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1. Introduction

Long-memory processes have received considerable attention by
researchers from very diverse fields. The seminal work of Beran
(1995), Doukhan, Oppenheim and Taqqu (2003) and Robinson (2003)
overview the recent developments on this topic. The long-memory
processes are characterized by a long-term dependence and the
presence of cycles and level changes. Theywere detected in economics
in many fields, for example in the dynamics of exchange rates or the
volatility of financial time series. In addition, we assist for the few
latest years to a significant development of non-linear modelling. For
instance, in economics and finance, multiple regimes modelling
becomes more and more important in order to take into account
phenomena characterized, for instance, by recession or expansion
periods, or high or low volatility periods. Consequently, a number of
different models have been proposed in the literature to account for
this behaviour, among which Markov switching models or smooth
transition autoregressive (STAR)models. The non-linearity property of
economic time series can also be justified by the existence of
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asymmetry in variable's dynamics; for instance, favourable shocks
have a more important and persistent effect than the unfavourable
shocks. In order to consider these possible non-linearities, it is
necessary to have econometric models able to generate different
dynamics according to the cycle phase.

Therefore, this paper belongs to a literature exploring simulta-
neously these two key properties of economic and financial time
series, namely the long-memory and non-linear properties. Indeed, a
line of papers has recently proposed that we can call “non-linear long-
memory”models. For instance, some authors provide a joint evidence
of mean reversion over long horizons and non-linear dynamics on
exchange rate markets, by generalizing to the non-linear framework
the Beveridge–Nelson decomposition (see, Clarida and Taylor, 2003;
Sarno and Taylor, 2001). Others propose new classes of long-memory
models. For instance, Franses and Paap (2002), Franses, van Der Leij
and Paap (2002) introduce CLEAR (Censored Latent Effects Autore-
gressive) and Switching CLEAR processes, which show autocorrelation
at high lags with an ACF that decays at a faster rate in the beginning in
comparison to the ACF of an ARFIMA model.

Along this line of research, the fractionally integrated smooth
transition autoregressive (FISTAR) models have also been proposed,
that offer another potential application to economic and financial
data (see van Dijk et al., 2002; Caporale and Gil-Alana, 2007;
Smallwood, 2005. van Dijk et al. (2002) present the modelling cycle
for specification of these models, such as testing for non-linearity,
hts reserved.

mailto:imene.mootamri@etumel.univmed.fr
http://dx.doi.org/10.1016/j.econmod.2008.07.019
http://www.sciencedirect.com/science/journal/02649993


336 M. Boutahar et al. / Economic Modelling 26 (2009) 335–341
parameter estimation and adequacy tests, in the case where the
transition function is the logistic function; they study the dynamics of
monthly US unemployment rates. Smallwood (2005) extends these
results to the FISTAR model with an exponential transition function,
and applies this model to the purchasing power parity puzzle by
considering the real exchange rate processes for twenty countries
against the United States.

In this paper, we study this class of models because these FISTAR
models, indeed, make it possible to generate non-linearity, since they
are defined by several distinct modes in dynamics, and to take into
account the persistence phenomenon. We consider the case of an
exponential transition function and propose a two-step estimation
method: in the first step, we estimate the long-memory parameter,
then, in the second step, the STAR model parameters via non-linear
least squares estimation.

The remainder of this paper is organized as follows. In Section 2, we
present the FISTAR model with an exponential transition function and
the two-step estimation procedure, we describe also the out-of-sample
forecasting. In Section 3, we analyze the monthly US real effective
exchange rate in order to illustrate thevarious elements of themodelling
cycle. Finally, Section 4 concludes.

2. The econometric specification

2.1. The model

Let us consider a process yt that satisfies the following long-memory
scheme:

1−Lð Þdyt ¼ xt ð1Þ

where L is the lag operator, d is the long-memory parameter and xt is a
covariance-stationary I(0) process. The parameter d is possibly non-
integer, inwhich case the time series yt is called fractionally integrated
(FI) (see, among others, Granger and Joyeux, 1980; Hosking 1981).
If −0:5bdb0:5, yt is covariance stationary and invertible process. For
0bdb0.5, yt is a stationary long-memory process in the sense that
auto-correlations are not absolutely summable and decay hyperboli-
cally to zero. Finally, if 0:5≤db1, yt is non-stationary and the shocks do
not have permanent effects.

To capture the non-linear feature of time series, a wide variety of
models can be used (see Franses and van Dijk, 2000). In this paper, we
consider the fractionally integrated STAR (FISTAR)1 model introduced
by van Dijk et al. (2002) given by:

1−Lð Þdyt ¼ xt
xt ¼ u10 þ ∑p

i¼1u1ixt−i
� �þ u20 þ ∑p

i¼1u2ixt−i
� �

F st ;γ; cð Þ þ et

�
ð2Þ

where εt is a martingale difference sequence with

E et jXt−1½ � ¼ 0

and

E e2t jXt−1
� � ¼ σ2

and Ωt is the information set available at time t. γ is the transition
parameter (γN0) and c is the threshold parameter. st, the transition
variable2, is generally the lagged endogenous variable, i.e. st=yt−m for
certain integer mN0 where m is the delay parameter: In most
applications, the transition function F (st, γ, c) is an exponential
1 See also Smallwood (2005).
2 The transition variable can also be assumed an exogenous variable, or a possibly

non-linear function of lagged endogenous variables. See Teräsvirta (1994) for more
details.
function or a logistic function. The FISTAR model can be also be
written as follows:

1−Lð Þdyt ¼ xt
xt ¼ πV1wt þ πV2wtF st ;γ; cð Þ þ et

�
ð3Þ

where wt=(1, xt−1, …, xt−p)′, πi=(πi0, πi1, …, πip)′ and

πi Lð Þ ¼ ui Lð Þ 1−Lð Þd

for i=1; 2. The fractional parameter d and the autoregressive parameters
make the FISTARmodel potentially useful for capturing both non-linear
and long-memory features of the time series yt. Indeed, the long-run
properties of yt are restricted to be constant and these are determined by
the fractional differencing parameter, however, the short-run dynamics
are determined by autoregressive parameters.

Our empirical results show that the fractionally integrated exponential
STAR (FIESTAR) model is more appropriate for modelling real exchange
rate dynamics than the FISTARmodelwith the logistic function (FILSTAR).
Then, the simple transition function suggestedbyTeräsvirta andAnderson
(1992) and Teräsvirta (1994),which is particularly attractive in the present
context, is the exponential function3 that takes the following form:

F st ;γ; cð Þ ¼ 1− exp −
γ
σ2

st

st−cð Þ2
 !

ð4Þ

where σst is the standard deviation of st.
We present the main steps of the specification procedure for

FISTAR models, such as it is proposed by van Dijk et al. (2002):

• Specify a linear ARFI(p) model by selecting the autoregressive order
p by means of information criteria 4 (Akaike, 1974; Schwarz, 1978).

• Test the null hypothesis of linearity against the alternative of a
FISTAR model. If linearity is rejected, select the appropriate
transition variable.

• Estimate the parameters in the FISTAR model.
• Evaluate the estimated model using misspecification tests (no
remaining non-linearity, parameter constancy, no residual auto-
correlation, among others).

2.2. Linearity tests

Teräsvirta (1994)developed theprocedureof testing linearityagainst
STAR models; he pointed out that this procedure is complicated by the
presence of unidentifiednuisanceparametersunder thenull hypothesis.
To overcome this problem, Luukkonen et al. (1988) propose to replace
the transition function F(st, γ, c) with a suitable Taylor series approxi-
mation about γ=0. In the reparametrized equation, the identification
problem is no longer present, and linearity can be tested by means of a
Lagrange multiplier (LM) statistic. For an extensive presentation of the
test when the alternative is a FISTARmodel, the reader is referred to van
Dijk et al. (2002) and Smallwood (2005). Then, we consider the model
given by Eqs. (3) and (4), the LM-type test statistic can be computed in a
few steps as follows:

• Estimate an ARFI(p), obtain the set of residuals ε̂ t. The sum of
squared errors, denoted SSR0, is then constructed from the residuals
ε̂ t SSR0=∑t =1

T ε̂ t
2.

• Regress ε̂ t on wt ; −∑t−1
j¼1

ˆεt−j
j and wtst

i, i=1, 2, and compute the sum of
squared residuals SSR1 under the alternative hypothesis.
3 Paya and Peel (2006), Michael, Nobay and Peel (1997), Taylor, Peel and Sarno
(2001), and Sarantis (1999) applied the ESTAR models to exchange rates for different
countries.

4 Beran et al. (1998) proposed versions of the AIC, BIC and the HQ (Hannan and
Quinn, 1979) which are suitable for fractional autoregressions, but do not consider
moving average components.
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• The χ2 version of the LM test statistic is calculated as:

LMχ2 ¼ T SSR0−SSR1ð Þ
SSR0

ð5Þ

and is distributed as χ2 (2 (p+1)) under the null hypothesis of linearity
(T denotes the sample size).

2.3. Estimation of the FISTAR model

It is important to obtain a consistent estimate of the long-memory
parameter d because the test statistics for the FISTAR model depend
on this estimated value. In this section, we present two approaches to
estimate the parameters in the FISTAR model: in the first one, we
estimate all the parameters simultaneously (as proposed by van Dijk
et al., 2002), while the second method consists in performing the
estimation in two steps.

2.3.1. Simultaneous estimation
To estimate the parameters of the FISTAR model, van Dijk et al.

(2002) modify Beran's (1995) approximate maximum likelihood
(AML) estimator for invertible and possibly non-stationary ARFIMA
models to allow for regime switching autoregressive dynamics. This
estimatorminimizes the sum of squared residuals of the FISTARmodel
as follows:

S λð Þ ¼ ∑
T

t¼1
e2t λð Þ; ð6Þ

where λ=(π1′, π2′, d, γ, c) denotes the parameters of the FISTAR model
(3). The residuals εt (λ) are calculated as follows:

et λð Þ ¼ 1−Lð Þdyt− π10 þ ∑tþp−1
j¼1 π1;jyt−j

� �
− π20 þ ∑tþp−1

j¼1 π2;jyt−j
� �

F st ;γ; cð Þ ð7Þ

where F(st, γ, c) is given by Eq. (4). Thus, conditional upon d, γ and c,
van Dijk et al. (2002) remark that the FISTAR model is linear in the
remaining parameters, estimates of π1 and π2 can be thus obtained by
ordinary least squares as:

μ̂ d;γ; cð ÞV¼ ∑
T

t¼1
wt d;γ; cð Þwt d;γ; cð ÞV

	 
−1

∑
T

t¼1
wt d;γ; cð Þyt

	 

; ð8Þ

where wt (d, γ, c)=(wt′, wt′F(st, γ, c))′. Therefore, the sum of squares
function can be obtained by:

S d;γ; cð Þ ¼ ∑
T

t¼1
yt−μ̂ d;γ; cð ÞVwt d;γ; cð Þ
� �2

: ð9Þ

According to van Dijk et al. (2002), it can be difficult to estimate the
model parameters jointly. In particular, accurate estimation of the
smoothness parameter is quite difficult when this parameter is large.
They proposed an algorithm that is based on a grid search over d, γ
and c in order to obtain starting values for the non-linear least squares
procedure.

2.3.2. Two steps estimation
The properties of the process yt depend on the value of the

parameter d. Many researchers have proposed methods for estimat-
ing the long-memory parameter d. These methods can be summar-
ized in three classes: the heuristic methods (Hurst, 1951; Higuchi,
1988; Lo, 1991…), the semiparametric methods (Geweke and Porter-
Hudak, 1983; Robinson, 1994, 1995a,b; Lobato and Robinson, 1996…)
and the maximum likelihood methods (Dahlhaus, 1989; Fox and
Taqqu, 1986; Sowell, 1992…). In the first two classes, we can estimate
only the long-memory parameter d, and in the last, we estimate
simultaneously all the parameters, see Boutahar et al. (2007) for
more details.
The estimation method of the FISTAR model we propose proceeds
in two steps:

• In thefirst step,weestimate the long-memoryparameterd in the simple
model (1) using the heuristic method via the R/S statistic proposed by
Hurst (1951) and modified by Lo (1991). The R/S statistic is the range of
partial sums of deviations of a time series from its mean, rescaled by its
standard deviation. Specifically, the R/S statistic is defined as:

QT ¼ 1
ST

max
1VkVT

∑
k

j¼1
yj − y
� �

− min
1VkVT

∑
k

j¼1
yj − y
� � !

ð10Þ

where y ¼ 1
T ∑

T
i¼1yi is the empirical mean and S2T ¼ 1

T ∑
T
i¼1 yi−yð Þ2 is

the empirical variance. Lo (1991) modified the R/S statistic as
follows:

~
QT ¼ 1

Sq Tð Þ max
1VkVT

∑
k

j¼1
yj − y
� �

− min
1VkVT

∑
k

j¼1
yj − y
� � !

ð11Þ

where

Sq Tð Þ ¼ S2T þ
2
T
∑
q

j¼1
wj qð Þ ∑

T

i¼jþ1
yi − yð Þ yi−j − y

� � !" #1=2
;

wj qð Þ ¼ 1− j
qþ1 are the weights proposed by Newey and West (1987),

with j=1, …, q. There is no optimal choice of the parameter q. Lo and
MacKinlay (1988) and Andrews (1991) showed by a Monte Carlo study
that, when q is relatively large compared to the sample size, then the
estimator is skewed and thus qmust be relatively small. By default, for
obtaining the long run variance, q is chosen to be [4(T/100)1/4], where T
is the sample size, and [x] denotes integer part of x. However, when the
stationary process yt has long-memory,Mandelbrot (1972) showed that
the R/S statistic converges to a random variable at rate T H, where H is
the Hurst coefficient. The link between the parameter H and the ARFI
parameter d is that H ¼ dþ 1

2 (Boutahar et al., 2007).
• Once we obtain d̂ R/S, in the second step, we filter out the long-
memory component and we estimate the STAR model parameters
via non-linear least squares estimation.

2.4. Out-of-sample forecasting performance

Unlike the linear model, forecasting with non-linear models is
more complicated, especially for several steps ahead (see, for instance,
Granger and Teräsvirta, 1993). Let us consider the FIESTAR model
given by Eqs. (3) and (4) which can be written as:

1−Lð Þdyt ¼ xt
xt ¼ G wt ;ωð Þ þ et

F st ;γ; cð Þ ¼ 1− exp −
γ
σ2

st

st−cð Þ2
 !

8>>><
>>>:

ð12Þ

where G(wt, ω)=π1′wt+π2′wtF (st, γ, c) and ω=(π1′ , π2′ , γ, c)′. The
optimal one-step ahead forecast of xt is given by:

xtþ1jt ¼ E xtþ1jXtð Þ ¼ G wtþ1;ωð Þ; ð13Þ

this forecast can be achievedwith no difficulty and can be estimated by

x̂tþ1jt ¼ G wtþ1; ω̂ð Þ ð14Þ

where ω̂ is the parameter estimate. However, when the forecast
horizon is larger than one period, things become more complicated
because the dimension of the integral growswith the forecast horizon.
For example, the two-step ahead forecast of xt is given by:

x̂tþ2jt ¼ E G ŵtþ2jt ;ω
� �jXt

� � ¼ ∫∞−∞G ŵtþ2jt ; ω̂
� �

f εð Þdε ð15Þ



5 For a survey on long memory models and their application in economics and
finance, see Baillie (1996), Robinson (2003) among others.

6 For other unit root tests see Elliot et al. (1996), among others.
7 Contrary to ADF test, the KPSS test considers the stationarity under the null

hypothesis, and the alternative hypothesis is the presence of unit root.

Fig. 1. Monthly US real effective exchange rate (Log).
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with ŵt+2|t= (1, x̂ t+1|t+εt +1, xt, …,xt+2− p)′. The analytic expression for
the integral (15) is not available. We thus need to approximate it using
integration techniques. Several methods obtaining forecasts to avoid
numerical integration have been developed (see Granger and
Teräsvirta, 1993). In this paper, we use a bootstrap method suggested
by Lundbergh and Teräsvirta (2001). This approach is based on the
approximation of E(G(ŵ(i)

t+2|t, ω) |Ωt), the optimal point forecast is
given by:

x̂tþ2jt ¼ 1
k
∑
k

i¼1
G ŵ ið Þ

tþ2jt ;ω̂
� �

; ð16Þ

where k is some large number and the values of εt+1 in ŵt+2|t
(i) are

drawnwith replacement from the residuals from the estimated model
ε̂t.

In general, forecasts are evaluated using the mean squared
prediction error (MSPE) and the root mean squared prediction
(RMSE), where m is the number of steps-ahead forecasts. Models
with smaller MSPE have a better forecast performance. Further, in
order to assess the accuracy of forecasts derived from two different
models, the Diebold and Mariano Diebold and Mariano (1995) test is
likely to be widely used in empirical evaluation studies, and is
considerably more versatile than any alternative test of equality of
forecast performance.

Let yt+h /t1 and yt+h /t
2 denote two competing forecasts of yt+h from

FIESTAR and ARFI models, respectively, based onΩt, whereΩt={yt, yt−1,..}
is the information set available at time t. The forecast errors from the two
models are given by et+h /t

i =yt+h−yt+h /ti , i=1, 2. The accuracy of each
forecast is measured by a particular loss function:

g ytþh; y
i
tþh=t

� �
¼ g eitþh=t

� �
; i ¼ 1;2:

To determine if a model predicts better than the other one, wemay
test the null hypothesis of equality of expected forecast performance:

H0 : E g e1tþh=t

� �� �
¼ E g e2tþh=t

� �� �
H1 : E g e1tþh=t

� �� �
≠ E g e2tþh=t

� �� � :

8<
:

The Diebold–Mariano test is based on the loss differential:

dt ¼ g e1tþh=t

� �
−g e2tþh=t

� �
: ð17Þ

The null of equal predictive accuracy is then: H0 : E (dt)=0: The
Diebold–Mariano test statistic is:

S1 ¼ dffiffiffiffiffiffiffiffiffiffiffiffi
2π ˆf d 0ð Þ

T

q ; ð18Þ

where T is the sample size, d ¼ 1
T ∑

T
t¼1dt is the sample mean of dt and

ˆf d 0ð Þ ¼ 1
2π∑

∞
τ¼−∞γ̂d τð Þ is a consistent estimate of the spectral density of

the loss differential function at frequency zero,

γd τð Þ ¼ E dt−μð Þ dt−τ−μð Þ½ �
is the autocovariance of the loss differential at rate τ, and μ is the
population mean loss differential. Under the null hypothesis of equal
forecasts, the statistic S1 has an asymptotic standard normal
distribution.

Harvey et al. (1997) noted that the Diebold–Mariano test statistic
could be seriously over-sized as the prediction horizon increases, and
therefore provide a modified Diebold–Mariano test statistic. Harvey
et al. (1997) and Clark and McCracken (2001) show that this modified
test statistic performs better than the Diebold–Mariano test statistic,
and also that the power of the test is improved when the p-values are
computed with a Student distribution with (T−1) degrees of freedom,
rather than from the standard normal distribution. Thus, the modified
Diebold–Mariano statistic is given by:

S⁎1 ¼ T þ 1−2hþ T−1h h−1ð Þ
T

	 
1=2

S1 ð19Þ

where S1 is the original Diebold and Mariano statistic (18).

3. Empirical results

The fractionally integrated models5 have been already applied in
economics andfinance, for instance to exchange rates (Diebold et al.,1991;
Cheung and Lai, 2001; Baillie and Bollerslev, 1994), inflation (Hassler and
Wolters, 1995; Baillie et al., 1996) and unemployment modelling (Diebold
and Rudebusch, 1989; Tschernig and Zimmermann, 1992; Koustas and
Veloce, 1996; Crato and Rothman, 1996). Therefore, the long-memory
models, such as the FISTAR, are not only able to study the persistence but
also to capture non-linearity features such as thresholds or asymmetries.
They can be applied in various economic and financial fields, in particular
the stock indexes, the exchange rates and the interest rates. van Dijk et al.
(2002) apply the FISTAR models to US unemployment and Smallwood
(2005) to the case of purchasing power parity. In this paper, we study the
behaviourof exchange rates andcompare the forecastperformancesof the
FIESTAR modelling to some other models.

3.1. The data

We use monthly data of the seasonally adjusted US real effective
exchange rate covering the period June 1978 until April 2002, these data
were obtained from the IMF International Financial Statistics. The series is
expressed in logarithm. The use of monthly data provides us with a
reasonably large sample and hencemeets the requirement of the linearity
tests for many degrees of freedom. The series is shown in Fig. 1, which
demonstrates a real appreciation of the dollar during the beginning of the
1980's followed by depreciation in 1985. As noted by Smallwood (2005),
consistently with the theoretical foundation of Sercu et al. (1995), we
observe four periods after 1987 in which the dollar steadily appreciates
and then rapidly depreciates after reaching approximately the samevalue.
This provides some support for the use of non-linear models.

3.2. Linearity tests results

Application of the linearity tests models requires stationary time
series. The unit root tests6 of Phillips and Perron (1988), Kwiatkowski
et al. (1992)7 and Dickey-Fuller Augmented (1979) for the levels and



Table 1
Unit root tests

Level First difference

ADF −1.118 −7.287
PP −1.106 −12.281
KPSS 3.090 0.251

Note: The unit root tests are Phillips and Perron (PP), Kwiatkowski, Phillips, Schmidt
and Shin (KPSS) and Dickey-Fuller Augmented (ADF) tests. For ADF test, the 1%, and 5%
critical values are −3.455 and −2.871, respectively. For KPSS test, the 1%, and 5% critical
values are 0.739 and 0.463, respectively.

Table 2
Linearity tests (p-values)

M 1 2 3 4 5 6

LM-test 0.868 0.346 0.087 0.073 0.251 0.171

Table 3
Estimation of the different models

ARFI FIESTAR
(simultaneous estimation)

FIESTAR
(two-step estimation)

π10 0.850 (0.284) −0.063(0.026) −0.003(0.014)
π11 −0.183 (0.125) 0.665 (0.295) −0.175 (0.142)
π12 0.179 (0.079) −0.167 (0.335) 0.156 (0.144)
π13 −0.059 (0.083) 0.194 (0.394) 0.345 (0.163)
π14 0.103(0.065) −0.683(0.290) 0.217 (0.126)
π20 −0.001 (0.001) −0.004 (0.015)
π21 1.256 (0.078) 0.470 (0.115)
π22 −0.458 (0.122) −0.238 (0.120)
π23 0.172 (0.119) 0.121 (0.103)
π24 0.035 (0.075) −0.195 (0.121)
d −0.484 (0.282) −0.169 (0.007) 0.221⁎ (1.896)
γ 12.655 (8.648) 2.574 (1.190)
C −0.101 (0.003) 0.022 (0.020)
SE 0.840 0.670

Note: The standard errors are displayed in parentheses. ⁎: Lo's (1991) estimator based
on first difference; the value of modified R/S statistic for long-memory test is in
parentheses. SE is the ratio of residual variance for the non-linear and linear models.
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first differences of the real effective exchange rates, measured in
logarithms, are shown in Table 1. These results indicate that the time
series are integrated of order 1, at both 5% and 1% significance levels.

The selection of the maximum lag p, of the linear ARFI model was
made using the AIC and BIC criteria under the non-autocorrelation
hypothesis. We allow for a maximum autoregressive order of p=6.
Both AIC and BIC indicate that an ARFI model with p=4 is adequate.

The linearity tests are displayed in Table 2. In carrying out linearity
tests, we have considered values for the delay parameter m over the
range [1, 6], and calculated the p-values for the linearity test in each
case, the estimate of m is chosen by the lowest p-value. Using 5% as a
threshold p-value, the test classifies the US real effective exchange
rates as non-linear. Although the p-value is slightly higher than 5%, we
show thereafter that a non-linear model describes the features of a
time series better than a linear model8. Then the lowest p-value
corresponds to m=4 (m≤p).

3.3. Estimation results

Estimation results for the ARFI and FIESTAR models are shown in
Table 3. The second column gives the ARFI model estimation, the
8 This result is also found in Sarantis (1999).
estimate of d is −0:484, showing that the process yt is stationary and
invertible. The results of the second model are based on the
specification (3) where yt is the first difference of the US real effective
exchange rates. The third column of Table 3 contains simultaneous
estimation results of the parameters. In particular, the estimate of d is
equal to −0.169 and belongs thus to the interval ] −0.5, 0:5[, suggesting
that the process is stationary and invertible. The autocorrelation
function decreases more quickly than in the case where 0bdb0.5: yt is
an anti-persistent process. It is also interesting to note, in the last
column corresponding to the two-step estimation, that the degree of
persistence measured by the differentiation parameter increases. The
Lo's (1991) estimator using the modified R/S statistic is d̂ R/S=0.221,
then, the process is stationary and invertible, the autocorrelation func-
tion decays hyperbolically to zero and yt is a long-memory process. The
modified R/S statistic 1.896 is significant at 5%. The ratio of the standard
errors for the non-linear and linear models for the simultaneous
estimationof the FIESTARmodel is equal to 0.840; it's higher than for the
two-step estimation 0.670. We can thus confirm that the non-linear
model improves the modelling of the exchange rate process, as shown
by both estimation methods. It is worthwhile noting here the relative
small value of the estimation of for the second estimation (2.547
compared to 12.655 for simultaneous estimation), suggesting that the
transition from one regime to the other is rather slow, contrary to first
estimation which assumes a slightly sharp switch. The parameter c
indicates the halfway point between the different phases of the
exchange rate. The value of c is negative for the first case, and not
significantly different from zero in the other. These values belong to the
neighborhoodof the samplemean for thefirst differenceexchange rates.
Figs. 2 and 3 show the curves of the exponential transition function
corresponding to the estimation of the FIESTAR model, the first one
using the simultaneous estimationmethod and the secondone the two-
step method.

Table 4 gives summary statistics andmisspecification tests for ARFI
and FIESTAR models. In particular, the hypothesis of no residual
autocorrelation, no conditional heteroscedasticity, and normality are
not rejected in the residuals for bothmodels at 5% level of significance.
From the skewness and kurtosis of the series, it is evident that the US
real effective exchange rate is symmetric and the frequency curve is
normal, this is confirmed by the Jarque–Bera test for normality.
Moreover, the null hypothesis of parameter constancy against the
alternative of smoothly changing parameters for st= t, and the null of
no remaining non-linearity are not rejected, following the LM test
statistics LMNL and LMC for the FIESTAR model.
Fig. 2. Exponential transition function (simultaneous estimation).



Fig. 3. Exponential transition function (two-step estimation).

Table 5
Out-of-sample MPSE and modified Diebold–Mariano statistics from randomwalk (Rw),
ARFI and FIESTAR models

H Rw ARFI FIESTAR ARFI & FIESTAR Rw & FIESTAR

1 0.0079 0.0053 0.0019 8.71 (0.000) 8.98 (0.000)
2 0.0176 0.0098 0.0085 7.52 (0.000) 8.11 (0.000)
3 0.0292 0.0218 0.0192 6.39 (0.000) 7.13 (0.000)
4 0.0495 0.0438 0.0346 6.22 (0.000) 6.87 (0.000)
5 0.0799 0.0748 0.0543 5.49 (0.000) 6.22 (0.000)
6 0.1314 0.1044 0.0775 5.36 (0.000) 5.74 (0.000)
7 0.1670 0.1565 0.1059 5.22 (0.000) 5.49 (0.000)
8 0.2045 0.1926 0.1363 4.54 (0.000) 4.72 (0.000)
9 0.2449 0.2398 0.1728 4.44 (0.000) 4.59 (0.000)
10 0.3298 0.2896 0.2129 3.71 (0.001) 4.10 (0.000)
11 0.3770 0.3595 0.2583 3.68 (0.002) 3.88 (0.001)
12 0.7021 0.6812 0.3087 3.07 (0.007) 3.58 (0.002)

Note: Columns 2–4 report theMPSE for the randomwalk and ARFI models, and columns
5–6 report the modified DM test statistics with p-values in parentheses.
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3.4. Forecasting performance of estimated models

The final two years of data from January 2002 to April 2004 for US
real effective exchange rate are used to evaluate the forecast
performance of the estimated linear ARFI and FIESTAR models. For
each point, we compute 1–12-step-ahead forecasts of real exchange
rates. To obtain the forecasts from non-linear model, we use the
bootstrap method exposed in Section 2.4.

The results of forecasting performance are reported in Table 5.
Forecast accuracy is evaluated using mean squared prediction error
(MPSE) criterion. The forecasts produced by the FIESTAR are compared
to the forecasts generated by a random walk and linear ARFI models.
Further, in order to assess the accuracy of forecasts derived from two
different models, we employ the modified Diebold and Mariano test
statistic proposed by Harvey et al. (1997) discussed in Section 2.4 for
which the null hypothesis is the hypothesis of equal accuracy of
different predictive methods.

The results successfully provide evidence in favour of the
predictive superiority of the FIESTAR model against the random
walk and ARFI models usingMPSE: theMPSE of the linear model and a
randomwalk is actually greater than the MPSE of the FIESTAR model.
Table 4
Diagnostic tests

ARFI FISTAR

AIC −8.195 −8.181
BIC −7.846 −0.132
SK −0.166 −0.133
Kr 3.297 3.006
JB 1.313(0.518) 0.463(0.793)
ARCH(1) 0.981 (0.321) 0.714 (0.398)
ARCH(2) 1.778 (0.411) 1.292 (0.524)
ARCH(3) 5.634 (0.130) 2.933(0.402)
ARCH(4) 7.605 (0.107) 4.276 (0.370)
LMSI(2) 0.765 (0.467) 1.764 (0.175)
LMSI(4) 1.174 (0.325) 2.179 (0.075)
LMSI(6) 1.280 (0.271) 2.111 (0.057)
LMSI(8) 1.118 (0.355) 1.690 (0.106)
LMSI(31) 0.746 (0.817) 0.965 (0.529)
LMNL – 0.937 (0.521)
LMC – 0.701 (0.778)

Note: The table presents selected diagnostic and misspecification tests statistics for the
estimated FIESTAR on two step and ARFI models for the US real effective exchange rate;
the numbers in parentheses are p-values. SK is skewness, Kr is kurtosis, JB is the Jarque–
Bera test of normality of the residuals, ARCH(r) is the LM test of no autoregressive
conditional heteroscedasticity up to order r, LMSI (q) denotes the LM test of no serial
correlation in the residuals up to order q, LMNL is the LM test of no remaining non-
linearity, and LMC is the LM test of parameter constancy.
Comparing our results to those obtained in the previous literature we
can see that the FIESTAR model gives very much more accurate
forecasts and outperforms random walk and linear ARFI models in
out-of-sample forecasting performances for all forecast horizons. The
statistical significance of this result is confirmed executing the
modified Diebold and Mariano test: there is a statistically significant
difference in predictive accuracy for the FIESTAR model over the
random walk and ARFI specifications. We can thus conclude that the
forecasts of the FIESTAR modelling are significantly better than those
of the other models. The same conclusion is given by Chung (2006)
who finds clear evidence in favour of the non-linear long-memory
model over some other estimated models for the real exchange rates
of Germany, France, Italy, UK, Japan, and Switzerland.

4. Conclusion

The aim of this paper was to study the dynamic modelling of the
US real effective exchange rates covering the period June 1978 until
April 2002. We considered the FISTAR model, as proposed by van Dijk
et al. (2002), that can describe long-memory and non-linearity
simultaneously and be used to produce out-of-sample forecasts. We
used their model to the case of an exponential transition function. To
this end, we employ two modelling approaches corresponding to two
different estimations (simultaneous estimation or two-step estima-
tion) of a FIESTAR model. The estimated FIESTAR model seems to
provide a satisfactory description of the non-linearity and persistency
found in the US real effective exchange rates. With regards to the out-
of-sample forecasting performance for US exchange rate, the tests for
comparing the predictive accuracy show that the FIESTAR model
seems better that the random walk and linear models.
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