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This paper puts the light on a new class of time-varying FIGARCH or TV-FIGARCH processes to model the

volatility. This new model has the feature to account for the long memory and the structural change in the

conditional variance process. The structural change is modeled by a logistic function allowing the intercept to

vary over time. We also implement a modeling strategy for our TV-FIGARCH specification whose performance

is examined by a Monte Carlo study. An empirical application to the crude oil price and the S&P 500 index is

carried out to illustrate the usefulness of our techniques. Themain result of this paper is that the longmemory

behavior of the absolute returns is not only explained by the existence of the longmemory in the volatility but

also by deterministic changes in the unconditional variance.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The modeling of time-varying volatility has been a considerable

field of research for a quarter of a century following the introduction

of the Autoregressive Conditional Heteroskedasticity (ARCH) model

by Engle (1982), then its extending to the Generalized ARCH (GARCH)

model by Bollerslev (1986). It is a well known that many financial

time series, whose sample autocorrelations are tiny, have sample

autocorrelations of their absolute and squared values significantly

different from zero even for large lags. This empirical finding is usually

interpreted as evidence for long memory in the volatility of returns.

Therefore, Baillie et al. (1996) and Bollerslev and Mikkelsen (1996)

introduced long memory processes of the conditional variance by

extending the GARCH model of Bollerslev (1986). The fractionally

integrated long memory models have thus received considerable

interest because of their ability to capture the persistence in the

volatility. Additionally, it is also well known that the long memory is

easily confused with structural changes, since the slow decay of the

autocorrelation function, which is typical to a time series with long

memory, is also produced when a short-memory time series exhibits

structural breaks (Boes and Salas-La Cruz (1978), Hamilton and

Susmel (1994), Diebold and Inoue (1999), Granger and Hyung (1999),

Gourieroux and Jasiak (2001)). In this context, one may expect that

economic and political events or changes in institutions are somehow

responsible of changing in the volatility structure over time. Some

explanations of the phenomenon have been suggested by Schwert

(1989) among others, who relates alternating volatility regimes to the

fluctuations in the fundamental uncertainty and leverage effects over

the business cycle. Beltratti and Morana (2006) relate breaks in the

stock market volatility to monetary policy reactions in response to

business cycle conditions, while Engle and Rangel (2005), in addition

to the macroeconomic uncertainty, and put the light on the market

size and the development role. An intermediate position has

suggested that an appropriate model for the volatility of financial

returns should combine the long range dependence and the structural

change (see Lobato and Savin (1998), Beran and Ocker (1999), Beine

and Laurent (2000), Morana and Beltratti (2004), Martens et al.

(2004), Baillie and Morana (2009)).

Given the above summary of previous research, the basic idea of

this paper comes from the fact that the volatility of many financial

returns is susceptible to the occurrence of both long memory and

structural breaks. So, the purpose of this paper is twofold. The first is

to introduce a model which allows for long memory and structural

change in the time series volatility. The proposed model is named

time-varying FIGARCH, or TV-FIGARCH, and augments the traditional

FIGARCH model of Baillie, Bollerslev and Mikkelsen (1996) with a

deterministic component following logistic functions. The suggested
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parameterization describes structural changes in the baseline volatil-

ity where the transition between regimes over time may be smooth,

depending on the slope parameter which controls the smoothness

degree of shifts. A similar model named Adaptive FIGARCH has been

proposes by Baillie and Morana (2009), expect that the intercept in

the conditional variance equation is time varying according to the

Gallant (1984) flexible functional form. Further, their approach does

not use pre-testing for the number of transitions. The second aim of

this paper is to give a modeling strategy for these new TV-FIGARCH

models. In order to choose the right transition number, we implement

a selection rule using the Lagrange multiplier method to test a

sequence of hypotheses.

Finally, after parameter estimation, the model is evaluated by

misspecification tests. Finite-sample properties of tests and estima-

tions are examined by a simulation study; an empirical application to

the daily crude oil price returns and the daily stock returns illustrates

the usefulness and properties of ourmodeling strategy in practice. The

empirical evidence favors the TV-FIGARCH formulation with two

transition functions, indicating a clear rejection of the FIGARCH null

hypothesis. The main result of this paper is that the long memory

property of the absolute returns is explained both by structural

changes in the unconditional variance and the presence of long

memory in the volatility.

The outline of this paper is organized as follows. In Section 2, we

present the class of TV-FIGARCH model and we discuss its properties.

Section 3 considers the parameter constancy test by using a Lagrange

Multiplier (LM) type test. In Section 4, we propose the specification

strategy and the model estimation. Section 5 and 6 contain

respectively the simulation study, using Monte Carlo experiments,

and the empirical results. The last section concludes.

2. A time-varying FIGARCH Process

In this section we present the time-varying FIGARCH, or TV-

FIGARCH process, which contains two basic components: the long

memory in the volatility process and changes in the baseline volatility

dynamics over time. We begin by introducing the FIGARCH (p, d, q)

model following Baillie, Bollerslev and Mikkelsen (1996):

εt = zt
ffiffiffiffiffi

ht
p

; εt jΩt−1∼N 0;htð Þ

ht = ω0 + β Lð Þht + 1−β Lð Þ− 1−ϕ Lð Þ½ % 1−Lð Þ
d

h i

ε
2
t

8

<

:

ð1Þ

{zt} is a sequence of independent standard normal variables with

variance 1, {ht} is a positive time dependent conditional variance

defined as ht=E(εt
2|Ωt−1) and Ωt−1 is the information set up to time

t-1. Defining υt=εt
2−ht the FIGARCH (p, d, q) process may be

rewritten as an ARFIMA(p, d, q):

1−ϕ Lð Þ½ % 1−Lð Þ
d
ε
2
t = ω0 + 1−β Lð Þ½ %υt ð2Þ

where β(L)=β1L+....+βpL
p and ϕ(L)=ϕ1L+....+ϕqL

q. [1−β(L)]

and [1−ϕ(L)] have all their roots outside the unit circle. The

fractional differencing operator (1−L)d with real d is defined by

(Hosking (1981)):

1−Lð Þ
d
= ∑

∞
k = 0 δk dð ÞL

k
; δk dð Þ =

k−1−d

k
δk−1 dð Þ; δ0 dð Þ = 1 ð3Þ

where L is the lag operator and d is the long memory parameter. We

have a stationary long memory process when 0bdb1. If d=1, the

process has a unit root and thus a permanent shock effect.

An alternative representation of the FIGARCH (p, d, q) is the ARCH

(∞) model:

ht =
ω0

1−β Lð Þ½ %
+ 1−

1−ϕ Lð Þ½ % 1−Lð Þd

1−β Lð Þ½ %

" #

ε
2
t

=
ω0

1−β Lð Þ½ %
+ λ Lð Þε

2
t

ð4Þ

where λ(L)≡λ1L+λ2L
2+... and λ(1)=1 for every d. The constraints

applied to the parameters to guarantee the positivity of the

conditional variance in ( 4) are: ω0N0 and λi≥0, for i=1, 2, .... The

assumption of a constant intercept is not consistent if the baseline

volatility dynamics change in the long run. For this purpose, we

extend the FIGARCH(p, d, q) to the TV-FIGARCH(p, d, q, R) process,

which allows the intercept to be time dependent. The TV-FIGARCH

model has the feature to be flexible enough to explain the systematic

movements of the baseline volatility. Hence, the model in (1)

becomes:

εt = zt
ffiffiffiffiffi

ht
p

; εt jΩt−1∼N 0;htð Þ

ht = ω0 + β Lð Þht + 1−β Lð Þ− 1−ϕ Lð Þ½ % 1−Lð Þ
d

h i

ε
2
t + ft

8

<

:

ð5Þ

ft =
R
∑

r = 1
ωrFr st ;γr ; crð Þ ð6Þ

where F(st,γr,cr), r=1,..,R, are the transition functions governing the

switches from one regime to another. These functions are continuous,

non-negative and bounded between zero and one allowing the

intercept of the FIGARCHmodel to fluctuate over time betweenω0 and

ω0 +
R
∑

r = 1
ωr . The order R ∈ ℕ determines the shape of the baseline

volatility. A suitable choice for F(st,γr,cr), r=1,..,R, is the general

logistic transition function defined as follows:

Fr st ;γr; crð Þ = 1 + exp −γr st−crð Þf gð Þ
−1

ð7Þ

with the slope parameter γr (γrN0) which controls the degree of

smoothness. cr is the threshold parameter such as c1≤c2≤ ... ≤cR.

st= t/T is the transition variable and T is the number of observations.

When γr→∞, the switch from one state to another is abrupt, that is, a

smooth change approaches a structural break at the threshold

parameter cr.

Eventually, the TV-FIGARCH (p, d, q) process will not be ergodic

and nor strictly stationary, due to the time varying intercept. Because

the FIGARCH (1,d,1) model is the most frequently used specification in

empirical applications, we focus on the conditions that guarantee the

non negativity of its conditional variance and we follow the

restrictions proposed recently by Conrad and Haag (2006), i.e.:

ω0 N 0

If 0 b β1 b 1;

either λ1 ≥ 0 and ϕ1 ≤ f2 or for i N 2 with fi−1 b ϕ1 ≤ fi it

holds that λi−1≥0.

If −1 b β1 b 0;

either λ1 ≥ 0, λ2 ≥ 0 and ϕ1 ≤ f2(β1+ f3)/(β1+ f2) or for i N 3

with fi−2(β1+ fi−1)/(β1+ fi−2) b ϕ1 ≤ fi−1(β1+ fi)/(β1+ fi−1)

it holds that λi−1 ≥ 0 and λi−2 ≥ 0.

Note, that λ0=1, λ1=d+ϕ1−β1, λi=βλi−1+(fi−ϕ1)(−gi−1)

for iN1, fj=(j−1−d)/j, for j=1,2,... and gj= fj.gj−1. So, for the

FIGARCH(1,d,1) model it suffices to check 2 conditions if 0bβ1b1 and

3 conditions if −1bβ1b0 to ensure the non-negativity of the
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conditional variance for all t. Similar restrictions, ensuring the

positivity of ht, hold for the TV-FIGARCH(1,d,1) model in addition to

the restriction ω0 +
R
∑

r = 1
ωr N 0. The TV-FIGARCH(1,d,1) nests two

interesting submodels: the TV-FIGARCH (1,d,0) and the TV-FIGARCH(0,

d,1) whose restrictions ensuring the positivity of ht are similar to

those holding for the FIGARCH (1,d,0) and the FIGARCH(0,d,1) models

in addition to the restriction ω0 +
R
∑

r = 1
ωr N 02.

3. Testing parameter constancy

This test has previously been considered by Lundbergh and

Teräsvirta (2002) and Teräsvirta and Amado (2008) for the GARCH

model, but for our purpose we will apply it to the FIGARCH model in

order to check wether the intercept is time dependent. We test the

TV-FIGARCH with one transition function and if the intercept

constancy hypothesis is rejected, one may conclude that fitting a

FIGARCH model to the data does not seem reasonable. In order to

derive the test statistic let us rewrite the model (5) with one

transition function i.e.:

εt = zt
ffiffiffiffiffi

ht
p

; εt jΩt−1∼N 0;htð Þ

ht = ω0 + β Lð Þht + 1−β Lð Þ− 1−ϕ Lð Þ½ % 1−Lð Þd
h i

ε
2
t + ω1F1 st ;γ1; c1ð Þ

8

<

:

ð8Þ

The null hypothesis of the test corresponds to H0 :γ1=0 against

H1 :γ1N0, but under the null hypothesis ω1 and c1 are not identified.

This identification problem has been resolved by Luukkonen et al.

(1988) by replacing the transition function by its first order Taylor

approximation around γ1=0 3. The first order Taylor expansion of the

logistic transition function around γ1=0 is given by:

T1 st ;γ1; c1ð Þ =
1

4
γ1 st−c1ð Þ + R st ;γ1; c1ð Þ ð9Þ

where R(st,γ1,c1) is a remainder term. Replacing F1(st,γ1,c1) in (8) by

T1(st,γ1,c1) in (9) and after rearranging terms we have:

εt = zt
ffiffiffiffiffi

ht
p

; εt jΩt−1∼N 0;htð Þ

ht = ω
T

0 + β Lð Þht + 1−β Lð Þ− 1−ϕ Lð Þ½ % 1−Lð Þd
h i

ε
2
t + ω

T

1st + R st ;γ1; c1ð Þ

8

<

:

ð10Þ

whereω
T

0 = ω0−
1
4ω1γ1,ω

T

1 = 1
4γ1ω1, therefore, the null hypothesis

for parameter constancy becomes: H0 :ω1
* =0. Under H0, the remain-

der R=0, so it does not affect the asymptotic null distribution of the

test statistic.

Let θ=(d,ω0
* ,β′,ϕ′,ω1

*)′, the partial derivatives evaluated under H0

are given by:

∂lt
∂θ j

H0

=
1

2

ε̂
2
t

ĥ0t
−1

 !

∂lnht

∂θ j
H0

ð11Þ

•
∂lnht

∂d j
H0

= ĥ0t
, -−1

−ln 1−Lð Þ 1−ϕ̂ Lð Þ
h i

1−Lð Þd ε̂
2
t +

p

∑

j = 1

β̂j

∂ĥt−j

∂d

0

B

@

1

C

A

= ĥ0t
, -−1

− 1− ϕ̂ Lð Þ
h i

1−Lð Þd
t−1

∑

j

ε̂
2
t−j

j
+

p

∑

j = 1

β̂j

∂ĥt−j

∂d

0

B

@

1

C

A

•
∂lnht
∂ωT

0
j
H0

= ĥ0t
, -−1

1 +
p
∑

j = 1
β̂j

∂ĥt−j

∂ωT

0

0

@

1

A

•
∂lnht
∂β j

H0

= ĥ0t
, -−1

ht−1; :::; ht−p

4 5

′− ε2t−1; :::; ε2t−p

, -

′ +
p
∑

j = 1
β̂j

∂ĥt−j

∂β

0

@

1

A

•
∂lnht
∂ϕ j

H0

= ĥ0t
, -−1

1−Lð Þd̂ ε2t−1; :::; ε2t−q

, -

′ +
p
∑

j = 1
β̂j

∂ĥt−j

∂ϕ

0

@

1

A

•
∂lnht
∂ωT

1
j
H0

= ĥ0t
, -−1

st +
p
∑

j = 1
β̂j

∂ĥt−j

∂ωT

1

0

@

1

A

Under the null hypothesis, the “hats” indicate the maximum

likelihood estimators and ĥ0t denotes the conditional variance

estimated at time t. The LM-type statistic is asymptotically distributed

under H0 as χ2 with one degree of freedom:

LM =
1

2

T
∑

t = 1
ût X̂

′
t

T
∑
t=1

X̂t X̂
′
t

 !−1 T
∑

t = 1
ût X̂t ð12Þ

where ût =
ε̂
2
t

ĥ0t
−1

 !

and X̂t =
∂lnht
∂θ

j
H0

:

In practice this test may be carried out in a straightforward way

using an auxiliary least squares regression, thus:

• Firstly, estimate consistently the parameters of the conditional

variance under the null hypothesis, compute the residuals

ût =
ε̂
2
t

ĥ0t
−1

 !

, t=1,...,T, then the sum of squared residuals

SSR0 =
T
∑

t = 1
û
2
t :

• Secondly, regress ût on X̂′t , t=1,...,T, and compute the sum of

squared residuals, SSR1.

• Finally, compute the χ2 test statistic by:

LM =
T SSR0−SSR1ð Þ

SSR0

ð13Þ

4. Specification and estimation of the model

In order to build the TV-FIGARCH model in (5), we start with a

simple and restricted specification without time-varying parameters.

Our modeling strategy contains the following stages:

• The first step is to filter the short memory from the series by using a

simple ARMA model and obtain the residuals ε̂t .

• We check the presence of long memory in the volatility using the

autocorrelation functions (ACF) of the squared residuals ε̂
2
t , and

then we select a parsimonious FIGARCH model. In practice a

FIGARCH(1,d,1) specification is sufficient. The squared standardized

errors should be free of serial correlation because neglected

autocorrelations may bias the test of parameter constancy.

• The next stage consists on choosing the number of transitions. We

use a selection rule based on a sequence of LM-type tests. We

assume that Rmax=5 for more flexibility of the transition function

ft in (6). Thus, we have five hypotheses to test:

H05 :ω5
* =0,

H04 :ω4
* =0| ω5

* =0,

H03 :ω3
* =0| ω4

* =ω5
* =0,

2 For more details on the nonegativity of the FIGARCH(1,d,0) and the FIGARCH(0,d,1)

models see Conrad and Haag (2006).
3 For the purpose of deriving the test, we replace F1(st,γ1,c1) by F1(st,γ1,c1)−1/2,

(See Teräsvirta and Amado (2008)).

1108 M. Belkhouja, M. Boutahary / Economic Modelling 28 (2011) 1106–1116



H02 :ω2
* =0| ω3

* =ω4
* =ω5

* =0,

H01 :ω1
* =0| ω2

* =ω3
* =ω4

* =ω5
* =0,

of course the selected order R corresponds to the lowest p-value

among those of the rejected null hypothesis. If any null hypothesis is

rejected, therefore, there is no structural change in the volatility.

• Despite the non stationarity of the ARMA-TV-FIGARCH process due to

the time varying baseline volatility, we use the quasi maximum

likelihood method to estimate the selected model, and then we

evaluate it by some diagnostic tests. Note that this method is valid in

non standard frameworks4.

Let λ = μ;π′;ψ′;d;ω0;β′;ϕ′;ω′;γ′; c′ð Þ′ where μ, π′=(π1,...,πi) and

ψ′=(ψ1,...,ψj) are the ARMA parameters, and β = β1; ::;βp

4 5

′,

ϕ = ϕ1; ::;ϕq

4 5

′, ω = ω0;ω1; ::;ωRð Þ′, γ = γ1; ::;γRð Þ′ a n d c =

c1; ::; cRÞ′ð are the TV-FIGARCH parameters. The quasi maximum

likelihood estimate of the parameter vector λ is obtained by:

λ̂ = argmax
λ∈Λ

1

T
∑
T

t=1
lt λð Þ ð14Þ

where lt(λ) is the quasi log-likelihood of the model for observation t :

lt λð Þ = −
1

2
ln2π−

1

2
lnht−

1

2

ε
2
t

ht
ð15Þ

Under fairly general conditions, the asymptotic distribution of the

QMLE is

T
1=2

λ̂−λ0

, -A∼N 0;A λ0ð Þ
−1

B λ0ð ÞA λ0ð Þ
−1

n o

ð16Þ

where λ0 denotes the true vector of parameters, A(λ0) is the Hessian

and B(λ0) the outer product gradient. The proposed method allows to

jointly estimate longmemory and structural changes in the conditional

variance.We note that large estimates for the smoothness parameter γr

may lead to numerical problems when testing the parameter

constancy. As solution to this problem, Eitrheim and Terasvirta

(1996) suggested to omit score elements that are partial derivatives

with respect to the parameters of the transition function Fr(st,γr,cr).

5. Simulation study

5.1. Monte Carlo design

In all simulations, we use sample lengths of 1000, 2000 and 3000

observations and, for each design, a total of 100 replications were

generated. To avoid the initialization effects, a total of 7000 observations

were discarded from each replication. In the simulations and the

estimation results we fixed the truncation lag at j=10005. The behavior

of the tests is examined for several data generating processes (DGP's) that

can be nested in the model in (5) with p=1 and q=1. The transition

variable is the standardized time variable st=t/T, for t=1...T and T is the

number of observations. The data generating processes are as followings:

• DGP (I)

εt = zt
ffiffiffiffiffi

ht
p

; εt jΩt−1∼N 0;htð Þ

ht = ω0 + βht−1 + 1−βL− 1−ϕL½ % 1−Lð Þd
h i

ε2t

d = 0:25;0:50;0:75f g;ω0 = 0:50;β = 0:20;0:30;0:60f g;ϕ = 0:20;0:30;0:60f g:

• DGP (II)

εt = zt
ffiffiffiffiffi

ht
p

; εt jΩt−1∼N 0;htð Þ

ht = ω0 + βht−1 + 1−βL− 1−ϕL½ % 1−Lð Þd
h i

ε2t + ω1F1 st ;γ1; c1ð Þ

d = 0:25;0:50; 0:75f g;ω0 = 0:50;β = 0:20;0:30;0:60f g;ϕ = 0:20;0:30; 0:60f g

ω1 = −0:30;γ1 = 10;andc1 = 0:5:

• DGP (III)

εt = zt
ffiffiffiffiffi

ht
p

; εt jΩt−1∼N 0;htð Þ

ht = ω0 + βht−1 + 1−βL− 1−ϕL½ % 1−Lð Þd
h i

ε2t + ω1F1 st ;γ1; c1ð Þ + ω2F2 st ;γ2; c2ð Þ

d = 0:25;0:50;0:75f g;ω0 = 0:50;β = 0:20;0:30;0:60f g;ϕ = 0:20;0:30;0:60f g

ω1 = −0:30;ω2 = 0:30;γ1 = 10;γ2 = 10;c1 = 0:3andc2 = 0:7:

Figs. 1 and 2 show the plots of the series, the autocorrelation

absolute series function, the transition function ft and the conditional

standard deviations respectively for DGP(II) and DGP(III) with

T=2000, d=0.25, β=0.20 and ϕ=0.60. The absolute series

autocorrelation functions exhibit persistence due to the presence of

both longmemory and structural changes in the two DGP's. Moreover,

we notice in Fig. 1 a decrease of the conditional standard deviation

while in Fig. 2, it decreases at first, then increases. These two

phenomena are explained by the variation of the FIGARCH intercept

according to the transition function ft where the switch from one

parameterization to another is smooth.

5.2. Size and power simulations

In this section, we study the size and the power properties of the

LM-type test using the Monte Carlo simulation method. Tests are

computed using auxiliary regressions. The size and the power results of

the tests are presented in Tables 1 and 2 and for each test we calculate

the rejection frequency for three sample sizes at the following nominal

levels: 1%, 5% and 10%. The size results in Table 1 have been obtained by

generating the artificial data from the DGP (I). We notice that the

estimated sizes are away from nominal levels when the parameter of

long memory d increases but the results become more accurate as the

sample size rises. Generally the tests are reasonably well-sized.

The power results in Table 2 have been obtained by generating the

artificial data from theDGP (II)whereω1=−0.30,γ1=10and c1=0.50.

The rejection frequencies show some distortions when T=1000 and

d≥0.5. As expected, the rejection frequencies are an increasing function

of the sample size, however, the results are less accurate as the parameter

of long memory d increases. We can explain the underestimation of the

rejection frequencies by the likely confusion between long memory and

regime changes, i.e. the structural change in the volatilitymay be partially

captured by the long memory component of the FIGARCH process.

Teräsvirta and Amado (2008) conduct similar simulation experiments to

evaluate the finite-sample properties of the parameter constancy tests,

but these tests are against an additive and a multiplicative time-varying

GARCH specifications. Their findings suggest that the parameter

constancy tests have reasonable good properties for moderate samples.

5.3. Model selection simulations

In this section we consider the performance of the modeling

strategy for TV-FIGARCH models. Again, for each DGP a total of 100

replicationswere carried out for every sample size and the results of the

test are shown at 5% nominal significance level. The selection procedure

of the transitions number was employed until a maximum of R=2, so

we have two hypothesis to test at each experience using the LM-type

test. The selected number of transitions corresponds to the rejected null

hypothesis providing the less p-value. If any null hypothesis is rejected

Rwill be equal to zero and the selected model is FIGARCH. We begin by

considering a standard FIGARCH model as a DGP and its selection

frequencies are reported in Table 3. The frequencies of the correct

number of transitions are shown in bold face. We notice that the

selection of the correct model becomes less frequent as the long

memory parameter d converges to one, in the other hand, the results

become more accurate as the sample size increases. The frequencies of

selecting themodels for the DGP (II) are presented in Table 4. As for the

DGP (I), the sample size and the long memory parameters have the

4 see queryDahlhaus and Subba Rao (2006).
5 See Baillie, Bollerslev and Mikkelsen (1996).
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same effects on the accuracy of the results. Table 5 contains the

frequencies of the selected models for the DGP (III) and the results are

almost identical to what is reported in Table 3 and Table 4. As expected,

the correct model is selected more frequently for higher sample size

and the selection procedure seems to work relatively well besides the

bad impact of the long memory parameter increase on the results

accuracy. We notice that the power of the procedure was not affected

by the number of transitions in the volatility.

5.4. Estimation results

This section reports some simulation results from estimating TV-

FIGARCHmodelswithdifferent levels of longmemory andunder various

forms of structural change. The length of the simulated time series is

equal to 3000 observations. Tables 6 through 8 report the true values of

parameters and the mean of their estimates across 100 Monte Carlo

replications. The data are generated from the FIGARCH(1,d,1), the TV-

FIGARCH(1,d,1,1) and the TV-FIGARCH(1,d,1,2) models. The root mean

square error (RMSE) are relatively high when d=0.50 andω2 seems to

have better performance thanω1 thatmay be explained by the negative

sign of the latter. The bias of c1 and c2 appears to noticeably decrease as

the long memory parameter increases but that has no effect on their

RMSE. The slope parametersγ1 andγ2 have theworst estimation results

compared to the rest of parameters. Note that the mean of the QMLE

standard error (SE) are generally close to the root mean square error

(RMSE). The approximatemaximum likelihoodmethod for the FIGARCH
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Fig. 1. Plots of the series, the autocorrelation absolute series function, the transition function ft and the conditional standard deviations with R=1.
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and TV-FIGARCH models works reasonably well especially for the long

parameter d which is very important in the sense that the persistence

caused by the structural change won't be captured by the longmemory

component of the model.

6. Applications

This section presents two empirical examples involving the daily

crude oil spot price (Dollars per Barrel) of West Texas Intermediate

(WTI), which is used as a benchmark in oil pricing and the Standard and

Poor 500 composite index (S&P 500). Both data series were from

January 2, 1990 to December 31, 1999 and were taken from the Yahoo-

Quotes database. All days the markets were closed and were removed,

with the number of days removed varying between seven and nine

depending on the year. After removing these days there were 2530

observations for the sample. Both series are transformed into the

continuously compounded rates of returns, because it's known that the

prices are non stationary in level but stationary in difference. We test

the null hypothesis of non-stationary returns using the Augmented Said

and Dickey (1984), the Phillips and Perron (1988) and the Kwiatkowski

et al. (1992) tests. We employ the Akaike information criteria (AIC) to

select the appropriate lag length6. Table 9 reports the test statistics

where the regression is with only an intercept and with an intercept

and a trend. The results clearly show that theWTI and S&P 500 returns

are stationary at the 1% level. An AR(3) model is adapted for both

returns to filter the short memory in the conditional mean.

6.1. WTI returns

The Table 10 shows that the WTI returns is more volatile than the

S&P 500 returns with a standard deviation equals to 2.52. In terms of

average returns, we do not notice a big difference between the two

series over the sample period. The distribution of the WTI returns is

negatively skewed and characterized by a statistically kurtosis

suggesting that the underlying series is leptokurtic. Based on the high

Jaque-Bera statistic, the marginal distribution of the WTI returns is far

from normal. The Ljung-Box test applied to the returns and squared

returns, provides clear evidence against the hypothesis of serial

independence of observations, and as expected, the null hypothesis of

no ARCH effect is strongly rejected. From the plot of the WTI returns

(see Fig. 3) we observe two periods of large volatility in the beginning

and at the second half of the sample, whereas we notice a decrease of

volatility in the intermediate regime. The ACF of the absolute returns

exhibits an extremely slow decaying pattern characterizing a long

memory behavior in the volatility. Table 11 contains the LM test

statistics and the p-values corresponding to the tested hypothesis as

explained in section 4. The selection procedure of the transitions

number was employed until a maximum of R=5, so we have five

hypothesis to test. The parameter constancy hypothesis is rejected for

H02, H03 and H04, but we select R=2 since it corresponds to the lowest

p-value. This finding is not at all surprising because previous empirical

studies indicate that commodity prices can be extremely volatile at

times, and sudden changes in volatility are quite common in

commodity markets. For example, using an iterative cumulative sum-

of-squares approach,Wilson et al. (1996) document sudden changes in

the unconditional variance in daily returns on one-month through six-

month oil futures and relate these changes to exogenous shocks, such

as unusual weather, political conflicts and changes in OPEC oil policies.

Fong and See (2002) conclude that regime switching models provide a

useful framework for studying factors behind the evolution of volatility

and short-term volatility forecasts.

For the WTI returns, the estimate of the deterministic component

ft, presented in (6), has the following form:

ft = 1:37−1:31F1 st ; γ̂1; ĉ1ð Þ + 0:57F2 st ; γ̂2; ĉ2ð Þf g

with

F1 st ; γ̂1; ĉ1ð Þ = 1 + exp −106:14 st−0:11ð Þf gð Þ
−1

and

F2 st ; γ̂2; ĉ2ð Þ = 1 + exp −8:15 st−0:58ð Þf gð Þ
−1

The graph of the transition function ft (see Fig. 3) shows how

volatility at first decreases abruptly (γ̂1 = 106:14), and then6 We assume the maximum given lags to be 24.
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increases smoothly (γ̂2 = 8:15) over time. The first break in volatility

(ĉ1 = 0:11) is somewhat related to the economic and the political

events happened in the 1990s. During this period, the crude oil prices

are relatively low and oscillate between 10 and 20 dollars the barrel.

The first high volatility of oil price returns corresponds to the

launching of the Gulf War (1990–1991) which causes a sharp rise in

the oil prices, then a return to the initial equilibrium. The second break

in volatility (ĉ2 = 0:58) is in line with the economic boom in the

United States and Asia in the mid-1990s followed by the financial

crisis of the latter. This crisis puts an end to the sharp upturn in oil

prices from 1997 until February 1999. The long memory parameter

estimate (d̂ = 0:57) indicates a high persistence in the volatility. This

finding attests for the real presence of long memory in the volatility in

addition to the nonlinearity caused by the change of the intercept over

time according to the transition function. An AR(3)-TV-FIGARCH(1,

d,1,2) is thus tentatively accepted as our final model for the WTI

returns and The QML estimates are reported in Table 12. From

Table 13 it is seen that there is neither serial correlation nor remaining

ARCH in the standardized errors and thus the model seems to be

adequately specified. The kurtosis coefficient has decreased substan-

tially from its original value, but it is still high, and the skewness has

been reduced from −1.63 to −0.27, but it remains negative. The

hypothesis of normality is still strongly rejected.

6.2. S&P 500 returns

The summary statistics for the S&P 500 returns are given also by

the Table 10 and show that the distributions of the series are skewed

to the left with heavy tails. The Jarque-Bera test is in line with this

evidence since it strongly rejects normality for the distribution of the

S&P 500 returns. The Ljung-Box test applied to the returns and

squared returns, provides clear evidence against the hypothesis of

serial independence of observations and indicates the existence of

ARCH effect which is confirmed by the ARCH test. At first sight to the

Fig. 4, it appears that the dynamics of the S&P 500 volatility is similar

to that of the WTI volatility with three regimes. In the same figure we

find the plot of the sample autocorrelation of the absolute daily

returns and we notice a persistence in the volatility. The results of the

parameter constancy tests show that the null hypothesis is rejected

for H02 and H05, however a model with two transitions is accepted as

the final model since it corresponds to the lowest p-value (see

Table 11). This finding is consistent with the evidence of the presence

of structural breaks in the S&P500 returns, previously detected by

Lobato and Savin (1998), Granger and Hyung (2004), Starica and

Granger (2004), Beltratti and Morana (2006), Baillie and Morana

(2009). For the S&P 500 returns, the estimate of the transition

function ft has the following form:

ft = 0:45−0:39F1 st ; γ̂1; ĉ1ð Þ + 0:33F2 st ; γ̂2; ĉ2ð Þf g

with

F1 st ; γ̂1; ĉ1ð Þ = 1 + exp −24:67 st−0:15ð Þf gð Þ
−1

and

F2 st ; γ̂2; ĉ2ð Þ = 1 + exp −24:97 st−0:68ð Þf gð Þ
−1

The graph of the deterministic component is depicted in Fig. 4 and

looks like the one of the WTI volatility, i.e. firstly decreases then

increases. However, the transition from the first regime to the second

is smoother since the associated smoothness parameter (γ̂1 = 24:67)

is clearly lower. We notice that the estimated threshold parameters

(ĉ1 = 0:15 and ĉ2 = 0:68) are slightly higher than those of the WTI

transition functions. From this empirical finding, we can deduce that

the instability of the S&P 500 volatility is probably due to the same

events presented above for the WTI returns volatility since fluctua-

tions of oil prices have a direct impact on the price of all goods and

services that are produced using this source of energy. The estimated

fractional differencing parameter equals 0.16, with an asymptotic

standard error of 0.04, indicating significant long-memory component

in the stock market volatility. So, a part of the persistence in the daily

S&P 500 volatility may be modeled by the traditional FIGARCH and the

rest can thus be attributed to the slow-variation of the baseline

volatility. As for the WTI returns, an AR(3)-TV-FIGARCH(1,d,1,2) is
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accepted as the final model for the S&P 500 returns (see Table 12).

Table 13 contains the diagnostic test results and we notice that the

skewness remains negative but the kurtosis coefficient shows some

decrease. Relying on the Ljung-Box test and the ARCH test, the

hypothesis of uncorrelated standardized and squared standardized

residuals is well supported, indicating that there is no statistically

significant evidence of misspecification. Though the significant

decrease in the Jarque-Bera statistic, the standardized residuals are

still not normally distributed.

6.3. Comparison between FIGARCH, TV-GARCH and TV-FIGARCH models

As the long memory and structural breaks are features which can

be easily confounded, we provide in this section some estimations
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between FIGARCH, TV-GARCH and TV-FIGARCH models, and some

diagnostic test results.

For the TV-GARCH model, the constancy of the unconditional

variance was also examined by means of the LM test described in

Section 3. The results are not shown here, but the sequential testing

procedure is carried out and a TV-GARCHmodelwith two transitions is

tentatively accepted as the final model. Teräsvirta and Amado (2008),

who use the same data set of S&P 500 as in our application, select also

a TV-GARCH model with two transitions for the volatility, but our

transition function and theirs have different structures. From Table 12,

we can see that estimates of the mean equation parameters are not

statistically different acrossmodels. On comparison of the estimates of

variance equation parameters, it can be seen that the TV-FIGARCH

model corrects the upward bias in the autoregressive parameter of the

TV-GARCHmodel, and reduces the estimated persistence parameter of

the FIGARCH model. For both applications and for the TV-GARCH and

the TV-FIGARCH models, the negative sign of ω̂1 and the positive sign

of ω̂2 illustrate how volatility first decreases and then increases over

time. However, we notice an increase in the smoothness parameter

estimates of the TV-GARCH model and a slight difference in threshold

parameter estimates between the two time-varying models. The

performance of these models can be seen from their log likelihood

function values as well as the Akaike and Schwarz (or Bayesian)

information criteria values. We notice that the TV-FIGARCHmodel has

the highest log likelihood function values and lowest AIC and SIC

values, which indicates it may be the model with the best

performance.

On comparison of the diagnostic tests results, the values of Ljung-

Box statistics in the Table 13 show that the three models do a good job

at capturing serial correlations in the standardized residuals, while the

TV-FIGARCH model outperforms slightly the other models in eliminat-

ing serial dependence in the squared standardized residuals. We notice

also that the highest p-value of the ARCH test and the lowest statistics

of the Jarque-Bera normality test are for the TV-FIGARCH model. So,

among the three models, the TV-FIGARCH model leads the others.

To obtain a clearer perception of the difference between the three

models, the estimated conditional standard deviation from the FIGARCH

(1,d,1), the TV-GARCH(1,d,1,2) and the TV-FIGARCH(1,d,1,2) models for

theWTI and the S&P 500 returns are plotted in Figs. 5 and 6 respectively.

As we can note from these plots, due to neglecting the unconditional

variance changes over time, the estimated conditional standard deviation

process from the FIGARCH model can show a significant bias, both

upward and downward, relatively to the ones obtained by the TV-GARCH

and the TV-FIGARCH models which look more synchronized.

7. Conclusion

This paper has proposed the time-varying FIGARCH or TV-FIGARCH

process to model the volatility. This new flexible model has the

feature to account for long memory and structural changes in the

conditional variance whose intercept is allowed to be time-depen-

dent. We also implement a modeling strategy for our TV-FIGARCH

specification. To select the appropriate number of transitions, we use

the Lagrange multiplier test on a sequence of hypothesis describing

various dynamics of the baseline volatility over time. Our simulation

experiments suggest that the parameter constancy tests have

reasonable good properties and the modeling strategy appears to

work quite well for the data-generating processes that we simulated.

An empirical application to the crude oil price and the S&P 500 index

are also included to illustrate the usefulness of our techniques. We

find that the parameter constancy hypothesis is strongly rejected for

both returns which may be linked to the Gulf War (1990–1991) and

the economic boom in the United States and Asia in the mid-1990s

followed by the financial crisis in the latter. Another empirical finding

is that the long memory parameter estimates are statistically

significant for both returns. Comparing our model to the FIGARCH

and TV-GARCH models, our findings show that the long-memory type

behavior of the sample autocorrelation function of the absolute

returns is better modeled by a process which accounts for the time-

variation in unconditional variance and the long memory in volatility.

As conclusion, the autocorrelation function behavior of the absolute

returns is not only induced by the presence of long memory in

volatility, but also by structural breaks in the baseline volatility.

Appendix 1. Simulation results

Appendix 1.1. Size and power tests

Appendix 1.2. Model selection frequencies

Table 1

Simulated size for the test of FIGARCH (1, d, 1, 1) against the alternative TV-FIGARCH

(1, d, 1, 1).

α 1% 5% 10%

T d β ϕ

0.25 0.20 0.60 0.08 0.17 0.17

1000 0.50 0.30 0.30 0.10 0.18 0.22

0.75 0.60 0.20 0.10 0.20 0.24

0.25 0.20 0.60 0.06 0.11 0.16

2000 0.50 0.30 0.30 0.09 0.15 0.18

0.75 0.60 0.20 0.09 0.18 0.20

0.25 0.20 0.60 0.06 0.09 0.11

3000 0.50 0.30 0.30 0.08 0.11 0.15

0.75 0.60 0.20 0.09 0.15 0.18

Notes: Table 1 reports the rejection frequencies of the size test at the three theoretical

significance levels {1%, 5%, and 10%}. The data generating process is given by DGP (I).

Table 2

Simulated power for the test of FIGARCH (1, d, and 1) against the alternative TV-

FIGARCH (1, d, 1, and 1).

α 1% 5% 10%

T d β ϕ

0.25 0.20 0.60 0.66 0.81 0.87

1000 0.50 0.30 0.30 0.43 0.59 0.74

0.75 0.60 0.20 0.36 0.53 0.73

0.25 0.20 0.60 0.86 0.94 0.96

2000 0.50 0.30 0.30 0.68 0.75 0.85

0.75 0.60 0.20 0.58 0.65 0.81

0.25 0.20 0.60 0.89 0.93 0.98

3000 0.50 0.30 0.30 0.74 0.81 0.90

0.75 0.60 0.20 0.70 0.77 0.85

Notes: Table 2 reports the rejection frequencies of the power test at the three

theoretical significance levels {1%, 5%, 10%}. The data generating process is given by

DGP (II).

Table 3

Model selection frequencies for the DGP (I).

T 1000 2000 3000

d β ϕ R

0 0.84 0.85 0.90

0.25 0.20 0.60 1 0.10 0.10 0.08

2 0.06 0.05 0.02

0 0.81 0.83 0.89

0.50 0.30 0.30 1 0.17 0.15 0.08

2 0.02 0.02 0.03

0 0.79 0.80 0.85

0.75 0.60 0.20 1 0.19 0.16 0.12

2 0.02 0.04 0.03

Notes: Selection frequencies of the standard LM parameter constancy test based on 100

replications. The nominal significance level equals 5%.
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Appendix 1.3. Estimation results

Appendix 2. Empirical results

Table 4

Model selection frequencies for the DGP (II).

T 1000 2000 3000

d β ϕ R

0 0.02 0.01 0.01

0.25 0.20 0.60 1 0.82 0.87 0.92

2 0.16 0.12 0.07

0 0.06 0.05 0.03

0.50 0.30 0.30 1 0.67 0.78 0.85

2 0.27 0.17 0.12

0 0.09 0.06 0.04

0.75 0.60 0.20 1 0.63 0.75 0.78

2 0.28 0.19 0.18

Notes: Selection frequencies of the standard LM parameter constancy test based on 100

replications. The nominal significance level equals 5%.

Table 5

Model selection frequencies for the DGP (III).

T 1000 2000 3000

d β ϕ R

0 0.20 0.12 0.05

0.25 0.20 0.60 1 0.08 0.04 0.02

2 0.72 0.84 0.93

0 0.18 0.11 0.06

0.50 0.30 0.30 1 0.13 0.12 0.09

2 0.69 0.77 0.85

0 0.20 0.18 0.13

0.75 0.60 0.20 1 0.16 0.08 0.09

2 0.64 0.74 0.78

Notes: Selection frequencies of the standard LM parameter constancy test based on 100

replications. The nominal significance level equals 5%.

Table 6

Simulation on results estimating the FIGARCH (1, d, 1) model.

d̂ ω̂0 β̂ ϕ̂

True 0.25 0.50 0.20 0.60

Mean 0.30 0.55 0.22 0.59

RMSE 0.11 0.11 0.06 0.06

SE 0.02 0.03 0.02 0.02

True 0.50 0.50 0.30 0.30

Mean 0.54 0.51 0.31 0.39

RMSE 0.07 0.31 0.30 0.29

SE 0.02 0.06 0.07 0.05

True 0.75 0.50 0.60 0.20

Mean 0.76 0.55 0.60 0.19

RMSE 0.07 0.16 0.07 0.06

SE 0.02 0.04 0.02 0.02

Note: Table 6 reports the true parameters values, the sample mean of the Quasi

Maximum Likelihood Estimates (QMLE), the root mean square error (RMSE) and the

average of the standard errors (SE) of the parameters estimates, based on 100

replications and a sample size of T=3000.

Table 7

Simulation results of estimating the TV-FIGARCH (1, d, 1, 1).

d̂ ω̂0 β̂ ϕ̂ ω̂1 γ̂1 ĉ1

True 0.25 0.50 0.20 0.60 −0.30 10 0.50

Mean 0.23 0.93 0.19 0.61 −0.58 63.46 0.45

RMSE 0.08 0.75 0.05 0.05 0.98 40.14 0.31

SE 0.02 0.56 0.01 0.01 1.93 100.36 0.82

True 0.50 0.50 0.30 0.30 −0.30 10 0.50

Mean 0.51 1.06 0.34 0.33 −0.09 65.04 0.44

RMSE 0.09 1.36 0.28 0.28 1.57 41.35 0.32

SE 0.02 1.09 0.08 0.08 2.30 121.16 0.62

True 0.75 0.50 0.60 0.20 −0.30 10 0.50

Mean 0.76 0.82 0.59 0.18 −0.55 63.28 0.51

RMSE 0.08 0.76 0.08 0.06 2.27 43.82 0.32

SE 0.02 0.83 0.02 0.02 3.36 109.43 0.39

See footnote to Table 6.

Table 8

Simulation results of estimating the TV-FIGARCH (1, d, 1, 2) model.

d̂ ω̂0 β̂ ϕ̂ ω̂1 γ̂1 ĉ1 ω̂2 γ̂2 γ̂2

True 0.25 0.50 0.20 0.60 −0.30 10 0.30 0.30 10 0.70

Mean 0.22 1.27 0.18 0.60 −0.89 36.31 0.19 0.23 56.74 0.67

RMSE 0.08 0.98 0.06 0.05 1.42 38.33 0.17 0.91 42.13 0.23

SE 0.02 1.10 0.01 0.01 5.44 29.79 0.29 4.77 81.89 0.11

True 0.50 0.50 0.30 0.30 −0.30 10 0.30 0.30 10 0.70

Mean 0.53 1.26 0.42 0.41 −0.73 52.27 0.23 0.21 68.73 0.68

RMSE 0.09 1.59 0.29 0.30 2.28 41.41 0.19 1.86 41.60 0.23

SE 0.12 0.91 0.22 0.11 3.34 19.72 0.21 2.27 51.83 0.13

True 0.75 0.50 0.60 0.20 −0.30 10 0.30 0.30 10 0.70

Mean 0.79 1.28 0.61 0.18 −0.73 58.19 0.26 0.48 55.30 0.69

RMSE 0.09 1.66 0.08 0.09 2.43 41.44 0.19 1.98 42.62 0.22

SE 0.11 1.15 0.11 0.11 3.35 39.65 0.23 2.56 43.64 0.23

See footnote to Table 6.

Table 9

Unit root test on the WTI and the S&P 500 returns.

Intercept Intercept and trend

ADF PP KPSS ADF PP KPSS Lags

WTI −14.79 −56.46 0.07 −16.19 −56.47 0.04 12

S&P 500 −14.88 −50.39 0.32 −16.35 −50.46 0.02 10

Notes: the null hypothesis for ADF and PP tests is non stationarity, while it is

stationarity for the KPSS test. The lag selection is based on the lowest AIC information

criteria. The critical value for both the ADF and PP are−3.43,−2.86 and−2.51 and for

the KPSS are 0.34, 0.46 and 0.73 at 1%, 5% and 10% levels of significance respectively for

the model with intercept. The critical value for both the ADF and PP are −2.32, −1.64

and −1.28 and for the KPSS are 0.12, 0.14 and 0.21 at 1%, 5% and 10% levels of

significance respectively for the model with intercept and trend.

Table 10

Summary statistics.

WTI S&P 500

Minimum −40.63 −7.11

Maximum 18.86 4.98

μ 0.004 0.05

σ 2.52 0.88

sk −1.63 −0.38

k 31.90 5.25

JB 10843 0:00½ % 2958:8 0:00½ %

Q(10) 87:55 1:63 10−14
h i

28:93 0:0013½ %

Q(50) 243:00 0:00½ % 79:33 0:0048½ %

Q2(10) 137:95 0:00½ % 407:85 0:00½ %

Q2(50) 242:31 0:00½ % 853:73 0:00½ %

ARCH(4) 87:19 0:00½ % 160:26 0:00½ %

Notes: μ denotes the average returns and σ its standard deviation. sk is the Skewness

coefficient, k is the Kurtosis and JB is the Jarque-Bera normality test, Q(10), Q(50), Q2

(10) and Q2(50) are respectively the 10-th and 50-th orders Ljung-Box tests for serial

correlation in the returns and squared returns.

Table 11

Test for selecting R for the WTI and the S&P 500 returns.

WTI S&P 500

H01 2:161
0:141½ %

2:95
0:085½ %

H02 5:784
0:016½ %

9:87
0:001½ %

H03 5:435
0:020½ %

2:68
0:101½ %

H04 5:619
0:018½ %

3:40
0:065½ %

H05
3:062
0:080½ %

6:32
0:011½ %

Notes: the numbers in brackets are the p-values.
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Table 12

Estimation results for the WTI and the S&P 500 returns.

WTI S&P 500

FIGARCH TV-GARCH TV-FIGARCH FIGARCH TV-GARCH TV-FIGARCH

μ̂ −0:02 0:02½ % −0:01 0:04½ % −0:01 0:03½ % 0:06 0:005½ % 0:06 0:003½ % 0:06 0:004½ %

π̂1 0:02 0:02½ % 0:01 0:02½ % 0:02 0:02½ % 0:05 0:01½ % 0:05 0:01½ % 0:05 0:01½ %

π̂2 −0:04 0:02½ % −0:04 0:02½ % −0:03 0:02½ % 0:03 0:01½ % 0:02 0:01½ % 0:01 0:01½ %

π̂3 −0:09 0:02½ % −0:08 0:02½ % −0:09 0:02½ % −0:06 0:01½ % −0:06 0:004½ % −0:06 0:01½ %

d̂ 0:63 0:05½ % - 0:57 0:056 0:43 0:16½ % – 0:16 0:04½ %

ω̂0 0:19 0:46½ % 0:96 0:29 1:37 0:54½ % 0:04 0:03½ % 0:07 0:05½ % 0:45 0:23½ %

β̂ 0:56 0:06½ % 0:86 0:02½ % 0:50 0:06½ % 0:54 0:24½ % 0:78 0:05½ % 0:17 0:29½ %

ϕ̂ 0:05 0:04½ % 0:10 0:02½ % 0:05 0:06½ % 0:16 0:14½ % 0:06 0:03½ % 0:05 0:27½ %

ω̂1 – −0:85 0:27½ % −1:31 0:58½ % – −0:04 0:04½ % −0:39 0:19½ %

γ̂1 – 176:32 152:72½ % 106:14 55:57½ % – 39:86 67:18½ % 24:67 13:96½ %

ĉ1 – 0:11 0:02½ % 0:11 0:01½ % – 0:20 0:04½ % 0:15 0:04½ %

ω̂2 – 0:20 0:006½ % 0:57 0:25½ % – 0:07 0:04½ % 0:33 0:16½ %

γ̂2 – 189:76 124:67½ % 8:15 4:93½ % – 27:09 10:29½ % 24:97 9:03½ %

ĉ2 – 0:60 0:14½ % 0:58 0:14½ % – 0:71 0:02½ % 0:68 0:03½ %

log L(λ) −5439.14 −5419.96 −5414.24 −3027.56 −3005.96 −3000.25

AIC 10,896.28 10,865.92 10,856.48 6071.12 6037.92 6028.50

SIC 10,940.92 10,941.79 10,938.10 6117.76 6113.71 6110.12

Notes: table 12 reports QML parameter estimates of the AR(3)-FIGARCH(1,d,1), AR(3)-TVGARCH(1,d,1,2) and AR(3)-TVFIGARCH(1,d,1,2) models. logL(λ) denotes the maximum

value of the log likelihood function, AIC and SIC are the Akaike and Schwarz (or Bayesian) information criteria, respectively. The numbers in brackets are the robust standard errors.

Table 13

Diagnostic test results.

WTI S&P 500

FIGARCH TV-GARCH TV-FIGARCH FIGARCH TV-GARCH TV-FIGARCH

sk −0.29 −0.34 −0.27 −0.42 −0.39 −0.38

k 6.44 6.82 5.36 5.14 5.03 4.95

JB 1289:5 0:00½ % 1589:60 0:00½ % 617:86 0:00½ % 559:37 0:00½ % 499:76 0:00½ % 466:58 0:00½ %

Q(10) 5:11 0:88½ % 3:26 0:97½ % 4:00 0:94½ % 10:54 0:39½ % 10:07 0:43½ % 9:41 0:49½ %

Q(50) 36:89 0:91½ % 38:84 0:87½ % 40:07 0:84½ % 66:59 0:06½ % 63:57 0:09½ % 63:43 0:09½ %

Q2(10) 8:91 0:54½ % 11:86 0:29½ % 8:44 0:58½ % 5:06 0:88½ % 4:47 0:92½ % 4:36 0:92½ %

Q2(50) 47:48 0:57½ % 41:07 0:81½ % 40:47 0:82½ % 42:34 0:77½ % 39:86 0:84½ % 38:88 0:87½ %

ARCH(4) 1:75 0:78½ % 5:10 0:27½ % 1:58 0:81½ % 2:98 0:56½ % 2:26 0:68½ % 2:14 0:70½ %

Notes: sk is the Skewness coefficient, k is the Kurtosis and JB is the Jarque-Bera normality test. Q(10), Q(50), Q2(10) and Q2(50) are respectively the 10-th and 50-th orders Ljung-Box

tests for serial correlation in the standardized and squared standardized residuals. The numbers in brackets are the p-values.
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