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Abstract: Time series non-stationarity can be detected thanks to
autocorrelation functions. But trend nature, either deterministic or either
stochastic, is not identifiable. Strategies based on Dickey-Fuller unit root-test
are appropriate to choose between a linear deterministic trend or a
stochastic trend. But all the observed deterministic trends are not linear,
and such strategies fail in detecting a quadratic deterministic trend. Being a
confounding factor, a quadratic deterministic trend makes appear a unit root
spuriously. We provide a new procedure, based on Ouliaris-Park-Phillips unit
root test, convenient for time series containing polynomial trends with degree
higher than one. Our approach is assessed on simulated data. The strategy
is finally applied on two real datasets: money Stock in USA and also on
CO2 atmospheric concentration. Compared with Dickey-Fuller diagnosis, our
strategy provides the model with the best performances.
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1 Introduction

Time series non-stationarity can originate form various sources: either from a trend
component or from a seasonal or even a cyclical component. In this paper, we will be
interested in the non-stationarity caused by a trend. There are two kinds of trends: either
a deterministic trend which can be modelled by some function of time (polynomial trend
is generally considered), or a stochastic trend which presents unit roots. Deterministic
and stochastic trends are two specific models suggested by Nelson and Plosser (1982).

Deterministic trend (Det, d) Zt = a0 + a1 t + ... + ad t
d + Bt (1)

Stochastic trend (Sto, d) ∆d(Zt) = Bt , (2)

where d is an integer and ad ̸= 0. Moreover, L is the backshift operator, i.e., LZt =
Zt−1, so that the 1-lag difference operator ∆ can be expressed as

∆(Zt) = (1− L)(Zt) = Zt − Zt−1 .

Finally (Bt)t is a moving average process

Bt =
∑
j∈Z

bjEt−j , (H1)

where (Et)t is a sequence of identically distributed and independent centred variables,
such that

E(E2k
t ) < ∞, for some k ≥ 2, (H2)

and where parameters bj (j ∈ Z) satisfy∑
j∈Z

|bj | < ∞
∑
j∈Z

bj ̸= 0
∑
j∈Z

b2j |j| < ∞ . (H3)

(H3-a) (H3-b) (H3-c)

We denote (Bt)t as (SN), for stationary noise. It is well known that causal and invertible
ARMA processes satisfy Hypotheses (H1) and (H3). When Bt = Et, it is called (WN)
for white noise. In this case, the associated models defined in equations (S2) and (S2),
are referred as (DetW , d) and (StoW , d).

When modelling time series, specially for macroeconomic and financial data, it is
very important to identify the nature of the trend: either deterministic or stochastic.
Indeed, every type of trend induces specific behaviours, that we can illustrate with
moments properties. Let us consider a (Det, 1) then IE(Zt) = a0 + a1t, and var(Zt) =
σ2
B , providing a stationary variance but a non-stationary mean. On the contrary, under
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a (Sto, 1) model with Z0 = 0, we have IE(Zt) = 0, and var(Zt) = tσ2
B , providing

the opposite feature. Thus the source of non-stationarity differs with trend nature.
Consequently identifying the correct trend is fundamental. Globally, time series with a
deterministic trend always revert to the trend in the long run (the effects of shocks are
eventually eliminated); and the prediction intervals have constant width. On the contrary,
time series with a stochastic trend never recover from shocks to the mean (the effects
of shocks are permanent); and the forecast confident intervals grow with the horizon.
Several authors (see for instance Chan et al., 1977; Nelson and Kang, 1981) studied
the consequences of an inappropriate modelling choice, underlying the importance of
developing procedures able to produce a reliable classification.

Note that non-stationarity coming from a periodical trend (seasonal or even a
cyclical) can also be considered. One can consider the following models:

Deterministic seasonality Zt = St + Yt , (3)
Stochastic seasonality ∆D

r (Zt) = Yt , (4)

where Yt has a trend, which can be modelled by either model (S2) or (S2). Moreover,
in (3), we define St = Si if (t mod r) = i , and S1, ..., Sr are the seasonal components.
And in (4), we consider the seasonal difference operator (r-lag difference operator)

∆r(Zt) = (1− Lr)(Zt) = Zt − Zt−r ,

where r is the season assumed to be known and D is an integer.
Autocorrelation function properties have been widely studied, and are helpful to

specify accurate models for stationary time series. The theoretical autocorrelation
function at lag h (|h| < n) is estimated from data (Z1, ..., Zn) with the random variable

Ξ(h) =

n−h∑
t=1

(Zt+h − Z)(Zt − Z)

n∑
t=1

(Zt − Z)2
, (5)

where

Z =

n∑
t=1

Zt

n
,

is the random mean. We show that autocorrelation functions also have interesting
properties in our framework, since they permit to identify the presence of a trend in a
time series. Nevertheless it cannot be used to distinguish between either a deterministic
or a stochastic trend.

Dickey and Fuller (1979) developed a unit root test that is an essential tool in time
series modelling. The authors considered the following models:

M1 : Zt = ρZt−1 + Et

M2 : Zt = a0 + ρZt−1 + Et

M3 : Zt = a0 + a1 t + ρZt−1 + Et ,
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where (Et)t is a white noise. Dickey-Fuller procedure permits to test the null
hypothesis of a unit root (ρ = 1) against the alternative hypothesis of a stationary AR(1)
model without drift (resp. with drift, resp. with trend), accordingly to model M1 (resp.
M2, resp. M3). Note that a time series with a (linear) deterministic trend, as defined in
(DetW , 1), is included in M3 model, by taking ρ = 0. Consequently, under a (linear)
deterministic trend, Dickey-Fuller unit-root test, led in M3 framework, usually rejects
the null hypothesis. On the other hand, (StoW , 1)-time series are included in M1 model,
with ρ = 1, so that (H0), tested in M1 framework, is usually not rejected, accordingly
with the rejection rate.

Several strategies based on Dickey-Fuller unit root-test have been developed (Dickey
et al., 1986; Perron, 1988; Dolado et al., 1990), and they mostly appear to be appropriate
to choose between a linear deterministic trend or a stochastic trend. But all the observed
deterministic trends are not linear, trends with higher degrees can be involved. In
this case, Ertur (1998) noticed that the usual strategies fail in detecting a quadratic
deterministic trend. Indeed, under a quadratic trend for instance, Dickey-Fuller test
generally concludes to the presence of a (spurious) unit root, even using model M3 that
allows a linear trend.

In this paper, we aim to include polynomial trends with a degree higher than one.
Let us introduce the general model:

M3,d : Zt = a0 + a1 t + ... + ad t
d + ρZt−1 + Bt (ad ̸= 0) .

In Ouliaris et al. (1989), the authors developed a test that corrects the bias caused by
high degree trend when testing for a unit root. We included this test in a strategy, that
correctly identifies either a deterministic trend or a stochastic one.

In Section 2, we detail autocorrelation functions convergence when time series are
driven by a trend, either deterministic or stochastic. This result permits to detect the
presence of a trend, but without precise identification. We also study existing strategies
based on Dickey-Fuller tests, and analyse their performance in classifying models
(DetW , 1), (DetW , 2), (StoW , 1) and (StoW , 2). Note that we also consider the simplest
model (WN) as a null-model. Next, we provide a new strategy, based on trend diagnosis
tests (TDT), theoretically able to identify trends type, even when higher-degrees d are
considered. In this paper we study the asymptotic behaviour of autocorrelation functions
only for models (S2) and (S2). Similar results can be obtained for models (3) and (4)
but are out of the scope of this paper. However, to deal with seasonal data (monthly,
quarterly or biannual) one can extract the seasonal component first and then apply our
proposed strategy. In Section 3, we ran simulations of processes generated by models
(WN), (DetW , 1), (DetW , 2), (StoW , 1) such as (StoW , 2) and we applied the various
tests of stationarity studied previously. It appears that the Dickey-Fuller tests fail in the
presence of a degree 2 trend. On the other hand, the tests included in our TDT strategy
behave as expected on simulations even when (WN) is replaced by a (SN) underlying
process. But because of type I of type II errors associated with the different tests, the
simulations also reveal responses that are complementary to the theoretical one. This
provides a modelling suggestion when the series does not produce one of the theoretical
responses. Finally, in Section 4, we apply our strategy on real data such as money stock
in the USA and also on the CO2 atmospheric concentration, that includes a monthly
seasonal component. All the functions are implemented in R language, and they are
available at the website:
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• http://www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.TrendTS/
TrendTS.html

2 Trend detection and nature identification

2.1 Detection with autocorrelation functions

It is essential to start by plotting the graph of the series in order to visualise its
evolution, but the presence or absence of a trend is sometimes difficult to detect
from the plot. Autocorrelation appears to be a powerful tool in the detection of a
trend insofar as its behaviour is specific in the presence of a trend. We recall that
theoretical autocorrelations ρ(h) = cor(Zt, Zt+h) are well-defined only if process (Zt)t
is square-integrable and stationary. However the associated random variables Ξ(h), as
defined in equation (5), can be computed for any observed time series (Z1, ..., Zn).

2.1.1 Autocorrelation functions behaviour for (WN)-time series

Theorem 2.1: Let (Zt)t be a white noise. Then

√
n t(Ξ(1),Ξ(2), ...,Ξ(r))

L−−−−−−→
n→+∞

Nr(
t(0, ..., 0), Idr) ,

where tv denotes the transpose of vector v, and Idr is the identity r × r-matrix.

Theorem 2.1 is a particular case of Theorems 7.2.1. or 7.2.2. in Brockwell and Davis
(1991), that require Hypotheses (H1), (H3-a) and either Hypothesis (H2) or (H3-c).
Thus, we get that the random variables Ξ(1),Ξ(2), ..., ...,Ξ(r) are asymptotically
independent and identically distributed as Gaussian random variables with zero mean
and variance 1/n. Consequently, for any fixed lag h = 1, ..., r, for large n, the sample
autocorrelation function

√
n ρ̂(h) is expected to be a realisation of a standard Gaussian,

that is to be valued in the interval [−1.96, 1.96], with 95% coverage. Thus, sample
autocorrelation functions (acf) are used to assess for white noise. But even when
the underlying process is a white noise, several autocorrelations among ρ̂(1), ..., ρ̂(r)
may lie out of the interval [−1.96/

√
n, 1.96/

√
n]. The asymptotic independence

property for variables Ξ(h) implies that, when sample size n is large, the number of
observed autocorrelation functions out of this interval behaves as a binomial B(r, 0.05)
distribution. We take into account the multiple testing paradigm, on the one hand by
incorporating the binomial exact test and on the other hand by incorporating a global
testing procedure, using Sidak correction. As an example, we simulate a white noise,
and compute sample autocorrelation functions. Figure 1 shows that three values lie
out of the interval [−1.96/

√
n, 1.96/

√
n], plotted with blue dashed lines. But binomial

exact test (p-value = 0.1159) confirms that such a number remains consistent with white
noise hypothesis. Moreover, a second set of interval, computed with Sidak correction,
is provided, and plotted with red dotted lines. If at least one sample autocorrelation
function lies out this global interval, then white noise hypothesis is rejected. In our
simulation, white noise diagnosis is confirmed, both by graphics and by binomial’s test.
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Figure 1 Sample autocorrelation functions for a white noise simulation (see online version
for colours)

2.1.2 Autocorrelation functions for (Det, d)-time series

Theorem 2.2: Let (Zt)t be a stochastic process such that Zt =
∑d

j=0 ajt
j + Bt, where

ad ̸= 0 and (Bt)t is (SN) satisfying Hypotheses (H1) to (H3). Then

Ξ(h)
IP−−−−−−→

n→+∞
1 , ∀ h ̸= 0 .

Proof is given in Appendix A. Figure 2(a) illustrates the slow decreasing behaviour of
sample autocorrelation functions when time series are driven by a deterministic (Det, 2)
trend.

Figure 2 Sample autocorrelation functions for simulations with either (a) a deterministic or
(b) a stochastic trend (see online version for colours)

(a) (b)
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2.1.3 Autocorrelation functions for (StoW , d)-time series

Theorem 2.3: Let (Zt)t be a stochastic process such that ∆d(Zt) = Et, with Zt = 0,
for any t ≤ 0 and (Bt)t is (SN) satisfying Hypotheses (H1) to (H3). Then

Ξ(h)
IP−−−−−−→

n→+∞
1 , ∀ h ̸= 0 .

Proof is given in Appendix B. Figure 2(b) illustrates the slow decreasing behaviour of
sample autocorrelation functions when time series are driven by a stochastic (StoW , 2)
trend.

2.2 Trend-nature identification with stationarity tests

Previously, we showed that the autocorrelation functions, computed from variables
Z1, ..., Zn, have a particular asymptotic behaviour in presence of a trend. But Figure 2
illustrates that the behaviour is similar either for a deterministic or a stochastic trend.
Consequently, a deeper study has to be led in order to specify the type of trend.

2.2.1 Data generating process

We explore stationarity tests diagnosis according to several data generating processes
(DGPs), and we will also explore the associated differenced processes. We set (Bt)t a
stationarity noise constructed from a white noise (Et)t with variance σ2

E . We consider
processes (Zt)t successively driven by one of the following models:

(SN) Zt = Bt =⇒ ∆(Zt) = Bt −Bt−1, (6)

(Det, 1) Zt = a0 + a1t+Bt =⇒ ∆(Zt) = a1 +Bt −Bt−1, (7)

(Det, 2) Zt = a0 + a1t+ a2t
2 +Bt =⇒ ∆(Zt) = a1 + 2a2t+Bt −Bt−1, (8)

(Sto, 1) Zt = Zt−1 +Bt =⇒ ∆(Zt) = Bt, (9)

(Sto, 2) Zt = 2Zt−1 − Zt−2 +Bt =⇒ ∆(Zt) = ∆(Zt−1) +Bt. (10)

Some of the previous processes are stationary while others are not. We recall that a
process containing a unit root is not stationary. Thus models (Sto, 1) and (Sto, 2) do
contain a unit root and hence are not stationary, whereas models (Det, 1) and (Det, 2)
are not stationary although they do not contain any unit root. Table 1 indicates which
of these series or differentiated series is stationary or has a unit root.

2.2.2 Dickey-Fuller tests

In Dickey and Fuller (1979), the authors introduced unit root tests adapted to models
M1,M2 and M3. Every time the null and the alternative hypothesis are mathematically
expressed in the same way:

(H0) : ρ = 1 against (H1) : |ρ| < 1.
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Table 1 Stationarity and presence of a unit root for processes generated by models (SN),
(Det, 1), (Det, 2), (Sto, 1) such as (Sto, 2), and for the associated differenced
processes

Property DGPa

(SN) (Det, 1) (Det, 2) (Sto, 1) (Sto, 2)

Stationarity for Zt Yes No No No No
Stationarity for ∆(Zt) Yes Yes No Yes No
Unit root for Zt No No No Yes Yes
Unit root for ∆(Zt) No No No No Yes

Note: aDGP.
But the alternative hypothesis interpretation depends on the considered model.

(M1)(H1) : (Zt)t is a stationary and centred AR(1) process;
(M2)(H1) : (Zt)t is a stationary not-centred AR(1) process;
(M3)(H1) : (Zt)t is (linear-)trend stationary (TS).

And test statistics do not have the same expression, possibly leading to opposing
conclusions, even on the same data. To distinguish between the null or the alternative
hypothesis, one has to use the suitable test statistics, adapted to every model.

In Dickey and Fuller (1979), the authors also developed joined tests:

Test Φ1 under (M2)(H0) : (a0, ρ) = (0, 1) ;

Test Φ2 under (M3)(H0) : (a0, a1, ρ) = (0, 0, 1) ;

Test Φ3 under (M3)(H0) : (a0, a1, ρ) = (a0, 0, 1) .

Models (StoW , 1) and (StoW , 2) do contain a unit root and hence are not stationary,
whereas models (DetW , 1) and (DetW , 2) are not stationary although they do not contain
any unit root. Logically, Dickey-Fuller test should not reject the null hypothesis for
almost realisations driven from models (StoW , 1) and (StoW , 2), precisely with a rate
(1− α)%, where α stands for the significance level. Reciprocally, under (DetW , 1) and
(DetW , 2) models, the null hypothesis should be rejected.

2.2.3 OPP stationarity test

In Ouliaris et al. (1989), the authors generalised Dickey-Fuller unit-root tests ρ to
models M3,d with polynomial trends, where d = 2, 3, 4 or 5. We denote this general
test by OPP. Note that the invariance principle for partial sums, required in OPP test,
applies to (SN) stationary linear processes satisfying Hypotheses (H1) to (H3).

From Table 1, we guess that OPP test should reject the null hypothesis only
for models (Det, 1) and (Det, 2), vice versa for (Sto, 1) and (Sto, 2). Applied to the
differentiated series, OPP test should not reject the null hypothesis only for realisations
initially driven from models (Sto, 2).

2.2.4 KPSS stationarity test

In Kwiatkowski et al. (1992), the authors developed another type of stationarity test,
associated to an underlying (SN). Contrary to Dickey-Fuller and OPP tests, KPSS
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test takes the presence of unit root as the alternative hypothesis, and the stationarity
as the null hypothesis. Actually, KPSS test can consider as null-hypothesis either
level-stationarity or trend-stationarity (stationarity around a linear deterministic trend).
However, there is no extension in the literature of KPSS test considering stationarity
around a polynomial deterministic trend.

Note that none model is stationary, except the simplest model (SN). Hence KPSS
test does not appear to be a good candidate for trend-nature identification. Nonetheless,
KPSS test may reveal heterogeneous behaviours when applied to the differentiated series
∆(Zt). Indeed, processes (Zt) driven from models (Det, 1) and (Sto, 1) do become
stationary as soon as they are differentiated.

Here we will use the level stationarity. Note that KPSS test does not include the case
of series with non-invertible noise, as is the case for the (SN) and (Det, 1) differentiated
series. But it is possible to determine the nature of the convergence of the test statistic in
these particular cases (see Appendix C.1), and we even identify the behaviour of the test
statistic under an alternative such as a (Det, 1) or a (Det, 2) process (see Appendix C.2).

2.2.5 TDT strategy

2.2.5.1 Description and theoretical diagnosis

We introduce a strategy to identify trend nature by applying the following tests
successively:

1 OPP test to series Zt

2 OPP test to series ∆(Zt)

3 KPSS test to series Zt

4 KPSS test to serie ∆(Zt).

We call TDT the set of responses to tests 1 to 4 computed on a time series. Let us denote
by Null, the case where the null hypothesis cannot be rejected, and by Alt otherwise.
From equations (6) to (10), we provide the theoretical response obtained by applying
the TDT strategy for the following five models:

(SN) theoretical response: Alt/Alt/Null/Null, (11)

(Det, 1) theoretical response: Alt/Alt/Alt/Null, (12)

(Det, 2) theoretical response: Alt/Alt/Alt/Alt, (13)

(Sto, 1) theoretical response: Null/Alt/Alt/Null, (14)

(Sto, 2) theoretical response: Null/Null/Alt/Alt. (15)

For example the (SN) model does not contain unit root, and is stationary (see Table 1).
So is ∆(SN). Hence the OPP test will accept the alternative of no unit root for (SN)
and ∆(SN), then we have the two responses Alt/Alt/. On the other hand the KPSS test
will accept the null hypothesis of stationarity for (SN) and ∆(SN); then we have the
two responses /Null/Null. Therefore the theoretical response of the TDT strategy for
the (SN) model will be Alt/Alt/Null/Null. A similar explanations can be made for the
other models to obtain the theoretical responses of the TDT strategy.



10 M. Boutahar and M. Royer-Carenzi

2.2.5.2 More diagnosis expected for simulations

Note that, when applying the TDT strategy to a given DGP, there are 16 possible
responses; one response is the theoretical one, as given in equations (11)–(15), whereas
the other responses are not the accurate ones. For example if the DGP is (SN) model,
then the expected response will be the theoretical one Alt/Alt/Null/Null, and the wrong
responses are w/x/y/z where w, x, y, z can take either Alt or Null, except the case
w = Alt, x = Alt, y = Null, z = Null. We insist on the fact that when applying the
TDT procedure on a simulation, the observed diagnosis will not systematically be
the theoretical one. Indeed, a statistical test, even a well-calibrated and powerful one,
produces erroneous responses, in proportion to type I and type II errors. Most often, the
power of a test is difficult to calculate, but when the null hypothesis is verified, the null
hypothesis is still rejected in α% of cases, where α is the nominal level.

• Thus when we consider for example a (WN) model, only the last two tests 3 and
4 are performed under the null hypothesis of stationarity. But we point out that
KPSS test was developed under a white noise hypothesis, that is clearly
convenient for the initial series, but no longer valid for the differentiated series.
Consequently, KPSS behaviour in test 3 will be convenient, whereas KPSS
behaviour in test 4, i.e., on the differentiated series, which is nothing else than a
non-invertible MA(1) process, will not necessarily be in adequacy with the
proportions α and 1− α. Actually, we proved in Appendix C.1, equation (C2),
that KPSS test will never reject the null hypothesis, as n tends to ∞, for series
(∆(Zt))t when (Zt)t is (WN). Consequently, we expect, except for size distortion
effect, that

95%× 100% = 95% (WN)-simulations with response -/-/Null/Null

95%× 0% = 0% (WN)-simulations with response -/-/Null/Alt

5%× 100% = 5% (WN)-simulations with response -/-/Alt/Null

5%× 0% = 0% (WN)-simulations with response -/-/Alt/Alt

(16)

• In the same way, for a (DetW , 1), none of the tests 1 to 3 is performed under the
null hypothesis. And for test 4, it is the same as applying the KPSS test on a
non-invertible MA(1) process. We recall that we proved in Appendix C.1,
equation (C2), that KPSS test will never reject the null hypothesis, as n tends to
∞, for series (∆(Zt))t when (Zt)t is (DetW , 1). Moreover, we proved in
Appendix C.2, equation (C3), that KPSS test will always reject the null
hypothesis, as n tends to ∞, for series under a (DetW , 1) model, meaning that
KPSS test has a very high power (probability of rejecting the null when the
alternative is true) in this case. Hence both tests 3 and 4 have a tractable
behaviour. Consequently, we expect, except for size distortion effect, that

0%× 100% = 0% (DetW , 1)-simulations with response -/-/Null/Null

0%× 0% = 0% (DetW , 1)-simulations with response -/-/Null/Alt

100%× 100% = 100% (DetW , 1)-simulations with response -/-/Alt/Null

100%× 0% = 0% (DetW , 1)-simulations with response -/-/Alt/Alt

(17)
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• For model (DetW , 2), none of the tests 1 to 4 is performed under the null
hypothesis. But once again, KPSS behaviour is tractable both on (Zt)t and
(∆(Zt))t processes. Indeed, in Appendix C.2, equation (C3), we showed that
KPSS test will always reject the null hypothesis, as n tends to ∞, for series (Zt)t
and (∆(Zt))t when (Zt)t is generated under a (DetW , 2) model, meaning that
KPSS test has a very high power in both cases. Consequently, we expect, except
for size distortion effect, that

0%× 0% = 0% (DetW , 2)-simulations with response -/-/Null/Null

0%× 100% = 0% (DetW , 2)-simulations with response -/-/Null/Alt

100%× 0% = 0% (DetW , 2)-simulations with response -/-/Alt/Null

100%× 100% = 100% (DetW , 2)-simulations with response -/-/Alt/Alt

(18)

• Let us now consider a (StoW , 1) process, among tests 1 to 4, only the first and
the last one are led under the null hypothesis. Consequently, when α = 5%, each
of tests 1 and 4 may approximately produce the Null response in 95%
simulations, and the Alt response in the other 5%. This yields to the following
theoretical percentages

95%× 95% = 90.25% (StoW , 1)-simulations with response Null/-/-/Null

95%× 5% = 4.75% (StoW , 1)-simulations with response Null/-/-/Alt

5%× 95% = 4.75% (StoW , 1)-simulations with response Alt/-/-/Null

5%× 5% = 0.25% (StoW , 1)-simulations with response Alt/-/-/Alt

(19)

• Finally for (StoW , 2) process, among tests 1 to 4, only the first and the second
one are led under the null hypothesis of the presence of an unit root. Let us point
out that OPP test is very efficient to detect single unit roots, but it has not been
developed to deal with the case of multiple unit roots. Consequently, OPP
behaviour in test 2, i.e., on the differentiated series, which is nothing else than a
(StoW , 1) process, will be adequate and can be anticipated with proportion α for
Alt response, and respectively 1− α for Null; while the answers given on the
initial series will not necessarily be in adequacy with these proportions.

2.2.5.3 Higher degree trends

Actually, it is possible to detect higher-degree trends, either deterministic (Det, d) or
stochastic (Sto, d), with d = 3, 4, 5, by iterating OPP and KPPS tests on the successive
differentiated series. More precisely,

• Step 0:

Compute sample autocorrelation functions in order to distinguish between a white
noise and a time series with a trend. If the series is driven by a trend, then run
the following steps.

• Step 1:

Run OPP test on the given time series.
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If the null is rejected, we identify a (Det, d) model, otherwise (Sto, d), with
d ≥ 1. It remains to precise d.

• Step 2:

Case 2a: If a (Sto, d) model is detected in Step 1, differentiate the current time
series, and apply OPP test. Iterate this step until the null is rejected. Then d
corresponds to the number of necessary differentiations.

Case 2b: If a (Det, d) model is detected in Step 1, differentiate the current time
series, and apply KPSS test. Iterate this step until the null is not rejected. Then d
corresponds to the number of necessary differentiations.

When applying this strategy, illustrated by a diagram in Figure D1, Appendix D, a model
is suggested, leading either to equation (S2) or (S2), with parameters to be determined.
In particular, process (Bt)t is rarely a white noise, and should rather be modelled by
an ARMA(p, q) process. The validity of the global model has to be confirmed with
residuals diagnosis.

2.2.6 Periodic trend

To deal with seasonal data, we assume that the season r is known and will be equal to
12, 4 or 2 for monthly, quarterly or biannual data respectively. In this case we follow
the Box et al.’s (1976) approach:

• at the first step, we remove the seasonal component

• in the second step, we apply our TDT strategy to the deseasonalised data.

In the first step one need to determine if the seasonal component is deterministic or
stochastic, to consider the model (3) or (4). In Canova and Hansen (1995), the authors
proposed the CH test where the null hypothesis is the presence of deterministic seasonal
component whereas the alternative hypothesis is the presence of seasonal unit root.
Hence we suggest to apply the CH test to the original data. If the null is not rejected,
then we remove the seasonal component by using the harmonic regression to identify
St, in (3) and the deseasonalised data will be Yt = Zt − St. If the null is rejected then
the deseasonalised data will be Yt = (1− Lr)Zt. We then apply our TDT strategy to
Yt.

3 Simulations

We ran 5,000 simulations using every DGP among (SN), (Det, 1), (Det, 2),
(Sto, 1) and (Sto, 2), as defined from equations (6) to (10). We set
n = 300, a0 = 5, a1 = 1, a2 = 1. Random generations of Et were taken from Gaussian
centred variables with standard deviation σE , a fixed value among {0.5, 1, 3, 5, 10, 20,
30, 50, 100, 200, 300, 500}, and the associated stationary noise is either a (WN), or
(SN) such as a MA(2) or an ARMA(1, 1) centred, causal and invertible process. Details
on simulations are given in Supplementary S1.1.
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3.1 Dickey-Fuller tests failure

Table 2 shows that Dickey-Fuller diagnosis is accurate for (WN) and (StoW , 1) models.
As expected, only the convenient model (M3), provides a correct answer for (DetW , 1).
And in Figure E1 from Appendix E, we illustrate that diagnosis is unclear for (DetW , 1)
realisations when using any test under models (M1) or (M2). Indeed, results vary greatly
according to parameter σE , taking value in the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100,
200, 300, 500}. Surprisingly, unit root is far to be correctly detected in (StoW , 2)
realisations. Finally, diagnosis is mainly incorrect for model (DetW , 2), since unit roots
are systematically detected, whereas we have ρ = 0. Thus, Dickey-Fuller-based tests fail
in diagnosing unit root for quadratic trends models.

Table 2 Null-hypothesis rejection rate (%) in Dickey-Fuller tests, when σE = 10

Test DGPa

(WN) (DetW , 1) (DetW , 2) (StoW , 1) (StoW , 2)

Test ρ under (M1) 100 0 0 5.06 0
Test ρ under (M2) 100 0 0 4.96 12.88
Test ρ under (M3) 100 100 0 5.04 32.4
Test Φ1 under (M2) 100 0 100 4.86 95.46
Test Φ2 under (M3) 100 100 100 4.92 99.08
Test Φ3 under (M3) 100 100 100 5.1 90.4

Note: aDGP.

Several strategies based on Dickey-Fuller tests have been developed (Dickey et al.,
1986; Perron, 1988; Dolado et al., 1990). From Table 2, we can deduce that all
the strategies permit to discriminate between first-order deterministic or stochastic
trend, but they do not plan to integrate second-order trends. Thus, the most simple
strategy proposed in Dickey et al. (1986) falsely classifies (DetW , 2) model as a
random walk, whereas Perron (1988) predicts a linear-trend stationary process. The most
advanced strategy given in Dolado et al. (1990) nearly identifies (DetW , 2) processes,
by describing them as ∆(Zt) = β0 + β1 t + Et, instead of ∆(Zt) = β0 + β1 t +
∆(Et), where ∆(Zt) = Zt − Zt−1 is the differentiated series. But diagnosis is mainly
incorrect for (StoW , 2) processes. Surprisingly, only the most simple strategy suggested
in Dickey et al. (1986) detects unit root in half realisations, and predicts either a
linear-trend stationary process or a stationary AR(1) process otherwise. And other
strategies predict linear-trend stationary process. Consequently, it appears necessary to
elaborate a new strategy to identify not only one-degree trends, but also higher-degree
ones.

3.2 Accurate behaviour for OPP and KPSS tests

Table 3 presents the null-hypothesis rejection rate when Bt = Et where σE varies in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. It shows that KPSS and OPP tests
perform as expected, not only for simulations driven from one-order trends, but also
for quadratic trends. Moreover, results remain identical for any value of parameter σE ,
varying from 0.5 to 500, such as shown in Figure F1, Appendix F. We also present
results for simulations with underlying stationary noises (Bt)t, such as a MA(2) and
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an ARMA(1, 1). In this case, both Figures S1and S2, in Supplementary S1.2, show the
same behaviour for KPSS and OPP tests, whatever σE value.

Table 3 Null-hypothesis rejection rate (%) for KPSS and OPP stationarity tests, for DGP
simulations when the underlying process is a white noise (Et)t

Test DGPa

(WN) (DetW , 1) (DetW , 2) (StoW , 1) (StoW , 2)

OPP for Zt 100 100 100 5.96 0
OPP for ∆(Zt) 100 100 100 100 5.86
KPSS for Zt 4.8 98.6 100 98.9 100
KPSS for ∆(Zt) 0 0 100 4.8 98.9

Notes: aDGP.
We vary σE on the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}.
The final rejection rate is computed as the average of the rejection rates
obtained for each σE .

3.3 TDT strategy

We applied successively tests 1 to 4 to any simulation, using a risk α = 5%. In Table 4,
every column returns the diagnosis percentage associated to the corresponding DGP.
All the results with σE value in the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300,
500} are pooled, since the observed percentages show a very high stability with respect
to σE . As we have pointed out before, the percentage in bold refers to the theoretical
diagnosis, i.e., the responses given in equations (11)–(15). We observe that, even if
alternative responses can be observed, the modal responses given by the TDT strategy
are the theoretical ones.

Let us first consider simulations generated from a (WN) model, only two sets of
responses were obtained to TDT: Alt/Alt/Null/Null for 95.25% of (WN) simulations
(percentage written in bold), and Alt/Alt/Alt/Null for the other 4.75% simulations.
This result is convenient with the expected behaviour of KPSS test, as described in
Subsection 2.2.5.2, equation (16), where the expected percentage is 95% (resp. 5%) for
-/-/Null/Null (resp. -/-/Alt/Null) response. The new element that appears thanks to the
simulations is that OPP test is consistent for a stationary noise, i.e., the power converges
to one as n → +∞. As far as (DetW , 1) or (DetW , 2) processes are concerned, almost
only the theoretical response was observed (99.99% and 100% resp.), which is in
line with the expected results given in equations (17) and (18). Once again, the
novelty lies in the high power of the OPP test for series generated by a deterministic
trend, as defined in equation (S2). Finally, for (StoW , 1) or (StoW , 2) simulations,
more responses are observed, but they remain consistent with the expected results
presented in Subsection 2.2.5.2. On the one hand, (StoW , 1) provides observed response
rates very close to the expected ones, given in equation (19). Indeed the observed
percentage 89.38% (resp. 4.28%, 5.91% and 0.44%) for Null/-/-/Null (resp. Null/-/-/Alt,
Alt/-/-/Null and Alt/-/-/Alt) response is very close to the expected one 90.25% (resp.
4.75%, 4.75% and 0.25%). This time, to compute the observed percentages, it is
necessary to sum over the convenient associated responses. For instance, the 89.38%
rate for the observed Null/-/-/Null response is the sum of percentages 86.162% and
3.216% observed for Null/Alt/Null/Null and Null/Null/Alt/Null responses respectively.
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On the other hand (StoW , 2) simulations show that KPSS test has a high power on these
series, detecting almost always the non-stationarity induced by a double unit root, and
moreover that even if OPP test was not developed to deal with multiple unit root, it
detects, in a too conservative way, the presence of this double unit root.

But the interest of Table 4 lies is in its reverse reading. Let us associate a DGP
to a TDT diagnosis. As an example, since none simulation under (WN), (DetW , 1),
(DetW , 2) or (StoW , 1) DGP led to responses Null/Null/Alt/Alt, then if one obtains
such a response on its time series, this means that a (StoW , 2) model is suitable.
Alternately Alt/Alt/Alt/Null diagnosis could lead either to a (WN), a (DetW , 1) or a
(StoW , 1) model. But referring to occurrence percentages, 99.993/(4.753 + 99.993 +
5.822) = 90.436% of simulations with TDT Alt/Alt/Alt/Null are produced by a
(DetW , 1) DGP, only 4.299% by a (WN) and 5.266% by a (StoW , 1). Then a (DetW , 1)
model appears as the best candidate, but (WN) and (StoW , 1) models cannot be totally
excluded. In this precise case, even if a linear trend is present, the relevance of either
a (WN) or a (DetW , 1) model depends on the intensity of the trend in relation to the
variance of the associated noise. The convenient choice can be ruled out by previously
computing autocorrelation functions. If several models remain acceptable, then we
suggest to construct and compare them.

Table 4 Percentage of TDTs associated to every DGP when σE takes values in {0.5, 1, 3, 5,
10, 20, 30, 50, 100, 200, 300}

TDTb DGPa

(WN) (DetW , 1) (DetW , 2) (StoW , 1) (StoW , 2)

Alt/Alt/Alt/Alt 0 0 100c 0.438 0
Alt/Alt/Null/Alt 0 0 0 0 0
Alt/Null/Alt/Alt 0 0 0 0 0
Alt/Null/Null/Alt 0 0 0 0 0
Null/Alt/Alt/Alt 0 0 0 4.273 6.213
Null/Alt/Null/Alt 0 0 0 0.005 0
Null/Null/Alt/Alt 0 0 0 0 90.427
Null/Null/Null/Alt 0 0 0 0 0.007
Alt/Alt/Alt/Null 4.753 99.993 0 5.822 0
Alt/Alt/Null/Null 95.247 0.007 0 0.084 0
Alt/Null/Alt/Null 0 0 0 0 0
Alt/Null/Null/Null 0 0 0 0 0
Null/Alt/Alt/Null 0 0 0 86.162 0.089
Null/Alt/Null/Null 0 0 0 3.216 0
Null/Null/Alt/Null 0 0 0 0 3.220
Null/Null/Null/Null 0 0 0 0 0.015

Total percentage 100 100 100 100 100

Notes: aDGP.
bTDTs.
cItalic font highlights the expected TDT diagnosis associated to every DGP.
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Let us remark that classification stability may decrease when σE keeps growing. Indeed
when noise intensity becomes too high compared to the linear coefficient a1, the
trend becomes imperceptible, and KPSS test may progressively fail to reject the null
for several (DetW , 1) simulations. Then the accurate response Alt/Alt/Alt/Null may
successively be replaced by the wrong response Alt/Alt/Null/Null, that is accurate for
(WN). And the confusion between (DetW , 1) and (WN) naturally increases with σE .
But note that in this case, the true model (DetW , 1) might no longer be the most suitable
for the series, and a simple (WN) model should be preferred.

In order to evaluate the effect of autocorrelation on TDT strategy, we also run
simulations with autocorrelated noises. In other words, we replaced Et either by a
MA(2) process or by an ARMA(1, 1) process, denoted as Bt, see Supplementary S1.3.
Percentage of TDT diagnosis associated to every DGP, driven by (SN), are given in
Supplementary, in Tables S1 and S2. Percentage diagnosis remains similar regardless of
the underlying model for Bt, and are still highly stable with respect to σE value. From
Table 4, S1and S2, we suggest to associate each model with some sets of responses to
TDT.

Finally, from Table 4 we observe that the five responses Alt/Alt/Null/Alt,
Alt/Null/Alt/Alt, Alt/Null/Null/Alt, Alt/Null/Alt/Null and Alt/Null/Null/Null never
appear as output of the TDT strategy, therefore we propose the following associations:

• Alt/Alt/Null/Null is associated with (SN) ,

• Alt/Alt/Alt/Null is associated with (Det, 1) ,

• Alt/Alt/Alt/Alt is associated with (Det, 2) ,

• Null/Alt/Alt/Null are associated with (Sto, 1) ,
Null/Alt/Null/Null
Null/Alt/Null/Alt

• Null/Null/Alt/Alt are associated with (Sto, 2) ,
Null/Null/Alt/Null
Null/Null/Null/Alt
Null/Null/Null/Null

• Null/Alt/Alt/Alt is associated either with (Sto, 1) or (Sto, 2) .

(20)

4 Application on data

4.1 Money stock in the USA

We consider money stock evolution in USA, that is given in billions of dollars and
annual averaged from 1889 to 1988 [see Figure 3(a)]. Autocorrelation functions, given
in Figure 3(b), confirm that data are driven by a trend.

Table S3 shows that our strategy TDT applied to money stock data suggests
a (Sto, 2) model. Dickey-Fuller tests rather suggest a (Sto, 1) model. Indeed, most
Dickey-Fuller tests do not reject the null for the initial series, but they are unable to
detect a unit root in the differentiated series. We construct both a (Sto, 1) and a (Sto, 2)
model, as in equation (S2), by modelling the stationary process (Bt)t by the first clearly
valid model among all ARMA(p, q) with p, q ≤ 2, sorted by minimising Schwarz’s
Bayesian criterion (Schwartz, 1978):
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• (Bt)t is MA(2) for (Sto, 2) model, suggested by our strategy TDT

• (Bt)t is ARMA(1, 1) for (Sto, 1) model, suggested by Dickey-Fuller tests.

In Table 6, we compare both models relevance in terms of prediction criteria computed
between the observed series and predictions for the last 10 values (almost 10%),
such as root mean square error (RMSE) and mean absolute percentage error (MAPE).
Table 6 shows that the (Sto, 2) model provided by our strategy is the most suitable.
In Supplementary S2, we additionally explore the other US macroeconomic indexes
contained in Nelson-Plosser data.

Figure 3 (a) Money stock data evolution (b) Autocorrelation functions (see online version
for colours)

(a) (b)

Table 5 p-values provided by several tests on the initial and the differentiated money stock
series

Series Test

OPP KPSS ρ under (M1) ρ under (M2) ρ under (M3)

Zt 0.2 0.01 0.99 0.99 0.94
∆(Zt) 0.09 0.1 0.01 0.01 0.01

Table 6 Models comparison for money stock series

Model Criterion

RMSE MAPE

TDTa: (Sto, 2) with MA(2) 0.038 0.362
DFb: (Sto, 1) with ARMA(1, 1) 0.317 3.549

Notes: aTDTs.
bDickey-Fuller tests.
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Figure 4 Predictions for money stock series with TDT and DF models (see online version
for colours)

4.2 Evolution of atmospheric CO2 concentration

Since 1959, atmospheric CO2 concentration (ppm) has been measured monthly, at
Mauna Loa Observatory, Hawaii, see Keeling et al. (2001). Figure 5 reveals that the
global average concentration of atmospheric carbon dioxide has a clear increasing trend,
and also a seasonal monthly component.

Figure 5 CO2 atmospheric concentration evolution

As described in Subsection 2.2.6, we start by removing the seasonal component. Since
the data are given monthly, the underlying period is r = 12. CH-test indicates that the
seasonality is deterministic (CH-test, p-value = 1). Thus we deseasonalise, by regressing
the CO2 series on the seasonal dummy variables and by retaining the residuals from
this regression. Autocorrelation functions plotted in Figure 6(b) show that the remaining
series is driven by a trend. From Table 7, we see that Dickey-Fuller tests applied to
the deseasonalised series clearly suggests a (Sto, 1) model, whereas our TDT strategy
produces responses Alt/Alt/Alt/Alt to tests 1 to 4, suggesting rather a (Det, 2) model.
We construct both a (Sto, 1) and a (Det, 2) model, as in equations (S2) and (S2), by
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modelling the stationary process (Bt)t by the first valid model among all SARMA(p,
q) (P , Q) (Dolado et al., 1990) with p, q, P , Q ≤ 2, sorted by minimising Schwarz’s
Bayesian criterion (Schwartz, 1978):

• (Bt)t is SARMA(1, 2)(1, 1) (Dolado et al., 1990) for (Det, 2) model, suggested
by our strategy TDT.

• (Bt)t is SARMA(1, 0)(1, 1) (Dolado et al., 1990) for (Sto, 1) model, suggested
by Dickey-Fuller tests.

Figure 6 (a) CO2 deseasonalised series evolution (b) Associated autocorrelation functions
(see online version for colours)

(a) (b)

In Table 8, we compare both models relevance in terms of information criteria such as
AIC, BIC, AICc (Akaike, 1973; Schwartz, 1978; Hurvich and Tsai, 1991) and prediction
criterion computed between the observed series and predictions for the last six years
(almost 10%), such as RMSE and MAPE. Table 8 shows that the (Det, 2) model
provided by our strategy is the most suitable.

Table 7 p-values provided by several tests on CO2 deseasonalised series

Series Test

OPP KPSS ρ under (M1) ρ under (M2) ρ under (M3)

Zt 0.01 0.01 0.9791 0.99 0.5465
∆(Zt) 0.01 0.01 0.01 0.01 0.01

Table 8 Models comparison for CO2 deseasonalised series

Model Criterion

RMSE MAPE

TDTa: (Det, 2) with SARMA(1, 2)(1, 1) (Dolado et al., 1990) 0.78 1.291
DFb: (Sto, 1) with SARMA(1, 0)(1, 1) (Dolado et al., 1990) 1.757 2.816

Notes: aTDTs.
bDickey-Fuller tests.
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Figure 7 shows that forecasts for CO2 atmospheric concentration maintain the same
trajectory, with great accuracy. Indeed, prediction intervals are so thin that they are
hardly visible.

Figure 7 Predictions for CO2 atmospheric concentration with TDT model, where prediction
intervals coloured in steel blue (resp. light grey) represent 80% (resp. 95%)
confidence level (see online version for colours)

5 Conclusions

We present a strategy to detect and identify the nature of the trend component in time
series. We recall that, as a first analysis, visualising time series plot is indispensable,
since it may already suggest the presence of a trend. Then trend can be confirmed
by analysing autocorrelation functions. Next, whence a trend is detected, it remains to
identify its nature. Indeed deterministic or stochastic trends do not produce the same
forecasts.

We have shown that the Dickey-Fuller test is not suitable. For instance it detects
the presence of spurious unit root for series generated under model (DetW , 2). In this
paper, we rather propose a strategy based on OPP and KPSS tests, called TDT, in order
to select between either a (Det, d) (i.e., a deterministic polynomial trend) or a (Sto, d)
(i.e., a stochastic trend). We have given theoretical justifications on the expected
results when applying our TDT strategy to data (Subsections 2.2.5.1 and 2.2.5.2). In
particular, we had to study the asymptotic behaviour of the KPSS test statistic when
the required assumptions are not verified [either a non-invertible moving average or
the two alternatives (DetW , 1) and (DetW , 2)]. Next our TDT strategy was assessed on
simulations. We have performed simulations by considering some particular cases of
these models namely (WN) (i.e. a white noise), (DetW , 1) (i.e., a deterministic linear
trend), (DetW , 2) (i.e., a deterministic quadratic trend), (StoW , 1) (i.e., a stochastic trend
with a single unit root) and (StoW , 2) (i.e., a stochastic trend with a double unit root). It
appears that the results observed on the simulations (Table 4) correspond to the expected
results. Moreover, the simulations allow us to discuss the power of the OPP test when
it is applied under the alternative hypothesis, and confirm that KPSS test has a size
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distortion if the underlying model is a non-invertible moving average, since it never
rejects the null. We have also pointed out that KPSS test is consistent under the two
alternatives (DetW , 1) and (DetW , 2), since it always rejects the null in this case.

Let us remark that both procedures, TDT strategy and Dickey-Fuller tests, may
result in the same model suggestion. But diagnosis can be different, especially for time
series with a quadratic trend, that reduces Dickey-Fuller tests reliability. Hence when
both procedures suggest different models, both model candidates should be computed,
validated and compared. Applied on two real datasets in Section 4, our automatic TDT
strategy provides a better model than the one provided using the classical Dickey-Fuller
tests. Thus we illustrated the superiority of our strategy on the Dickey-Fuller tests in
selecting the best models which minimise the error of prediction criteria, such as the
RMSE and the MAPE. Therefore we recommend to use our TDT strategy in modelling
non-stationary time series as a procedure to choose a candidate model with an accurate
nature of the trend.

As a conclusion, applying our strategy on data allows to identify a candidate model,
which must be validated and eventually compared with other potential models.

Appendices are available on request by emailing the corresponding author or can
be obtained under http://www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.
TrendTS/TrendTS.html.
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Supplementary

S1 Simulations

S1.1 Details on simulations

We recall that we defined two trend types:

Deterministic trend (Det, d) Zt = a0 + a1 t + ... + ad t
d + Bt (S1)

Stochastic trend (Sto, d) ∆d(Zt) = Bt , (S2)

where we take ad ̸= 0, ∆ is the one-lag difference operator and (Bt)t is a L2-integrable,
centred, stationary process, denoted as (SN), for stationary noise. When (Bt)t is merely
a sequence of identically distributed and independent centred variables, it is called (WN)
for white noise and denoted by (Et)t. In this case, the associated models defined in
equations (S2) and (S2), are referred as (DetW , d) and (StoW , d).

In the main paper, we study processes constructed with an underlying white noise
process, denoted as (WN). Actually, we simulate random independent red gaussian
variables (Et)t with a standard deviation σE , taking value in {0.5, 1, 3, 5, 10, 20,
30, 50, 100, 200, 300, 500}. Next we construct the related processes (DetW , 1),
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(DetW , 2), (StoW , 1) and (StoW , 2). But in Appendix, we also analyse simulations with
an underlying stationary noise, that can be a causal, invertible ARMA process. Thus we
consider either simulations from a MA(2) process

Bt = Et +
1

2
Et−1 −

1

5
Et−2, (S3)

or an ARMA(1, 1) process

Bt −
1

2
Bt−1 = Et −

1

3
Et−1. (S4)

And we deduce the associated (Det, 1), (Det, 2), (Sto, 1) and (Sto, 2) processes. In
details, we perform the following steps:

1 fix a value for σE among {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}.

2 simulate Bt as either

a n = 300 independent realisations of N (0, σ2
E)

b n = 300 realisations of MA(2) process, defined in equation (S3)

c n = 300 realisations of ARMA(1, 1) process, defined in equation (S4)

3 construct the related processes

• (SN) = Bt

• (Det, 1) = 5 + t+Bt

• (Det, 2) = 5 + t+ t2 +Bt

• (Sto, 1) = Zt such that ∆(Zt) = Bt

• (Sto, 2) = Zt such that ∆2(Zt) = Bt.

4 run the stationarity test for every model process, generated in step 3 and compare
the p-values with the nominal level α = 5%.

We repeat steps 2 to 4 5,000 times. And we repeat the whole procedure, as σE
successively takes values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}.

We recall that all the functions are implemented in R language, and they are available
at the website: http://www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.
TrendTS/TrendTS.html.

In this page, we called

• Function acfG.R the R-code for sample autocorrelation plots with Sidak
correction and binomial exact test, as explained in the main paper, Subsection 2.1,
and a script example of acfG use to detail its use.

• Function opp.test.R the R-code for OPP test, and a script example of
opp.test use to detail its use.
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• Function trend.diag.tests.R the code for TDT strategy, as explained in the
main paper in Subsection 3.3, and its associated script Example of
trend.diag.tests use.

• Function trend.diag.high.R the code for TDT strategy, generalised for higher
degree trends, as introduced in Subsection 2.2.5.3, and its associated script
example of trend.diag.high use.

• Script Tables2and3.R the R-script to generate the simulations providing
Tables 2, 3 and Figure F1 in the main paper, such as Figure S1 and S2 in
Supplementary.

• Script Table4.R the R-script to generate the simulations providing Table 4 in
the main paper, such as Tables S1 and S2 in Supplementary.

Figure S1 Null hypothesis rejection rate for either KPSS or OPP stationarity tests applied
upon either the initial or the differentiated series, with respect to the underlying
generating process used for simulations

Notes: All the simulations, driven with a MA(2), where σE takes successive values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}, are gathered.
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S1.2 Behaviour of KPSS and OPP stationarity tests when the underlying noise is
not (WN) – complement to Table 3 and Figure F1

In the main paper, Table 3 and Figure F1 show that KPSS and OPP tests perform
accurately on (WN), (DetW , 1), (DetW , 2), (StoW , 1) and (StoW , 2) simulations. Now
we consider simulations with an underlying stationary noise, denoted as Bt, that is
a causal, invertible ARMA(p, q) process. Figure S1 (respectively Figure S2) displays
results when (Bt)t follows a MA(2) [resp. ARMA(1, 1)], as defined in equation (S3)
[resp. equation (S4)]. We set that σE successively takes values in {0.5, 1, 3, 5, 10, 20,
30, 50, 100, 200, 300, 500}. We still observe the same convenient behaviour, whatever
(Bt)t.

Figure S2 Null hypothesis rejection rate for either KPSS or OPP stationarity tests applied
upon either the initial or the differentiated series, with respect to the underlying
generating process used for simulations (see online version for colours)

Notes: All the simulations, driven with a ARMA(1, 1), where σE takes successive values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}, are gathered.

S1.3 Stability of diagnosis classification, when the underlying noise is not
(WN) – complement to Table 4

In order to identify the trend nature of a time series (Zt)t, we suggest to apply the
following tests successively:
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1 OPP test to series Zt

2 OPP test to series ∆(Zt)

3 KPSS test to series Zt

4 KPSS test to series ∆(Zt).

Under a rejection risk α = 5%, we denote by Null, the case where the null hypothesis
can not be rejected, and by Alt otherwise. So that any time series can be associated to
a single classification among the 24 possibilities. We call TDTs the set of responses to
tests 1 to 4 computed on a time series.

Table S1 Percentage of TDTs associated to every DGP

DGPa

TDTb (SN) (Det, 1) (Det, 2) (Sto, 1) (Sto, 2)

Alt/Alt/Alt/Alt 0 0 100 0.178 0
Alt/Alt/Null/Alt 0 0 0 0 0
Alt/Null/Alt/Alt 0 0 0 0 0
Alt/Null/Null/Alt 0 0 0 0 0
Null/Alt/Alt/Alt 0 0 0 4.562 3.131
Null/Alt/Null/Alt 0 0 0 0.005 0.002
Null/Null/Alt/Alt 0 0 0 0 93.463
Null/Null/Null/Alt 0 0 0 0 0.033
Alt/Alt/Alt/Null 4.744 99.638 0 2.940 0
Alt/Alt/Null/Null 95.256 0.362 0 0.040 0
Alt/Null/Alt/Null 0 0 0 0 0
Alt/Null/Null/Null 0 0 0 0 0
Null/Alt/Alt/Null 0 0 0 88.986 0.044
Null/Alt/Null/Null 0 0 0 3.289 0
Null/Null/Alt/Null 0 0 0 0 3.313
Null/Null/Null/Null 0 0 0 0 0.014

Total percentage 100 100 100 100 100

Notes: Simulations are driven with a MA(2), when σE takes values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}.
aDGP
bTDTs
citalic font highlights the expected TDT diagnosis associated to every DGP.

In the main paper, Table 4 shows results for simulations driven by a white noise
(WN), denoted as (Et)t. The classification remains stable when σE keeps growing.
But when noise intensity is too high in relation to the linear coefficient a1, the trend
becomes imperceptible, and KPSS test sometimes fails to reject the null for several
(detT,1) simulations with σE > 300. Whereas Alt/Alt/Alt/Null diagnosis is accurately
associated to almost 99.9% of (detT,1) simulations while σE ≤ 300, 83.6% of (DetW , 1)
simulations with σE = 500 have the convenient diagnosis Alt/Alt/Alt/Null, but the
16.4% other simulations are associated to diagnosis Alt/Alt/Null/Null, that is accurate
for (WN). And the confusion between (DetW , 1) and (WN) naturally increases with
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σE . In this case, the true model (DetW , 1) might no longer be the most suitable for the
series.

Table S2 Percentage of TDTs associated to every DGP

DGPa

TDTb (SN) (Det, 1) (Det, 2) (Sto, 1) (Sto, 2)

Alt/Alt/Alt/Alt 0 0 100 0.085 0
Alt/Alt/Null/Alt 0 0 0 0 0
Alt/Null/Alt/Alt 0 0 0 0 0
Alt/Null/Null/Alt 0 0 0 0 0
Null/Alt/Alt/Alt 0 0 0 6.747 0.698
Null/Alt/Null/Alt 0 0 0 0.007 0
Null/Null/Alt/Alt 0 0 0 0 96.118
Null/Null/Null/Alt 0 0 0 0 0.029
Alt/Alt/Alt/Null 6.809 99.651 0 0.611 0
Alt/Alt/Null/Null 93.191 0.349 0 0.014 0
Alt/Null/Alt/Null 0 0 0 0 0
Alt/Null/Null/Null 0 0 0 0 0
Null/Alt/Alt/Null 0 0 0 89.465 0.011
Null/Alt/Null/Null 0 0 0 3.071 0
Null/Null/Alt/Null 0 0 0 0 3.124
Null/Null/Null/Null 0 0 0 0 0.020

Total percentage 100 100 100 100 100

Notes: Simulations are driven with a ARMA(1, 1), when σE takes values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}.
aDGP
bTDTs
citalic font highlights the expected TDT diagnosis associated to every DGP.

Here, we consider simulations associated to a more general noise (SN), denoted as
Bt, that is a causal, invertible ARMA(p, q) process. Table S1 (respectively Table S2)
displays results when (Bt)t follows a MA(2) [resp. ARMA(1, 1)], as defined in
equation (S3) [resp. equation (S4)], when σE takes values in the set {0.5, 1, 3, 5, 10,
20, 30, 50, 100, 200, 300}. Furthermore Figures S3 and S4 illustrate the stability of the
classification associated to every model as σE varies.

S2 Nelson-Plosser analysis

In the main paper, we studied the money stock series from the macroeconomic
Nelson-Plosser data. Actually, we applied our strategy on whole the 14 American
macroeconomic indexes, contained in tseries R-package. Let us first study the
unemployment rate series. Sample autocorrelation functions, plotted in Figure S3 do not
show the typical behaviour associated to series with a trend. Consequently, it should be
modelled with a (SN) model.

For all of the other indexes, we ran all the stationarity tests presented in the
main paper; results are given in Table S3. For every series, OPP and DF tests both
detect a unit root in the series, but not in the differenced one, this would naturally
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lead to construct a (Sto, 1) model. Our strategy, and simulation results summarised in
equations (20), suggests that a (Sto, 1) model is convenient, but it additionally suggests
that a (Sto, 2) model should be explored, the best model being used for predictions.

Table S3 p-values provided by several tests on the initial and the differentiated
Nelson-Plosser series

Series Test
OPP KPSS ρ under (M1) ρ under (M2) ρ under (M3)

cpi
Zt 0.2 0.01 0.99 0.99 0.99
∆(Zt) 0.01 0.038 0.01 0.01 0.01
ip
Zt 0.17 0.01 0.99 0.727 0.084
∆(Zt) 0.01 0.1 0.01 0.01 0.01
gnp.nom
Zt 0.2 0.01 0.99 0.99 0.912
∆(Zt) 0.037 0.1 0.01 0.01 0.01
vel
Zt 0.2 0.01 0.012 0.084 0.741
∆(Zt) 0.01 0.042 0.01 0.01 0.01
emp
Zt 0.2 0.01 0.99 0.894 0.436
∆(Zt) 0.01 0.1 0.01 0.01 0.01
int.rate
Zt 0.2 0.01 0.84 0.861 0.833
∆(Zt) 0.01 0.1 0.01 0.01 0.01
nom.wages
Zt 0.2 0.01 0.99 0.99 0.853
∆(Zt) 0.03 0.1 0.01 0.01 0.01
gnp.def
Zt 0.2 0.01 0.99 0.99 0.952
∆(Zt) 0.01 0.055 0.01 0.01 0.01
money.stock
Zt 0.2 0.01 0.99 0.99 0.943
∆(Zt) 0.09 0.1 0.01 0.01 0.01
gnp.real
Zt 0.2 0.01 0.99 0.964 0.412
∆(Zt) 0.012 0.1 0.01 0.01 0.01
stock.prices
Zt 0.2 0.01 0.99 0.99 0.653
∆(Zt) 0.01 0.1 0.01 0.01 0.01
gnp.capita
Zt 0.2 0.01 0.99 0.953 0.371
∆(Zt) 0.011 0.1 0.01 0.01 0.01
real.wages
Zt 0.2 0.01 0.99 0.679 0.938
∆(Zt) 0.01 0.1 0.01 0.01 0.01
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Figure S3 Sample autocorrelation functions for unemployment series (see online version
for colours)


