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1 Introduction

Modeling dependence structures of multivariate extremes is of great interest in many application

fields such as for instance risk management and environmental studies (some applications can be found

in [8], [34]). A well known way to model these structures is to use Pickands dependence function [26].

Let (X1, X2) be a bivariate vector of extremes with marginals F1 and F2. Thus, Pickands dependence

function A is defined via the extreme-value copula’s type representation:

C(u, v) = P(F1(X1) ≤ u, F2(X2) ≤ v) = exp
{

log(uv)A
( log(u)

log(uv)

)}
, 0 ≤ u, v ≤ 1, (1)

and totally characterizes the joint distribution F (x1, x2) = C(F1(x1), F2(x2)) of (X1, X2) knowing its

marginal laws. It may be shown that A : [0, 1] → [1/2, 1] is a convex function such that A(0) =

A(1) = 1 and max(t, 1 − t) ≤ A(t) ≤ 1. The upper bound A(t) = 1 for all t ∈ [0, 1] corresponds to

the independence copula C(u, v) = uv for u, v ∈ [0, 1] while the lower bound A(t) = max{t, 1 − t}

corresponds to the comonotone copula C(u, v) = min{u, v}.

The problem of estimating Pickands dependence function by nonparametric methods has been

extensively studied in the literature. From the pioneer estimator of Pickands [26], several alternative

estimators have been proposed and studied (see e.g. [10], [17], [25], [21], [31], [13], [5], [7], [6] in the

bivariate setting and [34], [11] [24], [2], [15], [16] in the multivariate setting). One of the assumptions

of the above mentioned studies is that the sequence of extremes values used for estimation is i.i.d.,

which excludes a possible serial correlation of the sequence. This bias is to a certain extent supported

by theoretical results on maxima of strictly stationary sequences (see [22, 23] in the univariate case

and [18, 19] in the multivariate case). A key result is the condition "D(un)" of [22, 23] ensuring that

under some kind of mixing condition on the underlying stationary process, the maximum of the process

asymptotically follows an extreme value distribution as in the i.i.d. case, and that sufficiently separated

rare events are almost independent, thereby justifying the use of the block maximum approach for most

stationary time series. However, in practical situations, it is well known that temporal dependence of

the underlying series leads to local temporal clusterings of its extreme values, so that the temporal

independence of extremes is usually an unrealistic assumption. In this paper, we propose to study

the properties of a classical estimator of Pickands dependence function, the so called CFG estimator

(see [6] and [34]), based on a sequence which is assumed to be strictly stationary and absolutely regular

in [30]’s sense.

Formally, let P0 = σ(Xt, t ≤ 0), Fm = σ(Xt, t ≥ m) and define the decreasing sequence of absolutely

regular coefficients of X by

β(m) = sup
Ai∈P0,Bj∈Fm

1
2

I∑
i=1

J∑
j=1
|P(Ai ∩Bj)−P(Ai)P(Bj)| (2)
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where the supremum is taken over all pairs of partition {A1, . . . , AI} and {B1, . . . , AJ} of a set Ω

such that Ai ∈ P0 for each i and Bj ∈ Fm for each j. We say that X is β-mixing if it satisfies the

condition:

lim
m→+∞

β(m) = 0.

A lot of classical models satisfy this condition, in particular the important class of linear stochastic

processes are absolutely regular, provided that they are based on innovation random variables with

a Lebesgue-integrable characteristic function. In order to make the presentation clearer, we place

ourselves in a bivariate setting, although the extension to the multivariate case is straightforward.

The paper is organized as follows. In section 2, we recall the definition of the CFG estimator and its

properties in the i.i.d setting. In Section 3, we study the consistency and asymptotic normality of the

CFG estimator in our dependent setting. We moreover propose a test of independence of the vector’s

margins. Section 4 presents a simulation study allowing to investigate the finite sample properties of

the estimate and to evaluate the performance of the test. Section 5 is devoted to the proofs.

2 CFG estimator of the dependence function

Let X = (Xt)t∈Z with Xt = (Xt,1, Xt,2) be a strictly stationary process such that Xt has a bivariate

extreme value distribution (BEV). To fix ideas, we can think of Xt as the pair of largest values of

two characteristics observed at the same time t. We denote by F the joint distribution Xt. Recall

that F (x1, x2) = C(F1(x1), F2(x2)), where C is a copula function defined by (1) and the marginals F1

and F2 of X1,t and X2,t belong to the parametric family of generalized extreme distributions (GEV)

(see [14]). Thus C and F only depends on the one-dimensional dependence function A as soon as F1

and F2 are known. Among the numerous estimators of A proposed in the literature, the CFG estimator

proposed in [6] has been shown to perform better than its major competitors from a theoretical point of

view and a prior finite sample study seems to confirm its superiority in numerous practical situations.

In order to define the CFG estimator based on a size n stationary sequence (Xi,1, Xi,2)1≤i≤n of X, let

us define as in [34] an auxiliary bivariate sequence Zi = (Zi,1, Zi,2)1≤i≤n by

Zi,1 = logF2(Xi,2)
logF1(Xi,1) + logF2(Xi,2) , Zi,2 = logF1(Xi,1)

logF1(Xi,1) + logF2(Xi,2) , i = 1, . . . , n. (3)

Notice that the Zij ’s belong to [0, 1]. Thus, when A has a first order derivative, it may be expressed

as a function of the distributions H1(z) = P(Zi,1 ≤ z) or H2(z) = P(Zi,2 ≤ z). More precisely, one

has by [6]’s Proposition 2.1

H1(z) = z + z(1− z) d
dz

logA
(

zs

1− s

)
, H2(z) = z + z(1− z) d

dz
logA(z), (4)

so that solving the differential equations leads to two representations of A

logA1(s) =
∫ 1−s

0

H1(z)− z
z(1− z) dz and logA2(s) =

∫ s

0

H2(z)− z
z(1− z) dz. (5)
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Replacing the unknown H1 and H2 by their empirical counterparts leads to the estimators

Â1(s) = exp
{∫ 1−s

0

Ĥ1(z)− z
z(1− z) dz

}
, and Â2(s) = exp

{∫ s

0

Ĥ2(z)− z
z(1− z) dz

}
. (6)

Therefore, one may propose for A the weighted estimator such that:

log Â(s) = λ(s)
∫ 1−s

0

Ĥ1(z)− z
z(1− z) dz + (1− λ(s))

∫ s

0

Ĥ2(z)− z
z(1− z) dz, (7)

leading to

Ân(s) =
(
Â1(s)

)λ(s) (
Â2(s)

)1−λ(s)
, Ân(1) = 1,

where λ(s) is an appropriately chosen nonnegative weight function in (0, 1). Notice that this definition

of Ân is the particular case in our bivariate setting of [34]’s definition, given in a multivariate setting.

In the bivariate case, one has Zi,1 = 1 − Zi,2, H2(z) = 1 − H1(1 − z) so that (5) squares with [6]’s

Equation (2), replacing λ by p, A0
n by A1 and A1

n by A2. When λ is a bounded function on [0, 1], a

closed form expression for Ân is given in [6]. Namely,

Ân(t) =


(1− t)Q1−λ(t)

n if 0 ≤ t ≤ Z(1)2

ti/n(1− t)1−i/nQ
1−λ(t)
n Q−1

i if Z(i)2 ≤ t ≤ Z(i+1)2 (1 ≤ i ≤ n− 1)

tQ
−λ(t)
n si Z(n)2 ≤ t ≤ 1,

(8)

with Qi =
{

i∏
k=1

Z(k)2
1− Z(k)2

}1/n

and Z(i)2 the ith order statistic of the sample (Z1,2, . . . , Zn,2). Notice

that since Ĥ1 and Ĥ2 are discontinuous functions, Ân is not a convex function. Moreover, Ân(1) 6= 1

for arbitrary functions λ. Following [34], we can put λ(s) = s in order to achieve this property. An

optimal choice for λ is given in [34]’s Remark 3.

When the margins of (Xi,1, Xi,2)1≤i≤n are i.i.d., [6]’s Proposition 4.1 states that when A has a

bounded first derivative, Ân is a uniformly strongly consistent estimator of A. Namely,

sup
s∈[0,1]

|Ân(s)−A(s)| a.s.−→ 0. (9)

Moreover, [6]’s Proposition 3.2 gives the weak convergence of the estimate to a Gaussian process.

More precisely, using the formulation of [34],

√
n(log Ân − logA) D[0,1]−−−→ U, (10)

with

U(s) =
2∑
j=1

λj(s)
∫ 1−sj

0

Bj(z)
z(1− z)dz,

where s1 = s, s2 = 1− s, t1 = t, t2 = 1− t, λ1 = 1− λ2, B1(z) = B(z1, 1), B2(z) = B(1, z2) and B is

a bivariate centered Gaussian process with covariance function

E(B(z)B(z′)) = V ar(1Z1≤z∧z′), (z, z′) ∈ R4 (11)
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It may be easily shown that U is a mean zero Gaussian process with covariance function :

Γ(s, t) =
2∑
i=1

2∑
j=1

λi(s)λj(t)
∫ 1−si

0

∫ 1−tj

0

Hij(z1, z2)−Hi(z1)Hj(z2)
z1z2(1− z1)(1− z2) dz1dz2, (12)

where Hij(z1, z2) = P(Z1,i ≤ z1, Z1,j ≤ z2). In particular, one has for all s ∈ [0, 1],

√
n(log Ân(s)− logA(s)) L−→ N (0,Γ(s)), with Γ(s) = Γ(s, s). (13)

Notice that a consistent estimator of Γ(s) is easily obtained by replacing Hij , Hi and Hj by their

empirical estimators in (22). For statistical purposes, it is possible to choose the weight functions λ1

and λ2 so at to minimize Γ(s).

In the following, we propose to see what is going on with these properties if the sequences

(Xi,1, Xi,2)1≤i≤n have some kind of weak dependence.

Remark 1. Notice that in our bivariate setting Γ(t) can be easily expressed as a function of H1 only

as in [6]’s Proposition 3.2, using the fact that H2(z) = 1−H1(1− z) and H12(z1, z2) = H1(z1 ∨ (1−

z2))−H1(1− z2).

Remark 2. Extensive numerical work suggest that the CFG estimator performs better than its classical

competitors. Nevertheless, it suffers from limitations. Firstly, the margins F1 and F2 of X1 and X2

are assumed to be known, so that a sample (F1(X1,1), F2(X1,2)), . . . , (F1(Xn,1), F2(Xn,2)) from A is

available. In practice, however, margins are rarely known. In [13], the authors propose to estimate F1

and F2 by their empirical counterparts F̂1n and F̂2n and to base the estimation of A on the pseudo-

observations (F̂1n(X1,1), F̂2n(X1,2)), . . . , (F̂1n(Xn,1), F̂2n(Xn,2)), which amounts to working with the

pairs of scaled ranks. They show that their rank-based version of CFG estimators of A has the same

asymptotic properties as the classical one and assess its finite sample superiority by a simulation

study. Secondly, the CFG estimator is neither convex nor do it satisfies the boundary restriction

max{t, 1 − t} ≤ A(t) ≤ 1, in particular the endpoint constraints A(0) = A(1) = 1. In [12], the

authors propose a modified version of [13] estimator which fits the above contraints, without changing

the asymptotic properties.

3 The CFG estimator for absolutely regular sequences

Hereafter, we assume that (Xt)t∈Z, Xt = (Xt,1, Xt,,2) is an absolutely regular strictly stationary

process with BEV distribution F and margins F1 and F2. We denote by A, the Pickands dependence

function in (1) and by Ân the CFG estimator of A defined by (7), based on a sequence (X1, . . . , Xn)

of X. In the following, we study the asymptotic properties of Ân in this setting and propose a test of

independence for the margins of X.
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3.1 Asymptotic properties

Let B∗ be a bivariate centered Gaussian process with covariance function

E(B∗(z)B∗(z′)) =
∑
k∈Z

Cov(1Z0≤z,1Zk≤z′) (14)

and denote by D[0, 1] in the usual D space on [0, 1] with Skorokhod topology (see. [3]). Thus, we have

the following

Theorem 3.1. Let (X1, . . . , Xn) be an absolutely regular strictly stationary sequence with β-mixing

coefficients (β(n))n>0. Suppose A(s) has a bounded first derivative and that λ in (7) is a bounded

function on [0, 1]. Then,

i) If β(n) = O(n−θ) for some θ > 1 +
√

2 thus, one has

sup
s∈[0,1]

|Ân(s)−A(s)| P−→ 0, (15)

ii) If β(n) = O(n−θ) for some θ ∈ (1, 2] then

√
n(log Ân(s)− logA(s)) D−→ U(s) =

2∑
j=1

λj(s)
∫ 1−sj

0

B∗j (z)
z(1− z)dz = N (0,Γ∗(s)) (16)

where s1 = s, s2 = 1− s, t1 = t, t2 = 1− t, λ1 = 1− λ2, B∗1(z) = B∗(z1, 1), B∗2(z) = B∗(1, z2)

and Γ∗(s) = E(U(s)2) = Γ∗(s, s) with

Γ∗(s, t) =
2∑
i=1

2∑
j=1

λi(s)λj(t)
∫ 1−si

0

∫ 1−tj

0

E(B∗i (z1)B∗j (z2))
z1z2(1− z1)(1− z2)dz1dz2 <∞ (17)

Remark 3. Notice that asymptotic confidence intervals for Ân(s) may be easily built as soon as we

get a suitable estimator Γ̂∗n(s) for Γ∗(s). At the confidence level 1 − α and for large enough n , one

has

P

(
−q1−α2 ≤

√
n

Γ∗(s) log Ân(s)
A(s) ≤ q1−α2

)
' 1− α,

so that

CI1−α =

Ân(s)e−q1−α2
√

Γ̂∗n(s)
n , Ân(s)eq1−α2

√
Γ̂∗n(s)
n

 ,
where q1−α/2 is the order (1− α/2)th quantile of the normal distribution.

3.2 Testing for independence

Several tests of independence for bivariate extremes have been studied in the i.i.d. case by [1, 6]

[20], [32] and [33]. Following the same scheme as [6], we can exploit Theorem 3.1 to construct a test

for pairwise independence of the extreme process. More precisely, we wish to test:
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 H0 : A(t) = 1 ∀t ∈ [0, 1]

H1 : ∃ t/A(t) 6= 1,

based on a sequence (Xi,1, Xi,2)1≤i≤n of the strictly stationary absolutely regular bivariate extreme

process X. For that task, we will use the measure of association proposed in [32] and [33]. Set

m = 2(1 − A(1/2)). One has m = 1 in case of total dependance and m = 0 in case of independence,

so that the above test may be rewritten as H0 : A(1
2) = 1

H1 : A(1
2) 6= 1.

Thus, let’s define the test statistic

Un =
√√√√ n

Γ̂∗n
(

1
2

) log Ân
(1

2

)
. (18)

Under H0, Un
D−→ N(0, 1) so that for a nominal level α, we can base our test on the critical region

Rα =
{

(Xi,1, Xi,2)1≤i≤n, Un > q1−α/2
}
,

where q1−α/2 is the order 1− α/2 quantile of a standard Gaussian distribution.

4 A simulation study

In the sequel, we run a simulation study allowing to investigate the finite sample properties of

the CFG’s estimator and to evaluate the performance of the test proposed in subsection 34, based on

bivariate logistic distributions (see [32]) This model is known to be flexible enough to cover a wide

range of dependence functions for bivariate extremes.

4.1 Models

To generate a bivariate extremes (X1, . . . , Xn), Xi = (Xi,1, Xi,2) sequence which is not i.i.d. we

first generate an i.i.d. bivariate sequence (Y1, . . . , Yn), Yi = (Yi,1, Yi,2) arising from a Gumbel copula

(see Gumbel 1960), and hence with the following symmetric logistic dependence function :

AY (t) = (t
1
r + (1− t)

1
r )r, r ∈ (0, 1), (19)

with marginal distributions G1 and G2.

Then we set

Xi =

 max(Yi−(k−1),1, . . . , Yi−1,1, Yi,1)

Yi,2

 1 ≤ i ≤ n, (20)

Thus, (Xi)i=1,...,n is a strictly stationary k-dependent bivariate sequence with marginal distributions

F1 = Gk1, F2 = G2 and dependence function given by the following
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Proposition 4.1. Let (Yi)1≤i≤n be an i.i.d sequence of bivariate extremes with Gumbel copula (19).

Thus, the bivariate sequence (20) has an asymetric logistic copula with the following Pickands depen-

dence function.

AX(t) =
(

1− 1
k

)
t+

((
t

k

) 1
r

+ (1− t)
1
r

)r
, r ∈ (0, 1), k ≥ 1

Remark. Since X = (Xi)i=1,...,n is k-dependent, it follows that the mixing coefficient defined in

(2) is such that β(m) = 0 ∀m > k, and hence X is β-mixing.

Independence between margins is obtained when r = 1 while dependence increases as r goes to

zero.

To illustrate the serially correlation of X, we simulate some realisations by assuming that Y has

a standard Gumbel marginal distributions G1 = G2 and that X is 1-dependent and given by the

equation (20).

Note that in this case the bivariate distribution of Y is given by

FY (y1, y2) = exp

−(e−y1 + e−y2)

( e−y1

e−y1 + e−y2

) 1
r

+
(

e−y2

e−y1 + e−y2

) 1
r

r .
Figure 1 shows the sequence (Yi)1≤i≤n for different sizes n = 100, 1000, 5000, and parameters

dependency r = 0.1, 0.5, 0.9.

Figure 2 shows that the serial correlation of the sequence (Xi)1≤i≤n is significant, observe that

Xi,1 and Xi−1,1 are dependent (serial correlation), Xi,1 and Xi,2 are also dependent (the components

of Xi are dependent since r 6= 1).

In this section we will investigate, by simulation, the behaviour of the CFG’s estimator. Following

the remark 2 of section 2 we will consider only the empirical version of this estimator, i.e. we consider

the CFG’s estimator given by the equations (8) and (3), but in the last one we replace the marginal

distributions F1 and F2 by their empirical estimators

F̂1(x) = 1
n+ 1

n∑
t=1
1Xt,1≤x, F̂2(x) = 1

n+ 1

n∑
t=1
1Xt,2≤x

where 1A is equal to 1 if A is true and equal to 0 otherwise.

An extensive simulation shows that this empirical estimator has a good properties than the original one,

moreover it has also the advantage that no parametric form is assumed for the marginal distributions

F1 and F2.

All the following properties are based on R = 1000 replications.

4.2 Finite sample properties of the CFG’s estimator

In this subsection we investigate, by simulation, the behaviour of the mean integrated square error

(MISE) of the empirical CFG’s estimator which is defined as

MISE =
∫ 1

0
E(Ân(s)−A(s))2ds, (21)
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Figure 1 – Scatter plots of Y for different values of n and r

Figure 2 – Correlation of X (n = 5000 and r = 0.1)
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r= n=50 n=100 n=200 n=500

0.1 1.885537 0.9952461 0.4765154 0.1917919

0.2 6.948347 3.275925 1.698192 0.6732344

0.5 53.33643 25.70162 12.92988 5.148036

0.7 142.7788 74.63336 35.32554 12.89887

0.9 319.2063 154.8809 85.00207 32.37675

1 455.4138 273.8141 122.5095 49.02234

Table 1 – 105× estimated MISE for the CFG’s estimator with k = 1.

r= n=50 n=100 n=200 n=500

0.1 106.0859 49.1597 25.32425 9.812296

0.2 111.5493 49.61342 27.13266 9.482449

0.5 162.2376 80.07837 39.35513 15.13582

0.7 275.2151 128.0954 62.669 26.31388

0.9 470.7487 229.0321 118.0711 45.28518

1 566.4828 298.0881 172.282 60.13233

Table 2 – 105× estimated MISE for the CFG’s estimator with k = 2.

where Â is the estimator of A(s).

In our simulation we estimate the MISE by

M̂ISE = 1
RM

R∑
i=1

M∑
j=1

(
Ân,i(sj)− Â(sj)

)2
,

where Ân,i is the empirical CFG’s estimator of A in the ith replication and sj = j/M, and M is the

size of grid on [0, 1] to obtain an appproximation of the integral in 21, in the following we choose

M = 1000. We vary the within-dependence coefficient k as well as the between-dependence coefficient

r, taking k ∈ {2, 3, 4} and r ∈ {0.1, 0.5, 0.9, 1} (r = 1 corresponds to independence between Xi,1 and

Xi,2 while k = 1 corresponds to independence of the Xi,1’s). The weight function in (8) is taken to be

equal to λ(s) = 1− s.

Tables 1 to 3 show that the precision of our estimate increases with the sample size and the

dependence between X’s components, and it decreases as the dependence within the Xi1’s increases.

Figure 3 shows the real dependence function and the CFG’s estimator for one replication.
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r= n=50 n=100 n=200 n=500

0.1 267.7836 125.0626 55.09616 26.68735

0.2 247.1549 142.4403 67.84884 25.69461

0.5 281.8439 152.3831 76.44616 31.39142

0.7 418.3119 219.1956 99.73068 37.57211

0.9 674.0237 297.5162 153.1762 57.719

1 798.3534 386.3616 191.5574 72.67077

Table 3 – 105× estimated MISE for the CFG’s estimator with k = 3.

Figure 3 – The empirical CFG’s estimator, n=
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4.3 Size distortion and power of the proposed test for independence

To test independence by using the test statistic Un defined by (34) we need an estimate Γ̂∗n
(

1
2

)
for the asymptotic variance Γ∗

(
1
2

)
. Straigtforward computations, based on multivariate smoothed

periodogram see [27], lead to

Γ̂∗n
(1

2

)
= M2

M∑
i=1

M∑
j=1

1
ij(2M − i)(2M − j)

(
F

(i,j)
1,1 + F

(i,j)
1,2 + F

(j,i)
1,2 + F

(i,j)
2,2

)
, (22)

where

F (i,j)
r,s =

∑
|k|≤m

w

(
k

m+ 1

)
γ̂(i,j)
r,s (k),

γ̂
(i,j)
1,1 (k) = 1

n

n−|k|∑
t=1

(
1Zt,1≤ti − Zi,1

) (
1Zt+k,1≤tj − Zj,1

)
,

Zj,1 = 1
n

n∑
t=1
1Zt,1≤tj ,

γ̂
(i,j)
1,2 (k) = γ̂

(i,j)
2,1 (k) = 1

n

n−|k|∑
t=1

(
1Zt,1≤ti − Zi,1

) (
1Zt+k,2≤tj − Zj,2

)
,

Zj,2 = 1
n

n∑
t=1
1Zt,2≤tj ,

γ̂
(i,j)
2,2 (k) = 1

n

n−|k|∑
t=1

(
1Zt,2≤ti − Zi,2

) (
1Zt+k,2≤tj − Zj,2

)
.

ti = i
2M and Zi = (Zi,1, Zi,2)1≤i≤n is given by (3). Following [4] we choose the Parzen window

w(x) = 1− x2 and the truncation parameter is such that 1/m+m/n→ 0 as n→∞, and M is large

enough.

A simulation study shows the test statistic based on the estimator 22 has a very large size distortion

for moderate sample size and hence can not be used for extreme values data.

To overcome this problem we will estimate the asymptotic variance Γ∗
(

1
2

)
by using the block bootstrap

which is adapted to time series with serially correlation (see appendix for more detail).

4.3.1 Size

To study the size of the test we simulate the bivariate random sequence Xi as in (20) with r =

1, k = 1, G1 and G2 are standard Gumbel distribution, hence X is a 1-dependent process but its

components Xi,1 and Xi,2 are independent.

The Table 4 shows that as the sample size n increases the empirical size becomes close to the

nominal level α.
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Size of the sample n

Level α
n=25 n=50 n=100 n=200

α = 1% 4.6 3.2 2.1 1.4

α = 5% 11.5 8.9 6.8 6

α = 10% 16.7 14.3 12.3 11.6

Table 4 – Empirical test sizes in %.

Size of the sample n

Level α
n=25 n=50 n=100 n=200

α = 1% 64.9 93.1 99.7 100

α = 5% 83.7 97.8 100 100

α = 10% 90.1 99.5 100 100

Table 5 – Empirical test powers in %.

4.3.2 Power

To study the power of the test we simulate the bivariate random sequence Xi as in (20) with

r = 0.5, k = 1, G1 and G2 are standard Gumbel distribution, hence X is a 1-dependent process and

its components Xi,1 and Xi,2 are dependent.

The Table 5 shows that as the sample size n increases the empirical power becomes close to 100%;

therefore our test is a more powerfull even for a moderate sample. Other simulation, not reported in

this paper, shows that when r is close to 0, for example r = 0.1 then the test statistic has a very good

power even for small samples.

5 Proofs

5.1 Proof of Theorem 3.1

5.1.1 Proof of i)

By (5) and (7), one has

log Â(s)− logA(s) = λ(s)
∫ 1−s

0

Ĥ1(z)−H1(z)
z(1− z) dz + (1− λ(s))

∫ s

0

Ĥ2(z)−H2(z)
z(1− z) dz.

Following [34]’s proof of theorem 1, we write for j = 1, 2 and ν ∈ (0, 1/2)
√
n(Ĥj(z)−Hj(z))

z(1− z) =
√
n(Ĥj(z)−Hj(z))

(Hj(z)(1−Hj(z)))ν
(
Hj(z)(1−Hj(z))

z(1− z)

)ν
(z(1− z))ν−1 (23)
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and we will show that the supremum over the integration interval of the two first terms at the right

hand side of (23) are bounded in probability. Hence,

sup
s∈[0,1]

∣∣∣∣∣
∫ 1−s

0

Ĥj(z)−Hj(z)
z(1− z) dz

∣∣∣∣∣ ≤ C√
n

∫ 1

0
(z(1− z))ν−1dz = op(1)

so that since λ is a bounded function on [0, 1]

sup
s∈[0,1]

∣∣∣log Â(s)− logA(s)
∣∣∣ = op(1),

and i) holds by continuity of the log function.

— To show that

sup
z∈[0,1−sj ]

∣∣∣∣Hj(z)(1−Hj(z))
z(1− z)

∣∣∣∣ < C,

let us set D1(z) = d

dz
logA

(
zs

1− s

)
and D2(z) = d

dz
logA(z). By (4) one has for j = 1, 2

Hj(z) = z + z(1− z)Dj(z). Since 1/2 ≤ max(s, 1− s) ≤ A(s) ≤ 1 and A′ is bounded (by K),

|D1(z)| =
|A′

(
zs

1−s

)
|

A
(
zs

1−s

) s

1− s ≤
2Ks
1− s, |D2(z)| = |A

′(z)|
A(z) ≤ 2K

so that, for any fixed s and 1− s ,

Hj(z)(1−Hj(z))
z(1− z) = (1 + (1− z)Dj(z))(1− zDj(z))

is bounded too.

— Let us show that

sup
z∈[0,1−sj ]

∣∣∣∣∣
√
n(Ĥj(z)−Hj(z))

(Hj(z)(1−Hj(z)))ν

∣∣∣∣∣ < C.

We use for that task [28]’s theorem 2.2 for strong mixing sequences and use the fact that

absolutely regular sequences are also strong mixing so that the theorem 2.2 also applies to

absolutely regular sequences. Namely,

Let {Un, n ≥ 1} be a strong mixing stationary sequence of uniform random variables on [0, 1],

with mixing coefficients (αn)n>0. If there exists some θ ≥ 1 +
√

2 and ε > 0 such that α(n) =

O(n−θ−ε), then we have
bn(.)
q(.)

D[0,1]−−−−→ B̃∗(.)
q(.) (24)

for any weight function q satisfying q(t) ≥ C(t(1− t))(1−1/θ)/2 for some C > 0, where bn(z) =
√
n(Ên(u)−u), Ên denotes the empirical cdf of the observations and B̃∗ is the centered Gaussian

process on [0, 1] such that B̃∗(0) = B̃∗(0) = 1 and

E(B̃∗(s)B̃∗(t)) =
∑
k∈Z

1U0≤s1Uk≤t
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So, assume that the mixing coefficients of (X1, . . . , Xn) satisfy α(n) = O(n−θ−ε) for some

θ ≥ 1 +
√

2 and ε > 0. Then, the sequences (Z1,j , . . . , Zn,j), j = 1, 2 are mixing since they are

obtained from the former sequence by a measurable transformations. Their mixing coefficients

αj satisfy αj(n) ≤ α(n), so that they satisfy the conditions of the theorem and the same holds

for the transformed uniform sequences (Hj(Z1,j) . . . , Hj(Zn,j)), j = 1, 2. Moreover let us set

m = 1/2 − 1/(2θ) and q(t) = (t(1 − t))ν for some ν ∈ (0, 1/2) such that ν < m (note that

it is still possible since θ > 1). Thus, it is easily seen that q(t) ≥ C(t(1 − t))(1−1/θ)/2 with

C =
(

1
4

)m
. Hence, for j = 1, 2 one has

√
n(Ĥj(z)−Hj(z))

(Hj(z)(1−Hj(z)))ν
= bn(Hj(z))

q(Hj(z))
D[0,1]−−−−→ B̃∗(Hj(z))

q(Hj(z))
, (25)

so that

Rn = sup
z∈[0,1]

√
n(Ĥj(z)−Hj(z))

(Hj(z)(1−Hj(z)))ν
D−→ sup

z∈[0,1]

B̃∗(Hj(z))
(Hj(z)(1−Hj(z)))ν

= sup
u∈[0,1]

B̃∗(u)
(u(1− u))ν .

Since the sequence Rn converges in distribution, then by Prohorov theorem, it is bounded in

probability:

sup
z∈[0,1]

√
n(Ĥj(z)−Hj(z))

(Hj(z)(1−Hj(z)))ν
= Op(1). (26)

5.1.2 Proof of ii)

First, the bivariate process Z is absolutely regular since it is obtained by a measurable transfor-

mation of X. Using [29]’s Theorem 1.4 and the fact that βZ(k) ≤ β(k),

∣∣Cov (1Z0≤z,1Zk≤z′)
∣∣ ≤ 2β(k)

so that (14) exists since
∑
β(k) <∞.

Now, recall that For s = 1, A(s) = 1 and
√
n(log Â(s)− logA(s)) = 0. For s 6= 1,

√
n(log Â(s)− logA(s)) = λ(s)

∫ 1−s

0

√
n(Ĥ1(z)−H1(z))

z(1− z) dz + (1− λ(s))
∫ s

0

√
n(Ĥ2(z)−H2(z))

z(1− z) dz.

In order to prove the asymptotic normality, let us first show that for j = 1, 2

∫ 1−sj

0

√
n(Ĥj(z)−Hj(z))

z(1− z) dz
D−→
∫ 1−sj

0

B∗j (z)
z(1− z)dz. (27)

Set∫ 1−sj

0

√
n(Ĥj(z)−Hj(z))

z(1− z) dz =
∫ 1

n

0

√
n(Ĥj(z)−Hj(z))

z(1− z) dz +
∫ 1−sj

1
n

√
n(Ĥj(z)−Hj(z))

z(1− z) dz

= I1 + I2

It follows from (23) and (26) that

I1 = op(1). (28)
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We will then show that∣∣∣∣∣
∫ 1−sj

1
n

√
n(Ĥj(z)−Hj(z))

z(1− z) dz −
∫ 1−sj

1
n

B∗j (z)
z(1− z)dz

∣∣∣∣∣ = op(1) (29)

so that

I2 =
∫ 1−sj

0

B∗j (z)
z(1− z)dz + op(1). (30)

and (27) can be obtained by combining (28) and (30). For that task we will apply [9]’s theorem 3.1

to the bivariate process Z.

Let {Zn, n ≥ 1} be an absolutely regular strictly stationary bivariate sequence with distribution

function H and mixing coefficients (βn)n>0 satisfying β(n) = O(n1−p) for some p ∈ (2, 3]. Let us set

R(z, t) =
∑
i≤t

(1Zi≤z −H(z)), t ∈ R+, z ∈ R2.

Thus, there exists a centered Gaussian process {K(z, t), t ∈ R+, z ∈ R2} with covariance function

E(K(z, t)K(z′, t′)) = E (B∗(z)B∗(z′)) (t ∧ t′) with E (B∗(z)B∗(z′)) defined in (14), such that

sup
t≤n

sup
z∈R2

|R(z, t)−K(z, t)| = Oa.s.(n1/p(logn)η+ε+1/p)

for any ε > 0 and η = (5− 2/(p))1p∈(2,3) + (14/3)1p=3.

Fixing t = n, K(z, t) turns out to be the centered Gaussian process n1/2B∗(z) defined in Subsection

3.1 so so that we get the Csörgö and Horváth’s type result:

sup
z∈R2

∣∣∣√n(Ĥ(z)−H(z))−B∗(z)
∣∣∣ = Oa.s.(n1/p−1/2(logn)η+ε+1/p)

Hence, for j = 1, 2,

sup
z∈R

∣∣∣√n(Ĥj(z)−Hj(z))−B∗j (z)
∣∣∣ = Oa.s.(n1/p−1/2(logn)η+ε+1/p) (31)

so that for all sj > 0, ∣∣∣∣∣
∫ 1−sj

1
n

√
n(Ĥj(z)−Hj(t))

z(1− z) dz −
∫ 1−sj

1
n

B∗j (z)
z(1− z)dz

∣∣∣∣∣
≤ sup

z∈R

∣∣∣√n(Ĥj(z)−Hj(z))−B∗j (z)
∣∣∣ ∫ 1−sj

1
n

dz

z(1− z)

= O(n
1
p
− 1

2 (logn)η+ε+1/p)
(

log
(

1− sj
sj

)
+ log(n− 1)

)
= O(n

1
p
− 1

2 (logn)η+ε+1/p+1)

according to 1
p −

1
2 < 0, then we obtain∣∣∣∣∣

∫ 1−sj

1
n

√
n(Ĥj(z)−Hj(z))

z(1− z) dz −
∫ 1−sj

1
n

B∗j (z)
z(1− z)dz

∣∣∣∣∣ = op(1) (32)
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as soon as ε > 0 and η = (5 − 2/p)1p∈(2,3) + (14/3)1p=3. When sj = 0, we may show that (32) still

holds writing

I2 =
∫ 1− 1

n

1
n

√
n(Ĥj(z)−Hj(z))

z(1− z) dz +
∫ 1

1− 1
n

√
n(Ĥj(z)−Hj(z))

z(1− z) dz.

Finally,

I1 + I2 =
∫ 1−sj

0

B∗j (z)
z(1− z)dz + op(1)

so that ∫ 1−sj

1
n

√
n(Ĥj(z)−Hj(z))

z(1− z) dz

∫ 1−sj

0

B∗j (z)
z(1− z)dz + op(1).

Therefore, for all s ∈ [0, 1]

√
n
(
log Ân(s)− logA(s)

)
P−→ λ(s)

∫ 1−s

0

B∗1(z)
z(1− z)dz + (1− λ(s))

∫ s

0

B∗2(z)
z(1− z)dz

and then

√
n
(
log Ân(s)− logA(s)

) D−→ λ(s)
∫ 1−s

0

B∗1(z)
z(1− z)dz + (1− λ(s))

∫ s

0

B∗2(z)
z(1− z)dz,

which achieves the proof.

Finally, it remains to show that the limiting process U has the desired covariance function (17)

and that it exists. This may be done by applying Fubini’s theorem.

5.2 Proof of proposition 4.1

Let F and G be the joint distributions of the vectors (X1, X2) and (Y1, Y2) respectively. Moreover,

denote by G1 and G2 the margins of (Y1, Y2) and CX and AX (resp. CY and AY ) the copula and

dependence function of (X1, X2) (resp. (Y1, Y2)). One has

CX(u, v) = P (F1(Xi,1) ≤ u, F2(Xi,2) ≤ v)

= P

(
Gk1(Xi,1) ≤ u,G2(Xi,2) ≤ v

)
= P

(
Xi,1 ≤ G−1

1 (u1/k), Yi,2 ≤ G−1
2 (v)

)
= P

(
Yi−j,1 ≤ G−1

1 (u1/k), j = 0, . . . , k − 1, Yi,2 ≤ G−1
2 (v)|Yi−j,1 ≤ G−1

1 (u1/k), j = 1, . . . , k − 1
)

×
(
P

(
Yi,1 ≤ G−1

1 (u1/k)
))k−1

= P

(
G1(Yi,1) ≤ u1/k, G2(Yi,2) ≤ v

)
(u1/k)k−1

= u(k−1)/kCY (u1/k, v). (33)

Using (33) and (1)
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CX(u, v) = u(k−1)/k exp
(

log u1/kvAY

(
log u1/k

log u1/kv

))

= exp
(

log u(k−1)/k + log u1/kvAY

(
log u1/k

log u1/kv

))

= exp
(

log uv
(

log u(k−1)/k

log uv + log u1/kv

log uv AY

(
log u1/k

log u1/kv

)))

Let us set for all 0 ≤ u, v ≤ 1, t = log u
log uv . Using (19), then

log u(k−1)/k

log uv + log u1/kv

log uv AY

(
log u1/k

log u1/kv

)
= k − 1

k
t+ k − (k − 1)t

k
AY

(
t

k − (k − 1)− t

)

= k − 1
k

t+ k − (k − 1)t
k

((
t

k − (k − 1)t

)1/r

+
(

1− t

k − (k − 1)t

)1/r
)r

= k − 1
k

t+
((

t

k

)1/r
+ (1− t)1/r

)r
Finally,

CX(u, v) = exp
(

log uvAX
( log u

log uv

))
,

with

AX(t) = k − 1
k

t+
((

t

k

) 1
r

+ (1− t)
1
r

)r
,

for all t ∈ [0, 1], which completes the proof.

6 Appendix: The bootstrap test statistic

Fix

B : the number on the bootstrap samples

T : the size of the blocs

Define N = [n/T ], the number of blocs, where [x] is the integer part of x

Generate a bivariate extremes (X1, . . . , Xn), Xi = (Xi,1, Xi,2) and compute the statistic

Un = log Ân
(1

2

)
. (34)

-Let IB={ 1,2,...,N }

for b = 1, ...B do

*Generate a set index I = {i1, i2, ..., iN} from IB with replacement

* for k = 1, ..., N for j = 1, ..., T , compute Xb
(k−1)∗T+j = X(ik−1)∗T+j

*Compute UBb = log Âbn
(

1
2

)



19

where Âbn is the empirical CFG’s estimator based on the bootstrap sample Xb
i , i = 1, .., n.

-Compute the bootsrap statistic

U bn = Un/(
B∑
b=1

(UBb − UB)2/B)1/2 (35)

where UB = 1
B

∑B
b=1 UBb.
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