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Abstract. Asymptotic distribution is derived for the least squares estimates (LSE) in
the unstable AR(p) process driven by a non-Gaussian long-memory disturbance. The
characteristic polynomial of the autoregressive process is assumed to have pairs of
complex roots on the unit circle. In order to describe the limiting distribution of the LSE,
two limit theorems involving long-memory processes are established in this article. The
first theorem gives the limiting distribution of the weighted sum,

n
E Cn kEky where & = E bk,jub,-
k=1 J<k

is a non-Gaussian long-memory moving-average process and (¢, 41 < k < n) is a given
sequence of weights; the second theorem is a functional central limit theorem for the sine
and cosine Fourier transforms

[nt] [nt]
Zsin(k@)sk and Zcos(k@)s;” where 0 €]0,7[ and r€(0,1].
k=1 k=1
Keywords. Autoregressive process; Brownian motion; cycles; functional central limit
theorem; least squares estimates; long memory.

1. INTRODUCTION

Consider the univariate autoregressive model

PB)y = &, (1)
where y;, is the rth observation on the dependent variable, y, = 0if ¢t < 0, ¢(B) =
1 — ¢1B—--- — ¢,B” is the characteristic polynomial, B is the backward shift

operator, i.e. By, = y,_;, and the disturbance process (g,) is given by
& = Z by—juj, (2)
J<t

where (1) is a sequence of independent and identically distributed (i.i.d.) random
variables (not necessarily Gaussian) with zero mean and variance 1, (b)) is a
sequence which decays hyperbolically, i.e.

o0
3 .
b=j"L(j), 0<H<1, Y b <oo, (3)
j=0
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654 M. BOUTAHAR

and L(*) is a slowly varying function, bounded on every finite interval. For
example, (¢;) can be either a Gaussian fractional noise or a stationary and invertible
autoregressive fractionally integrated moving average process (see Hosking, 1996).

The unknown parameter ¢ = (¢1,...,¢,) is estimated by the least squares
estimate (LSE):

n -1 n
(I)n = (Z ykly;c—1> Z Y1k (4)
k=1 k=1

where yx = (V. - - -, Vk—p+1). The least squares error satisfies

n -1,
‘i)n b= (Z )%1)’21) Zkalglv (5)
k=1 k=1

If (¢,) is a Gaussian long-memory process satisfying eqns (2) and (3) with 1/2 <
H < 1, then we can summarize the results, established in the literature, describing
the behaviour of the LSE and compare them with the results obtained in the
short-memory setup (i.e. (¢;) is assumed to be an i.i.d. or a martingale difference
sequence) as follows.

The behaviour of the estimation error depends on that of the matrix

n
M, = ZYk—ly;H
k=1
and the vector

n
V.= Z Yi—18k;
k=1

the normalizations needed for these quantities and the limiting distributions
obtained depend on the characteristic polynomial ¢(z), more precisely on the
location of its roots:

1. Stable roots (i.e. ¢(z) =0 implies that |z] > 1): In this case, (i)n—(])
converges in probability to a nonzero limit, hence the LSE is inconsistent (see
Chan and Terrin, 1995, Thm 3.1); this result differs from the one obtained when
(¢,) has short memory. Recall that under the short-memory assumption, the
martingale transform V), satisfies the assumptions of the central limit theorem,
hence ¥,/+/n converges in distribution to a Gaussian vector, the matrix M,, is
normalized by n to obtain a deterministic limit; therefore the LSE is
asymptotically normal.

2. Roots equal to 1 (i.e. ¢(z) = (1—2)“): The normalizations of M, and V,, are
hyperbolic (e.g. if @ = 1 then they are n*"™! and n*’ for M,, and V,, respectively;
see Chan and Terrin, 1995, Thm 4.1), the limit of M,, is a stochastic integral of
functionals of fractional Brownian motion with respect to Lebesgue measure and
that of V,, is a multiple Wiener—Ito integral; the LSE is consistent with a rate of
convergence equal to O,,(nfl). In the case of short memory, the normalizations of
M, and V, are polynomial (if @ = 1 then they are n*> and n for M, and V,,
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respectively; see Dickey and Fuller, 1979, for i.i.d disturbance and Chan and Wei,
1988, if (g,) is a martingale difference sequence), the limit of M,, (resp. of V) is a
stochastic integral of functionals of Brownian motion with respect to the
Lebesgue measure (resp. with respect to Brownian motion); the LSE is consistent
with rate of convergence equal to Op(nfl).

The main difference between short and long memory in the normalization used
and the limiting distribution obtained can be explained by using the following two
results:

(1) If () i1s an i.i.d. or a martingale difference sequence with respect to an

increasing sequence of ¢-algebras F = (F,) then we have the functional
central limit theorem (FCLT; see Billinsgley, 1968; Hall and Heyde, 1980):

e
\/Lﬁzsk = B(1), (6)
k=1

(i1) If (g,) satisfies eqns (2) and (3), then the functional non-central limit
theorem holds (see Taqqu, 1975):

[n1]
n—HZSk = By(t), (7)
k=1

X, = X denotes the weak convergence of a sequence of random elements X, in D
to a random clement X in D, and D = D[0,1] is the space of random functions
that are right-continuous and have left limits, endowed with the Skorohod
topology, B(¢) is a Brownian motion and By(t) is a fractional Brownian motion.

3. Roots equal to —1 or complex-conjugate unit roots (i.e. ¢(z) = (1 + z)” or
P(z) = an:l(l —2¢0s 0,z +z2)™): The normalizations of M, and V, are
polynomial, the limit of A, (resp. of V) is a stochastic integral of functionals
of Brownian motion with respect to the Lebesgue measure (resp. with respect to
Brownian motion); the LSE is consistent with a rate of convergence equal to
OP(n_]). The same results are obtained in the short-memory setup (see Chan and
Wei, 1988; Chan and Terrin, 1995).

4. Explosive roots (i.e. ¢(z) = 0 implies that |z| < 1): As in the short-memory
setup, the normalizations of M, and V, are exponential and the limits are a
mixture of normal distributions; the LSE is consistent with a rate of convergence
equal to O,(p") for some p < 1 (see Boutahar, 2002).

In this article we follow Ahtola and Tiao (1987a,b), Chan and Wei (1988), Chan
and Terrin (1995) and Gregoir (1999) to derive the limiting distribution of LSE of
AR processes with complex-conjugate unit roots, the motivation being that usually
the periodogram of seasonal time series exhibits peaks at seasonal frequencies

2mk
Hk:ia kila"'?[s/z}a
s
where s = 2,4 and 12 for semi-annual, quarterly and monthly data, respectively.

However, there are also many non-seasonal time series, for example annual data
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with cyclical movement, which similarly produce peaks at frequencies different
from seasonal time series. Peaks at frequency 6 = 0 are often indicative of
nonstationary (resp. stationary long memory) behaviour which can be removed
by applying to data the unit root 1 — B [resp. the fractional unit root (I — B)?,
0 < d < 0.5] operator. Peaks at low non-null frequencies imply the existence of
cycles in the time series (see Conway and Frame, 2000; Birgean and Kilian, 2002
for economic data, and Priestley, 1981; Yiou ef al. 1996, for other kinds of data).
It is well known that persistent cycles can be described by complex unit roots. For
instance, Bierens (2001) has concluded that National Bureau of Economic
Research business cycles of the US unemployment time series are indeed because
of complex-conjugate unit roots, i.e. an appropriate non-stationary model to
describe the cyclical behaviour of such series is given by

!
H(l —2Bcos0, + B>y, =&, where0 <0, <---<0;<m, (8)

m=1

and (g,) is a stationary process. Equation (8) generates / persistent cycles of 27/6,,
periods, 1 < m < [. Note that vanishing cycles can also be described by complex-
conjugate, but stable, roots, ie. pe” and pe " with |p| < 1, and the
corresponding model is stationary.

In model (8), with /=1, Ahtola and Tiao (1987a) have established the
limiting distribution of the LSE by assuming that (g;) is an i.i.d. Gaussian
process. Chan and Wei (1988) have extended the result of Ahtola and Tiao
(1987a) to a more general characteristic polynomial ¢(z), which can also have
stable roots (i.e. ¢(z) = 0 implies that |z| > 1) and roots equal to —1 and 1.
Moreover, they relaxed (¢,) to be a martingale difference sequence. Chan and
Terrin (1995) have extended the result of Chan and Wei (1988) by assuming that
(e,) 1s a Gaussian long-memory process, which implies that the errors ¢, are
strongly correlated in the sense that their autocorrelation function is not
absolutely summable; such a model is very useful to describe time series
exhibiting both cyclical and long-memory properties. In Boutahar (2002), the
results of Chan and Terrin (1995) were extended to the case where the roots of ¢
(z) are arbitrary. Unfortunately, the normality assumption of time series is
usually violated in practice (see Gil-Alana, 2003; Scherrer et al., 2007; Venema
et al., 2006; see also Tiku et al., 2000 and the references therein). The aim of this
article is to remove the normality hypothesis assumed in the article of Ahtola
and Tiao (1987a) and in Chan and Terrin’s (1995) particular model
corresponding to complex-conjugate unit roots. More precisely, we consider
the multiple cycles model (1)—~(3) where

P !
¢ =1-> ¢7 =] b0, @,(2) =1 =2c0s0,z+2)",
li:l m=1 (9)
pzzzdm’ OmE](),TE[, ISmSl

m=1
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In this article we study only the case when the characteristic polynomial ¢(z) is
unstable with complex-conjugate unit roots, i.e. an appropriate non-stationary
model to identify persistent cycles in non-Gaussian long-memory time series.
However, the behaviour of the LSE when ¢(z) has stable roots, roots equal to —1
and 1, and explosive roots remains an open problem.

This article is organized as follows. In Section 2 we give the limiting distribution
of Y.  cuxer and examine the particular cases of sine and cosine Fourier
transforms of {1 < k < n}, for which we establish a FCLT. In Section 3 we
consider the unstable AR(p) model with complex-conjugate roots and study the
limiting distribution of the LSE. The proofs of the results of Sections 2 and 3 are
given in the Appendix.

2. CLTS FOR LONG-MEMORY PROCESSES

Many central limit theorems (CLTs) were established for short-memory
processes, such as i.i.d. sequence, martingale difference sequence, and so on.
Such processes are weakly dependent and usually satisfy

var (Z sk> ~ Cy,
k=1

for some positive constant C, and hence we need to normalize the sum ) ;_, & by
\/n to obtain a Gaussian limiting distribution (see, e.g. Doukhan et al., 2003 and
the references therein). For long-memory processes, the normalization and/or the
limit law are usually different from the short- memory setup; in this case, we say
that (g,) satisfies a non-central limit theorem (non-CLT). Davydov (1970) has
proved a non-CLT by assuming that the process (&,) is linear, i.e.

& = E bjut_j.

Jjez

Taqqu (1975), Dobruhsin and Major (1979) and Giraitis and Surgailis (1985) have
considered the process ¢, = G(Y;), where G is a nonlinear function and (Y,) is a
Gaussian long-memory process. They proved a non-CLT for (g,); they proved also
a CLT when (¢,) has short memory. Surgailis (1982) and Avram and Taqqu (1987)
have extended the results of Taqqu (1975), Dobruhsin and Major (1979) to the
functional of non-Gaussian processes, they proved a non-CLT for ¢ = A4,,(Y))
where 4,, is the mth Appell polynomial associated with the distribution of Y, and
(Y, is a long-memory moving average, i.c.

& = Z bju,,j.
J<k
Finally Ho and Hsing (1997) have generalized the results of Surgailis (1982)
and Avram and Taqqu (1987) to a large class of functions G. If ¢ = G(Y,)
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658 M. BOUTAHAR

[resp. ¢, = A4,,(Y,)], then the limiting distribution depends on G (resp. 4,,); it
can be Gaussian or non-Gaussian and expressed as a multiple Wiener—Ito
integral.

In this section we establish two CLTs for the causal long-memory process given
by eqns (2) and (3). It can be shown that (¢,) satisfies

VEII'(Z 8k> ~ C1n2H, (10)
k=1

for some positive constant Cy, and a,, ~ b,, means that a,/b,—1 as n—ooc.
In Theorem 1, we consider sequences of weights {c, x,1 < k < n} such that the
weighted process (¢, &,) has a short memory in the following time-domain sense:

n
var <Z Cn1k8k> ~ Cyn, for some positive constant Cs. (11)
=1

The weighted sum Y _;_, ¢, x& was studied by Giraitis ez al. (1996) who assumed
in eqn (2) that 1/2 < H < 1; they proved that n= >~} _, ¢, x& is asymptotically
normal with asymptotic variance

n
Q,,:n’ZHvar E Cnitk |-
k=1

However, if (¢, &,) is of short memory then Q,—0 as n—oo and the limiting
distribution of n S i_i caker will be degenerate. Therefore, the limiting
distribution of >~} _, ¢, x& cannot be obtained from Theorem 2 of Giraitis et al.
(1996); in Theorem 1 we resolve this problem. In Theorem 2 we examine the
particular weights ¢, ; = sin (k0), ¢, = cos (k0) and prove a FCLT for the two
processes

[nt] [nt]
X, () = (nL(n))""* "sin(k0)e; and Y, (1) = (nL(n))""* > cos(k0)z.
=1 k=1
Note that the process (sin (t0)g;) is not covariance-stationary and hence
Davydov’s (1970) results cannot be applied to obtain the weak convergence of
X,, in the Skorohod space.

2.1. A CLT for a weighted long-memory moving-average process

Unless otherwise stated, limits are always taken as n tends to infinity in this
article.

THEOREM 1. Assume that the process (&,) is given by eqns (2)—(3). Let ¢, € R?,
| < k < n, be a sequence such that ||c,.,|| < oo for all 1 <k < n,
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(nL(n)) 'var (Z cmkgk) — R, (12)

k=1

and for all a € RP, r > 3,

> (Z “'Cn,kbk/) - 0 ((nL(n))”/ 2) ) (13)

jez \ k=1

where R is a positive-definite matrix, with b; =0 if i < 0, and L() is a slowly
varying function, bounded on every finite interval. Then

(nL(m) ™23 cupen 5 N(OR),
k=1

c e
where — denotes the convergence in distribution.

2.2. A FCLT for the Fourier transform of long-memory moving-average process

Let D = D[0,1] be the space of random functions that are right-continuous and
have left limits, endowed with the Skorohod topology. The weak convergence of a
sequence of random elements X, in D to a random element X in D is denoted by
X, = X.

Consider the process (¢,) given by eqns (2)—(3). For 0 € ]10,z[ and ¢ € [0,1],
let

[nt] [ni]
X, () = (nL(n))"" " sin(kO)er, V(1) = (nL(n))""* D cos(kO)e.  (14)
k=1 k=1

In Theorem 2 we prove that X,, converges in D to a Brownian motion B.
There are two sufficient conditions for convergence in D (see Billingsley,
1968):

(1) the finite-dimensional distributions of X,, converge to the finite-dimensional

distributions of B,

(i1) X, is tight.

We prove that condition (i) holds if (¢,) satisfies (2)—(3). However, for the tightness
of X,, we impose an additional assumption, that is the white-noise (u,) of the errors
has at least a finite moment of order 4.

THEOREM 2.  Assume that the process (g;) is given by eqns (2)—(3) such that

@) E(ué"(’) < oo for some integer Ky > 2,
(ii) the spectral density of (¢,) can be written as f(2) = |2|' " L(|A|™"), where L is
a slowly varying function, bounded on every finite interval. Then
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X,=K(0,H)B, (15)
and
Y,=K(0,H)B;, (16)

where K(0,H) = \/n|0 A

, and By and B, are two standard Brownian motions.

3. THE LSE IN UNSTABLE AR MODEL WITH COMPLEX-CONJUGATE ROOTS

Consider the AR(p) model (1)—~(3) and (9). To study the limiting distribution of
the LSE given by eqn (4) we use the same analysis as in Chan and Wei (1988) and
Chan and Terrin (1995).

Let

xi(m) = ¢g, (B) ' (B, 1<m<L.

Then there exists a nonsingular matrix Q (Chan and Wei, 1988, Appendix 1)
such that

Qy, = (x/(1),...,x/(]))',  where x,(m) = (x,(m),...,x2q,+1(m))".

Let y(m, j) = (1 — 2 cos 6,,B + B> x,(m), c’] be the coefficient of z’ in the
expansion of the polynomial (1 — 2 cos 0,,B + B/, and

1 c} C%d,,,fz 0

0 1 c} .. 65%2

1 C% c%dl7172 0 0 0

0 1 cl c%d,,,72 0 0

Cn= . : . . . : )

1 —2cosb, 1 0 0

0 1 —2cos 0, 1 0 0

1 0 0 0 0

0 1 0 0

then
met(m) = (yt(ma 1)7yt71(m7 1)7 e 7yt(mvdm)vytfl(m7 dm)),

To state the limiting distribution of the LSE, we define the normalization
matrix

G, = diag(L,(1),...,L,(])), L,(m)=diag(n/I,,1 <j < d,)C,.
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TraeoreMm 3.  Consider the time series (1) and assume that the characteristic
polynomial ¢(z) is given by eqn (9). If the disturbance process (&,) satisfies the
assumptions of Theorem 2, then we have

L (6,QY v ¥ QG, 5 diag(Hi,....H)) (17)
k=1
and
(Q6) (@, — &) 50, (1710 ). (18)
where

ln = (C(I’"), o Cg’;}l)', H, = (al(;'-'))a 2d,, x 2d,, random matrix,

(& = (25in6,) " {cos 0, ( /0 1 Fonj1(5)dBan(s) — /0 l gmﬁjl(s)deml(s))
—sin 0y, (/Olfm,jl(s)dBZml(S) + /01 ngl(S)dem(S)) },

1 1
Cé'}lll = (2sin0,,)"" (/o Jmj—1(8)dBan(s) —/0 gm,jl(s)dBZml(S)>,

(m) _ _(m)
O2k—12j—1 = 022

— (4sin0,)"" ( / okt (Vo (5)ds + / | gm.“(s)gm.jl(s)ds),

0

(m)

(m)
O2k—12/

= 0221

— (4sin20,)"" {cos 0, ( /0 e Vo1 (5)ds + /0 1 gmﬁkl(s)gmﬂ(s)ds)
it [ 916135~ [ an e 1935 |

Snj(t) = (2sin 0,,,)_1 (sin Gm/o S j—1(s)ds — cos 0,, /0 Gm j1 (S)ds),

t t
gm,j(t) = (2 sin em)71 <COS 0, / fm_’j,l(s)ds +sin 0, / Im.j—1 (S)dS) s
0 0

Jmo(t) = K(Om, H)Boy—1(t),  gmo(t) = K(Om, H)Bo(1),

© 2008 The Author
Journal compilation © 2008 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 29, No. 4



662 M. BOUTAHAR

K(6,,H) = \/E|0m|%7H,l < m < I,B; are standard Brownian motions, i =
1,...,2l, and B, is independent of B; if i # j.

R]::MA};K 1. Theolgem 3 implies that the LSE (i)n is a consistent estimator of ¢,
ie. ¢, — ¢, where — denotes the convergence in probability. Moreover, the rate
of convergence is equal to OI,(n*I) and is the same as the one obtained by Ahtola
and Tiao (1987a), Chan and Wei (1988) and Chan and Terrin (1995).

Remark 2. In this article we have derived the limiting distribution of the LSE
in model (1), where the disturbance (g;) is a non-Gaussian long-memory process
given by eqns (2)—(3), only when the characteristic polynomial ¢(z) is unstable
with complex-conjugate unit roots. However, the behaviour of the LSE when ¢(z)
has stable roots [i.e. ¢(z) = 0 implies that |z| > 1], roots equal to —1 and 1, and
explosive roots [i.e. ¢(z) = 0 implies that |z| < 1] remains an open problem and
will be treated in a future study.

APPENDIX: PROOFS

Proor oF Tueorem 1. We shall adapt the proof of Theorem 2 of Giraitis et al. (1996). Let
T, = (nL(m) " cpper
k=1

By Cramer Wold arguments, 7, converges in distribution to 7 if and only if for all
v € R?, VT, converges in distribution to v/ T. To prove the last convergence it is sufficient to
show that

E<ei”"> —e 1m0 4 o(1),

uniformly on compacts {||v|| < 4}, where ¢%(v) = var(v'T,).
By using eqn (12) we have
a>(v) — v'Ro,
hence ¢2(v) < Cmax (R)||0]|*, for some positive constant C, where Zmax(R) is the maximum

eigenvalue of the matrix R; therefore, ¢2(v) is bounded uniformly on compacts.
We consider the truncated variables

o _ +
ujy = uf1{|u/\>N} fE(ujl{‘uij}), Uy =uj — Uy,

where 1 4 is the indicator function (equals / when condition A is satisfied and 0 otherwise),
and define

n
~1/2 —
gy = Zbk,juij, T,y = (nL(n)) / Zv’cn,ks;fN, Ton=T,—Ty.
<k k=1
We have
© 2008 The Author
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”i,N = E((uaN)z) —0 asN — o0

and

E((T:—N) )= O'i NOn ( ) < Clmax(R )HUHZGiN < qn,
where ¢y is independent of n and gy — 0 as N — oo. Consequently

E(e"™) = E(e"T) + d,,

where

[du] = [E(( T = 1) )| < BTy ) < g™

It suffices to show that for N < oo and r € N,r > 3,
cum(v'T;) = o(1), (19)

where cum,(") is the rth cumulant. Note that

—
cum(v'T, ) = vy E t;/.,
. .

jez

where

VN = cum(uaN) and ¢, = (nL(n))fl/2 Z ven kb,
hence eqn (19) follows from eqn (13). |

Proor oF Taeorem 2. We shall prove only eqn (15) [the proof of eqn (16) is similar]. Let
N
Sun =Y sin(k0)ex, Sy = Sy,
k=M

then X, (1) = (nL(n))f”zS[,,,]. To prove Theorem 2 we need the following three lemmas.

Lemva 1. Forall 0 <t < 1, <1,

var(X,(t) — X, (t1)) = (nL(n)) "' var(Spy) 1)) ~ 7t — )]0, (20)

cov(X, (1), X, (t2)) ~ mry |0 2. (21)

Proor. Denote by

y(k) = / et (2)da

the autocovariance function of {&}, and let n; = [nt], j = 1,2. Then

Var (Spu, +1,fnts]) Z Z sin(/0) sin(j0)y(j — /)

I=ni+1 j=n1+1

= (Tl,n + Tl,n - T27n - T27n)/47 (22)
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where

ny ny

To= S S G, = 30 S UGy (@)

J=ni+11=n1+1 J=ni+1 1=n1+1

and T;, is the complex conjugate of 7, j = 1.2.
Now observe that

A ny o )
T = /( S [ s
gt k=n;+1

(ny—ny)(n+0) eV — 1 2 B B
=(n2*n1)/ 5 w(my —m)~ =0
(n2—m)(0—m) (n2 — nl)(e("r'n) — 1)

X L(|(ny = m) ™'y = 0] )dy.

It follows that

00 eiyilz
=l

Tip~ (12 — m)L(ns — my)[0]' 2" / -

J —00

= 2n(ny — my)L(ny — my)|0]' 2
Since (n, — ny) ~ n(t, — t;) and L(*) is a slowly varying function we deduce that
T, ~ 2mn(t, — ty)L(n)|0]' 2. (24)
The second term in eqn (23) can be written as
Ty = / ' Z e/i+0) Z AL (127
T+ I=ni+1

nl+1)()|)»|]72HL(|/lrl)d/l.

B /T[ ei(nzfnlfl)(()#»}‘) _ 1ei(n27n171)(()72) _ 1621(

L et ail0-1) _ 1
Since for all x € R, for all 0 << 1, \ei"' -1 < 2'7%|x|° and for all |x| < 2=,
le"—1| > |x|/2, we have that
\To0] < CH® (1 — 11)25/ 4 0P — 01 A2 L (A Y
=o(n) forall0<o<1/2. (25)

Therefore, eqn (20) follows from eqns (22)—(25).
From eqn (20) we deduce that var(X,(¢,)) = (nL(n))"" var(Sy ) ~ nt]0]'~*"; hence by
writing
cov(X (1), Xa(82)) = var(X,(t1)) + cov(X, (#1), Xu(t2) — Xu(t1)),
the result (21) holds if
cov(X,(t1),Xu(t2) — X, (11)) = o(1). (26)
Write
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oVt Xalt) — Xalt)) = 373 sin(10)sin(0)y(j — )

J=1 1=m+1
- (Vl,n + I7111 - V2,n - I72,n)/4'nl4(n)7 (27)
where
n ny o ni ny .
Via=_ > 0% =1, 1hy=> > U0h-1).
J=1 1=m+1 J=1 I1=n+1
Clearly,

7T ai(no—ny)(0+4) _ 1 ) )
Vin :/ 672(1 —e‘(”1+1)(0+”‘))|)~|1’2HL(|)V|")d2.
' B ‘emaﬁ.) —1]

Let y = (n; + 1)(0 + 2), then

e ei(t;—tl)y/tl —1

e

<uwﬂnrwwww/

-0

2o /x cos((r — n1)y/tr) — cos(tay/t1) + cos(y) — ldy
0

ik
=0, (28)
the last equality follows by using the formula
/k cos(py)ﬁzcos(qy) dy = (g ;p)n7 for all p >0, forallg>0.
0 y

The term V,, can be written as

T Li(n+1)(0+4 i(ny—ny)(0—4
l/zn:/ eilm+1)(0+2) _ 1 gilma—m)( )_IGZi(

n1+1)6|)»|1_2HL(|/1‘_1)d/{,

cil0) _ | el(0—7) _ 1
hence
(nL(n)) ! Vau| < C(nL(n))™'n8 (6 — 1)’
« / 4 01— 017 A 2 L (A Y d A
:o(l)_7I forall 0 <o < 1/2. (29)
Consequently, eqn (26) follows from eqns (27)—(29). U
LEmma 2.
(nL(n)) /25, 5 N(0, nl0]' ). (30)

PrOOF. We shall apply Theorem 1 with ¢, = sin(k0). By choosing t; = 0,t, =1 in
eqn (20), we get var(S,) ~ 77:11L(n)\9|172H . To obtain eqn (30), it remains to prove condition
(13). As L(°) is bounded, it suffices to show that
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— Z( nl sin(iO)b,«l,)r_ 0<nr/z), (31)

Jjez \i=
By using similar arguments as used in (Zygmund, 1959, p. 187), we can easily prove that,

with
2H-3

b,‘ = ZTLl (l),

icos(z‘@)bi =0(1) (32)
=1

=0(1) and

N
3 sin(i0)b,
i=1

uniformly on N. Note that 7,,, = Ty, + T>,, + T3, Where

[

Tipr = (i sin(i@)h) v Doy = Z (i sin(i@)bi‘,) ,
i=l ' i—1
—1 n r

Tln,r = Z (Z Sm(z@)b,j> .

J=1
J=—00 \ i=1

From eqn (32) we obtain 7 ,, = O(1).
‘TZ.n,r‘ S Z Z Sin(i())b,-,j
j =1

Jj=

r

3

Jj=

ni sin((1 + /)0)b;
I1=1

n—j n r

= [sin(j0) > cos(10)b; + cos(j6) stin(le)b,

X

)

=1

J=1 =1

hence eqn (32) implies that |T3,.,| < Cn = o(n?), for all r > 3.
We have that

o0

T3‘n‘r = Z <i sm(z@)blﬂ) .
i=1

J=1
To prove that T3, = o(n?) it is sufficient to show that for all M € N, for all ¢ > 0,
there exists nq such that for all n > n,

i( Y sm(z@)b,ﬂ>
1

- i

Jj=1

n"1? <e. (33)

From eqn (32) we deduce that

n

i (Z sm(z@)b,ﬂ)
Jj=1

i=1

i(cos(j@) HZ” sin(10)b; — sin(j0) HE" cos(l@)b,)

I=j+1 I=j+1

J=1
< MC,

for some positive constant C. To obtain eqn (33) it suffices to take ny = [(MC/E)%} +1.0
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Lemma 3. Forall 0 < M <N,

E<|SM=N\ZKO> < C(var(Suw))", for some positive constant C. (34)

Proor.  Write
& = E bk,juj
jez

by assuming that »; = 0 if i < 0, then

var(Sy n) = Z(Z sin(k0)b;_ k> .

i€l

Let Ay, = {(i,...,i) € Nsuch that i, +---+ i; = o}, i.e. the set of all solutions in
natural numbers of the equation i} + - - -+ iy = Ko (without taking into account the order
of the terms). Then

E( 2K0> Zaa Z (sin(MQ)bkrM +oe gt SiIl(Ne)kaN)Zil

Mg kiFth

2ig
(sin(v0)p, , + -+ sin(VO), )

< rr/{iiox{a,{} <Z(sin(M0)b,-M +--+ sin(NO)biN)2>

i€Z

= n/{?x{al} (var(Sun))"™,

where

a; _ E(uo")E(uo|*) - E(|uo ) (25)! O
g (2ir1) -~ (2i)! ’
We now use Lemmas 1-3 to prove Theorem 2. To prove that the finite-dimensional
distributions of X,, converge to those of K(6,H)B, it is sufficient to show that for all integer
r>1,forall0 <1 <---< ¢ <1andforall (21,...,0) € R,

Z, 720@ (1) 5 K(0,H) Zqu] 4). (35)

Since

ntr

Z, = -1z Z%k%

where
Cnge =sin(kO) (o +---+o;) if [0t <k <[ntj], 1<j<r, t=0,

and that it is not difficult to show the condition (13) (we omit the proof), the convergence
(35) holds if
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var(Z, )—>var< K(0,H) Zoc,B] ):Kz(E),H) Z ooy min (¢, ¢;). (36)

I<ij<r

Moreover, the convergence (36) follows from eqns (20) and (21).
To prove the tightness of X, it suffices to show the following inequality (Billingsley, 1968,
Thm 15.6)

E(1Xa (1) = X (1)1 X (82) = Xu(O]) < (F(12) = F(11))" (37)

for some y > 0, o > 1, and F is a nondecreasing continuous function on [0,1], where
0<fH <t<t <l

Let  K(t,t1,15) = E(|X,(t) — X,(t)]*|X.(12) — X,()|).  Using  Cauchy-Schwarz
inequality

K(t,t1,12) = (nL(n)) " E(|Spue, 151, fnd] | [Sin <1, purs) )

1 1
< (nL(n))_""E(|S[n,1]+1‘[m] |2K°)2E(|S[m]+1,[mz] |2K°)2.

Combining eqns (34) and (20), we have

i) *0

K(t,1,2) < C((nL () Var(Siyor )~ (0100)” " Var(Spgor ) )

< Ci(t—1)? (tz - t)T

< (C?“tz - CfOzl)KO.
Consequently eqn (37) holds with y = o = K, and F(¢) = Cfi”z. O
Proor oF TheoREM 3. For the proof of Theorem 3 we need Lemmas 4 and 5.
Lemma 4. Let 0; € 10,n] such that 0; # 0, if i # j for i,j = 1,2,...,] and define

Ya(tr,... 1) = (nL(n)) '
nty;

[nt2] [nt21-1] [nt2]
(Zsm k0y) Ek,ZCOS (k0y)ex,. .., Z sin(k@l)sk,Zcos(k91)3k>.
k=1 k=1

Then
Y, = (K(01,H)B\,K(01,H)Bs, .....K(0;,H)By_1,K(0;,H)By).

Proor. By using Theorem 2 it is sufficient to prove the asymptotic independence. The

proof of which is easy and hence omitted. U
Let
Simoj) = 3 cos(kBu (), Tl ) = 3 sin(kbs(m, ). (38)
k=1 k=1
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Lemma 5. For all 0 < ty, t, < 1, the following convergences hold

Proor. Let

n V2LV (1) (Sparyy (), Tty (m, ) = (Fn (1), G (12)).

n UL Z)’z m, k)y.(m, j) _’O'ék)zjv

t=1

n UL Zy, m, k)y,(m, J)_’Uék) 12
t=1

n ) L -
Y)Y i O, e = 88,
t=1

Sy = S,(m,0) Zcos (kOy)ex, T, =T,(m,0) Zsm (k0,,)

k=1

Then from eqn (20) we deduce that

S, =0(n) and T,=O0(n).

669

(41)

(42)

(43)

(44)

Using eqn (44) it is easy to prove that all the results of Lemmas 3.3.1-3.3.6 of Chan and
Wei (1988) hold and details are omitted.
By applying our Theorem 2, the continuous mapping theorem and a similar arguments
as used in the proofs of Theorem 3.3.4 and the Lemma 3.3.7 of Chan and Wei (1988) the
convergences (39)—(43) follow immediately.

O

We now use the Lemmas 4-5 to prove Theorem 3. From eqns (39)—(43) it is easy to show

that

sz l )L/( ) = Hm7

where H,, is nonsingular almost surely, and

—1
, m))_l (;xf—l(m)xél(m)) ;Xt—l(m)ﬁtiH;,lCm-

In view of the preceding two convergences and Lemma 5, to prove eqns (17) and (18) we
only need to establish that the off-diagonal submatrices of

GnQZkal)’;ch/G;/L(”)
k=1

converge to zero in probability. Typical elements of these submatrices are
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nt) Zy, (h,s)y(j,r) = (L(n)n"**sin 0, sin0;) Z (Si(h,s —1)sin(t+1)0,,

—T;(h,s—1)cos(t+ 1)0;,) (S:(j,r—1)cos(t+1)0;
—T,(j,r—1)cos(t+1)0))}. (45)

Let us, for example, examine the term

n—s—rZSz(h,s — 1)S,(j,r — 1)sin(¢ + 1)0, cos(t + 1)0;

=1

which can be written as a sum of four terms taking the form

ns rZS[ - 1) (t+1)9’

with 0 = £(0, = 0).
We shall apply Theorem 2.1 of Chan and Wei (1988) to the sequence of random
variables X,, = S,(h,s — 1)S,(j,r — 1). Since E(S2(h,k)) = O(n**1), it follows that

EIX,| < (E(S2(h,s — 1)) 2 (s2(,r — 1)
2(r—1)+1

o 30 =)
O(ns+r l)

We need to prove that
| Xy — Xu| < A1(n,m)By(n,m) + A2(n,m)Bz(n, m),

for some random variables A(n,m) and By(n,m) such that
E(Alz(n,m)) < Cn""‘,E(Bf(mm)) < Cn%(n—m)

for n > m and some positive constants C.y;,0;,i = 1,2. We have that
| X0 = Xou| = [Su(hys = 1)S,(j,r = 1) = Su(h, s — 1)S,,(j,r — 1)]

< |S”(h7s_ )||Sn(]7r_ )_SmUar_ 1)‘
+1Su Gy r = DSy (hys — 1) = Sy(hys — 1)].

Let
Ai(nym) = |S,(h,s = 1)|, Bi(n,m) =1S,(j,r = 1) = Su(j,r = 1)|, n>m.

Then E(43(n,m)) = O(n't) with y; = 25 — 1.

; 2,0, 1/2
m) < ( Z cos2k0f> <Z y,f(j,r—2)>

k=m-+1 k=m+1
1/2
< (n-— 1/2 S2 =2 +T2 j,r—2
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Since E(T?(j,k)) = O(**1), it follows that

E(B%(n,m)) = O((n —m) i t2r3> = O(n — m)né')7 with 6 =2(r — 1).

t=m+1

Likewise, if we define

Ar(nym) = |Spu(j,r — 1), Ba(n,m) = |Sy(h,s — 1) = Su(h,s — 1), n>m,

then we can prove that

E(A%(n,m)) =O0(n?) and E(B%(mm)) =0(n— 7;1)11‘32)7 with y, = y,,0, = d;.

Therefore (see the remark of Theorem 2.1 of Chan and Wei, 1988), if we put o =
s+ r — 1 then y;, + §;<2a for i = 1,2 and hence Theorem 2.1 of Chan and Wei (1988)
implies that

n " iS,(h,s —1)S,(j,r — 1) = o,(1).

=1

Since L() is bounded, it follows that
(L(n)n"** sin 0 sin Hj)flzn:S,(h,s — 1)S,(j,r — 1)sin(t 4 1)0, cos(t + 1)0; = o0,(1).

=1

Likewise, the remaining terms in the right-hand side of eqn (45) are 0,(1). Consequently
(L)Yl t) = o)
pn

This completes the proof of Theorem 3. O
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