + lgrllzee) - (v1 +v0/2)*( T(vy 4+ vo/2) + L) < V2

1 L 7 1 K
—_— e — s — S oo | 2 3 — h oo h o) < ——
5 o 2 q(llgollze + llgrllzee) - (v1 +vo/2) +2(H ol + [[hrllr~) < 73
and

T T
/ dt/ / vmgo(t,vm,vy)dv—l—/ dt/ / V9L (t, vy, vy)dv = 0.
0 V>0 Juy 0 <0 Juy

Then the classical 1D Viasov-Maxwell system has at least one weak periodic

solution.

Proof. Let (a;,),>1 be a sequence of positive numbers, whose limit is 0.
We observe that for «,, small we have:

Slks

1 «
=5 a0 lgollzee +llgeliz=) - (o1 + vo/2)( T(vy +0/2) + o, LT + L) <

Therefore, by Proposition 3, there is (f", £, E}, BY') weak periodic solutions
for the a,, regularized Vlasov-Maxwell system:

- "4 O 0 Onf" L (Ra, B+ vy Ra,BY) -0, f"
+ L(Ry B" — v, Ra BY) - 0, f" =0,
m
(t,x, vz, vy) € IRy %0, L[XR?},
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n ]' n A r n Qp L n
WE; = ——j; — */ o (t,y)dy + */ 1 (t,y)dy,
€ e Jo € Jzx

(t,z) € IR;x]0, L],

1 1
Ok + ?0,B" = ——Jy = —f/vyf”(t,x,vx,vy) dv, (t,z) € IR;x]0, L[,
g g Ju

OB} +0.E, =0, (t,x) € IR:x]0,L],
with the boundary conditions:

f1(t,0,v,,0y) = go(t,vs,vy), t€Riv, >0,v, € R,,
[t Lvg, vy) = gr(t,v5,vy), t€ R v, <0,vy € IRy,
ENt,0) + ¢B2(1,0) = ho(t),  te R,

Ey(t, L) — cBI(t, L) = hy(t), t e Ry,
After extracting subsequence, we have the convergence:
(Ey,Ep, BY) — (E,, Ey, B,), weak in (L7)?,
and:
f*— f, weak x in L.

Moreover, by regularization with «,, — 0, the first convergences are pre-
served:

| < Ra, Eg.m>p2 —<Egn>p| = |<E,Ryn>—<E;n>|
|<E;L7Rann_77>+<E£_Exan>|
< | <Ef—Ewn>|

+ EZN - 1 Rayn = nll = 0,

N}
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and so:

(Ra, E", Ro,,E", Ry, BY) = (E,, E,, B.), weak in (L),

An "~y

Because f" have uniformly bounded support in v, we deduce that:
p"::q/ f”dvép::q/ f dv weak x in L™
R’UQ R’UQ
and:

j;'l,y = Q/RHQ /Ux,yfn dU — j$7y = q/RUQ ngf dU Weak * 111 LOO

The velocity average lemma of DiPerna and Lions [10] allows us to write:

pn;:q/ f”dv—>p::q/ deinL%, (97)
R’v2 B,UQ
and:
Jzy Q/]RUQU,yf V= Joy =4 IRHQU,yf vin L7 (98)
Moreover, we have:
/ V(g vy) ™ dv — / Y(vg,vy) f dvin L7, (99)
R 2 R,2

for all continuous function ¢» € C(IR,2). We prove now that f is a weak
solution for the Vlasov problem corresponding to the field (E,, E,, B,). By
a simple density argument, it is sufficient to consider test functions with a
product structure (see [10]) :

9(t7 l’, Uw? Uy) = @(tJ J}') : w(vim Uy)-
We have :

T (L
lim / / / L(RoE" + v, - RaB™),,0 - f* dudadt
o Jo Jm m

n—oo

lim < LR.E", o(t,z) / Dy tb - [ dv >,
m R2 T

. q n n
+  lim < ERaBz,go(t,x) /IR% Uy - Op, - [ dv > g2
= < LRaBnplte) [ Ouv-fdv >
m R T
+ < gRaBz,go(t,x)/ Uy - Oy, Y - f dv >p2
m R2 T
T L q
- / / / 9 (RuE, + v, RaB.)d,,0 - f dvdzdt (100)
o Jo Jmem
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In addition we have :

T (L
lim a, / / 70 dudzdt = 0.
for all T" periodic function 6 € V. Furthermore, passing to the limit for
n — oo in (69) and using (97) and (98), we deduce the following equalities
in LZ:

E.(t,x) = — i/otjx(s,x) ds
+ i/oxp((),y) dy,  (t,x) € R,x]0, L]
By(ta) = lholt —2/e) + hult — (L~ 2)/c)

1 rt ,
- %/t Jy(s,x —c(t —s)) ds

—z/c
1 st ‘
- 5 /t(Lx)/cjy(s,x +c(t — s)) ds, (t,z) € R;x]0, L]
B.(t,z) = 210(h0<t —x/c¢)—hp(t— (L —2)/c))

1 t ]
— %/t Jy(s,x —c(t —s)) ds

—z/c
1 t .
+ % /t_(L_JC)/C‘]y(S’x + C(t - S)) d57 (t,l‘) c RtX]O, L[

and so the field (£,, E,, B,) verifies the Maxwell equations.

4 Weak periodic solutions for the relativistic
1D Vlasov-Maxwell system.

Our arguments apply also to the relativistic 1D Vlasov-Maxwell system:

Of+Vaop) O0uf +a(Ex+Vy(p) - Bz) - 0y, f + q(Ey—Vi(p)-B.)- 0y, [ =0,
(t,x,pspy) € IRyx]0, L[xIR>, (101)
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1. 1
atEa? - _g.]:c = / %(p)f(t7x7p:v7py) dp7 (t,l’) € Rtx]07 L[7
p

9
(102)
I 1
at-Ey + 6281’-82 = _gjy = _g / %(p)f(t7x7p:vvpy) dp7 (t,l’) € Rtx]07 L[7
P
(103)
0B, + 0, E, =0, (t,z) € IR;x]0,L],
(104)
with the boundary conditions:
f(t,(),px,py) = g(](tapwapy)a te Rt Dz > O7py € Rpa (105>

f(t, L,pz,py) = gr(t,02,0y), t€ R p, <0,p, € IRy, (106)
E,(t,0) 4 cB.(t,0) = ho(t), t € Ry, (107)

B,(t,L) — ¢B.(t,L) = hy(t),  te€ R, (108)

where go, g1, ho, by, are T periodic functions and the velocity V(p) is given

V(o) = (Va(p), Vy(0)) = ¢ m@iﬂpn (0py) € Rye. (109)

We only have to modify the preceeding proofs slightly. First, we observe that
the quadratic nonlinear term (E(t,z) + V(p) A B(t,z)) - V, f may be recast
as an exact derivation:

(Et,x) +V(p) AB(t,2)) - Vypf =V, - {(E(t,2) + V(p) A B(t,2)) - f}.
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Definition 3 Let E,, E,, B, € L*(IR;x]0,L[) and go, g1 € L}, (IR, x ¥7)
be T periodic functions in time, where:

% = {(t,,ps,py) [t € R,x=0,p, > 0,p, € R}
U {(t,z,ps,py) |t € R,x = L,p, <0,p, € R}. (110)

We say that f € Ly, (IRyx]0, L[xIR?) is a T periodic weak solution of problem
(101), (105), (106) iff:

/OT/OLB2(8t9+%( 0.0+ (B +Vy(p)- B:) - 0

+ Va(p) - B.) - 0,,0) f(t, x, pe, py)dpdadt

- //M

Vit

- // / P)90(t, Pz, 0y)0(t, 0, pr, py ) dpdt
2 >0 Py

(111)

D)9 (t, Pas Dy)0(t, L, pe, py)dpdt

for all T periodic function 0 € V, where:

V={n € W"*(R,x]0, L[xR2) ; n(t,0,p, < 0,p,) = n(t, L,p, > 0,p,) =0,
supp(n) bounded setof IRy x [0, L] x IR>}

Definition 4 Let E,, E,, B, € L™(IR;; W"*(]0, L])) and go, g1, € L}, .(IR; X
¥7) be T periodic functions. The function f € Ly, (IRyx]0, L[xIR2) which is
the mild periodic solution of problem (101), (105), (106) is given by (112):

T To
<f,g> = /dt/ /dp/ Ve(®) - 90(t, Dz, Dy)
0 p2>0 Jpy t

(5, X (50,05, Py, 1), Pu(5;0, pey Dy, t), Py(8; 0, puy Dy, t)ds

- /dt/ /dp/ ) - 9r(t, Pz, Dy)
0 p2<0 Jpy

(,0(5, X(Sa Lavapyv t)u Px(sa L7pvay7 t)u Py(S; Lup:mpy? t)dS,
(112)
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where (X (s), P.(s), P,(s)) is the solution of the system:

dX

E = %(P(S;-%px»pyat))a S [TiaTo]
X(t;x,pe,py, t) = w,

. = 0 (Bl XD +G(PE) B, X6), €l
Pm(t;x,px,py,t) =  Duz,

dpP,

— = q-(Ey(s,X(s)) = Vo(P(s)) - B.(s, X(5))), s € [T, To]
P,(t;x,ps,py,t) = by

(113)
In the relativistic case, the analogue of Lemma 1 is given by:

Lemma 4 Assume that the electro-magnetic field and the boundary data sat-

isfy:
. m - (po/m)? . p1+ po/2 2
Bl + e 1B < "Ly (2 B0l 114
(B, Ey, Bz) € (L (Ry; WH>(]0, LI)))?, (115)

supp(go) C {(t, 2,2, py) 5 t € Ry, 7 = 0,0 < po < oy (/P2 + P2 < pr},
Supp(gL) C {(thap:mpy); te Rtax = L70 > —Po > 2 \/pg% _'_p?/ < pl}
(116)

Then, the life-time in |0, L[ of particles starting from the support of go and
gr, s finite:

2
L-m +po/2
To(@, Do Py 1) = (@, Do Py 1) < 2.J1+<plpo/>7
Po mc

Vo (t, 2, ps,py) € supp(go) U supp(gr).
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Corollary 2 Assuming the same hypotheses as in Lemma 4 and let f be the
mild solution of Definition 4. Then we have:

Db / Y
(117)

™
lpllz= < 5 (1 +10/2)* - q - (Igoll e + llgrllz). (118)

and

. . ™
max{||jol o, ldylle} < ¢ 501+ p0/2)° - - (lgolle + llgrllze), (119)

where p(t,x) = q [z f(t, 2, ps,py) dp and joy(t, ) = q [ Vo (p) f (£, 7, D2, py) dp.

Like in the classical case, we first show the existence of weak periodic solution
for the regularized problem by using the Schauder fixed point theorem. Next
we pass to the limit when the regularization parameter vanishes. We have
the following Theorem:

Theorem 2 Let g, gr, ho,hy € LRy x ¥7) be T periodic functions and
Do, P1, K constants which verify:

supp(go) C {(t, T, Pz, py) 5 t € Ry, v = 0,0 < po < poy (/P2 + P2 < pr},
supp(gr) C {(t,2,pz,py); t € Ryyx = L,0> —po > pa, /P2 + P2 < p1},

‘ ) 97 —1/2
2. k< (po/m)” 14 P+ po/2 7
4qL mc
1 =« K
- o o ) - 22 T+L) < —
-5 q( llgoll= + llgzllze=) - (p1 + po/2)°( T + L) 3
L =« 1 K
—_— r — oo o0 . 22 - h o0 h o0 <7
9 9 q(llgollze + llgzllze=) - (p1 + po/2) +2(|| ollee + [|hrlL~) < ok
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T T
/ dt/ /Vx(p)go(t,px,py)der/ dt/ /Vx(p)gL(t,pm,py)dpzo-
0 pe>0 Jpy 0 pz<0 Jp

Y

Then the relativistic 1D Viasov-Maxwell system has at least one weak periodic
solution.
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