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Abstract

The subject matter of this paper concerns anisotropic diffusion equations: we consider heat equations
whose diffusion matrices have disparate eigenvalues. We determine first and second order approximations,
we study the well-posedness of them and establish convergence results. The analysis relies on averaging
techniques, which have been used previously for studying transport equations whose advection fields have
disparate components.
 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Many real life applications lead to highly anisotropic diffusion equations: flows in porous
media, quasi-neutral plasmas, microscopic transport in magnetized plasmas [7], plasma thrusters,
image processing [18,23], thermal properties of crystals [13,19]. In this paper we investigate the
behavior of the solutions for heat equations whose diffusion becomes very high along some
direction. We consider the problem

∂t u
ε − divy

(
D(y)∇yu

ε
)
− 1
ε

divy

(
b(y)⊗ b(y)∇yu

ε
)
= 0, (t, y) ∈R+ ×Rm, (1)

E-mail address: bostan@cmi.univ-mrs.fr.

0022-0396/$ – see front matter  2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jde.2013.10.008



Author's personal copy

1044 M. Bostan / J. Differential Equations 256 (2014) 1043–1092

uε(0, y) = uεin(y), y ∈Rm, (2)

where D(y) ∈Mm(R) and b(y) ∈ Rm are smooth given matrix field and vector field on Rm,
respectively. For any two vectors ξ,η, the notation ξ ⊗ η stands for the matrix whose entry (i, j)

is ξiηj , and for any two matrices A,B the notation A : B stands for trace(tAB) = AijBij (using
Einstein summation convention). We assume that at any y ∈ Rm the matrix D(y) is symmetric
and D(y) + b(y)⊗ b(y) is positive definite

tD(y) = D(y),

∃d > 0 such that D(y)ξ · ξ +
(
b(y) · ξ

)2 ! d|ξ |2, ξ ∈Rm, y ∈Rm. (3)

The vector field b(y), to which the anisotropy is aligned, is supposed divergence free i.e.,
divy b = 0. We intend to analyze the behavior of (1), (2) for small ε, let us say 0 < ε " 1, in
which cases D(y) + 1

εb(y)⊗ b(y) remains positive definite

D(y)ξ · ξ + 1
ε

(
b(y) · ξ

)2 ! D(y)ξ · ξ +
(
b(y) · ξ

)2 ! d|ξ |2, ξ ∈Rm, y ∈Rm. (4)

If (uεin)ε remain in a bounded set of L2(Rm), then (uε)ε remain in a bounded set of
L∞(R+;L2(Rm)) since, for any t ∈R+ we have, thanks to (4)

1
2

∫

Rm

(
uε(t, y)

)2 dy + d

t∫

0

∫

Rm

∣∣∇yu
ε(s, y)

∣∣2 dy ds

" 1
2

∫

Rm

(
uε(t, y)

)2 dy +
t∫

0

∫

Rm

{
D(y) + 1

ε
b(y)⊗ b(y)

}
:∇yu

ε(s, y)⊗∇yu
ε(s, y)dy ds

= 1
2

∫

Rm

(
uεin(y)

)2 dy.

In particular, when ε↘ 0, (uε)ε converges, at least weakly % in L∞(R+;L2(Rm)) towards some
limit u ∈ L∞(R+;L2(Rm)). Notice that the explicit methods are not well adapted for the nu-
merical approximation of (1), (2) when ε↘ 0, since the CFL condition leads to severe time step
constraints like

d

ε

&t

|&y|2 " 1
2

where &t is the time step and &y is the grid spacing. In such cases implicit methods are de-
sirable [2,21]. For the numerical resolution of diffusion equations on distorted grids we refer
to [17,16,20]. Finite volume methods have been discussed in [14,1]. Recent results concerning
anisotropic elliptic problems and non-linear heat equations were obtained in [11,12,15].

In plasma physics, the collision operator gives rise to anisotropic diffusion in velocity space
due to the interaction between particles and waves [22]. The applications we have in mind con-
cern the magnetic confinement. This analysis is required when studying the energy (temperature)
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anisotropic diffusion inside a tokamak [9]. In that case the diffusion along the magnetic lines
dominates the diffusion along the other directions and the temperature satisfies a heat equation
like (1) where m ∈ {2,3}, b(y) stands for the magnetic field and D(y) is the diffusion matrix
along the perpendicular directions to b(y)

D(y) = d

(
Im −

b(y)⊗ b(y)

|b(y)|2
)

.

Rather than solving (1), (2) for small ε > 0, we concentrate on the limit model satisfied by
the limit solution u = limε↘0 uε . We will see that the limit model is still a parabolic problem,
decreasing the L2(Rm) norm and satisfying the maximum principle. At least formally, the limit
solution u is the dominant term of the expansion

uε = u + εu1 + ε2u2 + · · · . (5)

Plugging the Ansatz (5) into (1) leads to

divy(b⊗ b∇yu) = 0, (t, y) ∈R+ ×Rm, (6)

∂t u− divy(D∇yu)− divy

(
b⊗ b∇yu

1) = 0, (t, y) ∈R+ ×Rm, (7)

...

Under suitable hypotheses on b, the constraint (6) says that at any time t ∈R+, b ·∇yu = 0 (see
Proposition 3.3), or equivalently u(t, ·) remains constant along the flow of b, see (16)

u
(
t, Y (s;y)

)
= u(t, y), s ∈R, y ∈Rm.

The closure for u comes by eliminating u1 in (7), combined with the fact that (6) holds true at
any time t ∈ R+. The symmetry of the operator divy(b⊗ b∇y) implies that ∂t u− divy(D∇yu)

belongs to (ker(b ·∇y))
⊥ and therefore we obtain the weak formulation

d
dt

∫

Rm

u(t, y)ϕ(y)dy +
∫

Rm

D∇yu(t, y) ·∇yϕ(y)dy = 0, ϕ ∈H 1(Rm
)
∩ ker(b ·∇y). (8)

The above formulation is not satisfactory, since the choice of test functions is constrained
by (6); (8) is useless for numerical simulation. A more convenient situation is to reduce (8)
to another problem, by removing the constraint (6). The method we employ here is related to the
averaging technique which has been used to handle transport equations with disparate advection
fields [3–6]

∂t u
ε + a(t, y) ·∇yu

ε + 1
ε
b(y) ·∇yu

ε = 0, (t, y) ∈R+ ×Rm, (9)

uε(0, y) = uεin(y), y ∈Rm. (10)

Using the same Ansatz (5) we obtain as before that b ·∇yu(t, ·) = 0, t ∈ R+ and the closure for
u writes
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Projker(b·∇y){∂t u + a ·∇yu} = 0 (11)

or equivalently

d
dt

∫

Rm

u(t, y)ϕ(y)dy −
∫

Rm

u(t, y)a ·∇yϕ dy = 0 (12)

for any smooth function satisfying the constraint b · ∇yϕ = 0. The method relies on averaging
since the projection on ker(b · ∇y) coincides with the average along the flow of b, cf. Proposi-
tion 3.1. As u satisfies the constraint b · ∇yu = 0, it is easily seen that Projker(b·∇y) ∂t u = ∂t u.
A simple case to start with is when the transport operators a · ∇y and b · ∇y commute i.e.,
[b · ∇y, a · ∇y] = 0. In this case a · ∇y leaves invariant the subspace of the constraints, imply-
ing that Projker(b·∇y){a · ∇yu} = a · ∇yu. Therefore (11) reduces to a transport equation and it
is easily seen that this equation propagates the constraint, which allows us to remove it. Things
happen similarly when the transport operators a · ∇y, b · ∇y do not commute, but the transport
operator of the limit model may change. In [4] we prove that there is a transport operator A ·∇y ,
commuting with b ·∇y , such that for any u ∈ ker(b ·∇y) we have

Projker(b·∇y){a ·∇yu} = A ·∇yu.

Once we have determined the field A, (11) can be replaced by ∂t u + A ·∇yu = 0, which propa-
gates the constraint b ·∇yu(t) = 0 as well.

Coming back to the formulation (8), we are looking for a matrix field D̃(y) such that
divy(D̃∇y) commutes with b ·∇y and

Projker(b·∇y)

{
divy

(
D(y)∇yu

)}
= divy

(
D̃(y)∇yu

)
, u ∈ ker(b ·∇y).

We will see that, under suitable hypotheses, it is possible to find such a matrix field D̃, and
therefore (8) reduces to the parabolic model

∂t u− divy

(
D̃(y)∇yu

)
= 0, (t, y) ∈R+ ×Rm. (13)

The matrix field D̃ will appear as the orthogonal projection of the matrix field D (with re-
spect to some scalar product to be determined) on the subspace of matrix fields A satisfying
[b ·∇y,divy(A∇y)] = 0. The field D̃ inherits the properties of D, like symmetry, positivity, etc.

Our paper is organized as follows. The main results are presented in Section 2. Section 3 is
devoted to the interplay between the average operator and first and second order linear differential
operators. In particular we justify the existence of the averaged matrix field D̃ associated to any
field D of symmetric, positive matrices. The first order approximation is justified in Section 4
and the second order approximation is discussed in Section 5. Some examples, in particular the
application to the magnetic confinement, are treated in Section 6. Several technical proofs are
gathered in Appendix A.
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2. Presentation of the models and main results

We assume that the vector field b : Rm→Rm is smooth and divergence free

b ∈W 1,∞
loc

(
Rm

)
, divy b = 0 (14)

with linear growth

∃C > 0 such that
∣∣b(y)

∣∣ " C
(
1 + |y|

)
, y ∈Rm. (15)

We denote by Y(s;y) the characteristic flow associated to b

dY

ds
= b

(
Y(s;y)

)
, Y (0;y) = y, s ∈R, y ∈Rm. (16)

Under the above hypotheses, this flow has the regularity Y ∈ W 1,∞
loc (R × Rm) and is measure

preserving.
We concentrate on matrix fields A(y) ∈ L1

loc(Rm) such that [b(y) · ∇y,divy(A(y)∇y)] = 0,
let us say in D′(Rm). We check that the commutator between b · ∇y and divy(A∇y) writes cf.
Proposition 3.7

[
b(y) ·∇y,divy

(
A(y)∇y

)]
= divy

(
[b,A]∇y

)
in D′

(
Rm

)

where the bracket between b and A is given by the matrix field

[b,A] := (b ·∇y)A− ∂ybA(y)−A(y) t∂yb, y ∈Rm,

with ((b ·∇y)A)ij = (b ·∇y)Aij , i, j ∈ {1, . . . ,m}. Several characterizations for the solutions of
[b,A] = 0 in D′(Rm) are indicated in the Propositions 3.8, 3.9, among which

A
(
Y(s;y)

)
= ∂yY (s;y)A(y) t∂yY (s;y), s ∈R, y ∈Rm. (17)

We assume that there is a matrix field P(y) such that

tP = P, P (y)ξ · ξ > 0, ξ ∈Rm, y ∈Rm, P−1,P ∈L2
loc

(
Rm

)
,

[b,P ] = 0 in D′
(
Rm

)
. (18)

Observe that any vector field c in involution with b i.e., (b ·∇y)c−∂ybc = 0 let us say inD′(Rm),
provides a symmetric matrix field Pc(y) = c(y)⊗ c(y) satisfying [b,Pc] = 0 in D′(Rm). Indeed,
thanks to Proposition 3.4 we have

c
(
Y(s;y)

)
= ∂yY (s;y)c(y), s ∈R, y ∈Rm,

and therefore (17) holds true
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Pc

(
Y(s;y)

)
= c

(
Y(s;y)

)
⊗ c

(
Y(s;y)

)

=
(
∂yY (s;y)c(y)

)
⊗

(
∂yY (s;y)c(y)

)

= ∂yY (s;y)
(
c(y)⊗ c(y)

)
t∂yY (s;y)

= ∂yY (s;y)Pc(y) t∂yY (s;y), s ∈R, y ∈Rm.

When a family {ci}1!i!m of vector fields in involution with b is available, and {ci(y)}1!i!m

form a basis of Rm at any point y ∈Rm, it is easily seen that the symmetric matrix field P(y) =∑m
i=1 ci(y)⊗ ci(y) is positive definite and satisfies [b,P ] = 0 in D′(Rm).
We introduce the set

HQ =
{
A = A(y):

∫

Rm

Q(y)A(y) : A(y)Q(y)dy < +∞
}

where Q = P−1, and the scalar product (see Section 3.3)

(A,B)Q =
∫

Rm

QA : BQdy, A,B ∈HQ.

The equality (17) suggests to introduce the family of applications G(s) : HQ → HQ, s ∈ R,
G(s)A = (∂yY )−1(s; ·)A(Y (s; ·)) t (∂yY )−1(s; ·) which is a C0-group of unitary operators on
HQ cf. Proposition 3.12. This allows us to introduce L, the infinitesimal generator of (G(s))s∈R.
The key points are that L becomes skew-adjoint on the weighted L2 space HQ and that its kernel
coincides with {A ∈HQ ⊂ L1

loc(Rm): [b,A] = 0 in D′(Rm)} cf. Proposition 3.13. The averaged
matrix field denoted 〈D〉Q, associated to any D ∈ HQ appears as the long time limit of the
solution of

∂tA−L
(
L(A)

)
= 0, t ∈R+, (19)

A(0) = D. (20)

The condition D ∈HQ comes since we intend to use the C0-group theory in L2 spaces (weighted
by Q). In particular HQ contains any matrix field D bounded, compactly supported in Rm. The
notation 〈·〉 stands for the orthogonal projection (in L2(Rm)) on ker(b ·∇y).

Theorem 2.1. Assume that (14), (15), (18) hold true. Then for any D ∈ HQ ∩ L∞(Rm) the
solution of (19), (20) converges weakly in HQ as t → +∞ towards the orthogonal projection
of D on kerL

lim
t→+∞

A(t) = 〈D〉Q weakly in HQ, 〈D〉Q := Projker L D.

If D is symmetric and positive, then so is the limit 〈D〉Q = limt→+∞A(t), and satisfies

L
(
〈D〉Q

)
= 0, ∇yu · 〈D〉Q∇yv = 〈∇yu · D∇yv〉, u, v ∈H 1(Rm

)
∩ ker(b ·∇y), (21)

〈
∇yu · 〈D〉Q∇y(b ·∇yψ)

〉
= 0, u ∈H 1(Rm

)
∩ ker(b ·∇y), ψ ∈C2

c

(
Rm

)
. (22)
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The first order approximation (for initial data not necessarily well prepared) is justified by

Theorem 2.2. Assume that (14), (15), (18), (49) hold true and that D is a field of symmetric
positive matrices, which belongs to HQ. Consider a family of initial conditions (uεin)ε ⊂ L2(Rm)

such that (〈uεin〉)ε converges weakly in L2(Rm), as ε↘ 0, towards some function uin. We denote
by uε the solution of (1), (2) and by u the solution of

∂t u− divy

(
〈D〉Q∇yu

)
= 0, t ∈R+, y ∈Rm, (23)

u(0, y) = uin(y), y ∈Rm, (24)

where 〈D〉Q is associated to D, cf. Theorem 2.1. Then we have the convergences

lim
ε↘0

uε = u weakly % in L∞
(
R+;L2(Rm

))
,

lim
ε↘0

∇yu
ε =∇yu weakly in L2(R+;L2(Rm

))
.

The derivation of the second order approximation is more complicated and requires the com-
putation of some other matrix fields. For simplicity, we content ourselves to formal results. The
crucial point is to introduce the decomposition given by

Theorem 2.3. Assume that (14), (15), (18), (49) hold true and that L has closed range. Then,
for any field of symmetric matrices D ∈ HQ, there is a unique field of symmetric matrices F ∈
dom(L2)∩ (kerL)⊥ such that

−divy(D∇y) =−divy

(
〈D〉Q∇y

)
+ divy

(
L2(F )∇y

)

that is

∫

Rm

D∇yu ·∇yv dy −
∫

Rm

〈D〉Q∇yu ·∇yv dy

=
∫

Rm

L(F )∇yu ·∇y(b ·∇yv)dy +
∫

Rm

L(F )∇y(b ·∇yu) ·∇yv dy

=−
∫

Rm

F∇y

(
b ·∇y(b ·∇yu)

)
·∇yv dy − 2

∫

Rm

F∇y(b ·∇yu) ·∇y(b ·∇yv)dy

−
∫

Rm

F∇yu ·∇y

(
b ·∇y(b ·∇yv)

)
dy

for any u,v ∈C3
c (Rm).

After some computations we obtain, at least formally, the following model, replacing the
hypothesis (18) by the stronger one: there is a matrix field R(y) such that
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detR(y) 0= 0, y ∈Rm, Q = tRR and

P = Q−1 ∈ L2
loc

(
Rm

)
, (b ·∇y)R + R∂yb = 0 in D′

(
Rm

)
. (25)

The condition (b ·∇y)R + R∂yb = 0 says that the columns of R−1 form a family of m indepen-
dent vector fields in involution with respect to b (see Remark 5.2).

Theorem 2.4. Assume that (14), (15), (29), (49), (25) hold true and that D is a field of symmet-
ric positive matrices which belongs to HQ ∩ L∞(Rm). Consider a family of initial conditions

(uεin)ε ⊂ L2(Rm) such that (
〈uεin〉−uin

ε )ε>0 converges weakly in L2(Rm), as ε ↘ 0, towards a
function vin, for some function uin ∈ ker(b · ∇y). Then, a second order approximation for (1) is
provided by

∂t ũ
ε − divy

(
〈D〉Q∇yũ

ε
)
+ ε

[
divy

(
〈D〉Q∇y

)
,divy(F∇y)

]
ũε

− εS
(
ũε

)
= 0, (t, y) ∈R+ ×Rm, (26)

ũε(0, y) = uin(y) + ε
(
vin(y) + win(y)

)
, win = divy(F∇yuin), y ∈Rm, (27)

for some fourth order linear differential operator S, see Proposition 5.3, and the matrix field F

given by Theorem 2.3.

3. The average operator

We assume that the vector field b : Rm → Rm satisfies (14), (15). We consider the linear
operator u→ b ·∇yu = divy(ub) in L2(Rm), whose domain is defined by

dom(b ·∇y) =
{
u ∈L2(Rm

)
: divy(ub) ∈ L2(Rm

)}
.

It is well known that

ker(b ·∇y) =
{
u ∈ L2(Rm

)
: u

(
Y(s; ·)

)
= u(·), s ∈R

}
.

The orthogonal projection on ker(b ·∇y) (with respect to the scalar product of L2(Rm)), denoted
by 〈·〉, reduces to average along the characteristic flow Y cf. [4, Propositions 2.2, 2.3]. The fact
that the average along the characteristic flow belongs to ker(b ·∇y) is easily seen. For any point
y ∈Rm, the average along the characteristic issued from y depends only on the invariants of this
characteristic and not on the particular point y of it. Therefore, the average depends only on the
invariants of the flow, and thus it belongs to ker(b ·∇y).

Proposition 3.1. For any function u ∈ L2(Rm) the family 〈u〉T := 1
T

∫ T
0 u(Y (s; ·))ds, T > 0,

converges strongly in L2(Rm), when T → +∞, towards the orthogonal projection of u on
ker(b ·∇y)

lim
T→+∞

〈u〉T = 〈u〉, 〈u〉 ∈ ker(b ·∇y) and
∫

Rm

(
u− 〈u〉

)
ϕ dy = 0, ∀ϕ ∈ ker(b ·∇y).
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Since b ·∇y is antisymmetric, one gets easily

Range(b ·∇y) =
(
ker(b ·∇y)

)⊥ = ker(Projker(b·∇y)) = ker〈·〉. (28)

Remark 3.1. If u ∈ L2(Rm) satisfies
∫

Rm u(y)b ·∇yψ dy = 0, ∀ψ ∈ C1
c (Rm) and

∫
Rm uϕ dy = 0,

∀ϕ ∈ ker(b · ∇y), then u = 0. Indeed, as u ∈ L2(Rm) ⊂ L1
loc(Rm), the first condition says that

b ·∇yu = 0 in D′(Rm) and thus u ∈ ker(b ·∇y). Using now the second condition with ϕ = u one
gets

∫
Rm u2 dy = 0 and thus u = 0.

In the particular case when Range(b · ∇y) is closed, which is equivalent to the Poincaré in-
equality (cf. [8, pp. 29])

∃CP > 0:
( ∫

Rm

(
u− 〈u〉

)2 dy

)1/2

" CP

( ∫

Rm

(b ·∇yu)2 dy

)1/2

, u ∈ dom(b ·∇y) (29)

(28) implies the solvability condition

∃u ∈ dom(b ·∇y) such that b ·∇yu = v iff 〈v〉= 0.

If ‖ ·‖ stands for the L2(Rm) norm we have

Proposition 3.2. Under the hypothesis (29), b · ∇y restricted to ker〈·〉 is one-to-one map onto
ker〈·〉. Its inverse, denoted (b ·∇y)

−1, belongs to L(ker〈·〉,ker〈·〉) and

∥∥(b ·∇y)
−1∥∥

L(ker〈·〉,ker〈·〉) " CP .

Another operator which will play a crucial role is T =−divy(b⊗ b∇y) whose domain is

dom(T ) =
{
u ∈ dom(b ·∇y): b ·∇yu ∈ dom(b ·∇y)

}
.

The operator T is self-adjoint and under the previous hypotheses, has the same kernel and range
as b ·∇y .

Proposition 3.3. Under the hypotheses (14), (15), (29) the operator T satisfies

kerT = ker(b ·∇y), RangeT = Range(b ·∇y) = ker〈·〉

and ‖u− 〈u〉‖" C2
P ‖T u‖, u ∈ dom(T ).

Proof. Obviously ker(b ·∇y)⊂ kerT . Conversely, for any u ∈ kerT we have
∫

Rm(b ·∇yu)2 dy =∫
Rm uT udy = 0 and therefore u ∈ ker(b ·∇y).

Clearly RangeT ⊂ Range(b · ∇y) = ker〈·〉. Consider now w ∈ ker〈·〉 = Range(b · ∇y). By
Proposition 3.2 there is v ∈ ker〈·〉 ∩ dom(b · ∇y) such that b · ∇yv = w. Applying one more
time Proposition 3.2, there is u ∈ ker〈·〉 ∩ dom(b · ∇y) such that b · ∇yu = v. We deduce that
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u ∈ domT ,w = T (−u). Finally, for any u ∈ domT we apply twice the Poincaré inequality,
taking into account that 〈b ·∇yu〉= 0

∥∥u− 〈u〉
∥∥ " CP ‖b ·∇yu‖" C2

P ‖T u‖. !

Remark 3.2. The average along the flow of b can be defined in any Lebesgue space Lq(Rm),
q ∈ [1,+∞]. We refer to [4] for a complete presentation of these results.

3.1. Average and first order differential operators

We are looking for first order derivations commuting with the average operator. Recall that
the commutator [ξ · ∇y,η · ∇y] between two first order differential operators is still a first or-
der differential operator, whose vector field, denoted by [ξ,η], is given by the Poisson bracket
between ξ and η

[ξ ·∇y,η ·∇y] := ξ ·∇y(η ·∇y)− η ·∇y(ξ ·∇y) = [ξ,η] ·∇y

where [ξ,η] = (ξ ·∇y)η− (η ·∇y)ξ . The two vector fields ξ and η are said in involution iff their
Poisson bracket vanishes.

Assume that c(y) is a smooth vector field, satisfying c(Y (s;y)) = ∂yY (s;y)c(y), s ∈ R,
y ∈ Rm, where Y is the flow of b (not necessarily divergence free here). Taking the deriva-
tive with respect to s at s = 0 yields (b · ∇y)c = ∂ybc(y), saying that [b, c] = 0. Actually the
converse implication holds true and we obtain the following characterization for vector fields in
involution, which is valid in distributions as well (see Appendix A for proof details).

Proposition 3.4. Consider b ∈W 1,∞
loc (Rm) (not necessarily divergence free), with linear growth

and c ∈L1
loc(Rm). Then (b ·∇y)c− ∂ybc = 0 in D′(Rm) iff

c
(
Y(s;y)

)
= ∂yY (s;y)c(y), s ∈R, y ∈Rm. (30)

We establish also weak formulations characterizing the involution between two fields, in dis-
tribution sense (see Appendix A for the proof). The notation ws stands for w ◦ Y(s; ·).

Proposition 3.5. Consider b ∈ W 1,∞
loc (Rm), with linear growth and zero divergence and c ∈

L1
loc(Rm). Then the following statements are equivalent:

1.

[b, c] = 0 in D′
(
Rm

)
.

2.

∫

Rm

(c ·∇yu)v−s dy =
∫

Rm

(c ·∇yus)v dy, ∀u,v ∈C1
c

(
Rm

)
. (31)
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3.

∫

Rm

c ·∇yub ·∇yv dy +
∫

Rm

c ·∇y(b ·∇yu)v dy = 0, ∀u ∈ C2
c

(
Rm

)
, v ∈ C1

c

(
Rm

)
. (32)

Remark 3.3. If [b, c] = 0 inD′(Rm), applying (31) with v = 1 on the support of us (and therefore
v−s = 1 on the support of u) yields

∫

Rm

c ·∇yudy =
∫

Rm

c ·∇yus dy, u ∈ C1
c

(
Rm

)
,

saying that divy c is constant along the flow of b (in D′(Rm)).

We claim that for vector fields c in involution with b, the derivation c ·∇y commutes with the
average operator. This comes easily by the commutation property between the flows of b and c.
Indeed, if Z(h;y) stands for the flow of the vector field c (assumed smooth for the moment) we
have, thanks to the involution property between b and c

Z(h; ·) ◦ Y(s; ·) = Y(s; ·) ◦Z(h; ·), s, h ∈R.

In order to establish 〈c ·∇yu〉= c ·∇y〈u〉 it is enough to prove that 〈u ◦Z(h; ·)〉=〈 u〉 ◦Z(h; ·)
for any h ∈R. At least formally we can write

〈
u ◦Z(h; ·)

〉
= lim

T→+∞
1
T

T∫

0

u ◦Z(h; ·) ◦ Y(s; ·)ds

= lim
T→+∞

1
T

T∫

0

u ◦ Y(s; ·) ◦Z(h; ·)ds

=
(

lim
T→+∞

1
T

T∫

0

u ◦ Y(s; ·)ds

)

◦Z(h; ·)

= 〈u〉 ◦Z(h; ·).

The rigorous statement and proof of this result follow below.

Proposition 3.6. Consider a vector field c ∈ L1
loc(Rm) with bounded divergence, in involution

with b, that is [b, c] = 0 inD′(Rm). Then the operators u→ c ·∇yu, u→ divy(uc) commute with
the average operator i.e., for any u ∈ dom(c ·∇y) = dom(divy(·c)) we have 〈u〉 ∈ dom(c ·∇y) =
dom(divy(·c)) and

〈c ·∇yu〉= c ·∇y〈u〉,
〈
divy(uc)

〉
= divy

(
〈u〉c

)
.
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Proof. Consider u ∈ dom(c ·∇y), s ∈R and ϕ ∈C1
c (Rm). We have

∫

Rm

usc ·∇yϕ dy =
∫

Rm

u(c ·∇yϕ)−s dy

=
∫

Rm

u(c ·∇y)ϕ−s dy

=−
∫

Rm

divy(uc)ϕ−s dy

=−
∫

Rm

(
divy(uc)

)
s
ϕ(y)dy (33)

saying that us ∈ dom(c · ∇y) = dom(divy(·c)) and divy(usc) = (divy(uc))s . We deduce
c ·∇yus = (c ·∇yu)s cf. Remark 3.3. Integrating (33) with respect to s between 0 and T > 0 one
gets

∫

Rm

1
T

T∫

0

us ds c ·∇yϕ dy = 1
T

T∫

0

∫

Rm

usc ·∇yϕ dy ds

=− 1
T

T∫

0

∫

Rm

(
divy(uc)

)
s
ϕ(y)dy ds

=−
∫

Rm

1
T

T∫

0

(
divy(uc)

)
s

dsϕ(y)dy.

By Proposition 3.1 we know that 1
T

∫ T
0 us ds → 〈u〉 and 1

T

∫ T
0 (divy(uc))s ds → 〈divy(uc)〉

strongly in L2(Rm), when T →+∞, and thus we obtain

∫

Rm

〈u〉c ·∇yϕ dy =−
∫

Rm

〈
divy(uc)

〉
ϕ(y)dy

saying that 〈u〉 ∈ dom(c ·∇y) and divy(〈u〉c) = 〈divy(uc)〉, c ·∇y〈u〉=〈 c ·∇yu〉. !

3.2. Average and second order differential operators

We investigate the second order differential operators −divy(A(y)∇y) commuting with the
average operator along the flow of b, where A(y) is a smooth field of symmetric matrices. Such
second order operators leave invariant ker(b ·∇y). Indeed, for any u ∈ dom(−divy(A(y)∇y)) ∩
ker(b ·∇y) we have

−divy

(
A(y)∇yu

)
=−divy

(
A(y)〈u〉

)
=

〈
−divy

(
A(y)∇yu

)〉
∈ ker(b ·∇y).
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For this reason it is worth considering the operators −divy(A(y)∇y) commuting with b · ∇y .
A straightforward computation shows that

Proposition 3.7. Consider a divergence free vector field b ∈ W 2,∞(Rm) and a matrix field
A ∈ W 2,∞(Rm). The commutator between b · ∇y and −divy(A(y)∇y) is still a second order
differential operator

[
b ·∇y,−divy(A∇y)

]
=−divy

(
[b,A]∇y

)

whose matrix field, denoted by [b,A], is given by

[b,A] = (b ·∇y)A− ∂ybA(y)−A(y) t∂yb, y ∈Rm.

Remark 3.4. We have the formula t [b,A] = [b, tA]. In particular if A(y) is a field of symmet-
ric (resp. anti-symmetric) matrices, the field [b,A] has also symmetric (resp. anti-symmetric)
matrices.

As for vector fields in involution, we have the following characterization (see Appendix A for
proof details).

Proposition 3.8. Consider b ∈W 1,∞
loc (Rm) (not necessarily divergence free) with linear growth

and A(y) ∈ L1
loc(Rm). Then [b,A] = 0 in D′(Rm) iff

A
(
Y(s;y)

)
= ∂yY (s;y)A(y) t∂yY (s;y), s ∈R, y ∈Rm. (34)

For fields of symmetric matrices we have the weak characterization (see Appendix A for the
proof).

Proposition 3.9. Consider b ∈W 1,∞
loc (Rm) with linear growth, zero divergence and A ∈ L1

loc(Rm)

a field of symmetric matrices. Then the following statements are equivalent:

1.

[b,A] = 0 in D′
(
Rm

)
.

2.
∫

Rm

A(y)∇yus ·∇yvs dy =
∫

Rm

A(y)∇yu ·∇yv dy

for any s ∈R, u,v ∈ C1
c (Rm).

3.
∫

Rm

A(y)∇y(b ·∇yu) ·∇yv dy +
∫

Rm

A(y)∇yu ·∇y(b ·∇yv)dy = 0

for any u,v ∈C2
c (Rm).
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We consider the (formal) adjoint of the linear operator A→ [b,A], with respect to the scalar
product (U,V ) =

∫
Rm U(y) : V (y)dy, given by

Q→−(b ·∇y)Q− t∂ybQ(y)−Q(y)∂yb

when divy b = 0. The following characterization comes easily and the proof is left to the reader.

Proposition 3.10. Consider b ∈ W 1,∞
loc (Rm), with linear growth and Q ∈ L1

loc(Rm). Then
−(b ·∇y)Q− t∂ybQ(y)−Q(y)∂yb = 0 in D′(Rm) iff

Q
(
Y(s;y)

)
= t∂yY

−1(s;y)Q(y)∂yY−1(s;y), s ∈R, y ∈Rm. (35)

Remark 3.5. If Q(y) satisfies (35) and is invertible for any y ∈ Rm with Q−1 ∈ L1
loc(Rm),

then Q−1(Y (s;y)) = ∂yY (s;y)Q−1(y) t∂yY (s;y), s ∈R, y ∈Rm and therefore [b,Q−1] = 0 in
D′(Rm). If P(y) satisfies (34) and is invertible for any y ∈Rm, then

P−1(Y(s;y)
)
= t∂yY

−1(s;y)P−1(y)∂yY
−1(s;y), s ∈R, y ∈Rm,

and therefore −(b ·∇y)P
−1 − t∂ybP−1(y)− P−1(y)∂yb = 0 in D′(Rm).

As for vector fields in involution, the matrix fields in involution with b generate second order
differential operators commuting with the average operator.

Proposition 3.11. Consider a matrix field A ∈ L1
loc(Rm) such that divy A ∈ L1

loc(Rm) and
[b,A] = 0 in D′(Rm). Therefore the operator u→−divy(A∇yu) commutes with the average
operator i.e., for any u ∈ dom(−divy(A∇y)) we have 〈u〉 ∈ dom(−divy(A∇y)) and

−
〈
divy(A∇yu)

〉
=−divy

(
A∇y〈u〉

)
.

Proof. Consider u ∈ dom(−divy(A∇y)) = {w ∈ L2(Rm): −divy(A∇yw) ∈ L2(Rm)}. For any
s ∈R,ϕ ∈ C2

c (Rm) we have

−
∫

Rm

us divy

(
tA∇yϕ

)
dy =−

∫

Rm

u
(
divy

(
tA∇ϕ

))
−s

dy. (36)

By the implication 1.⇒ 2. of Proposition 3.9 (which does not require the symmetry of A(y)) we
know that

∫

Rm

tA∇yϕ ·∇yψs dy =
∫

Rm

tA∇yϕ−s ·∇yψ dy

for any ψ ∈ C2
c (Rm). We deduce that

−
∫

Rm

divy

(
tA∇yϕ

)
ψs dy =−

∫

Rm

divy

(
tA∇yϕ−s

)
ψ dy
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and thus (divy(
tA∇yϕ))−s = divy(

tA∇yϕ−s). Combining with (36) yields

−
∫

Rm

us divy

(
tA∇yϕ

)
dy =−

∫

Rm

udivy

(
tA∇yϕ−s

)
dy

=−
∫

Rm

divy(A∇yu)ϕ−s dy

=−
∫

Rm

(
divy(A∇yu)

)
s
ϕ(y)dy (37)

saying that us ∈ dom(−divy(A∇y)) and

−divy(A∇yus) =
(
−divy(A∇yu)

)
s
.

Integrating (37) with respect to s between 0 and T we obtain

∫

Rm

1
T

T∫

0

us ds divy

(
tA∇yϕ

)
dy =

∫

Rm

1
T

T∫

0

(
divy(A∇yu)

)
s

dsϕ(y)dy.

Letting T →+∞ yields

∫

Rm

〈u〉divy

(
tA∇yϕ

)
dy =

∫

Rm

〈
divy(A∇yu)

〉
ϕ(y)dy

and therefore 〈u〉 ∈ dom(divy(A∇y)), divy(A∇y〈u〉) = 〈divy(A∇yu)〉. !

3.3. The averaged diffusion matrix field

We are looking for the limit, when ε→ 0, of (1), (2). We expect that the limit u = limε↘0 uε

satisfies (6), (7). By (6) we deduce that at any time t ∈ R+, u(t, ·) ∈ ker(b · ∇y). Observe also
that divy(b⊗ b∇yu

1) = b ·∇y(b ·∇yu
1) ∈ Range(b ·∇y)⊂ ker〈·〉 and therefore the closure for

u comes by applying the average operator to (7) and by noticing that 〈∂t u〉= ∂t 〈u〉= ∂t u

∂t u−
〈
divy(D∇yu)

〉
= 0, t ∈R+, y ∈Rm. (38)

At least when [b,D] = 0, we know by Proposition 3.11 that

〈
divy(D∇yu)

〉
= divy

(
D∇y〈u〉

)
= divy(D∇yu)

and (38) reduces to the diffusion equation associated to the matrix field D(y). Nevertheless,
even if [b,D] 0= 0, (38) behaves like a diffusion equation. More exactly the L2(Rm) norm of
the solution decreases with a rate proportional to the L2(Rm) norm of its gradient under the
hypothesis (3)
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1
2

d
dt

∫

Rm

(
u(t, y)

)2 dy =
∫

Rm

〈
divy(D∇yu)

〉
u(t, y)dy

=
∫

Rm

divy(D∇yu)udy

=−
∫

Rm

D∇yu ·∇yudy

=−
∫

Rm

(D + b⊗ b) :∇yu⊗∇yudy

"−d

∫

Rm

∣∣∇yu(t, y)
∣∣2 dy.

We expect that, under appropriate hypotheses, (38) coincides with a diffusion equation, corre-
sponding to some averaged matrix field D, that is

∃D(y): [b,D] = 0 and
〈
−divy(D∇yu)

〉
=−divy(D∇yu), ∀u ∈ ker(b ·∇y). (39)

It is easily seen that in this case the limit model (38) reduces to

∂t u− divy(D∇yu) = 0, t ∈R+, y ∈Rm.

In this section we identify sufficient conditions which guarantee the existence of the matrix
field D. We will see that it appears as the long time limit of the solution of another parabolic type
problem, whose initial data is D, and thus as the orthogonal projection of the field D(y) (with re-
spect to some scalar product to be defined) on a subset of {A ∈ L1

loc(Rm): [b,A] = 0 in D′(Rm)}.
We assume that (18) holds true. We introduce the set

HQ =
{
A = A(y):

∫

Rm

Q(y)A(y) : A(y)Q(y)dy < +∞
}

where Q = P−1 and the bilinear application

(·, ·)Q : HQ ×HQ→R, (A,B)Q =
∫

Rm

Q(y)A(y) : B(y)Q(y)dy

which is symmetric and positive definite. Indeed, for any A ∈HQ we have

(A,A)Q =
∫

Rm

Q1/2AQ1/2 : Q1/2AQ1/2 dy ! 0

with equality iff Q1/2AQ1/2 = 0 and thus iff A = 0. The set HQ endowed with the scalar product
(·, ·)Q becomes a Hilbert space, whose norm is denoted by |A|Q = (A,A)

1/2
Q ,A ∈HQ. Observe



Author's personal copy

M. Bostan / J. Differential Equations 256 (2014) 1043–1092 1059

that HQ ⊂ {A(y): A ∈ L1
loc(Rm)}. Indeed, if for any matrix M the notation |M| stands for the

norm subordinated to the Euclidean norm of Rm

|M| = sup
ξ∈Rm\{0}

|Mξ |
|ξ | " (M : M)1/2

we have for a.a. y ∈Rm

∣∣A(y)
∣∣ = sup

ξ,η 0=0

A(y)ξ · η
|ξ ||η|

= sup
ξ,η 0=0

Q1/2AQ1/2P 1/2ξ · P 1/2η

|P 1/2ξ ||P 1/2η|
|P 1/2ξ |

|ξ |
|P 1/2η|

|η|

"
∣∣Q1/2AQ1/2∣∣∣∣P 1/2∣∣2

"
(
Q1/2AQ1/2 : Q1/2AQ1/2)1/2|P |. (40)

We deduce that for any R > 0

∫

BR

∣∣A(y)
∣∣dy "

∫

BR

(
Q1/2AQ1/2 : Q1/2AQ1/2)1/2|P |dy " (A,A)

1/2
Q

(∫

BR

∣∣P(y)
∣∣2 dy

)1/2

.

Remark 3.6. We know by Remark 3.5 that Qs = t∂yY
−1(s;y)Q(y)∂yY

−1(s;y) which writes
tO(s;y)O(s;y) = I where O(s;y) = Q

1/2
s ∂yY (s;y)Q−1/2. Therefore the matrix O(s;y) is

orthogonal and we have

Q
1/2
s ∂yY (s;y)Q−1/2 =O(s;y) = tO−1(s;y) = Q

−1/2
s

t∂yY
−1Q1/2, (41)

Q−1/2 t∂yY (s;y)Q
1/2
s = tO(s;y) =O−1(s;y) = Q1/2∂yY

−1Q
−1/2
s . (42)

As said before, the set of matrix fields in involution with the vector field b will play a crucial
role. By Proposition 3.8 such matrix fields are characterized by

A
(
Y(s;y)

)
= ∂yY (s;y)A(y) t∂yY (s;y), s ∈R, y ∈Rm,

which also writes

∂yY
−1(s;y)A

(
Y(s;y)

)
t∂yY

−1(s;y) = A(y), s ∈R, y ∈Rm.

It is natural to consider the family of linear applications A→ ∂yY
−1(s; ·)A(Y (s; ·)) t∂yY

−1(s; ·),
s ∈R, whose fixed points are exactly the matrix fields in involution with b.

Proposition 3.12. The family of applications A→ G(s)A := ∂yY
−1(s; ·)As

t∂yY
−1(s; ·) is a

C0-group of unitary operators on HQ.
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Proof. For any A ∈HQ observe, thanks to (42), that

∣∣∂yY−1(s; ·)As
t∂yY

−1(s; ·)
∣∣2
Q

=
∫

Rm

Q1/2∂yY
−1As

t∂yY
−1Q1/2 : Q1/2∂yY

−1As
t∂yY

−1Q1/2 dy

=
∫

Rm

tO(s;y)Q
1/2
s AsQ

1/2
s O(s;y) : tO(s;y)Q

1/2
s AsQ

1/2
s O(s;y)dy

=
∫

Rm

Q
1/2
s AsQ

1/2
s : Q1/2

s AsQ
1/2
s dy

=
∫

Rm

Q1/2AQ1/2 : Q1/2AQ1/2 dy

= |A|2Q.

Clearly G(0)A = A, A ∈HQ, and for any s, t ∈R we have

G(s)G(t)A = ∂yY
−1(s; ·)

(
G(t)A

)
s

t∂yY
−1(s; ·)

= ∂yY
−1(s; ·)(∂yY )−1(t;Y(s; ·)

)
(At )s

t (∂yY )−1(t;Y(s; ·)
)

t∂yY
−1(s; ·)

= ∂yY
−1(t + s; ·)At+s

t∂yY
−1(t + s; ·) = G(t + s)A, A ∈HQ.

It remains to check the continuity of the group, i.e., lims→0 G(s)A = A strongly in HQ for any
A ∈HQ. For any s ∈R we have

∣∣G(s)A−A
∣∣2
Q

=
∣∣G(s)A

∣∣2
Q

+ |A|2Q − 2
(
G(s)A,A

)
Q

= 2|A|2Q − 2
(
G(s)A,A

)
Q

and thus it is enough to prove that lims→0 G(s)A = A weakly in HQ. As |G(s)| = 1 for any
s ∈R, we are done if we prove that lims→0(G(s)A,U)Q = (A,U)Q for any U ∈C0

c (Rm)⊂HQ.
But it is easily seen that lims→0 G(−s)U = U strongly in HQ, for U ∈ C0

c (Rm) and thus

lim
s→0

(
G(s)A,U

)
Q

= lim
s→0

(
A,G(−s)U

)
Q

= (A,U)Q, U ∈ C0
c

(
Rm

)
. !

We denote by L the infinitesimal generator of the group G

L : dom(L)⊂HQ→HQ, domL =
{
A ∈HQ: ∃ lim

s→0

G(s)A−A

s
in HQ

}

and L(A) = lims→0
G(s)A−A

s for any A ∈ dom(L). Notice that C1
c (Rm)⊂ dom(L) and L(A) =

b · ∇yA − ∂ybA − A t∂yb, A ∈ C1
c (Rm) (use the hypothesis Q ∈ L2

loc(Rm) and the dominated
convergence theorem). In other words L(A) coincides with the bracket between b and A for
any smooth matrix field A. As we will see in a moment (cf. statement 4 of Proposition 3.13),
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this equality holds in distribution sense for any matrix field A ∈ dom(L) and justifies the con-
sideration of the C0-group {G(s)}s∈R, leading to the infinitesimal generator L. Observe also
that the group G commutes with transposition i.e. G(s) tA = tG(s)A, s ∈ R, A ∈ HQ, and for
any A ∈ dom(L) we have tA ∈ dom(L), L(tA) = tL(A). The main properties of the operator L

are summarized below (when b is divergence free). In particular the operator L is skew-adjoint
on HQ, which is a direct consequence of our choice of Q in the weighted L2 scalar product
(·, ·)Q.

Proposition 3.13.

1. The domain of L is dense in HQ and L is closed.
2. The matrix field A ∈HQ belongs to dom(L) iff there is a constant C > 0 such that

∣∣G(s)A−A
∣∣
Q

" C|s|, s ∈R. (43)

3. The operator L is skew-adjoint.
4. For any A ∈ dom(L) we have

−divy

(
L(A)∇y

)
= b ·∇y

(
−divy(A∇y)

)
+ divy

(
A∇y(b ·∇y)

)
in D′

(
Rm

)

that is
∫

Rm

L(A)∇yu ·∇yv dy =−
∫

Rm

A∇yu ·∇y(b ·∇yv)dy −
∫

Rm

A∇y(b ·∇yu) ·∇yv dy

for any u,v ∈C2
c (Rm).

Proof. 1. The operator L is the infinitesimal generator of a C0-group, and therefore dom(L) is
dense and L is closed.

2. Assume that A ∈ dom(L). We know that d
ds G(s)A = L(G(s)A) = G(s)L(A) and thus

∣∣G(s)A−A
∣∣
Q

=
∣∣∣∣∣

t∫

0

G(τ )L(A)dτ

∣∣∣∣∣
Q

"
∣∣∣∣∣

s∫

0

∣∣G(τ )L(A)
∣∣
Q

dτ

∣∣∣∣∣ = |s|
∣∣L(A)

∣∣
Q

, s ∈R.

Conversely, assume that (43) holds true. Therefore we can extract a sequence (sk)k converging
to 0 such that

lim
k→+∞

G(sk)A−A

sk
= V weakly in HQ.

For any U ∈ dom(L) we obtain

(
G(sk)A−A

sk
,U

)

Q

=
(

A,
G(−sk)U −U

sk

)

Q

and thus, letting k→+∞ yields
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(V ,U)Q =−
(
A,L(U)

)
Q

. (44)

But since U ∈ dom(L), all the trajectory {G(τ )U : τ ∈ R} is contained in dom(L) and
G(−sk)U = U +

∫ −sk
0 L(G(τ )U)dτ . We deduce

(
G(sk)A−A,U

)
Q

=
(

A,

−sk∫

0

L
(
G(τ )U

)
dτ

)

=
−sk∫

0

(
A,L

(
G(τ )U

))
Q

dτ

=−
−sk∫

0

(
V,G(τ )U

)
Q

dτ

=−
(

V,

−sk∫

0

G(τ )U dτ

)

Q

.

Taking into account that |
∫ −sk

0 G(τ )U dτ |Q " |sk||U |Q we obtain

∣∣∣∣

(
G(sk)A−A

sk
,U

)

Q

∣∣∣∣ " |V |Q|U |Q, U ∈ dom(L),

and thus, by the density of dom(L) in HQ one gets

∣∣∣∣
G(sk)A−A

sk

∣∣∣∣
Q

" |V |Q, k ∈N.

Since V is the weak limit in HQ of (G(sk)A−A
sk

)k , we deduce that limk→+∞ G(sk)A−A
sk

= V

strongly in HQ. As the limit V is uniquely determined by (44), all the family (G(s)A−A
s )s con-

verges strongly, when s→ 0, towards V in HQ and thus A ∈ dom(L).
3. For any U,V ∈ dom(L) we can write

(
G(s)U −U,V

)
Q

+
(
U,V −G(−s)V

)
Q

= 0, s ∈R.

Taking into account that

lim
s→0

G(s)U −U

s
= L(U), lim

s→0

V −G(−s)V

s
= L(V )

we obtain (L(U),V )Q + (U,L(V ))Q = 0 saying that V ∈ dom(L%) and L%(V ) = −L(V ).
Therefore L ⊂ (−L%). It remains to establish the converse inclusion. Let V ∈ dom(L%), i.e.,
∃C > 0 such that



Author's personal copy

M. Bostan / J. Differential Equations 256 (2014) 1043–1092 1063

∣∣(L(U),V
)
Q

∣∣ " C|U |Q, U ∈ dom(L).

For any s ∈R, U ∈ dom(L) we have

(
G(s)V − V,U

)
Q

=
(
V,G(−s)U −U

)
Q

=
(

V,

−s∫

0

LG(τ )U dτ

)

Q

=
−s∫

0

(
V,LG(τ )U

)
Q

dτ

implying

∣∣(G(s)V − V,U
)
Q

∣∣ " C|s||U |Q, s ∈R.

Therefore |G(s)V − V |Q " C|s|, s ∈ R, and by the previous statement V ∈ dom(L). Finally
dom(L) = dom(L%) and L%(V ) =−L(V ),V ∈ dom(L) = dom(L%).

4. As L is skew-adjoint, we obtain

−
∫

Rm

L(A)∇yu ·∇yv dy =−
(
L(A),Q−1∇yv⊗∇yuQ−1)

Q

=
(
A,L

(
Q−1∇yv⊗∇yuQ−1))

Q
.

Recall that P = Q−1 satisfies L(P ) = 0, that is, G(s)P = P , s ∈R, and thus

L
(
Q−1∇yv⊗∇yuQ−1)

= lim
s→0

G(s)P∇yv⊗∇yuP − P∇yv⊗∇yuP

s

= lim
s→0

∂yY
−1(s; ·)Ps(∇yv)s ⊗ (∇yu)sPs

t∂yY
−1(s; ·)− P∇yv⊗∇yuP

s

= lim
s→0

P t∂yY (s; ·)(∇yv)s ⊗ (∇yu)s∂yY (s; ·)P − P∇yv⊗∇yuP

s

= lim
s→0

P∇yvs ⊗∇yusP − P∇yv⊗∇yuP

s

= P∇y(b ·∇yv)⊗∇yuP + P∇yv⊗∇y(b ·∇yu)P .

Finally one gets

−
∫

Rm

L(A)∇yu ·∇yv dy =
(
A,P∇y(b ·∇yv)⊗∇yuP + P∇yv⊗∇y(b ·∇yu)P

)
Q

=
∫

Rm

A∇yu ·∇y(b ·∇yv)dy +
∫

Rm

A∇y(b ·∇yu) ·∇yv dy. !
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We claim that dom(L) is left invariant by some special (weighted with respect to the matrix
field Q) positive/negative part functions. The notations A± stand for the usual positive/negative
parts of a symmetric matrix A

A± = SΛ± t S, A = SΛ t S

where Λ,Λ± are the diagonal matrices containing the eigenvalues of A and the positive/negative
parts of these eigenvalues respectively, and S is the orthogonal matrix whose columns contain an
orthonormal basis of eigenvectors for A. Notice that

A+ : A− = 0, A+ −A− = A, A+ : A+ + A− : A− = A : A.

We introduce also the weighted positive/negative part functions which associate to any field of
symmetric matrices A(y) the fields of symmetric matrices AQ±(y) given by

Q1/2AQ±Q1/2 =
(
Q1/2AQ1/2)±

.

Observe that AQ+ −AQ− = A. We intend to study the trajectories of (19) and in particular, we
want to prove that for any initial positive matrix field, the corresponding trajectory remains pos-
itive. We need to analyze how the infinitesimal generator L behaves when the matrix field splits
into positive/negative parts. It happens that L separates the weighted positive/negative parts,
which justifies their definitions. The detailed proof of this result is technical and can be found in
Appendix A.

Proposition 3.14.

1. The applications A→AQ± leave invariant the subset {A ∈ dom(L): tA = A}.
2. For any A ∈ dom(L), tA = A we have

(
AQ+,AQ−)

Q
= 0,

(
L

(
AQ+)

,L
(
AQ−))

Q
" 0.

We want to solve the problem (19), (20) by using variational methods. We introduce the space
VQ = dom(L)⊂HQ endowed with the scalar product

((A,B))Q = (A,B)Q +
(
L(A),L(B)

)
Q

, A,B ∈ VQ.

Clearly (VQ, ((·, ·))Q) is a Hilbert space (use the fact that L is closed) and the inclusion VQ ⊂HQ

is continuous, with dense image. The notation ‖ ·‖Q stands for the norm associated to the scalar
product ((·, ·))Q

‖A‖2
Q = ((A,A))Q = (A,A)Q +

(
L(A),L(A)

)
Q

= |A|2Q +
∣∣L(A)

∣∣2
Q

, A ∈ VQ.

We introduce the bilinear form σ : VQ × VQ →R

σ (A,B) =
(
L(A),L(B)

)
Q

, A,B ∈ VQ.
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Notice that σ is coercive on VQ with respect to HQ

σ (A,A) + |A|2Q = ‖A‖2
Q, A ∈ VQ.

By Theorems 1, 2 in p. 620 of [10] we deduce that for any D ∈HQ there is a unique variational
solution for (19), (20) that is A ∈ Cb(R+;HQ)∩L2(R+;VQ), ∂tA ∈L2(R+;V ′Q)

A(0) = D,
d
dt

(
A(t),U

)
Q

+ σ
(
A(t),U

)
= 0, in D′

(
Rm

)
, ∀U ∈ VQ.

The long time limit of the solution of (19), (20) provides the averaged matrix field in (39).
The key point is the skew-adjointness of the operator L. On the one hand it is easily seen
by the energy dissipation that L(A(·)) ∈ L2(R+;HQ) and therefore L(limt→+∞A(t)) =
limt→+∞L(A(t)) = 0. On the other hand the orthogonality between the kernel and range of
L ensures that (limt→+∞A(t)−A(0))⊥ kerL, implying that limt→+∞A(t) = Projker L A(0).

Proof of Theorem 2.1. The identity

1
2

d
dt

∣∣A(t)
∣∣2
Q

+
∣∣L

(
A(t)

)∣∣2
Q

= 0, t ∈R+,

gives the estimates

∣∣A(t)
∣∣
Q

" |D|Q, t ∈R+,

+∞∫

0

∣∣L
(
A(t)

)∣∣2
Q

dt " 1
2
|D|2Q.

Consider (tk)k such that tk → +∞ as k → +∞ and (A(tk))k converges weakly towards some
matrix field X in HQ. For any U ∈ kerL we have

d
dt

(
A(t),U

)
Q

= 0, t ∈R+,

and therefore

(Projker L D,U)Q = (D,U)Q =
(
A(0),U

)
Q

=
(
A(tk),U

)
Q

= (X,U)Q, U ∈ kerL. (45)

Since L(A) ∈ L2(R+;HQ) we deduce that limk→+∞L(A(tk)) = 0 strongly in HQ. For any
V ∈ VQ we have

(
X,L(V )

)
Q

= lim
k→+∞

(
A(tk),L(V )

)
Q

=− lim
k→+∞

(
L

(
A(tk)

)
,V

)
Q

= 0.

We deduce that X ∈ dom(L%) = dom(L) and L(X) = 0, which combined with (45) says that X =
Projker L D, or X = 〈D〉Q. By the uniqueness of the limit we obtain limt→+∞A(t) = Projker L D

weakly in HQ. Assume now that tD = D. As L commutes with transposition, we have ∂t tA−
L(L(tA)) = 0, tA(0) = D. By the uniqueness we obtain tA = A and thus
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t 〈D〉Q =
t(

w- lim
t→+∞

A(t)
)

= w- lim
t→+∞

tA(t) = w- lim
t→+∞

A(t) = 〈D〉Q.

Suppose that D ! 0 and let us check that 〈D〉Q ! 0. By Proposition 3.14 we know that
AQ±(t) ∈ VQ, t ∈R+ and

(
AQ+(t),AQ−(t)

)
Q

= 0,
(
L

(
AQ+(t)

)
,L

(
AQ−(t)

))
Q

" 0, t ∈R+.

It is sufficient to consider the case of smooth solutions. Multiplying (19) by −AQ−(t) one gets

1
2

d
dt

∣∣AQ−(t)
∣∣2
Q

+
∣∣L

(
AQ−(t)

)∣∣2
Q

=
(
∂tA

Q+,AQ−(t)
)
Q

+
(
L

(
AQ+(t)

)
,L

(
AQ−(t)

))
Q

"
(
∂tA

Q+,AQ−(t)
)
Q

. (46)

But for any 0 < h < t we have

(
AQ+(t)−AQ+(t − h),AQ−(t)

)
Q

=−
(
AQ+(t − h),AQ−(t)

)
Q

" 0

and therefore (∂tA
Q+(t),AQ−(t))Q " 0. Observe that Q1/2AQ−(0)Q1/2 = (Q1/2DQ1/2)− = 0,

since Q1/2DQ1/2 is symmetric and positive. Thus AQ−(0) = 0, and from (46) we obtain

1
2

∣∣AQ−(t)
∣∣2
Q

" 1
2

∣∣AQ−(0)
∣∣2
Q

= 0

implying that Q1/2A(t)Q1/2 ! 0 and A(t) ! 0, t ∈R+. Take now any U ∈HQ, tU = U , U ! 0.
By weak convergence we have

(
〈D〉Q,U

)
Q

= lim
t→+∞

(
A(t),U

)
Q

= lim
t→+∞

∫

Rm

Q1/2A(t)Q1/2 : Q1/2UQ1/2 dy ! 0

and thus 〈D〉Q ! 0. By construction 〈D〉Q = Projker L D ∈ kerL. It remains to justify the sec-
ond statement in (21), and (22). Take a bounded function ϕ ∈ L∞(Rm) which remains constant
along the flow of b, that is ϕs = ϕ, s ∈ R, and a smooth function u ∈ C1(Rm) such that us = u,
s ∈R, and

∫

Rm

(
∇yu · Q−1∇yu

)2 dy < +∞.

We introduce the matrix field U given by

U(y) = ϕ(y)Q−1(y)∇yu⊗∇yuQ−1(y), y ∈Rm.

On the one hand notice that U ∈HQ
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|U |2Q =
∫

Rm

Q1/2UQ1/2 : Q1/2UQ1/2 dy =
∫

Rm

ϕ2∣∣Q−1/2∇yu
∣∣4 dy

" ‖ϕ‖2
L∞

∫

Rm

(
∇yu · Q−1∇yu

)2 dy.

On the other hand, we claim that U ∈ kerL. Indeed, for any s ∈R we have

∇yu =∇yus = t∂yY (s;y)(∇yu)s

and thus

QsUsQs = ϕs(∇yu)s ⊗ (∇yu)s

= ϕ
(
t∂yY

−1∇yu
)
⊗

(
t∂yY

−1∇yu
)

= ϕ t∂yY
−1∇yu⊗∇yu∂yY

−1

= t∂yY
−1QUQ∂yY

−1.

Taking into account that Qs = t∂yY
−1Q∂yY

−1 we obtain

t∂yY
−1Q∂yY

−1Us
t∂yY

−1Q∂yY
−1 = t∂yY

−1QUQ∂yY
−1

saying that Us(y) = ∂yY (s;y)U(y) t∂yY (s;y). As 〈D〉Q = Projker L D one gets

0 =
(
D − 〈D〉Q,U

)
Q

=
∫

Rm

(
D − 〈D〉Q

)
: QUQdy

=
∫

Rm

ϕ(y)
(
D− 〈D〉Q

)
:∇yu⊗∇yudy

=
∫

Rm

ϕ(y)
{
∇yu · D∇yu−∇yu · 〈D〉Q∇yu

}
dy.

In particular, taking ϕ = 1 we deduce that ∇yu · 〈D〉Q∇yu ∈ L1(Rm) and

∫

Rm

∇yu · 〈D〉Q∇yudy =
∫

Rm

∇yu · D∇yudy =
(
D,Q−1∇yu⊗∇yuQ−1)

Q
< +∞

since D ∈ HQ, Q−1∇yu⊗ ∇yuQ−1 ∈ HQ. Since 〈D〉Q ∈ kerL, the function ∇yu · 〈D〉Q∇yu

remains constant along the flow of b

(∇yu)s ·
(
〈D〉Q

)
s
(∇yu)s = (∇yu)s · ∂yY (s;y)〈D〉Q t∂yY (s;y)(∇yu)s =∇yu · 〈D〉Q∇yu.

Therefore the function ∇yu · 〈D〉Q∇yu verifies the variational formulation
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∇yu · 〈D〉Q∇yu ∈ L1(Rm
)
,

(
∇yu · 〈D〉Q∇yu

)
s
=∇yu · 〈D〉Q∇yu, s ∈R, (47)

and
∫

Rm

∇yu · D∇yuϕ dy =
∫

Rm

∇yu · 〈D〉Q∇yuϕ dy, ∀ϕ ∈L∞
(
Rm

)
, ϕs = ϕ, s ∈R. (48)

It is easily seen, thanks to the hypothesis D ∈ L∞(Rm), that (47), (48) also make sense for
functions u ∈H 1(Rm) such that us = u, s ∈R. We obtain

∇yu · 〈D〉Q∇yu = 〈∇yu · D∇yu〉, u ∈H 1(Rm
)
, us = u, s ∈R,

where the average operator in the right hand side should be understood in the L1(Rm) setting
cf. Remark 3.2. Moreover, if u,v ∈ H 1(Rm) ∩ ker(b · ∇y) then 〈D〉1/2

Q ∇yu, 〈D〉1/2
Q ∇yv belong

to L2(Rm) implying that ∇yu · 〈D〉Q∇yv ∈ L1(Rm). As before we check that ∇yu · 〈D〉Q∇yv

remains constant along the flow of b and for any ϕ ∈L∞(Rm), ϕs = ϕ, s ∈R, we can write

2
∫

Rm

∇yu · D∇yvϕ dy =
∫

Rm

∇y(u + v) · D∇y(u + v)ϕ dy

−
∫

Rm

∇yu · D∇yuϕ dy −
∫

Rm

∇yv · D∇yvϕ dy

=
∫

Rm

∇y(u + v) · 〈D〉Q∇y(u + v)ϕ dy

−
∫

Rm

∇yu · 〈D〉Q∇yuϕ dy −
∫

Rm

∇yv · 〈D〉Q∇yvϕ dy

= 2
∫

Rm

∇yu · 〈D〉Q∇yvϕ dy.

Finally one gets

∇yu · 〈D〉Q∇yv = 〈∇yu · D∇yv〉, u, v ∈H 1(Rm
)
∩ ker(b ·∇y).

Consider now the functions u ∈H 1(Rm) ∩ ker(b · ∇y) and ψ ∈ C2
c (Rm). In order to prove that

〈∇yu · 〈D〉Q∇y(b ·∇yψ)〉= 0, where the average is understood in the L1(Rm) setting, we need
to check that

∫

Rm

ϕ(y)∇yu · 〈D〉Q∇y(b ·∇yψ)dy = 0

for any ϕ ∈ L∞(Rm), ϕs = ϕ, s ∈ R. Clearly B(y) := ϕ(y)〈D〉Q(y) ∈ kerL and therefore it is
enough to prove that
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∫

Rm

∇yu · B∇y(b ·∇yψ)dy = 0

for any B ∈ kerL, which comes by the third statement of Proposition 3.9. !

What is remarkable is that the averaged matrix field, which appears as the long time limit
of a partial differential equation, can be computed point by point, under certain hypotheses, as
explained below.

Remark 3.7. Assume that there is u0 satisfying u0(Y (s;y)) = u0(y) + s, s ∈R, y ∈Rm. Notice
that u0 could be multi-valued function (think to angular coordinates) but its gradient satisfies for
a.a. y ∈Rm and s ∈R

∇yu0 = t∂yY (s;y)(∇yu0)s

exactly as any function u which remains constant along the flow of b. For this reason, the last
equality in (21) holds true for any u,v ∈H 1(Rm) ∩ ker(b ·∇y) ∪ {u0}. In the case when m− 1
independent prime integrals of b are known i.e., ∃u1, . . . , um−1 ∈ H 1(Rm) ∩ ker(b · ∇y), the
average of the matrix field D comes by imposing

∇yui · 〈D〉Q∇yuj = 〈∇yui · D∇yuj 〉, i, j ∈ {0, . . . ,m− 1}.

4. First order approximation

We assume that the fields D(y), b(y) are bounded on Rm

D ∈L∞
(
Rm

)
, b ∈ L∞

(
Rm

)
. (49)

We solve (1), (2) by using variational methods. We consider the Hilbert spaces V := H 1(Rm)⊂
H := L2(Rm) (the injection V ⊂H being continuous, with dense image) and the bilinear forms
aε : V × V →R given by

aε(u, v) =
∫

Rm

D(y)∇yu ·∇yv dy + 1
ε

∫

Rm

(b ·∇yu)(b ·∇yv)dy, u, v ∈ V.

Notice that for any 0 < ε " 1 and v ∈ V we have

aε(v, v) + d|v|2H !
∫

Rm

D(y)∇yv ·∇yv + (b ·∇yv)(b ·∇yv)dy + d

∫

Rm

(
v(y)

)2 dy

! d

∫

Rm

|∇yv|2 dy + d

∫

Rm

(
v(y)

)2 dy

= d|v|2V
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saying that aε is coercive on V with respect to H . By Theorems 1, 2 in p. 620 of [10] we deduce
that for any uεin ∈H , there is a unique variational solution for (1), (2), that is uε ∈ Cb(R+;H)∩
L2(R+;V ) and

uε(0) = uεin,
d
dt

∫

Rm

uε(t, y)v(y)dy + aε
(
uε(t), v

)
= 0, in D′

(
Rm

)
, ∀v ∈ V.

By standard arguments one gets

Proposition 4.1. The solutions (uε)ε satisfy the estimates

∥∥uε
∥∥

Cb(R+;H)
"

∣∣uεin
∣∣
H

,

+∞∫

0

∫

Rm

∣∣∇yu
ε
∣∣2 dy dt " |uεin|2H

2d

and

∥∥b ·∇yu
ε
∥∥

L2(R+;H)
"

(
ε

2(1− ε)

)1/2∣∣uεin
∣∣
H

, ε ∈ (0,1).

We are ready to prove the convergence of the family (uε)ε , when ε↘ 0, towards the solution
of the heat equation associated to the averaged diffusion matrix field 〈D〉Q. Roughly speaking,
the first order approximation is given by

∂t u−
〈
divy(D∇yu)

〉
= 0

which becomes a parabolic equation, since the properties of the averaged diffusion matrix ensure
that 〈divy(D∇yu)〉= divy(〈D〉Q∇yu) for any u ∈ ker(b ·∇y).

Proof of Theorem 2.2. Based on the uniform estimates in Proposition 4.1, there is a sequence
(εk)k , converging to 0, such that

uεk ⇀ u weakly % in L∞(R+;H), ∇yu
εk ⇀∇yu weakly in L2(R+;H).

Using the weak formulation of (1) with test functions η(t)ϕ(y), η ∈ C1
c (R+), ϕ ∈ C1

c (Rm), yields

−
+∞∫

0

∫

Rm

η′(t)ϕ(y)uεk (t, y)dy dt − η(0)

∫

Rm

ϕu
εk
in dy +

+∞∫

0

∫

Rm

η∇yu
εk · D∇yϕ dy dt

=− 1
εk

+∞∫

0

∫

Rm

η(t)
(
b ·∇yu

εk
)
(b ·∇yϕ)dy dt. (50)

Multiplying by εk and letting k→+∞, it is easily seen that
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+∞∫

0

∫

Rm

η(b ·∇yu)(b ·∇yϕ)dy dt = 0.

Therefore u(t, ·) ∈ kerT = ker(b · ∇y), t ∈ R+, cf. Proposition 3.3. Clearly (50) holds true for
any ϕ ∈ V . In particular, for any ϕ ∈ V ∩ ker(b ·∇y) one gets

−
+∞∫

0

∫

Rm

η′uεkϕ dy dt − η(0)

∫

Rm

u
εk
inϕ dy +

+∞∫

0

∫

Rm

η∇yu
εk · D∇yϕ dy dt = 0. (51)

Thanks to the average properties we have
∫

Rm

u
εk
inϕ dy =

∫

Rm

〈
u
εk
in

〉
ϕ dy→

∫

Rm

uinϕ dy

and thus, letting k→+∞ in (51), leads to

−
+∞∫

0

∫

Rm

η′uϕ dy dt − η(0)

∫

Rm

uinϕ dy +
+∞∫

0

∫

Rm

η∇yu · D∇yϕ dy dt = 0. (52)

Since u(t, ·),ϕ ∈ V ∩ ker(b ·∇y) we have cf. Theorem 2.1

∫

Rm

∇yu · D∇yϕ dy =
∫

Rm

∇yu · 〈D〉Q∇yϕ dy

and (52) becomes

−
+∞∫

0

∫

Rm

η′uϕ dy dt − η(0)

∫

Rm

uinϕ dy +
+∞∫

0

∫

Rm

η∇yu · 〈D〉Q∇yϕ dy dt = 0. (53)

But (53) is still valid for test functions ϕ = b · ∇yψ , ψ ∈ C2
c (Rm) since u(t, ·) ∈ ker(b · ∇y),

uin = w- limε↘0〈uεin〉 ∈ ker(b ·∇y) and 〈D〉Q ∈ kerL

∫

Rm

u(t, y)b ·∇yψ dy = 0,

∫

Rm

uinb ·∇yψ dy = 0,

∫

Rm

∇yu · 〈D〉Q∇y(b ·∇yψ)dy = 0

cf. Theorem 2.1. Therefore, for any v ∈ V one gets

d
dt

∫

Rm

u(t, y)v(y)dy +
∫

Rm

∇yu · 〈D〉Q∇yv dy = 0 in D′
(
Rm

)

with u(0) = uin. By the uniqueness of the solution of (23), (24) we deduce that all the family
(uε)ε converges weakly to u. !
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Remark 4.1. Notice that (23) propagates the constraint b ·∇yu = 0, if satisfied initially. Indeed,
for any v ∈ C1

c (Rm) we have

d
dt

∫

Rm

u(t, y)v(y)dy +
∫

Rm

∇yu · 〈D〉Q∇yv dy = 0 in D′
(
Rm

)
. (54)

Since 〈D〉Q ∈ kerL, we know by the second statement of Proposition 3.9 that

∫

Rm

∇yus · 〈D〉Q∇yv dy =
∫

Rm

∇yu · 〈D〉Q∇yv−s dy.

Replacing v by v−s in (54) we obtain

d
dt

∫

Rm

usv dy +
∫

Rm

∇yus · 〈D〉Q∇yv dy = 0 in D′
(
Rm

)

and therefore us solves

∂t us − divy

(
〈D〉Q∇yus

)
= 0, (t, y) ∈R+ ×Rm,

and us(0, y) = uin(Y (s;y)) = uin(y), y ∈ Rm. By the uniqueness of the solution of (23), (24)
one gets us = u and thus, at any time t ∈R+, b ·∇yu(t, ·) = 0.

5. Second order approximation

For the moment we have determined the model satisfied by the dominant term in the expan-
sion (5). We focus now on second order approximation, that is, a model which takes into account
the first order correction term εu1. Up to now we have used Eqs. (6), (7). Finding a closure for
u + εu1 will require one more equation

∂t u
1 − divy

(
D∇yu

1)− divy

(
b⊗ b∇yu

2) = 0, (t, y) ∈R+ ×Rm. (55)

Let us see, at least formally, how to get a second order approximation for (uε)ε , when ε becomes
small. The first order approximation i.e., the closure for u, has been obtained by averaging (7)
and by taking into account that u ∈ ker(b ·∇y)

∂t u =
〈
divy(D∇yu)

〉
= divy

(
〈D〉Q∇yu

)
.

Thus u1 satisfies

divy

(
〈D〉Q∇yu

)
− divy(D∇yu)− divy

(
b⊗ b∇yu

1) = 0 (56)

from which we expect to express u1, up to a function in ker(b ·∇y), in terms of u. In order to do
that we need Theorem 2.3.
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Proof of Theorem 2.3. We claim that RangeL2 = RangeL and thus RangeL2 is closed as
well. Clearly RangeL2 ⊂ RangeL. Consider now Z = L(Y ) for some Y ∈ dom(L). But Y −
Projker L Y ∈ kerL⊥ = (kerL%)⊥ = RangeL = RangeL and there is X ∈ dom(L) such that Y −
Projker L Y = L(X). Finally X ∈ dom(L2) and

Z = L(Y ) = L(Y − Projker L Y ) = L
(
L(X)

)
.

By construction we have D − 〈D〉Q ∈ (kerL)⊥ = (kerL%)⊥ = RangeL = RangeL = RangeL2

and thus there is a unique F ∈ dom(L2) ∩ (kerL)⊥ such that D = 〈D〉Q − L(L(F)). As
F ∈ (kerL)⊥, there is C ∈ dom(L) such that F = L(C) implying that t F = tL(C) = L(tC).
Therefore t F ∈ dom(L2)∩ (kerL)⊥ and satisfies the same equation as F

L
(
L

(
tF

))
= tL

(
L(F)

)
= 〈D〉Q −D.

By the uniqueness we deduce that F is a field of symmetric matrices. By Proposition 3.13 we
know that

−divy

(
L(F)∇y

)
=

[
b ·∇y,−divy(F∇y)

]
in D′

(
Rm

)

i.e.,
∫

Rm

L(F )∇yu ·∇yv dy =−
∫

Rm

F∇yu ·∇y(b ·∇yv)dy −
∫

Rm

F∇y(b ·∇yu) ·∇yv dy

for any u,v ∈C2
c (Rm). Similarly, E := L(F) satisfies

−divy

(
L2(F )∇y

)
=−divy

(
L(E)∇y

)
=

[
b ·∇y,−divy(E∇y)

]
in D′

(
Rm

)

and thus, for any u,v ∈C3
c (Rm) one gets

∫

Rm

(
〈D〉Q −D

)
∇yu ·∇yv dy

=
∫

Rm

L2(F )∇yu ·∇yv dy

=−
∫

Rm

L(F )∇yu ·∇y(b ·∇yv)dy −
∫

Rm

L(F )∇y(b ·∇yu) ·∇yv dy

=
∫

Rm

F∇yu ·∇y

(
b ·∇y(b ·∇yv)

)
dy +

∫

Rm

F∇y(b ·∇yu) ·∇y(b ·∇yv)dy

+
∫

Rm

F∇y(b ·∇yu) ·∇y(b ·∇yv)dy +
∫

Rm

F∇y

(
b ·∇y(b ·∇yu)

)
·∇yv dy. !

The matrix fields F ∈ dom(L2) and E = L(F) ∈ dom(L) enter the second order approxima-
tion model, and therefore we need to compute them. For that notice that we have the following
properties.
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Proposition 5.1. For any u,v ∈ C1(Rm) which are constant along the flow of b we have in
D′(Rm)

D∇yu ·∇yv− 〈D〉Q∇yu ·∇yv =−b ·∇y(E∇yu ·∇yv) =−divy

(
b⊗ b∇y(F∇yu ·∇yv)

)

and

〈E∇yu ·∇yv〉=〈 F∇yu ·∇yv〉= 0.

In particular

∫

Rm

E∇yu ·∇yv dy =
∫

Rm

〈E∇yu ·∇yv〉dy = 0,

∫

Rm

F∇yu ·∇yv dy =
∫

Rm

〈F∇yu ·∇yv〉dy = 0

saying that 〈divy(E∇yu)〉=〈 divy(F∇yu)〉= 0 in D′(Rm).

Proof. Consider ϕ ∈ C1
c (Rm), u,v ∈ C1(Rm) such that us = u, vs = v, s ∈ R, and the matrix

field U = ϕQ−1∇yv ⊗ ∇yuQ−1 ∈ HQ. Actually U ∈ dom(L) and, as in the proof of the last
statement in Proposition 3.13, one gets

L(U) = (b ·∇yϕ)Q−1∇yv⊗∇yuQ−1 + ϕL
(
Q−1∇yv⊗∇yuQ−1)

= (b ·∇yϕ)Q−1∇yv⊗∇yuQ−1

since Q−1∇yv ⊗∇yuQ−1 ∈ ker(L). Multiplying by U the equality D − 〈D〉Q =−L(E), E =
L(F), one gets

∫

Rm

ϕ
(
D − 〈D〉Q

)
∇yu ·∇yv dy =−

(
L(E),U

)
Q

=
(
E,L(U)

)
Q

=
∫

Rm

(b ·∇yϕ)(E∇yu ·∇yv)dy

implying that D∇yu ·∇yv = 〈D〉Q∇yu ·∇yv−b ·∇y(E∇yu ·∇yv) inD′(Rm). Multiplying by U

the equality E = L(F) yields

∫

Rm

ϕE∇yu ·∇yv dy = (E,U)Q =
(
L(F),U

)
Q

=−
(
F,L(U)

)
Q

=−
∫

Rm

(b ·∇yϕ)F∇yu ·∇yv dy.

We obtain
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E∇yu ·∇yv = b ·∇y(F∇yu ·∇yv) in D′
(
Rm

)

and thus

D∇yu ·∇yv− 〈D〉Q∇yu ·∇yv =−b ·∇y(E∇yu ·∇yv) =−b ·∇y

(
b ·∇y(F∇yu ·∇yv)

)

in D′(Rm). Consider now U = ϕQ−1∇yv ⊗ ∇yuQ−1 with ϕ ∈ ker(b · ∇y). We know that
L(U) = 0 and since, by construction F ∈ (kerL)⊥, we deduce

∫

Rm

ϕF∇yu ·∇yv dy = (F,U)Q = 0

saying that 〈F∇yu ·∇yv〉= 0. Similarly E = L(F) ∈ (kerL)⊥ and 〈E∇yu ·∇yv〉= 0. !

The matrix fields E and F , constructed in Theorem 2.3, can be computed easily, point by
point, under the same hypotheses which guarantee the explicit computation of the averaged ma-
trix field, see next remark.

Remark 5.1. Assume that there is u0 (eventually multi-valued) satisfying u0(Y (s;y)) =
u0(y) + s, s ∈R, y ∈Rm. Its gradient changes along the flow of b exactly as the gradient of any
function which is constant along this flow cf. Remark 3.7. We deduce that Q−1∇yv⊗∇yuQ−1 ∈
kerL for any u,v ∈ ker(b · ∇y) ∪ {u0} and therefore the arguments in the proof of Proposi-
tion 5.1 still apply when u,v ∈ ker(b · ∇y) ∪ {u0}. In the case when m− 1 independent prime
integrals {u1, . . . , um−1} of b are known, the matrix fields E,F come, by imposing for any
i, j ∈ {0,1, . . . ,m− 1}

−b ·∇y(E∇yui ·∇yuj ) = D∇yui ·∇yuj − 〈D∇yui ·∇yuj 〉, 〈E∇yui ·∇yuj 〉= 0

and

b ·∇y(F∇yui ·∇yuj ) = E∇yui ·∇yuj , 〈F∇yui ·∇yuj 〉= 0.

We indicate now sufficient conditions which guarantee that the range of L is closed. Basically
we will prove that, up to an isomorphism, the operator L on HQ reduces to the operator b · ∇y

on L2(Rm). In that case if the range of b ·∇y is closed, then so is the range of L.

Proposition 5.2. Assume that (14), (15), (29) hold true and that there is a matrix field R(y) such
that (25) holds true. Then the range of L is closed.

Proof. Observe that (25) implies (18). Indeed, it is easily seen that b · ∇yR + R∂yb = 0 in
D′(Rm) is equivalent to R = Rs∂yY (s; ·), s ∈R. We deduce that P = R−1 tR−1 satisfies

G(s)P = ∂yY
−1(s; ·)Ps

t∂yY
−1(s; ·) = ∂yY

−1(s; ·)R−1
s

tRs
−1 t∂yY

−1(s; ·) = R−1 tR−1 = P

saying that [b,P ] = 0 in D′(Rm). Therefore we can define L as before, on HQ, which coincides
in this case with {A: RA tR ∈ L2(Rm)}. We claim that i ◦ L = (b · ∇y) ◦ i where i : HQ →
L2(Rm), i(A) = RA tR, A ∈HQ, which comes immediately from the equalities
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(
i ◦G(s)

)
A = RG(s)A tR = R∂yY

−1(s; ·)As
t∂yY

−1 tR = RsAs
tRs

=
(
i(A)

)
s
, s ∈R,A ∈HQ.

In particular we have

kerL =
{
A ∈HQ: i(A) ∈ ker(b ·∇y)

}

and

(kerL)⊥ =
{
A ∈HQ:

∫

Rm

i(A) : U dy = 0 ∀U ∈ ker(b ·∇y)

}

=
{
A ∈HQ: i(A) ∈

(
ker(b ·∇y)

)⊥}
.

For any A ∈ (kerL)⊥ we can apply the Poincaré inequality (29) to i(A) ∈ (ker(b ·∇y))
⊥ and we

obtain

|A|Q =
∣∣i(A)

∣∣
L2 " CP

∣∣b ·∇y

(
i(A)

)∣∣
L2 = CP

∣∣i
(
L(A)

)∣∣
L2 = CP

∣∣L(A)
∣∣
Q

.

Therefore L satisfies a Poincaré inequality as well, and thus the range of L is closed. !

Remark 5.2. The hypothesis b ·∇yR + R∂yb = 0 in D′(Rm) says that the columns of R−1 form
a family of m independent vector fields in involution with respect to b, cf. Proposition 3.4

R−1
s (y) = ∂yY (s;y)R−1(y), s ∈R, y ∈Rm.

Remark 5.3. For any U ∈ kerL, that is i(U) ∈ ker(b ·∇y), we have

∫

Rm

R
(
D − 〈D〉Q

)
tR : i(U)dy = 0.

As 〈D〉Q ∈ kerL, we know that i(〈D〉Q) = R〈D〉Q tR ∈ ker(b · ∇y) and thus the matrix field
R〈D〉Q tR is the average (along the flow of b) of the matrix field RD tR, which allows us to
express 〈D〉Q in terms of R and D

R〈D〉Q tR =
〈
RD tR

〉
.

From now on we assume that (25) holds true. Applying the decomposition of Theorem 2.3
with the dominant term u ∈ ker(b ·∇y) in the expansion (5) and any v ∈ C3

c (Rm) yields

∫

Rm

(
D − 〈D〉Q

)
∇yu ·∇yv dy =−

∫

Rm

F∇yu ·∇y

(
b ·∇y(b ·∇yv)

)
dy.

From (56) one gets
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∫

Rm

(
D − 〈D〉Q

)
∇yu ·∇yv dy −

∫

Rm

u1b ·∇y(b ·∇yv)dy = 0

and thus

u1 = divy(F∇yu) + v1, v1 ∈ ker
(
b ·∇y(b ·∇y)

)
= ker(b ·∇y). (57)

Notice that 〈u1〉= v1, since 〈divy(F∇yu)〉= 0, cf. Proposition 5.1. The time evolution for v1 =
〈u1〉 comes by averaging (55)

∂t v
1 −

〈
divy

(
D∇yv

1)〉−
〈
divy

(
D∇y

(
divy(F∇yu)

))〉
= 0.

As v1 ∈ ker(b ·∇y) we have

−
〈
divy

(
D∇yv

1)〉 =−divy

(
〈D〉Q∇yv

1)

and we can write, with the notation w1 = divy(F∇yu)

∂t
{
u + εu1}− divy

(
〈D〉Q∇y

{
u + εu1})

= ε∂tw
1 − ε divy

(
〈D〉Q∇yw

1) + ε
〈
divy

(
D∇yw

1)〉. (58)

But the time derivative of w1 is given by

∂tw
1 = divy(F∇y∂t u) = divy

(
F∇y

(
divy

(
〈D〉Q∇yu

)))

which implies

∂tw
1 − divy

(
〈D〉Q∇yw

1) = divy

(
F∇y

(
divy

(
〈D〉Q∇yu

)))
− divy

(
〈D〉Q∇y

(
divy(F∇yu)

))

=−
[
divy

(
〈D〉Q∇y

)
,divy(F∇y)

]
u.

Up to a second order term, Eq. (58) writes

∂t
{
u + εu1}− divy

(
〈D〉Q∇y

{
u + εu1}) + ε

[
divy

(
〈D〉Q∇y

)
,divy(F∇y)

]{
u + εu1}

− ε
〈
divy

(
D∇y

(
divy(F∇yu)

))〉
=O

(
ε2). (59)

We claim that for any u ∈ ker(b ·∇y) we have

〈
divy

(
D∇y

(
divy(F∇yu)

))〉
=

〈
divy

(
E∇y

(
divy(E∇yu)

))〉
. (60)

By Proposition 5.1 we know that 〈divy(F∇yu)〉= 0. As L(〈D〉Q) = 0 we have

[
b ·∇y,−divy

(
〈D〉Q∇y

)]
=−divy

(
L

(
〈D〉Q

)
∇y

)
= 0
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and thus divy(〈D〉Q∇y) leaves invariant the subspace of functions which are constant along
the flow of b. By the symmetry of the operator divy(〈D〉Q∇y), we deduce that the sub-
space of zero average functions is also left invariant by divy(〈D〉Q∇y). Therefore we have
〈divy(〈D〉Q∇y(divy(F∇yu)))〉= 0 and

〈
divy

(
D∇y

(
divy(F∇yu)

))〉
=

〈
divy

((
D − 〈D〉Q

)
∇y

(
divy(F∇yu)

))〉
.

Thanks to Theorem 2.3 we have

divy

((
D − 〈D〉Q

)
∇y

)
=

[
b ·∇y,

[
b ·∇y,−divy(F∇y)

]]

=
[
b ·∇y,−divy

(
L(F)∇y

)]

=
[
b ·∇y,−divy(E∇y)

]

which implies that

〈
divy

(
D∇y

(
divy(F∇yu)

))〉

=
〈
divy

((
D− 〈D〉Q

)
∇y

(
divy(F∇yu)

))〉

=
〈
divy

(
E∇y

(
b ·∇y

(
divy(F∇yu)

)))
− b ·∇y

(
divy

(
E∇y

(
divy(F∇yu)

)))〉

=
〈
divy

(
E∇y

(
b ·∇y

(
divy(F∇yu)

)))〉
.

Finally notice that

−divy(E∇yu) =−divy

(
L(F)∇yu

)
=

[
b ·∇y,−divy(F∇yu)

]
=−b ·∇y

(
divy(F∇yu)

)

and (60) follows. We need to average the differential operator divy(E∇y(divy(E∇y))) on func-
tions u ∈ ker(b · ∇y). This is not a trivial task, due to the high order of derivatives entering
this operator (nevertheless, any other differential operator can be treated in a similar way). For
simplicity we perform these computations at a formal level, assuming that all fields are smooth
enough. The idea is to express the above differential operator in terms of the derivations tR−1∇y

which commute with the average operator (see Proposition 3.6), since the columns of R−1 con-
tain vector fields in involution with b(y).

Lemma 5.1. Under the hypothesis (25), for any smooth function u(y) and matrix field E(y) we
have

divy(E∇yu) = divy

(
R tE

)
·
(
tR−1∇yu

)
+ RE tR :

(
tR−1∇y ⊗ tR−1∇y

)
u. (61)

Proof. Applying the formula divy(Aξ) = divy
tA · ξ + tA : ∂yξ , where A(y) is a matrix field

and ξ(y) is a vector field, one gets

divy(E∇yu) = divy

(
E tR tR−1∇yu

)
= divy

(
R tE

)
·
(
tR−1∇yu

)
+ R tE : ∂y

(
tR−1∇yu

)
.

The last term in the above formula writes
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R tE : ∂y
(
tR−1∇yu

)
= R tE tR tR−1 : ∂y

(
tR−1∇yu

)

= R tE tR : ∂y
(
tR−1∇yu

)
R−1

= RE tR : tR−1 t∂y
(
tR−1∇yu

)

= RE tR :
(
tR−1∇y ⊗ tR−1∇y

)
u

and (61) follows. !

Next we claim that the term 〈divy(E∇y(divy(E∇yu)))〉 reduces to a differential operator, if
u ∈ ker(b ·∇y) (see Appendix A for proof details).

Proposition 5.3. Under the hypothesis (25), for any smooth matrix field E there is a linear
differential operator S(u) of order four, such that, for any smooth u ∈ ker(b ·∇y)

〈
divy

(
E∇y

(
divy(E∇yu)

))〉
= S(u). (62)

Combining (59), (60), (62) we obtain

∂t
{
u + εu1}− divy

(
〈D〉Q∇y

{
u + εu1}) + ε

[
divy

(
〈D〉Q∇y

)
,divy(F∇y)

]{
u + εu1}

− εS
(
u + εu1) =O

(
ε2)

which justifies the equation introduced in (26). The initial condition comes formally by averaging
the Ansatz (5)

〈
uε

〉
= u + εv1 +O

(
ε2).

One gets

v1(0, ·) = w- lim
ε↘0

〈uεin〉 − uin

ε
= vin

implying that u1(0, ·) = vin + divy(F∇yuin), cf. (57), which justifies (27).

6. Examples

Let us consider the vector field b(y) = ⊥y := (y2,−y1), for any y = (y1, y2) ∈ R2 and the
matrix field

D(y) =
(
λ1(y) 0

0 λ2(y)

)
, y ∈R2,

where λ1,λ2 are given functions, satisfying miny∈R2{λ1(y),λ2(y)} ! d > 0. We intend to deter-
mine the first order approximation, when ε↘ 0, for the heat equation

∂t u
ε − divy

(
D(y)∇yu

ε
)
− 1
ε

divy

(
b(y)⊗ b(y)∇yu

ε
)
= 0, (t, y) ∈R+ ×R2, (63)
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with the initial condition

uε(0, y) = uin(y), y ∈R2.

The flow of b is given by Y(s;y) =R(−s)y, s ∈R, y ∈R2, where R(α) stands for the rotation
of angle α ∈ R. The functions in ker(b · ∇y) are those depending only on |y|. Notice that the
matrix field

R(y) = 1
|y|

(
y2 −y1
y1 y2

)

satisfies b ·∇yR +R∂yb = 0 and Q = tRR = I2. The averaged matrix field 〈D〉Q comes, thanks
to Remark 5.3, by the formula R〈D〉Q tR = 〈RD tR〉 and thus

〈D〉Q = tR
〈
RD tR

〉
R,

〈
RD tR

〉
=




〈λ1y

2
2+λ2y

2
1

|y|2 〉 〈 (λ1−λ2)y1y2
|y|2 〉

〈 (λ1−λ2)y1y2
|y|2 〉 〈λ1y

2
1+λ2y

2
2

|y|2 〉



 .

In the case when λ1,λ2 are left invariant by the flow of b, that is λ1,λ2 depend only on |y|, it is
easily seen that

〈
y2

1

|y|2
〉
=

〈
y2

2

|y|2
〉
= 1

2
,

〈
y1y2

|y|2
〉
= 0

and thus

〈D〉Q = tR
λ1 + λ2

2
I2R = λ1 + λ2

2
I2.

The first order approximation of (63) is given by





∂t u− divy

(
λ1(y) + λ2(y)

2
∇yu

)
= 0, (t, y) ∈R+ ×R2,

u(0, y) = uin(y), y ∈R2.

We consider the multi-valued function u0(y) =−θ(y), where y = |y|(cos θ(y), sin θ(y)), which
satisfies b · ∇yu0 = 1, or u0(Y (s;y)) = u0(y) + s. Notice that the averaged matrix field 〈D〉Q
satisfies (with u1(y) = |y|2/2 ∈ ker(b ·∇y))

∇yui · 〈D〉Q∇yuj = 〈∇yui · D∇yuj 〉, i, j ∈ {0,1},

as predicted by Remark 3.7. In order to write the second order approximation, we need to com-
pute the matrix fields E and F . By Remark 5.1 we have for any i, j ∈ {0,1}

−b ·∇y(E∇yui ·∇yuj ) = D∇yui ·∇yuj − 〈D∇yui ·∇yuj 〉, 〈E∇yui ·∇yuj 〉= 0,

b ·∇y(F∇yui ·∇yuj ) = E∇yui ·∇yuj , 〈F∇yui ·∇yuj 〉= 0
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leading to

E(y) = λ1 − λ2

4

(
0 1
1 0

)
, F (y) = λ1 − λ2

8

(
1 0
0 −1

)
.

For simplicity, for now on we assume that λ1,λ2 are constant, saying that divy(〈D〉Q∇y) and
divy(F∇y) are differential operators with constant coefficients. Therefore their commutator van-
ishes

[
divy

(
〈D〉Q∇y

)
,divy(F∇y)

]
= 0.

It remains to compute the average of divy{E∇y[divy(E∇y)]} on functions u ∈ ker(b · ∇y).
A direct computation shows that for any function u ∈ ker(b · ∇y) (that is, for any function
u(y) = U(|y|2/2)) we have

〈
divy

{
E∇y

[
divy(E∇yu)

]}〉
= (λ1 − λ2)

2

32
&y(&yu).

In this case, by Theorem 2.4, we obtain the second order model

∂t ũ
ε − λ1 + λ2

2
&yũ

ε − ε
(λ1 − λ2)

2

32
&y

(
&yũ

ε
)
= 0.

We consider now the problem related to the anisotropic diffusion of the temperature inside a
tokamak. In the two dimensional case, a divergence free magnetic field writes b(y) = ⊥∇yu1,
y ∈ R2, for some function u1 (the previous case corresponds to the particular function u1(y) =
|y|2/2, y ∈R2). In the general case we detail only the first order approximation. We suppose that
there is a (multi-valued) function u0(y) such that b · ∇yu0 = 1 (indeed, u0 can not be smooth
everywhere on R2, otherwise 1 = 〈b ·∇yu0〉= 0). Since the parallel diffusion along the magnetic
lines is much larger than the perpendicular diffusion, we are led to the equation

∂t u
ε − divy

(
D(y)∇yu

ε
)
− 1
ε

divy

(
b(y)⊗ b(y)∇yu

ε
)
= 0, (t, y) ∈R+ ×R2,

with

D(y) = I2 −
b(y)⊗ b(y)

|b(y)|2 =
⊥b(y)⊗⊥b(y)

|b(y)|2 .

We need to compute 〈D〉Q. For that, we introduce the vector field

b1 = (I2 − b⊗∇yu0)
∇yu1

|∇yu1|2

that is, the vector field satisfying b1 · ∇yu0 = 0, b1 · ∇yu1 = 1. Notice that, with the notation
b0 := b, we have

bi ·∇yuj = δij , i, j ∈ {0,1},
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saying that at any point y ∈ R2, {b0(y), b1(y)} is the dual basis of {∇yu0(y),∇yu1(y)}. It is
easily seen that for any matrix field M(y) we have the decomposition

M(y) =
∑

0!i,j!1

(
M(y) :∇yui ⊗∇yuj

)
bi ⊗ bj .

In particular, thanks to Remark 3.7

〈D〉Q =
∑

0!i,j!1

(
〈D〉Q :∇yui ⊗∇yuj

)
bi ⊗ bj =

∑

0!i,j!1

〈D :∇yui ⊗∇yuj 〉bi ⊗ bj

and thus we need to compute the coefficients 〈D :∇yui ⊗∇yuj 〉, i, j ∈ {0,1}. We obtain

〈D :∇yu0 ⊗∇yu0〉=
〈
(∇yu0 ·∇yu1)

2

|∇yu1|2
〉
, 〈D :∇yu1 ⊗∇yu1〉=

〈
|∇yu1|2

〉
,

〈D :∇yu0 ⊗∇yu1〉=〈D :∇yu1 ⊗∇yu0〉= 〈∇yu0 ·∇yu1〉

implying that

〈D〉Q =
〈
(∇yu0 ·∇yu1)

2

|∇yu1|2
〉
b0 ⊗ b0 + 〈∇yu0 ·∇yu1〉(b0 ⊗ b1 + b1 ⊗ b0) +

〈
|∇yu1|2

〉
b1 ⊗ b1

and the first order approximation becomes ∂t u− divy(〈D〉Q∇yu) = 0.

Appendix A. Proofs of Propositions 3.4, 3.5, 3.8, 3.9, 3.14, 5.3

Proof of Proposition 3.4. For simplicity we assume that b is divergence free. The general case
follows similarly. Let c(y) be a vector field satisfying (30). For any vector field φ ∈ C1

c (Rm) we
have, with the notation uτ = u(Y (τ ; ·))

∫

Rm

c · (φ−h − φ)dy =
∫

Rm

(ch − c) · φ dy =
∫

Rm

(
∂yY (h;y)− I

)
c · φ dy.

Multiplying by h−1 and passing to the limit when h→ 0 imply

−
∫

Rm

c(b ·∇yφ)dy =
∫

Rm

∂ybc · φ dy

and therefore (b ·∇y)c− ∂ybc = 0 in D′(Rm).
Conversely, assume that [b, c] = 0 in D′(Rm). We introduce e(s, y) = c(Y (s;y)) −

∂yY (s;y)c(y). Notice that e(s, ·) ∈ L1
loc(Rm), s ∈ R, and e(0, ·) = 0. For any vector field

φ ∈C1
c (Rm) we have

Eφ(s) :=
∫

Rm

e(s, y) · φ(y)dy =
∫

Rm

c(y) · φ−s dy −
∫

Rm

∂yY (s;y)c(y) · φ(y)dy
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and thus

d
ds

Eφ(s) =−
∫

Rm

c(y) ·
(
(b ·∇y)φ

)
−s

dy −
∫

Rm

∂y
(
b
(
Y(s;y)

))
c(y) · φ(y)dy

=−
∫

Rm

c · (b ·∇y)φ−s dy −
∫

Rm

∂yb
(
Y(s;y)

)
∂yY (s;y)c(y) · φ(y)dy

=
∫

Rm

∂ybc(y) · φ−s dy −
∫

Rm

∂yb
(
Y(s;y)

)
∂yY (s;y)c(y) · φ(y)dy

=
∫

Rm

∂yb
(
Y(s;y)

)(
c
(
Y(s;y)

)
− ∂yY (s;y)c(y)

)
· φ(y)dy

=
∫

Rm

e(s, y) · t∂yb
(
Y(s;y)

)
φ(y)dy.

In the previous computation we have used the fact that the derivation and translation along b

commute
(
(b ·∇y)φ

)
−s

= (b ·∇y)φ−s .

After integration with respect to s one gets

Eφ(s) =
s∫

0

∫

Rm

e(τ, y) · t∂yb
(
Y(τ ;y)

)
φ(y)dy dτ.

Clearly, the above equality still holds true for any φ ∈ Cc(Rm). Consider R > 0, T > 0 and let
K = ‖t∂yb ◦ Y‖L∞([−T ,T ]×BR). Therefore, for any s ∈ [−T ,T ] we obtain

∥∥e(s, ·)
∥∥

L∞(BR)
= sup

{∣∣Eφ(s)
∣∣: φ ∈Cc(BR), ‖φ‖L1(Rm) " 1

}

" K

∣∣∣∣∣

s∫

0

∥∥e(τ, ·)
∥∥

L∞(BR)
dτ

∣∣∣∣∣.

By the Gronwall lemma we deduce that ‖e(s, ·)‖L∞(BR) = 0 for −T " s " T saying that
c(Y (s;y))− ∂yY (s;y)c(y) = 0, s ∈R, y ∈Rm. !

Proof of Proposition 3.5. 1.⇒ 2. By Proposition 3.4 we deduce that c(Y (s;y))= ∂yY (s;y)c(y)

and therefore
∫

Rm

(c ·∇yu)v−s dy =
∫

Rm

c
(
Y(s;y)

)
· (∇yu)

(
Y(s;y)

)
v(y)dy

=
∫

Rm

c(y) · t∂yY (s;y)(∇yu)
(
Y(s;y)

)
v(y)dy =

∫

Rm

(
c(y) ·∇yus

)
v(y)dy.
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2. ⇒ 3. Taking the derivative with respect to s of (31) at s = 0, we obtain (32). 3. ⇒ 1. Apply-
ing (32) with v ∈C1

c (Rm) and ui = yiϕ(y), ϕ ∈ C2
c (Rm), ϕ = 1 on the support of v, yields

∫

Rm

cib ·∇yv dy +
∫

Rm

c ·∇ybiv(y)dy = 0

saying that b ·∇yci = (∂ybc)i in D′(Rm), i ∈ {1, . . . ,m}, and thus [b, c] = b ·∇yc− ∂ybc = 0 in
D′(Rm). !

Proof of Proposition 3.8. The arguments are very similar to those in the proof of Proposi-
tion 3.4. Let us give the main lines. We assume that b is divergence free, for simplicity. Let A(y)

be a matrix field satisfying (34). For any matrix field U ∈ C1
c (Rm) we have

∫

Rm

A(y) :
(
U

(
Y(−h;y)

)
−U(y)

)
dy

=
∫

Rm

(
A

(
Y(h;y)

)
−A(y)

)
: U(y)dy

=
∫

Rm

(
∂yY (h;y)A(y) t∂yY (h;y)−A(y)

)
: U(y)dy

=
∫

Rm

{(
∂yY (h;y)− I

)
A(y) t∂yY (h;y): U(y) + A(y) t

(
∂yY (h;y)− I

)
: U(y)

}
dy.

Multiplying by 1
h and passing h→ 0 we obtain

−
∫

Rm

A(y) : (b ·∇yU)dy =
∫

Rm

(
∂ybA(y) + A(y) t∂yb

)
: U(y)dy

saying that [b,A] = 0 in D′(Rm).
For the converse implication define, as before

f (s, y) = A
(
Y(s;y)

)
− ∂yY (s;y)A(y) t∂yY (s;y), s ∈R, y ∈Rm.

For any U ∈ C1
c (Rm) we have

FU(s) :=
∫

Rm

f (s, y) : U(y)dy

=
∫

Rm

A(y) : U
(
Y(−s;y)

)
dy −

∫

Rm

∂yY (s;y)A(y) t∂yY (s;y) : U(y)dy

and thus
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d
ds

FU(s) =−
∫

Rm

A(y) :
(
(b ·∇y)U

)
−s

dy −
∫

Rm

∂y
(
b
(
Y(s;y)

))
A(y) t∂yY (s;y) : U(y)dy

−
∫

Rm

∂yY (s;y)A(y) t∂y
(
b
(
Y(s;y)

))
: U(y)dy

=−
∫

Rm

A(y) : (b ·∇y)U−s dy −
∫

Rm

∂yb
(
Y(s;y)

)
∂yY (s;y)A(y) t∂yY (s;y) : U dy

−
∫

Rm

∂yY (s;y)A(y) t∂yY (s;y) t∂yb
(
Y(s;y)

)
: U(y)dy

=
∫

Rm

{
∂yb

(
Y(s;y)

)
f (s, y) + f (s, y) t∂yb

(
Y(s;y)

)}
: U(y)dy

=
∫

Rm

f (s, y) :
{
t∂yb

(
Y(s;y)

)
U(y) + U(y)∂yb

(
Y(s;y)

)}
dy.

The previous equality still holds true for U ∈ Cc(Rm), and our conclusion follows as in the proof
of Proposition 3.4, by the Gronwall lemma. !

Proof of Proposition 3.9. 1. ⇒ 2. By Proposition 3.8 we deduce that A(Y(s;y)) =
∂yY (s;y)A(y) t∂yY (s;y). Using the change of variable y→ Y(s;y) one gets

∫

Rm

A(y)∇yu ·∇yv dy =
∫

Rm

A
(
Y(s;y)

)
(∇yu)

(
Y(s;y)

)
· (∇yv)

(
Y(s;y)

)
dy

=
∫

Rm

A(y) t∂yY (s;y)(∇yu)
(
Y(s;y)

)
· t∂yY (s;y)(∇yv)

(
Y(s;y)

)
dy

=
∫

Rm

A(y)∇yus ·∇yvs dy.

2. ⇒ 3. Taking the derivative with respect to s at s = 0 of the constant function s →∫
Rm A(y)∇yus ·∇yvs dy yields

∫

Rm

A(y)∇y(b ·∇yu) ·∇yv dy +
∫

Rm

A(y)∇yu ·∇y(b ·∇yv)dy = 0.

3.⇒ 2. For any u,v ∈ C2
c (Rm) we can write, thanks to 3. applied with the functions us, vs

d
ds

∫

Rm

A(y)∇yus ·∇yvs dy =
∫

Rm

A(y)∇y

(
(b ·∇yu)s

)
·∇yvs dy
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+
∫

Rm

A(y)∇yus ·∇y

(
(b ·∇yv)s

)
dy

=
∫

Rm

A(y)∇y(b ·∇yus) ·∇yvs dy

+
∫

Rm

A(y)∇yus ·∇y(b ·∇yvs)dy = 0.

Therefore the function s→
∫

Rm A(y)∇yus ·∇yvs dy is constant on R and thus

∫

Rm

A(y)∇yus ·∇yvs dy =
∫

Rm

A(y)∇yu ·∇yv dy, s ∈R.

Up to now, the symmetry of the matrix A(y) did not play any role. We only need it for the
implication 2.⇒ 1.

2.⇒ 1. We have

∫

Rm

A(y)∇yu ·∇yv dy =
∫

Rm

A(y)∇yus ·∇yvs dy

=
∫

Rm

A(y) t∂yY (s;y)(∇yu)s · t∂yY (s;y)(∇yv)s dy

=
∫

Rm

∂yY (s;y)A(y) t∂yY (s;y)(∇yu)s · (∇yv)s dy

=
∫

Rm

(
∂yYA t∂yY

)
−s
∇yu ·∇yv dy

where (∂yYA t∂yY )−s = ∂yY (s;Y(−s;y))A(Y (−s;y)) t ∂yY (s;Y(−s;y)). We deduce that

∫

Rm

(
A(y)−

(
∂yYA t∂yY

)
−s

)
∇yu ·∇yv dy = 0, u, v ∈C1

c

(
Rm

)
.

Since A(y)− (∂yYA t∂yY )−s is symmetric, it is easily seen, cf. Lemma A.1 below, that A(y)−
(∂yYA t∂yY )−s = 0. Therefore we have A(Y(s;y)) = ∂yY (s;y)A(y) t∂yY (s;y), s ∈R, y ∈Rm,
and by Proposition 3.8 we deduce that [b,A] = 0 in D′(Rm). !

Proof of Proposition 3.14. 1. Consider A ∈ dom(L), tA = A. It is easily seen that tAQ± = AQ±

and

∣∣AQ+∣∣2
Q

+
∣∣AQ−∣∣2

Q
=

∫

Rm

(
Q1/2AQ1/2)+ :

(
Q1/2AQ1/2)+ dy
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+
∫

Rm

(
Q1/2AQ1/2)− :

(
Q1/2AQ1/2)− dy

=
∫

Rm

Q1/2AQ1/2 : Q1/2AQ1/2 dy = |A|2Q < +∞

and therefore AQ± ∈HQ. The positive/negative parts AQ± are orthogonal in HQ

(
AQ+,AQ−)

Q
=

∫

Rm

(
Q1/2AQ1/2)+ :

(
Q1/2AQ1/2)− dy = 0.

We claim that AQ± satisfies (43). Indeed, thanks to (42) we can write, using the notation X:2 =
X : X
∣∣G(s)AQ± −AQ±∣∣2

Q
=

∫

Rm

{
Q1/2(∂yY−1(AQ±)

s
t∂yY

−1 −AQ±)
Q1/2}:2 dy

=
∫

Rm

{
tO(s;y)Q

1/2
s

(
AQ±)

s
Q

1/2
s O(s;y)−Q1/2AQ±Q1/2}:2 dy

=
∫

Rm

{
tO(s;y)

(
Q

1/2
s AsQ

1/2
s

)±O(s;y)−
(
Q1/2AQ1/2)±}:2 dy. (64)

Similarly we obtain

∣∣G(s)A−A
∣∣2
Q

=
∫

Rm

{
tO(s;y)Q

1/2
s AsQ

1/2
s O(s;y)−Q1/2AQ1/2}:2 dy. (65)

We are done if we prove that for any symmetric matrices U,V and any orthogonal matrix R we
have the inequality

(
tRU±R − V ±)

:
(
tRU±R − V ±)

"
(
tRUR − V

)
:
(
tRUR − V

)
. (66)

For the sake of the presentation, we consider the case of positive parts U+,V +. The other one
comes in a similar way. The above inequality reduces to

2 tRUR : V − 2 tRU+R : V + " tRU−R : tRU−R + V − : V −

or equivalently, replacing U by U+ −U− and V by V + − V −, to

−2 tRU+R : V − − 2 tRU−R : V + + 2 tRU−R : V − " tRU−R : tRU−R + V − : V −.

It is easily seen that the previous inequality holds true, since tRU+R : V − ! 0, tRU−R : V + ! 0
and
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2 tRU−R : V − " 2
(
tRU−R : tRU−R

)1/2(
V − : V −

)1/2 " tRU−R : tRU−R + V − : V −.

Combining (64), (65) and (66) with

U = Q
1/2
s AsQ

1/2
s , V = Q1/2AQ1/2, R =O

yields

sup
s 0=0

|G(s)AQ± −AQ±|Q
|s| " sup

s 0=0

|G(s)A−A|Q
|s| "

∣∣L(A)
∣∣
Q

saying that AQ± ∈ dom(L).
2. For any A ∈ dom(L), tA = A we can write

(
AQ+,AQ−)

Q
=

∫

Rm

Q1/2AQ+Q1/2 : Q1/2AQ−Q1/2 dy

=
∫

Rm

(
Q1/2AQ1/2)+ :

(
Q1/2AQ1/2)− dy = 0.

Since AQ± ∈ dom(L) we have

L
(
AQ±)

= lim
s→0

G(s/2)AQ± −G(−s/2)AQ±

s

and therefore, thanks to (42), we obtain

(
L

(
AQ+)

,L
(
AQ−))

Q

= lim
s→0

(
G( s

2 )AQ+ −G(− s
2 )AQ+

s
,
G( s

2 )AQ− −G(− s
2 )AQ−

s

)

Q

= lim
s→0

∫

Rm

Q1/2(G( s
2 )AQ+ −G(− s

2 )AQ+)Q1/2

s
: Q1/2(G( s

2 )AQ− −G(− s
2 )AQ−)Q1/2

s
dy

= lim
s→0

∫

Rm

tO( s
2 ;y)(Q

1/2
s
2

A s
2
Q

1/2
s
2

)+O( s
2 ;y)− tO(− s

2 ;y)(Q
1/2
− s

2
A− s

2
Q

1/2
− s

2
)+O(− s

2 ;y)

s

:
tO( s

2 ;y)(Q
1/2
s
2

A s
2
Q

1/2
s
2

)−O( s
2 ;y)− tO(− s

2 ;y)(Q
1/2
− s

2
A− s

2
Q

1/2
− s

2
)−O(− s

2 ;y)

s
dy

=− lim
s→0

∫

Rm

tO( s
2 ;y)(Q

1/2
s
2

A s
2
Q

1/2
s
2

)+O( s
2 ;y) : tO(− s

2 ;y)(Q
1/2
− s

2
A− s

2
Q

1/2
− s

2
)−O(− s

2 ;y)

s2 dy
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− lim
s→0

∫

Rm

tO(− s
2 ;y)(Q

1/2
− s

2
A− s

2
Q

1/2
− s

2
)+O(− s

2 ;y) : tO( s
2 ;y)(Q

1/2
s
2

A s
2
Q

1/2
s
2

)−O( s
2 ;y)

s2 dy

" 0

since

tO(±s/2; ·)
(
Q1/2AQ1/2)±

±s/2O(±s/2; ·) ! 0,

tO(∓s/2; ·)
(
Q1/2AQ1/2)±

∓s/2O(∓s/2; ·) ! 0. !

Proof of Proposition 5.3. For any smooth functions u,ϕ ∈ ker(b ·∇y) we have, cf. Lemma 5.1

∫

Rm

〈
divy

(
E∇y

(
divy(E∇yu)

))〉
ϕ dy

=
∫

Rm

divy

(
E∇y

(
divy(E∇yu)

))
ϕ dy

=
∫

Rm

divy(E∇yu)divy(E∇yϕ)dy

=
∫

Rm

{
divy

(
R tE

)
·
(
tR−1∇yu

)
+ RE tR :

(
tR−1∇y ⊗ tR−1∇y

)
u
}

×
{
divy

(
R tE

)
·
(
tR−1∇yϕ

)
+ RE tR :

(
tR−1∇y ⊗ tR−1∇y

)
ϕ
}

dy

=
∫

Rm

[
divy

(
R tE

)
⊗ divy(R

tE)
]
:
[
tR−1∇yu⊗ tR−1∇yϕ

]
dy

+
∫

Rm

[
RE tR⊗ divy

(
R tE

)]
:
[(

tR−1∇y ⊗ tR−1∇y

)
u⊗ tR−1∇yϕ

]
dy

+
∫

Rm

[
divy

(
R tE

)
⊗RE tR

]
:
[(

tR−1∇yu
)
⊗

(
tR−1∇y ⊗ tR−1∇y

)
ϕ
]

dy

+
∫

Rm

[RE tR⊗RE tR] :
[(

tR−1∇y ⊗ tR−1∇y

)
u⊗

(
tR−1∇y ⊗ tR−1∇y

)
ϕ
]

dy.

Recall that tR−1∇y leaves invariant ker(b ·∇y) and therefore

tR−1∇yu⊗ tR−1∇yϕ ∈ ker(b ·∇y)

implying that
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∫

Rm

[
divy

(
R tE

)
⊗ divy

(
R tE

)]
:
[
tR−1∇yu⊗ tR−1∇yϕ

]
dy

=
∫

Rm

〈
divy

(
R tE

)
⊗ divy

(
R tE

)〉
:
[
tR−1∇yu⊗ tR−1∇yϕ

]
dy.

Similar transformations apply to the other three integrals above, and finally one gets

∫

Rm

〈
divy

(
E∇y

(
divy(E∇yu)

))〉
ϕ dy =

∫

Rm

X :
[
∇Ru⊗∇Rϕ

]
dy

+
∫

Rm

Y :
[(
∇R ⊗∇R

)
u⊗∇Rϕ

]
dy

+
∫

Rm

Z :
[
∇Ru⊗

(
∇R ⊗∇R

)
ϕ
]

dy

+
∫

Rm

T :
[(
∇R ⊗∇R

)
u⊗

(
∇R ⊗∇R

)
ϕ
]

dy

= I1(u,ϕ) + I2(u,ϕ) + I3(u,ϕ) + I4(u,ϕ)

where ∇R := tR−1∇y and X,Y,Z,T are tensors of order two, three, three and four respectively

Xij =
〈
divy

(
R tE

)
i
divy

(
R tE

)
j

〉
, i, j ∈ {1, . . . ,m},

Yijk =
〈(
RE tR

)
ij

divy

(
R tE

)
k

〉
, Zijk =

〈
divy

(
R tE

)
i

(
RE tR

)
jk

〉
, i, j, k ∈ {1, . . . ,m},

Tijkl =
〈(
RE tR

)
ij

(
RE tR

)
kl

〉
, i, j, k, l ∈ {1, . . . ,m}.

Integrating by parts one gets

I1(u,ϕ) =
∫

Rm

X∇Ru ·∇Rϕ dy =
∫

Rm

R−1X∇Ru ·∇yϕ dy =
∫

Rm

S1(u)ϕ dy

where S1(u) =−divy(R
−1X∇Ru). Notice that the differential operator

ξ→ divy

(
R−1ξ

)
= divy

(
tR−1) · ξ + tR−1 : ∂yξ

maps (ker(b ·∇y))
m to ker(b ·∇y), since the columns of R−1 contain fields in involution with b,

and therefore S1 leaves invariant ker(b · ∇y), that is, for any u ∈ ker(b · k∇y), ξ = X∇Ru ∈
(ker(b · ∇y))

m and S1(u) = −divy(R
−1X∇Ru) = −divy(R

−1ξ) ∈ ker(b · ∇y). Similarly we
obtain

I2(u,ϕ) =
∫

Rm

S2(u)ϕ dy, I3(u,ϕ) =
∫

Rm

S3(u)ϕ dy, I4(u,ϕ) =
∫

Rm

S4(u)ϕ dy



Author's personal copy

M. Bostan / J. Differential Equations 256 (2014) 1043–1092 1091

where S2, S3, S4 are differential operators of order three, three and four respectively, which leave
invariant ker(b ·∇y). We deduce that

∫

Rm

〈
divy

(
E∇y

(
divy(E∇yu)

))〉
ϕ dy =

∫

Rm

S(u)ϕ dy

for any u,ϕ ∈ ker(b ·∇y), with S = S1 + S2 + S3 + S4, saying that

〈
divy

(
E∇y

(
divy(E∇yu)

))〉
− S(u)⊥ ker(b ·∇y).

But we also know that

〈
divy

(
E∇y

(
divy(E∇yu)

))〉
− S(u) ∈ ker(b ·∇y)

and thus (62) holds true. !

Lemma A.1. Consider a field A(y) ∈L1
loc(Rm) of symmetric matrices satisfying

∫

Rm

A(y)∇yu ·∇yv dy = 0, u, v ∈C1
c

(
Rm

)
. (67)

Therefore A(y) = 0 a.a. y ∈Rm.

Proof. Applying (67) with vj = yjv, v ∈ C1
c (Rm), ui = yiϕ(y) where ϕ ∈ C1

c (Rm) and ϕ = 1
on the support of v, yields

∫

Rm

A(y)ei · (yj∇yv + vej )dy = 0. (68)

Applying (67) with v and uij = yiyjϕ(y) one gets

∫

Rm

A(y)(yj ei + yiej ) ·∇yv dy = 0. (69)

Combining (68), (69) we obtain for any i, j ∈ {1, . . . ,m}

2
∫

Rm

(
A(y)ei · ej

)
v(y)dy =

∫

Rm

(
A(y)ei · ej + A(y)ej · ei

)
v(y)dy = 0

saying that A(y) = 0, a.a. y ∈Rm. !
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