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Abstract. Asymptotic distribution is derived for the least squares estimates (LSE) in
the unstable AR(p) process driven by a non-Gaussian long-memory disturbance. The
characteristic polynomial of the autoregressive process is assumed to have pairs of
complex roots on the unit circle. In order to describe the limiting distribution of the LSE,
two limit theorems involving long-memory processes are established in this article. The
first theorem gives the limiting distribution of the weighted sum,

X

n

k¼1

cn;kek ; where ek ¼
X

j�k

bkÿjuj

is a non-Gaussian long-memory moving-average process and (cn,k,1 � k � n) is a given
sequence of weights; the second theorem is a functional central limit theorem for the sine
and cosine Fourier transforms

X

½nt�

k¼1

sinðkhÞek and
X

½nt�

k¼1

cosðkhÞek ; where h 2 � 0;p½ and t 2 ½0; 1�:

Keywords. Autoregressive process; Brownian motion; cycles; functional central limit
theorem; least squares estimates; long memory.

1. INTRODUCTION

Consider the univariate autoregressive model

/ðBÞyt ¼ et; ð1Þ

where yt is the tth observation on the dependent variable, yt ¼ 0 if t � 0, /(B) ¼
1 ÿ /1B ÿ � � � ÿ /pB

p is the characteristic polynomial, B is the backward shift

operator, i.e. Byt ¼ ytÿ1, and the disturbance process (et) is given by

et ¼
X

j�t

btÿjuj; ð2Þ

where (uj) is a sequence of independent and identically distributed (i.i.d.) random

variables (not necessarily Gaussian) with zero mean and variance 1, (bj) is a

sequence which decays hyperbolically, i.e.

bj ¼ jHÿ3
2L1ðjÞ; 0 < H < 1;

X

1

j¼0

b2j < 1; ð3Þ
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and L1(Æ) is a slowly varying function, bounded on every finite interval. For

example, (et) can be either a Gaussian fractional noise or a stationary and invertible

autoregressive fractionally integrated moving average process (see Hosking, 1996).

The unknown parameter / ¼ (/1, . . . ,/p)
0 is estimated by the least squares

estimate (LSE):

/̂n ¼
X

n

k¼1

ykÿ1y
0
kÿ1

 !ÿ1
X

n

k¼1

ykÿ1yk; ð4Þ

where yk ¼ (yk, . . . , ykÿpþ1)
0. The least squares error satisfies

/̂n ÿ / ¼
X

n

k¼1

ykÿ1y
0
kÿ1

 !ÿ1
X

n

k¼1

ykÿ1ek: ð5Þ

If (et) is a Gaussian long-memory process satisfying eqns (2) and (3) with 1/2 <

H < 1, then we can summarize the results, established in the literature, describing

the behaviour of the LSE and compare them with the results obtained in the

short-memory setup (i.e. (et) is assumed to be an i.i.d. or a martingale difference

sequence) as follows.

The behaviour of the estimation error depends on that of the matrix

Mn ¼
X

n

k¼1

ykÿ1y
0
kÿ1

and the vector

Vn ¼
X

n

k¼1

ykÿ1ek;

the normalizations needed for these quantities and the limiting distributions

obtained depend on the characteristic polynomial /(z), more precisely on the

location of its roots:

1. Stable roots (i.e. /(z) ¼ 0 implies that jzj > 1): In this case, /̂n ÿ /

converges in probability to a nonzero limit, hence the LSE is inconsistent (see

Chan and Terrin, 1995, Thm 3.1); this result differs from the one obtained when

(et) has short memory. Recall that under the short-memory assumption, the

martingale transform Vn satisfies the assumptions of the central limit theorem,

hence Vn=
ffiffiffi

n
p

converges in distribution to a Gaussian vector, the matrix Mn is

normalized by n to obtain a deterministic limit; therefore the LSE is

asymptotically normal.

2. Roots equal to 1 (i.e. /(z) ¼ (1ÿz)a): The normalizations of Mn and Vn are

hyperbolic (e.g. if a ¼ 1 then they are n2Hþ1 and n2H for Mn and Vn, respectively;

see Chan and Terrin, 1995, Thm 4.1), the limit of Mn is a stochastic integral of

functionals of fractional Brownian motion with respect to Lebesgue measure and

that of Vn is a multiple Wiener–Itô integral; the LSE is consistent with a rate of

convergence equal to Op(n
ÿ1). In the case of short memory, the normalizations of

Mn and Vn are polynomial (if a ¼ 1 then they are n2 and n for Mn and Vn,
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respectively; see Dickey and Fuller, 1979, for i.i.d disturbance and Chan and Wei,

1988, if (et) is a martingale difference sequence), the limit of Mn (resp. of Vn) is a

stochastic integral of functionals of Brownian motion with respect to the

Lebesgue measure (resp. with respect to Brownian motion); the LSE is consistent

with rate of convergence equal to Op(n
ÿ1).

The main difference between short and long memory in the normalization used

and the limiting distribution obtained can be explained by using the following two

results:

(i) If (et) is an i.i.d. or a martingale difference sequence with respect to an

increasing sequence of r-algebras F ¼ (Fn) then we have the functional

central limit theorem (FCLT; see Billinsgley, 1968; Hall and Heyde, 1980):

1
ffiffiffi

n
p
X

½nt�

k¼1

ek ¼) BðtÞ; ð6Þ

(ii) If (et) satisfies eqns (2) and (3), then the functional non-central limit

theorem holds (see Taqqu, 1975):

1

nH

X

½nt�

k¼1

ek ¼) BH ðtÞ; ð7Þ

Xn ¼) X denotes the weak convergence of a sequence of random elements Xn in D

to a random element X in D, and D ¼ D[0,1] is the space of random functions

that are right-continuous and have left limits, endowed with the Skorohod

topology, B(t) is a Brownian motion and BH(t) is a fractional Brownian motion.

3. Roots equal to ÿ1 or complex-conjugate unit roots (i.e. /(z) ¼ (1 þ z)b or

/ðzÞ ¼
Ql

m¼1ð1ÿ 2 cos hmzþ z2ÞdmÞ: The normalizations of Mn and Vn are

polynomial, the limit of Mn (resp. of Vn) is a stochastic integral of functionals

of Brownian motion with respect to the Lebesgue measure (resp. with respect to

Brownian motion); the LSE is consistent with a rate of convergence equal to

Op(n
ÿ1). The same results are obtained in the short-memory setup (see Chan and

Wei, 1988; Chan and Terrin, 1995).

4. Explosive roots (i.e. /(z) ¼ 0 implies that jzj < 1): As in the short-memory

setup, the normalizations of Mn and Vn are exponential and the limits are a

mixture of normal distributions; the LSE is consistent with a rate of convergence

equal to Op(q
n) for some q < 1 (see Boutahar, 2002).

In this article we follow Ahtola and Tiao (1987a,b), Chan and Wei (1988), Chan

and Terrin (1995) and Gregoir (1999) to derive the limiting distribution of LSE of

AR processes with complex-conjugate unit roots, the motivation being that usually

the periodogram of seasonal time series exhibits peaks at seasonal frequencies

hk ¼
2pk

s
; k ¼ 1; . . . ; ½s=2�;

where s ¼ 2,4 and 12 for semi-annual, quarterly and monthly data, respectively.

However, there are also many non-seasonal time series, for example annual data
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with cyclical movement, which similarly produce peaks at frequencies different

from seasonal time series. Peaks at frequency h ¼ 0 are often indicative of

nonstationary (resp. stationary long memory) behaviour which can be removed

by applying to data the unit root 1 ÿ B [resp. the fractional unit root (1 ÿ B)d,

0 < d < 0.5] operator. Peaks at low non-null frequencies imply the existence of

cycles in the time series (see Conway and Frame, 2000; Birgean and Kilian, 2002

for economic data, and Priestley, 1981; Yiou et al. 1996, for other kinds of data).

It is well known that persistent cycles can be described by complex unit roots. For

instance, Bierens (2001) has concluded that National Bureau of Economic

Research business cycles of the US unemployment time series are indeed because

of complex-conjugate unit roots, i.e. an appropriate non-stationary model to

describe the cyclical behaviour of such series is given by

Y

l

m¼1

ð1ÿ 2B cos hm þ B2Þyt ¼ et; where 0 < h1 < � � � < hl < p; ð8Þ

and (et) is a stationary process. Equation (8) generates l persistent cycles of 2p/hm
periods, 1 � m � l. Note that vanishing cycles can also be described by complex-

conjugate, but stable, roots, i.e. qeihm and qeÿihm with jqj < 1, and the

corresponding model is stationary.

In model (8), with l ¼ 1, Ahtola and Tiao (1987a) have established the

limiting distribution of the LSE by assuming that (et) is an i.i.d. Gaussian

process. Chan and Wei (1988) have extended the result of Ahtola and Tiao

(1987a) to a more general characteristic polynomial /(z), which can also have

stable roots (i.e. /(z) ¼ 0 implies that jzj > 1) and roots equal to ÿ1 and 1.

Moreover, they relaxed (et) to be a martingale difference sequence. Chan and

Terrin (1995) have extended the result of Chan and Wei (1988) by assuming that

(et) is a Gaussian long-memory process, which implies that the errors et are

strongly correlated in the sense that their autocorrelation function is not

absolutely summable; such a model is very useful to describe time series

exhibiting both cyclical and long-memory properties. In Boutahar (2002), the

results of Chan and Terrin (1995) were extended to the case where the roots of /

(z) are arbitrary. Unfortunately, the normality assumption of time series is

usually violated in practice (see Gil-Alana, 2003; Scherrer et al., 2007; Venema

et al., 2006; see also Tiku et al., 2000 and the references therein). The aim of this

article is to remove the normality hypothesis assumed in the article of Ahtola

and Tiao (1987a) and in Chan and Terrin’s (1995) particular model

corresponding to complex-conjugate unit roots. More precisely, we consider

the multiple cycles model (1)–(3) where

/ðzÞ ¼ 1ÿ
X

p

i¼1

/iz
i ¼

Y

l

m¼1

/hm
ðzÞ; /hm

ðzÞ ¼ ð1ÿ 2 cos hmzþ z2Þdm ;

p ¼ 2
X

l

m¼1

dm; hm 2 �0; p½; 1 � m � l:

ð9Þ
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In this article we study only the case when the characteristic polynomial /(z) is

unstable with complex-conjugate unit roots, i.e. an appropriate non-stationary

model to identify persistent cycles in non-Gaussian long-memory time series.

However, the behaviour of the LSE when /(z) has stable roots, roots equal to ÿ1

and 1, and explosive roots remains an open problem.

This article is organized as follows. In Section 2 we give the limiting distribution

of
Pn

k¼1 cn;kek and examine the particular cases of sine and cosine Fourier

transforms of fek,1 � k � ng, for which we establish a FCLT. In Section 3 we

consider the unstable AR(p) model with complex-conjugate roots and study the

limiting distribution of the LSE. The proofs of the results of Sections 2 and 3 are

given in the Appendix.

2. CLTS FOR LONG-MEMORY PROCESSES

Many central limit theorems (CLTs) were established for short-memory

processes, such as i.i.d. sequence, martingale difference sequence, and so on.

Such processes are weakly dependent and usually satisfy

var
X

n

k¼1

ek

 !

� Cn;

for some positive constant C, and hence we need to normalize the sum
Pn

k¼1 ek by
ffiffiffi

n
p

to obtain a Gaussian limiting distribution (see, e.g. Doukhan et al., 2003 and

the references therein). For long-memory processes, the normalization and/or the

limit law are usually different from the short- memory setup; in this case, we say

that (et) satisfies a non-central limit theorem (non-CLT). Davydov (1970) has

proved a non-CLT by assuming that the process (et) is linear, i.e.

et ¼
X

j2Z
bjutÿj:

Taqqu (1975), Dobruhsin and Major (1979) and Giraitis and Surgailis (1985) have

considered the process et ¼ G(Yt), where G is a nonlinear function and (Yt) is a

Gaussian long-memory process. They proved a non-CLT for (et); they proved also

a CLT when (et) has short memory. Surgailis (1982) and Avram and Taqqu (1987)

have extended the results of Taqqu (1975), Dobruhsin and Major (1979) to the

functional of non-Gaussian processes, they proved a non-CLT for et ¼ Am(Yt)

where Am is the mth Appell polynomial associated with the distribution of Y0 and

(Yt) is a long-memory moving average, i.e.

et ¼
X

j� k

bjutÿj:

Finally Ho and Hsing (1997) have generalized the results of Surgailis (1982)

and Avram and Taqqu (1987) to a large class of functions G. If et ¼ G(Yt)
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[resp. et ¼ Am(Yt)], then the limiting distribution depends on G (resp. Am); it

can be Gaussian or non-Gaussian and expressed as a multiple Wiener–Itô

integral.

In this section we establish two CLTs for the causal long-memory process given

by eqns (2) and (3). It can be shown that (et) satisfies

var
X

n

k¼1

ek

 !

� C1n
2H ; ð10Þ

for some positive constant C1, and an � bn means that an/bn!1 as n!1.

In Theorem 1, we consider sequences of weights fcn,k,1 � k � ng such that the

weighted process (cn,tet) has a short memory in the following time-domain sense:

var
X

n

k¼1

cn;kek

 !

� C2n; for some positive constant C2: ð11Þ

The weighted sum
Pn

k¼1 cn;kek was studied by Giraitis et al. (1996) who assumed

in eqn (2) that 1/2 < H < 1; they proved that nÿH
Pn

k¼1 cn;kek is asymptotically

normal with asymptotic variance

Qn ¼ nÿ2Hvar
X

n

k¼1

cn;kek

 !

:

However, if (cn,tet) is of short memory then Qn!0 as n!1 and the limiting

distribution of nÿH
Pn

k¼1 cn;kek will be degenerate. Therefore, the limiting

distribution of
Pn

k¼1 cn;kek cannot be obtained from Theorem 2 of Giraitis et al.

(1996); in Theorem 1 we resolve this problem. In Theorem 2 we examine the

particular weights cn,k ¼ sin (kh), cn,k ¼ cos (kh) and prove a FCLT for the two

processes

XnðtÞ ¼ ðnLðnÞÞÿ1=2
X

½nt�

k¼1

sinðkhÞek and YnðtÞ ¼ ðnLðnÞÞÿ1=2
X

½nt�

k¼1

cosðkhÞek:

Note that the process (sin (th)et) is not covariance-stationary and hence

Davydov’s (1970) results cannot be applied to obtain the weak convergence of

Xn in the Skorohod space.

2.1. A CLT for a weighted long-memory moving-average process

Unless otherwise stated, limits are always taken as n tends to infinity in this

article.

Theorem 1. Assume that the process (et) is given by eqns (2)–(3). Let cn,k 2 R
p,

1 � k � n, be a sequence such that jjcn,kjj < 1 for all 1 � k � n,
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ðnLðnÞÞÿ1
var

X

n

k¼1

cn;kek

 !

! R; ð12Þ

and for all a 2 R
p, r � 3,

X

j2Z

X

n

k¼1

a0cn;kbkÿj

 !r

¼ o nLðnÞð Þr=2
� �

; ð13Þ

where R is a positive-definite matrix, with bi ¼ 0 if i < 0, and L(Æ) is a slowly

varying function, bounded on every finite interval. Then

ðnLðnÞÞÿ1=2
X

n

k¼1

cn;kek !
L
Nð0;RÞ;

where !L denotes the convergence in distribution.

2.2. A FCLT for the Fourier transform of long-memory moving-average process

Let D ¼ D[0,1] be the space of random functions that are right-continuous and

have left limits, endowed with the Skorohod topology. The weak convergence of a

sequence of random elements Xn in D to a random element X in D is denoted by

Xn ¼) X .

Consider the process (et) given by eqns (2)–(3). For h 2 ]0,p[ and t 2 [0,1],

let

XnðtÞ ¼ ðnLðnÞÞÿ1=2
X

½nt�

k¼1

sinðkhÞek; YnðtÞ ¼ ðnLðnÞÞÿ1=2
X

½nt�

k¼1

cosðkhÞek: ð14Þ

In Theorem 2 we prove that Xn converges in D to a Brownian motion B.

There are two sufficient conditions for convergence in D (see Billingsley,

1968):

(i) the finite-dimensional distributions of Xn converge to the finite-dimensional

distributions of B,

(ii) Xn is tight.

We prove that condition (i) holds if (et) satisfies (2)–(3). However, for the tightness

of Xn we impose an additional assumption, that is the white-noise (ut) of the errors

has at least a finite moment of order 4.

Theorem 2. Assume that the process (et) is given by eqns (2)–(3) such that

(i) Eðu2j00 Þ < 1 for some integer j0 � 2,

(ii) the spectral density of (et) can be written as f(k) ¼ jkj1ÿ2HL(jkjÿ1), where L is

a slowly varying function, bounded on every finite interval. Then
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Xn)Kðh;HÞB1 ð15Þ

and

Yn)Kðh;HÞB2; ð16Þ

where Kðh;HÞ ¼ ffiffiffi

p
p jhj12ÿH ; and B1 and B2 are two standard Brownian motions.

3. THE LSE IN UNSTABLE AR MODEL WITH COMPLEX-CONJUGATE ROOTS

Consider the AR(p) model (1)–(3) and (9). To study the limiting distribution of

the LSE given by eqn (4) we use the same analysis as in Chan and Wei (1988) and

Chan and Terrin (1995).

Let

xtðmÞ ¼ /hm
ðBÞÿ1

/ðBÞyt; 1 � m � l:

Then there exists a nonsingular matrix Q (Chan and Wei, 1988, Appendix 1)

such that

Qyt ¼ ðx0tð1Þ; . . . ; x0tðlÞÞ
0; where xtðmÞ ¼ ðxtðmÞ; . . . ; xtÿ2dmþ1ðmÞÞ0:

Let yt(m, j) ¼ (1 ÿ 2 cos hmB þ B2)dmÿjxt(m), cij be the coefficient of zi in the

expansion of the polynomial (1 ÿ 2 cos hmB þ B2)dmÿj, and

Cm ¼

1 c11 � � � � � � � � � c12dmÿ2 0

0 1 c11 � � � � � � � � � c12dmÿ2

1 c21 � � � c22dmÿ2 0 0 0

0 1 c11 � � � c22dmÿ2 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 ÿ2 cos hm 1 0 � � � � � � 0

0 1 ÿ2 cos hm 1 0 � � � 0

1 0 0 0 0 � � �
0 1 0 � � � � � � � � � 0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

then

CmxtðmÞ ¼ ytðm; 1Þ; ytÿ1ðm; 1Þ; . . . ; ytðm; dmÞ; ytÿ1ðm; dmÞð Þ0:

To state the limiting distribution of the LSE, we define the normalization

matrix

Gn ¼ diag Lnð1Þ; . . . ;LnðlÞð Þ; LnðmÞ ¼ diagðnÿjI2; 1 � j � dmÞCm:
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Theorem 3. Consider the time series (1) and assume that the characteristic

polynomial /(z) is given by eqn (9). If the disturbance process (et) satisfies the

assumptions of Theorem 2, then we have

Lÿ1ðnÞGnQ
X

n

k¼1

ykÿ1y
0
kÿ1Q

0G0
n !

L
diagðH1; . . .;HlÞ ð17Þ

and

Q0G0
n

ÿ �ÿ1ð/̂n ÿ /Þ!L Hÿ1
1 f1

ÿ �0
; . . . ; Hÿ1

l fl
ÿ �0� �0

; ð18Þ

where

fm ¼ ðfðmÞ1 ; . . . ; f
ðmÞ
2dm

Þ0; Hm ¼ ðrðmÞi;j Þa 2dm � 2dm random matrix;

f
ðmÞ
2j ¼ ð2 sin hmÞÿ1

cos hm

Z 1

0

fm;jÿ1ðsÞdB2mðsÞ ÿ
Z 1

0

gm;jÿ1ðsÞdB2mÿ1ðsÞ
� ��

ÿ sin hm

Z 1

0

fm;jÿ1ðsÞdB2mÿ1ðsÞ þ
Z 1

0

gm;jÿ1ðsÞdB2mðsÞ
� ��

;

f
ðmÞ
2jÿ1 ¼ ð2 sin hmÞÿ1

Z 1

0

fm;jÿ1ðsÞdB2mðsÞ ÿ
Z 1

0

gm;jÿ1ðsÞdB2mÿ1ðsÞ
� �

;

r
ðmÞ
2kÿ1;2jÿ1 ¼ r

ðmÞ
2k;2j

¼ ð4 sin2 hmÞÿ1

Z 1

0

fm;kÿ1ðsÞfm;jÿ1ðsÞdsþ
Z 1

0

gm;kÿ1ðsÞgm;jÿ1ðsÞds
� �

;

r
ðmÞ
2kÿ1;2j ¼ r

ðmÞ
2j;2kÿ1

¼ ð4 sin2 hmÞÿ1
cos hm

Z 1

0

fm;kÿ1ðsÞfm;jÿ1ðsÞdsþ
Z 1

0

gm;kÿ1ðsÞgm;jÿ1ðsÞds
� ��

ÿ sin hm

Z 1

0

fm;jÿ1ðsÞgm;kÿ1ðsÞdsÿ
Z 1

0

gm;jÿ1ðsÞfm;kÿ1ðsÞds
� ��

;

fm;jðtÞ ¼ ð2 sin hmÞÿ1
sin hm

Z t

0

fm;jÿ1ðsÞdsÿ cos hm

Z t

0

gm;jÿ1ðsÞds
� �

;

gm;jðtÞ ¼ ð2 sin hmÞÿ1
cos hm

Z t

0

fm;jÿ1ðsÞdsþ sin hm

Z t

0

gm;jÿ1ðsÞds
� �

;

fm;0ðtÞ ¼ Kðhm;HÞB2mÿ1ðtÞ; gm;0ðtÞ ¼ Kðhm;HÞB2mðtÞ;
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Kðhm;HÞ ¼ ffiffiffi

p
p jhmj

1
2
ÿH ; 1 � m � l;Bi are standard Brownian motions, i ¼

1, . . . , 2l, and Bi is independent of Bj if i 6¼ j.

Remark 1. Theorem 3 implies that the LSE /̂n is a consistent estimator of /,

i.e. /̂n !
P
/, where !P denotes the convergence in probability. Moreover, the rate

of convergence is equal to Op(n
ÿ1) and is the same as the one obtained by Ahtola

and Tiao (1987a), Chan and Wei (1988) and Chan and Terrin (1995).

Remark 2. In this article we have derived the limiting distribution of the LSE

in model (1), where the disturbance (et) is a non-Gaussian long-memory process

given by eqns (2)–(3), only when the characteristic polynomial /(z) is unstable

with complex-conjugate unit roots. However, the behaviour of the LSE when /(z)

has stable roots [i.e. /(z) ¼ 0 implies that jzj > 1], roots equal to ÿ1 and 1, and

explosive roots [i.e. /(z) ¼ 0 implies that jzj < 1] remains an open problem and

will be treated in a future study.

APPENDIX: PROOFS

Proof of Theorem 1. We shall adapt the proof of Theorem 2 of Giraitis et al. (1996). Let

Tn ¼ ðnLðnÞÞÿ1=2
X

n

k¼1

cn;kek :

By Cramer Wold arguments, Tn converges in distribution to T if and only if for all

v 2 R
p, v0Tn converges in distribution to v0T. To prove the last convergence it is sufficient to

show that

E eiv
0Tn

� �

¼ eÿ
1
2
r2nðvÞ þ oð1Þ;

uniformly on compacts fjjvjj � Ag, where r2nðvÞ ¼ varðv0TnÞ.
By using eqn (12) we have

r2nðvÞ ÿ! v0Rv;

hence r2nðvÞ � CkmaxðRÞkvk2, for some positive constant C, where kmax(R) is the maximum

eigenvalue of the matrix R; therefore, r2nðvÞ is bounded uniformly on compacts.

We consider the truncated variables

uþj;N ¼ uj1 jujj>Nf g ÿ Eðuj1 jujj>Nf gÞ; uÿj;N ¼ uj ÿ uþj;N ;

where 1A is the indicator function (equals 1 when condition A is satisfied and 0 otherwise),

and define

eþk;N ¼
X

j�k

bkÿju
þ
j;N ; Tþ

n;N ¼ ðnLðnÞÞÿ1=2
X

n

k¼1

v0cn;ke
þ
k;N ; Tÿ

n;N ¼ Tn ÿ Tþ
n;N :

We have
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r2þ;N ¼ Eððuþ0;N Þ
2Þ ! 0 as N ! 1

and

EððTþ
n;N Þ

2Þ ¼ r2þ;Nr
2
nðvÞ � CkmaxðRÞkvk2r2þ;N � qN ;

where qN is independent of n and qN ! 0 as N ! 1. Consequently

Eðeiv0TnÞ ¼ Eðeiv0Tÿ
n;N Þ þ dn;N ;

where

dn;N
�

�

�

� ¼ jEððeiv0Tþ
n;N ÿ 1Þeiv0Tÿ

n;N Þj � Eðjv0Tþ
n;N jÞ � q

1=2
N :

It suffices to show that for N < 1 and r 2 N,r � 3,

cum
r

ðv0Tÿ
n;N Þ ¼ oð1Þ; ð19Þ

where cumr(Æ) is the rth cumulant. Note that

cum
r

ðv0Tÿ
n;N Þ ¼ mr;N

X

j2Z
trn;j;

where

mr;N ¼ cum
r

ðuÿ0;N Þ and tn;j ¼ ðnLðnÞÞÿ1=2
X

n

k¼1

v0cn;kbkÿj;

hence eqn (19) follows from eqn (13). u

Proof of Theorem 2. We shall prove only eqn (15) [the proof of eqn (16) is similar]. Let

SM ;N ¼
X

N

k¼M

sinðkhÞek ; Sn ¼ S1;n;

then Xn(t) ¼ (nL(n))ÿ1/2S[nt]. To prove Theorem 2 we need the following three lemmas.

Lemma 1. For all 0 � t1 < t2 � 1,

varðXnðt2Þ ÿ Xnðt1ÞÞ ¼ ðnLðnÞÞÿ1
varðS½nt1�þ1;½nt2 �Þ � pðt2 ÿ t1Þ hj j1ÿ2H ; ð20Þ

covðXnðt1Þ;Xnðt2ÞÞ � pt1jhj1ÿ2H : ð21Þ

Proof. Denote by

cðkÞ ¼
Z

p

ÿp

eikkf ðkÞdk

the autocovariance function of fekg, and let nj ¼ [ntj], j ¼ 1,2. Then

varðS½nt1 �þ1;½nt2�Þ ¼
X

n2

l¼n1þ1

X

n2

j¼n1þ1

sinðlhÞ sinðjhÞcðjÿ lÞ

¼ ðT1;n þ �T1;n ÿ T2;n ÿ �T2;nÞ=4; ð22Þ
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where

T1;n ¼
X

n2

j¼n1þ1

X

n2

l¼n1þ1

eiðjÿlÞhcðjÿ lÞ; T2;n ¼
X

n2

j¼n1þ1

X

n2

l¼n1þ1

eiðjþlÞhcðjÿ lÞ ð23Þ

and �Tj;n is the complex conjugate of Tj,n, j ¼ 1,2.

Now observe that

T1;n ¼
Z

p

ÿp

�

�

�

X

n2

k¼n1þ1

eikðkþhÞ
�

�

�

2

jkj1ÿ2H
Lðjkjÿ1Þdk

¼ ðn2 ÿ n1Þ
Z ðn2ÿn1ÞðpþhÞ

ðn2ÿn1ÞðhÿpÞ

�

�

�

eiy ÿ 1

ðn2 ÿ n1Þðe
iy

ðn2ÿn1Þ ÿ 1Þ

�

�

�

2

jyðn2 ÿ n1Þÿ1 ÿ hj1ÿ2H

� Lðjðn2 ÿ n1Þÿ1
y ÿ hjÿ1Þdy:

It follows that

T1;n �ðn2 ÿ n1ÞLðn2 ÿ n1Þjhj1ÿ2H

Z 1

ÿ1

�

�

�

eiy ÿ 1

iy

�

�

�

2

dy

¼ 2pðn2 ÿ n1ÞLðn2 ÿ n1Þjhj1ÿ2H :

Since (n2 ÿ n1) � n(t2 ÿ t1) and L(Æ) is a slowly varying function we deduce that

T1;n � 2pnðt2 ÿ t1ÞLðnÞjhj1ÿ2H : ð24Þ

The second term in eqn (23) can be written as

T2;n ¼
Z p

ÿp

X

n2

j¼n1þ1

eijðkþhÞ
X

n2

l¼n1þ1

eilðhÿkÞjkj1ÿ2H
Lðjkjÿ1Þdk

¼
Z p

ÿp

eiðn2ÿn1ÿ1ÞðhþkÞ ÿ 1

eiðhþkÞ ÿ 1

eiðn2ÿn1ÿ1ÞðhÿkÞ ÿ 1

eiðhÿkÞ ÿ 1
e2iðn1þ1Þhjkj1ÿ2H

Lðjkjÿ1Þdk:

Since for all x 2 R, for all 0 � d � 1, jeix ÿ 1j � 21ÿdjxjd and for all jxj < 2p,

jeixÿ1j � jxj/2, we have that

jT2;nj � Cn2dðt2 ÿ t1Þ2d
Z p

ÿp

jkþ hjdÿ1jkÿ hjdÿ1jkj1ÿ2H
Lðjkjÿ1Þdk;

¼ oðnÞ for all 0 < d < 1=2: ð25Þ

Therefore, eqn (20) follows from eqns (22)–(25).

From eqn (20) we deduce that var(Xn(t1)) ¼ (nL(n))ÿ1 var(S1,[nt1]
) � pt1jhj1ÿ2H; hence by

writing

covðXnðt1Þ;Xnðt2ÞÞ ¼ varðXnðt1ÞÞ þ covðXnðt1Þ;Xnðt2Þ ÿ Xnðt1ÞÞ;

the result (21) holds if

covðXnðt1Þ;Xnðt2Þ ÿ Xnðt1ÞÞ ¼ oð1Þ: ð26Þ

Write
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covðXnðt1Þ;Xnðt2Þ ÿ Xnðt1ÞÞ ¼
X

n1

j¼1

X

n2

l¼n1þ1

sinðlhÞ sinðjhÞcðjÿ lÞ

¼ ðV1;n þ �V1;n ÿ V2;n ÿ �V2;nÞ=4nLðnÞ; ð27Þ

where

V1;n ¼
X

n1

j¼1

X

n2

l¼n1þ1

eiðjÿlÞhcðjÿ lÞ; V2;n ¼
X

n1

j¼1

X

n2

l¼n1þ1

eiðjþlÞhcðjÿ lÞ:

Clearly,

V1;n ¼
Z p

ÿp

eiðn2ÿn1ÞðhþkÞ ÿ 1

jeiðhþkÞ ÿ 1j2
1ÿ eiðn1þ1ÞðhþkÞ
� �

jkj1ÿ2H
Lðjkjÿ1Þdk:

Let y ¼ (n1 þ 1)(h þ k), then

ðnLðnÞÞÿ1
V1;n ! t1jhj1ÿ2H

Z 1

ÿ1

eiðt2ÿt1Þy=t1 ÿ 1

jyj2
1ÿ eiy
ÿ �

dy

¼ 2t1jhj1ÿ2H

Z 1

0

cosððt2 ÿ t1Þy=t1Þ ÿ cosðt2y=t1Þ þ cosðyÞ ÿ 1

jyj2
dy

¼ 0; ð28Þ

the last equality follows by using the formula

Z 1

0

cosðpyÞ ÿ cosðqyÞ
jyj2

dy ¼ ðqÿ pÞp
2

; for all p � 0; for all q � 0:

The term V2,n can be written as

V2;n ¼
Z p

ÿp

eiðn1þ1ÞðhþkÞ ÿ 1

eiðhþkÞ ÿ 1

eiðn2ÿn1ÞðhÿkÞ ÿ 1

eiðhÿkÞ ÿ 1
e2iðn1þ1Þhjkj1ÿ2H

Lðjkjÿ1Þdk;

hence

ðnLðnÞÞÿ1jV2;nj � CðnLðnÞÞÿ1
n2dtd1ðt2 ÿ t1Þd

�
Z p

ÿp

jkþ hjdÿ1jkÿ hjdÿ1jkj1ÿ2H
Lðjkjÿ1Þdk

¼ oð1Þ for all 0 < d < 1=2: ð29Þ

Consequently, eqn (26) follows from eqns (27)–(29). u

Lemma 2.

ðnLðnÞÞÿ1=2
Sn !

L
Nð0; pjhj1ÿ2H Þ: ð30Þ

Proof. We shall apply Theorem 1 with cn,k ¼ sin(kh). By choosing t1 ¼ 0,t2 ¼ 1 in

eqn (20), we get var(Sn) � pnL(n)jhj1ÿ2H. To obtain eqn (30), it remains to prove condition

(13). As L(Æ) is bounded, it suffices to show that
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Tn;r ¼
X

j2Z

X

n

i¼1

sinðihÞbiÿj

 !r

¼ o nr=2
� �

: ð31Þ

By using similar arguments as used in (Zygmund, 1959, p. 187), we can easily prove that,

with

bi ¼ i
2Hÿ3

2 L1ðiÞ;
�

�

�

�

�

X

N

i¼1

sinðihÞbi

�

�

�

�

�

¼ Oð1Þ and

�

�

�

�

�

X

N

i¼1

cosðihÞbi

�

�

�

�

�

¼ Oð1Þ ð32Þ

uniformly on N. Note that Tn,r ¼ T1,n,r þ T2,n,r þ T3,n,r, where

T1;n;r ¼
X

n

i¼1

sinðihÞbi
 !r

; T2;n;r ¼
X

1

j¼1

X

n

i¼1

sinðihÞbiÿj

 !r

;

T3;n;r ¼
X

ÿ1

j¼ÿ1

X

n

i¼1

sinðihÞbiÿj

 !r

:

From eqn (32) we obtain T1,n,r ¼ O(1).

jT2;n;rj �
X

1

j¼1

�

�

�

�

�

X

n

i¼1

sinðihÞbiÿj

�

�

�

�

�

r

¼
X

n

j¼1

�

�

�

�

�

X

nÿj

l¼1

sinððlþ jÞhÞbl

�

�

�

�

�

r

¼
X

n

j¼1

�

�

�

�

�

sinðjhÞ
X

nÿj

l¼1

cosðlhÞbl þ cosðjhÞ
X

nÿj

l¼1

sinðlhÞbl

�

�

�

�

�

r

;

hence eqn (32) implies that jT2;n;rj � Cn ¼ oðnr
2Þ, for all r � 3.

We have that

T 3;n;r ¼
X

1

j¼1

X

n

i¼1

sinðihÞbiþj

 !r

:

To prove that T3;n;r ¼ oðnr
2Þ it is sufficient to show that for all M 2 N, for all e > 0,

there exists n0 such that for all n � n0

nÿr=2

�

�

�

�

�

X

M

j¼1

X

n

i¼1

sinðihÞbiþj

 !r�
�

�

�

�

< e: ð33Þ

From eqn (32) we deduce that

�

�

�

�

�

X

M

j¼1

X

n

i¼1

sinðihÞbiþj

 !r�
�

�

�

�

¼
�

�

�

�

�

X

M

j¼1

cosðjhÞ
X

jþn

l¼jþ1

sinðlhÞbl ÿ sinðjhÞ
X

jþn

l¼jþ1

cosðlhÞbl
 !r�

�

�

�

�

� MC;

for some positive constant C. To obtain eqn (33) it suffices to take n0 ¼ ½ðMC=�Þ2r � þ 1:u
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Lemma 3. For all 0 < M � N,

E jSM ;N j2j0
� �

� C var(SM ;N Þ
ÿ �j0 ; for some positive constant C: ð34Þ

Proof. Write

ek ¼
X

j2Z
bkÿjuj

by assuming that bi ¼ 0 if i < 0, then

varðSM ;N Þ ¼
X

i2Z

X

N

k¼M

sinðkhÞbiÿk

 !2

:

Let Kj0
¼ f(i1, . . . , is) 2 N

s such that i1 þ � � � þ is ¼ j0g, i.e. the set of all solutions in

natural numbers of the equation i1 þ � � � þ is ¼ j0 (without taking into account the order

of the terms). Then

E jSM ;N j2j0
� �

¼
X

Kj0

ak
X

k1 6¼���6¼ks

sinðMhÞb
k1ÿM

þ � � � þ sinðNhÞb
k1ÿN

� �2i1

� � � sinðMhÞb
ksÿM

þ � � � þ sinðNhÞb
ksÿN

� �2is

� max
Kj0

akf g
X

i2Z
sinðMhÞbiÿM þ � � � þ sinðNhÞbiÿNð Þ2

 !j0

¼ max
Kj0

akf g varðSM ;N Þ
ÿ �j0 ;

where

ak ¼
Eðju0j2i1ÞEðju0j2i2Þ � � �Eðju0j2isÞð2j0Þ!

ð2i1!Þ � � � ð2isÞ!
: (

We now use Lemmas 1–3 to prove Theorem 2. To prove that the finite-dimensional

distributions of Xn converge to those of K(h,H)B1 it is sufficient to show that for all integer

r � 1, for all 0 � t1 < � � �< tr � 1 and for all (a1, . . . , ar)
0 2 R

r,

Zn ¼
X

r

i¼1

aiXnðtiÞ!
L
Kðh;HÞ

X

r

i¼1

aiB1ðtiÞ: ð35Þ

Since

Zn ¼ ðnLðnÞÞÿ1=2
X

½ntr �

k¼1

cn;kek ;

where

cn;k ¼ sinðkhÞða1 þ � � � þ ajÞ if ½ntjÿ1� < k � ½ntj�; 1 � j � r; t0 ¼ 0;

and that it is not difficult to show the condition (13) (we omit the proof), the convergence

(35) holds if
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var Znð Þ ! var Kðh;HÞ
X

r

i¼1

aiB1ðtiÞ
 !

¼ K2ðh;HÞ
X

1�i;j�r

aiaj minðti; tjÞ: ð36Þ

Moreover, the convergence (36) follows from eqns (20) and (21).

To prove the tightness of Xn it suffices to show the following inequality (Billingsley, 1968,

Thm 15.6)

E jXnðtÞ ÿ Xnðt1ÞjcjXnðt2Þ ÿ XnðtÞjcð Þ � ðF ðt2Þ ÿ F ðt1ÞÞa ð37Þ

for some c � 0, a > 1, and F is a nondecreasing continuous function on [0,1], where

0 < t1 < t < t2 < 1.

Let K(t,t1,t2) ¼ E(jXn(t) ÿ Xn(t1)jj0jXn(t2) ÿ Xn(t)jj0). Using Cauchy–Schwarz

inequality

Kðt; t1; t2Þ ¼ nLðnÞð Þÿj0E jS½nt1�þ1;½nt�jj0 jS½nt�þ1;½nt2�j
j0

ÿ �

� nLðnÞð Þÿj0E jS½nt1�þ1;½nt�j2j0
� �1

2

E jS½nt�þ1;½nt2�j
2j0

� �1
2

:

Combining eqns (34) and (20), we have

Kðt; t1; t2Þ � C nLðnÞð Þÿ1
varðS½nt1�þ1;½nt�Þ

� �

j0
2

nLðnÞð Þÿ1
varðS½nt�þ1;½nt2�Þ

� �

j0
2

� C1ðt ÿ t1Þ
j0
2 ðt2 ÿ tÞ

j0
2

� C
1
j0

1 t2 ÿ C
1
j0

1 t1

� �j0

:

Consequently eqn (37) holds with c ¼ a ¼ j0 and F ðtÞ ¼ C
1
j0

1 t. u

Proof of Theorem 3. For the proof of Theorem 3 we need Lemmas 4 and 5.

Lemma 4. Let hi 2 ]0,p[ such that hi 6¼ hj if i 6¼ j for i,j ¼ 1,2,. . .,l and define

Ynðt1; . . . ; t2lÞ¼ ðnLðnÞÞÿ1=2

�
X

½nt1�

k¼1

sinðkh1Þek ;
X

½nt2�

k¼1

cosðkh1Þek ; . . . ;
X

½nt2lÿ1 �

k¼1

sinðkhlÞek ;
X

½nt2l�

k¼1

cosðkhlÞek
 !

:

Then

Yn ¼) ðKðh1;HÞB1;Kðh1;HÞB2; . . . :;Kðhl;HÞB2lÿ1;Kðhl;HÞB2lÞ:

Proof. By using Theorem 2 it is sufficient to prove the asymptotic independence. The

proof of which is easy and hence omitted. u

Let

Stðm; jÞ ¼
X

t

k¼1

cosðkhmÞykðm; jÞ; Ttðm; jÞ ¼
X

t

k¼1

sinðkhmÞykðm; jÞ: ð38Þ
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Lemma 5. For all 0 < t1, t2 � 1, the following convergences hold

nÿjÿ1=2Lÿ1=2ðnÞ S½nt1�ðm; jÞ; T½nt2 �ðm; jÞ
ÿ �

¼) ðfm;jðt1Þ; gm;jðt2ÞÞ; ð39Þ

nÿðjþkÞLÿ1ðnÞ
X

n

t¼1

ytðm; kÞytðm; jÞ!
L
r
ðmÞ
2k;2j; ð40Þ

nÿðjþkÞLÿ1ðnÞ
X

n

t¼1

ytÿ1ðm; kÞytðm; jÞ!
L
r
ðmÞ
2kÿ1;2j; ð41Þ

nÿjLÿ1ðnÞ
X

n

t¼1

ytÿ1ðm; jÞet !
L
f
ðmÞ
2j ; ð42Þ

nÿjLÿ1ðnÞ
X

n

t¼1

ytÿ2ðm; jÞet !
L
f
ðmÞ
2jÿ1: ð43Þ

Proof. Let

Sn ¼ Snðm; 0Þ ¼
X

n

k¼1

cosðkhmÞek ; Tn ¼ Tnðm; 0Þ ¼
X

n

k¼1

sinðkhmÞek :

Then from eqn (20) we deduce that

Sn ¼ OðnÞ and Tn ¼ OðnÞ: ð44Þ

Using eqn (44) it is easy to prove that all the results of Lemmas 3.3.1–3.3.6 of Chan and

Wei (1988) hold and details are omitted.

By applying our Theorem 2, the continuous mapping theorem and a similar arguments

as used in the proofs of Theorem 3.3.4 and the Lemma 3.3.7 of Chan and Wei (1988) the

convergences (39)–(43) follow immediately. u

We now use the Lemmas 4–5 to prove Theorem 3. From eqns (39)–(43) it is easy to show

that

LnðmÞ
X

n

t¼1

xtÿ1ðmÞx0tÿ1ðmÞL0
nðmÞ!

L
Hm;

where Hm is nonsingular almost surely, and

L0
nðmÞ

ÿ �ÿ1
X

n

t¼1

xtÿ1ðmÞx0tÿ1ðmÞ
 !ÿ1

X

n

t¼1

xtÿ1ðmÞet !
L
Hÿ1

m fm:

In view of the preceding two convergences and Lemma 5, to prove eqns (17) and (18) we

only need to establish that the off-diagonal submatrices of

GnQ
X

n

k¼1

ykÿ1y
0
kÿ1Q

0G0
n=LðnÞ

converge to zero in probability. Typical elements of these submatrices are
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LðnÞnrþsð Þÿ1
X

n

t¼1

ytðh; sÞyðj; rÞ ¼ LðnÞnrþs sinhh sinhj
ÿ �ÿ1

X

n

t¼1

ðStðh; sÿ 1Þ sinðtþ 1Þhhf

ÿTtðh; sÿ 1Þcosðtþ 1ÞhhÞ� ðStðj; rÿ 1Þcosðtþ 1Þhj
ÿTtðj; rÿ 1Þcosðtþ 1ÞhjÞ

	

: ð45Þ

Let us, for example, examine the term

nÿsÿr
X

n

t¼1

Stðh; sÿ 1ÞStðj; r ÿ 1Þ sinðt þ 1Þhh cosðt þ 1Þhj

which can be written as a sum of four terms taking the form

nÿsÿr
X

n

t¼1

Stðh; sÿ 1ÞStðj; r ÿ 1Þeiðtþ1Þh;

with h ¼ ±(hh ± hj).

We shall apply Theorem 2.1 of Chan and Wei (1988) to the sequence of random

variables Xn ¼ Sn(h,s ÿ 1)Sn(j,r ÿ 1). Since EðS2nðh; kÞÞ ¼ Oðn2kþ1Þ, it follows that

EjXnj � EðS2nðh; sÿ 1Þ
ÿ �1=2

S2nðj; r ÿ 1Þ
ÿ �1=2

¼ Oðn
2ðsÿ1Þþ1

2 ÞOðn
2ðrÿ1Þþ1

2 Þ
¼ Oðnsþrÿ1Þ:

We need to prove that

jXn ÿ Xmj � A1ðn;mÞB1ðn;mÞ þ A2ðn;mÞB2ðn;mÞ;

for some random variables Ai(n,m) and Bi(n,m) such that

EðA2
i ðn;mÞÞ � Cnci ;EðB2

i ðn;mÞÞ � Cndiðnÿ mÞ

for n � m and some positive constants C,ci,di,i ¼ 1,2. We have that

jXn ÿ Xmj ¼ jSnðh; sÿ 1ÞSnðj; r ÿ 1Þ ÿ Smðh; sÿ 1ÞSmðj; r ÿ 1Þj
� jSnðh; sÿ 1ÞjjSnðj; r ÿ 1Þ ÿ Smðj; r ÿ 1Þj
þ jSmðj; r ÿ 1ÞjjSnðh; sÿ 1Þ ÿ Smðh; sÿ 1Þj:

Let

A1ðn;mÞ ¼ jSnðh; sÿ 1Þj; B1ðn;mÞ ¼ jSnðj; r ÿ 1Þ ÿ Smðj; r ÿ 1Þj; n � m:

Then EðA2
1ðn;mÞÞ ¼ Oðnc1Þ with c1 ¼ 2s ÿ 1.

B1ðn;mÞ �
X

n

k¼mþ1

cos2 khj

 !1=2
X

n

k¼mþ1

y2k ðj; r ÿ 2Þ
 !1=2

� ðnÿ mÞ1=2 4

sin2 hj

X

n

t¼mþ1

S2t ðj; r ÿ 2Þ þ T 2
t ðj; r ÿ 2Þ

( )1=2
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Since EðT 2
t ðj; kÞÞ ¼ Oðt2kþ1Þ, it follows that

EðB2
1ðn;mÞÞ ¼ O ðnÿ mÞ

X

n

t¼mþ1

t2rÿ3

 !

¼ O nÿ mÞnd1
ÿ �

; with d1 ¼ 2ðr ÿ 1Þ:

Likewise, if we define

A2ðn;mÞ ¼ jSmðj; r ÿ 1Þj; B2ðn;mÞ ¼ jSnðh; sÿ 1Þ ÿ Smðh; sÿ 1Þj; n � m;

then we can prove that

EðA2
2ðn;mÞÞ ¼ Oðnc2Þ and EðB2

2ðn;mÞÞ ¼ Oðnÿ mÞnd2Þ; with c2 ¼ c1; d2 ¼ d1:

Therefore (see the remark of Theorem 2.1 of Chan and Wei, 1988), if we put a ¼
s þ r ÿ 1 then ci þ di<2a for i ¼ 1,2 and hence Theorem 2.1 of Chan and Wei (1988)

implies that

nÿrÿs
X

n

t¼1

Stðh; sÿ 1ÞStðj; r ÿ 1Þeiðtþ1Þh ¼ op 1ð Þ:

Since L(Æ) is bounded, it follows that

LðnÞnrþs sin hh sin hj
ÿ �ÿ1

X

n

t¼1

Stðh; sÿ 1ÞStðj; r ÿ 1Þ sinðt þ 1Þhh cosðt þ 1Þhj ¼ op 1ð Þ:

Likewise, the remaining terms in the right-hand side of eqn (45) are op(1). Consequently

LðnÞnrþsð Þÿ1
X

n

t¼1

ytðh; sÞyðj; rÞ ¼ opð1Þ:

This completes the proof of Theorem 3. u
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