
Copyright © 2007 John Wiley & Sons, Ltd.

Optimal Prediction with Nonstationary
ARFIMA Model

MOHAMED BOUTAHAR*
GREQAM, and Department of Mathematics, Luminy Faculty of
Sciences, Marseille, France

ABSTRACT
We propose two methods to predict nonstationary long-memory time series. In
the first one we estimate the long-range dependent parameter d by using tapered
data; we then take the nonstationary fractional filter to obtain stationary and
short-memory time series. In the second method, we take successive differ-
ences to obtain a stationary but possibly long-memory time series. For the two
methods the forecasts are based on those obtained from the stationary compo-
nents. Copyright © 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Prediction of time series can be achieved by using the Wiener–Kolmogorov approach (see Bhansali
and Kokoszka, 2001). Earlier, Box and Jenkins (1976) applied this theory to the well-known
ARIMA(p, d, q) process (d is an integer) to obtain optimal predictions for nonstationary processes.
In this paper, we extend this approach to the ARFIMA(p, d, q) where d is any real number with

d > − . We give optimum linear predictors by making use of two methods. In the first one, called

Method 1 and presented in the next section, we use the raw data (we do not take differences) to esti-
mate a nonstationary fractional filter. We then apply this filter to obtain stationary and short-memory
time series. This method belongs to the philosophy modelling of Parzen (1982), who called it
ARARMA modelling. However, Parzen (1982) did not use the fractionally integrated approach. In
the second method, called Method 2 and presented in the third section, we take successive differ-
ences to obtain a stationary but possibly long-memory time series; this is, of course, the classical
approach of Box and Jenkins (1976).

For the two methods we use the predictors, obtained from the stationary process by using any
classical method, to compute those of the initial nonstationary process. We give also the mean
squared errors of the h-step predictors. Moreover, we show how these two methods can make use
of the innovation algorithm applied to the stationary short-memory component which is assumed to
be an ARMA process. In the fourth section we perform a Monte Carlo study to compare the two
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methods. Our conclusion is that Method 1 is slightly superior to Method 2. This conclusion is also
confirmed in the fifth section when we apply them to real data.

METHOD 1: PREDICTION WITHOUT DIFFERENCING

Consider the model

(1)

where

are stationary AR and invertible MA operators, (1 − B)d is the fractional filter given by the binomial
expansion

(2)

d ∈ � with d > −1/2, and B is the backward shift operator, i.e. Byt = yt−1.
The estimation of d can be made by the log-periodogram method of Geweke and Porter-Hudak

(1983), but if d � 1/2, then we apply a taper of order p1 � s + 1 to the data, where s = [d + 1/2], ([.]
is the integer part of the argument) (see Velasco, 1999a, theorem 7). The values of p and q can be
unknown. Also Beran et al. (1998) consider a similar model with q = 0, and give a version of Akaike
information criterion (AIC) for determining an appropriate autoregressive order when d and the
autoregressive parameters are estimated simultaneously by a maximum likelihood procedure (Beran,
1995). In this paper we will consider the ARFIMA(p, d, q) model with possibly moving average
component, q ≠ 0. Moreover we do not use the same model selection procedure as Beran et al.
(1998), but we first filter out the long-memory stationary or nonstationary component and afterward,
we use standard criteria to select the orders (p, q) of the short-memory component.

Recall that a sequence of data taper (ht, 1 ≤ t ≤ T) is of order p1 if the following two conditions
are satisfied:

1. .

2. For (which is assumed to be an integer), the Dirichlet Kernel Dp1
(l) satisfies

where a(l) is a complex function, whose modulus is bounded and bounded away from zero, with
p1 − 1 derivatives, all bounded in modulus as T increases for l ∈ [−p, p].
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Assuming d is known, we will define an h-step prediction of yt+h. Denote by {yt, t ∈ I} the
closed span of the subset {yt, t ∈ I} in the Hilbert space H; it is the smallest closed subspace of H
which contains each element yt, t ∈ I. Let

(3)

then xt is a stationary and invertible ARMA (p, q) process

(4)

Assume that (yj, j ≤ 0) is uncorrelated with xt, t � 1. The optimum linear predictor of yt+h, 
h > 0, in terms of (ys, s ≤ t) is given by

and PSt is the projection of H onto St.
The mean squared error of the h-step predictor is

Let y*t+1 denote the one-step predictor of yt+1, i.e. y*t+1 = PSt(yt+1),

(5)

(6)

where

(7)

and dj(d) are given by (2).

Remark: Since fk = 0 for all k > p, it follows that

(8)

Theorem 1: Assume that t > m = max(p, q). The predictors and their mean squared error are
given by
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and

(10)

where qi,j and vt are obtained from the innovation algorithm applied to the ARMA(p, q) process xt

defined in (4) (see Brockwell and Davis, 1991, equations 5.2.16 and 5.3.5).

Proof: From (3) we have

(11)

Since (yj, j ≤ 0) � xt, � t � 1, and {yj, j ≤ t} = {yj, j ≤ 0, x1, . . . , xt} we have

(12)

where

Moreover

(13)

(14)

then

(15)

This seems to be an important result, which means that the one-step prediction error of the non-
stationary and long-memory ARFIMA process yt is the same as that of the stationary and short-
memory ARMA process xt.

Now, the optimum linear predictors can be obtained from the stationary theory. We have from
Brockwell and Davis (1991) that
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ŷ P y P x d P yt h S t h t t h j S t h j

j
t t+ + + + -

=

•

= ( ) = ( ) - ( ) ( )Âd
1

SpSp

y x d yt t j t j

j

= - ( ) -
=

•

Âd
1

s d q u2
1

0

2

1

0

1

h dj t h r j r

r

j

t h j

j

h

( ) = ( )



+ − − −

=
+ − −

=

−

∑∑ * ,



Optimal Prediction with Nonstationary ARFIMA Model 99

Copyright © 2007 John Wiley & Sons, Ltd. J. Forecast. 26, 95–111 (2007)
DOI: 10.1002/for

(17)

Denote by , then combining (15) and (17) we obtain

(18)

The equality (12) can be written as

(19)

Equations (18) and (19) imply that

then (9) holds.
To prove (10) we have from (12)

(20)

and from (11)

(21)

Subtracting (20) from (21) gives

or

where d(z) is the polynomial defined in (7). The equalities (16)–(17) imply that
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hence we obtain from the last two equalities

which implies that

(22)

where Y and Q are (h, h)-matrices such that

(23)

and

(24)

Define

(25)

where vt = E(xt+1 − x*
t+1)2 is the mean squared error of the one-step predictor of the ARMA(p, q)

process xt. We then obtain from (22) that

s2(h) = e′hY−1QVQ¢Y¢−1eh.

Straightforward calculation leads to (10). �

METHOD 2: PREDICTION USING DIFFERENTIATED DATA

In this section, we show how to obtain predictors for the nonstationary ARFIMA process from those
computed for the stationary ARFIMA process. There are many methods to obtain forecasts for a sta-
tionary series; see Bhansali and Kokoszka (2003) for some of them. In this paper, we make use of
the results obtained by Peiris and Perera (1988).

Let

and assume that s is known.
Define zt = (1 − B)syt, then from (1) zt is a stationary and invertible ARFIMA(p, d1, q) process
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Let

(27)

then xt is a stationary and invertible ARMA(p, q) process

(28)

We assume that the vector (y1−s, . . . , y0) is uncorrelated with zt, t � 1, and let

(29)

(30)

where di(d1) are given by (2):

Theorem 2: Assume that t > m = max(p, q). The predictors and their mean squared error are
given by

(31)

and

(32)

where qi,j and ut are obtained from the innovation algorithm applied to the ARMA(p, q) process xt

defined in (28) (see Brockwell and Davis, 1991, equations 5.2.16 and 5.3.5).
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then the same argument as used above (equalities (11) and (12)) leads to

(34)

Theorem 3.1 of Peiris and Perera (1988) gives the predictors 

(35)

and consequently the equality (31) holds.
To prove (32), we have from (26) and (27)
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where

F = −(fi−j), f0 = −1, fj = 0 if j > p or j < 0

and Q is given by (24), where the qi,j are obtained from the innovation algorithm applied to the
ARMA(p, q) process xt defined in (28).

The equalities (40) and (41) imply that

which implies that

s2(h) = e′hG−1(d1)TF−1QVQ¢F¢−1T¢G¢−1(d1)eh

where V and eh are the same as (25). Straightforward calculation leads to (32). �

MONTE CARLO STUDY

We have generated times series driven by five different models as follows; in all cases the simulated
generating noise was standard Gaussian.

Model 1: ARFIMA(0,1.4,0), a simple persistent nonstationary long-memory process with all corre-
lation coefficients positive.

Model 2: ARFIMA(1,1.4,0), with f1 = 0.5, a process with persistent nonstationary long-memory
component and a short-memory stationary autoregressive component.

Model 3: ARFIMA(0,1.4,1), with q1 = −0.7, a process with persistent nonstationary long-memory
component and a short-memory stationary moving average component.

Model 4: ARFIMA(1,1.4,1), with f1 = 0.5, q1 = −0.8, a process with persistent nonstationary long-
memory component and an ARMA(1,1) short-memory stationary component.

Model 5: Nonstationary F-EXP model defined by

The number of time series NR say, generated from each model was 1000. For a given simulated
model and each h = 1, . . . , H(=20), let denote the h-step forecast provided by Method 1
for the jth simulated time series from that model, j = 1, . . . , NR, and let denote the corre-
sponding h-step forecast according to Method 2. The simulated h-step mean square error of predic-
tion SMSE1 for Method 1 is given by
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where yj,T+h represents the hth out-of-sample observation after the last observation used for estima-
tion at the jth simulation.

The proportionate change in the simulated h-step mean squared error of prediction for Method 1
relative to Method 2 is then given by

The graph of PSMSE(h), h = 1, . . . , H measures the change in the simulated mean squared error
of prediction when using Method 1 in preference to Method 2. If for a given value of h PSMSE(h)
is positive then this implies that Method 2 has an advantage over Method 1 for the h-step forecasts.
Bhansali and Kokoszka (2001) used a similar criterion.

In the stationary framework, forecasting with ARFIMA models can be made by many other
methods; there are two kinds:

1. The one-stage method, such as the HR procedure—the time domain maximum likelihood
method—of Haslett and Raftery (1989) and the FT procedure—the spectral domain Whittle like-
lihood method—suggested by Fox and Taqqu (1986).

2. The two-stage method in which at the first stage, a non-parametric estimator of d, is obtained 
by existing methods (the GPH method of Geweke and Porter-Hudak, 1983, the Gaussian semi-
parametric method of Robinson, 1995b, etc.). At the second stage the long-memory component
is filtered out and a standard ARMA model is fitted to the filtered series and forecasts computed.

A comparative study of the two kinds of methods was used by Crato and Ray (1996), who also
compared different selection criteria such as the AIC, AICc and the SIC. For forecasting purpose,
the conclusion of these authors is that no one method systematically dominated. Moreover, there is
no theoretical results about the behaviour of the HR and FT procedures in nonstationary models. For
this reason we will only use the two-stage method. To simplify the study at the second stage the
short-memory component will be modelled by an AR instead of an ARMA. For the two methods,
the following procedures are used:

Method 1
(i) We compute the GPH estimator by using the Kolmogorov taper of order p1 > [d + 1/2] (here

p1 = 3).
(ii) We filter out the long-memory nonstationary component .
(iii) We use the AIC criterion to fit an AR(p) model to the short-memory component f(B) = ut.
(iv) We compute forecasts using Theorem 1.

Method 2
(i) We consider the differences ∆syt (here s = 1).
(ii) We compute the GPH estimator by using raw data (without tapering).

(iii) We filter out the long-memory stationary component .
(iv) We use the AIC criterion to fit an AR(p) model to the short-memory component f (B) = ut.
(v) We compute forecasts using Theorem 2.
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For each model, we generated T = 500 data points; we used 20 additional data points for out-of-
sample forecast.
Remarks: (i) To filter out the long-memory stationary or nonstationary component we may apply to

the data the fractional filter . Practically we have only a finite sample and we

must truncate the filter (1 − B)d to , where m is such that |dm(d)| < 0.0001. The resulting

model will be an AR(m) − AR(p) for Method 1 and an ARI(s,m) − AR(p) for Method 2; this mod-
elling coincides with the AR-ARMA approach proposed by Parzen (1982); however, here we esti-
mate the long-memory filter by using a non-parametric approach.

(ii) The choice of m is not unique and hence , which depends on m, will not be unique, as in
Parzen (1982). However, the whitening filters (AR(m) − AR(p) for Method 1 and ARI(s,m) − AR(p)
for Method 2) are unique. One filters out the long-memory component and the arbitrariness of the
transformed will compensated by the transformation to ut. Note that this arbitrariness of trans-
formation (yt to ) can have other sources. In addition to the choice of m, for example, one source
is the method used to estimate the parameter d. The existing methods (the GPH method, 1983, 
Robinson method, 1995b, Whittle method, etc.) do not give the same estimate for the parameter d.

The graphs of PSMSE(h), h = 1, . . . , H, for Model i, 1 ≤ i ≤ 5, are given in Figure 1. These graphs
imply that Method 1 has somewhat an advantage over Method 2 for all models excepting Model 3,
where Method 2 has somewhat an advantage over Method 1 for lead times h = 6, 7, 8, and 
h > 13.

DATA EXAMPLES

In this section we analyse two empirical series, plotted in Figure 2. To compare the performance of
the two methods we use the MSEP measure, i.e. the mean square error of prediction given by

Arizona tree data
The first example is the annual tree-ring widths in Arizona (548–1983) which can be founded in the
web page of R. Hyndman: www-personal.buseco.monash.edu.au. By considering only the first 500
observations, Velasco and Robinson (2000) found that the memory of the series is equal to =
0.556 by using Whittle estimates. Here we consider the whole sample; we use the first 1426 obser-
vations for estimation and the last 10 observations for the out-of-sample forecast.

In the first method, the order of taper is equal to p1 = 2 in the estimation of d; the forecasts are pre-
sented in Table I, row 2. In the second method we take the first differences (s = 1) and we use raw
data, i.e. the order of taper is equal to p1 = 1 to estimate d1; the forecasts are given in Table I, row 3.

We obtain = 0.5631 for the undifferentiated series and = −0.4891 (anti-persistent memory)
for the differentiated series.

The chemical process temperature readings (series C from Box and Jenkins, 1976)
We use the first 216 observations for estimation and the last 10 observations for the out-of-sample
forecast. This series was also studied by Velasco and Robinson (2000), and all the proposed esti-
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Figure 1. The graph of PSMSE(h) for Model i, i = 1, . . . , 5

Table I. Forecasts of tree-ring widths in Arizona

True data 0.812 1.129 1.128 1.243 1.174 1.134 1.376 1.455 1.638 1.436 MSEP
(Arizona)
Prediction 1 0.928 0.904 0.948 0.955 0.960 0.964 0.967 0.970 0.973 0.975 0.1297
Prediction 2 0.945 0.927 0.945 0.948 0.948 0.946 0.951 0.954 0.956 0.961 0.1386

mators of the memory of the series indicated that this memory is greater than 0.8676, and hence we
need to apply a taper of order p1 = 2. However, when we take p1 = 2, the estimate of the memory is
equal to = 2.0; i.e., the estimator converges towards p1; this indicates that the order of taper is
less than the memory of the process (see Velasco, 1999a, p. 349); in this case d will be greater than
1.5 (i.e., the process is nonstationary and non-mean-reverting). To apply Method 1, we need in fact
a taper of order p1 = 3; the forecasts by this method are presented in Table II, row 2.

In the second method we take the second differences (s = 2) and we use raw data, and the order
of taper is equal to p1 = 1; the forecasts are given in Table II, row 3. We obtain = 2.3434 for the
undifferentiated series and = −0.2567 for the double differentiated series.d̂1

d̂

d̂



Optimal Prediction with Nonstationary ARFIMA Model 107

Copyright © 2007 John Wiley & Sons, Ltd. J. Forecast. 26, 95–111 (2007)
DOI: 10.1002/for

Remark: The estimators of d and d1 are obtained by choosing the number of periodogram ordinates
used in the GPH regression g(T) = T0.74. If we choose g(T) = T0.5, as suggested by Geweke and Porter-
Hudak (1983), then we obtain = 1.6833 and = −0.1053. However, there is no optimal choice
of g(T) in the GPH regression for nonstationary time series. This is also another source of arbitrari-
ness of the transformed in our AR(m) − AR(p) methodology.

MEAN CORRECTION

When we forecast stationary time series with ARMA processes, generally we estimate the mean of
the model by the sample mean , then we fit a (zero-mean) ARMA model to the ‘mean-corrected’
data. To obtain forecasts for the original data, we then add to the forecasts obtained from the
ARMA model. Indeed, we forecast the deviation from the mean. For ARFIMA(p, d, q) model, the
‘mean correction’ is not necessary, since if we assume that E(yt) = m, then by applying equation (9)
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ỹt

d̂1d̂

T
re

e.
A

riz
on

a

0 200 400 600 800 1000 1200 1400

0.
5

1.
0

1.
5

C
he

m
ic

al
.te

m
pe

ra
tu

re
.r

ea
di

ng
s

0 50 100 150 200

20
22

24
26

Figure 2. Arizona tree-ring widths (548–1983) (top) and chemical process temperature readings (bottom)

Table II. Forecasts of the chemical process temperature readings

True data 22.2 21.8 21.3 20.8 20.2 19.7 19.3 19.1 19.0 18.8 MSEP
(chemical)
Prediction 1 22.196 21.994 21.830 21.625 21.442 21.261 21.051 20.865 20.636 20.425 1.6475
Prediction 2 22.221 22.049 21.882 21.728 21.578 21.429 21.280 21.127 20.977 20.823 2.1855
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to yt − m, we obtain . But f*(1) = 0, and hence

the equation forecast for yt is the same as for yt − m. The same arguments can also be used for 
equation (31).

We have computed forecasts without ‘mean correction’ and obtained the results shown in 
Table III.

From Tables I and III, and Figure 3, we can see that for Method 2 the forecasts are identical, but
for Method 1 the non ‘mean correction’ gives the worst forecasts.

From Tables II and IV, and Figure 4, we can see that for Method 2 the forecasts remain identical,
but for Method 1 the non-‘mean correction’ gives the best forecasts.

The memory of the annual tree-ring widths is near the boundary of stationarity ( = 0.5631) and
is mean reverting, whereas the memory of the chemical process temperature readings is greater than
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Table III. Forecasts of the tree-ring widths in Arizona without subtracting the mean

True data 0.812 1.129 1.128 1.243 1.174 1.134 1.376 1.455 1.638 1.436 MSEP
(Arizona)
Prediction 1 0.900 0.897 0.893 0.889 0.885 0.881 0.876 0.872 0.867 0.863 0.1900

(without)
Prediction 2 0.945 0.927 0.945 0.948 0.948 0.946 0.951 0.954 0.956 0.961 0.1386

(without)
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Figure 3. Forecasts of tree-ring widths in Arizona with and without subtracting the mean, by Method 1 (pre-
diction 1) and Method 2 (prediction 2)
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Table IV. Forecasts of the chemical process temperature readings without subtracting the mean

True data 22.2 21.8 21.3 20.8 20.2 19.7 19.3 19.1 19.0 18.8 MSEP
(chemical)
Prediction 1 22.174 21.928 21.701 21.416 21.140 20.849 20.515 20.187 19.800 19.418 0.6444

(without)
Prediction 2 22.221 22.049 21.882 21.728 21.578 21.429 21.280 21.127 20.977 20.823 2.2125

(without)

1 and hence is non-mean reverting. It seems that Method 1 can give superior forecasts in the case
of non-mean reverting time series than Method 2, and is more robust to a possibly structural change
in mean (see Figure 2).

CONCLUSION

It is not difficult to show that Y−1 = G−1(d1)TF−1; this equality implies that the two methods of fore-
cast (Method 1 and Method 2) presented in this paper lead to the same forecasts and the same
mean squared errors s2(h), h = 1, . . . This, of course, holds if we assume that (d, s, d1) are known,
d = s + d1. However, in practice the parameters (d, s, d1) will be estimated from the data. The exist-
ing estimators of the long-range dependent parameter are not, in general, invariant to differences;
i.e., , where is an estimator of s, which is the number of times we need to take differ-ŝˆ ˆ ˆd s dπ + 1

ŷt h+
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Figure 4. Forecasts of the chemical process temperature readings with and without subtracting the mean, by
Method 1 (prediction 1) and Method 2 (prediction 2)
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ences to obtain a stationary and invertible series. We can remark that the Geweke and Porter-Hudak
(1983) estimator is not invariant to first (second) differences; i.e., the estimator based on the orig-
inal data is not in general equal to one (two) plus the estimator based on the differentiated data.
For Arizona data we obtain . For the chemical process
temperature readings we obtain . This non-invariability
was pointed out by many authors; for instance, Agiakloglou et al. (1993) obtained = −0.26 for
the first difference of a series of US unemployment figures, whereas their estimate of d for the undif-
ferentiated series was = 0.9997. A direct consequence of this non-invariability is that the two fitted
ARMA(p, q) models given by equations (4) and (28) are not identical. Therefore the two proposed
methods will give different forecasts and also different mean squared errors. By comparing the MSEP
obtained for the two methods (by using simulated and real data), we can conclude that Method 1 is
slightly superior to Method 2. This conclusion is in accordance with that of Parzen (1982), who sug-
gested that estimating a nonstationary filter is superior to the approach of Box and Jenkins, who 
recommended taking successive differences until a stationary series was obtained.
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