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Abstract: Here we present a proof of the asymptotic normality of least squares estimates for stable
multivariate autoregressive models excited by a deterministic second order input signal.
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1 Introduction

We establish the asymptotic normality of the ordinary least squares estimator
(O.LS.E)) of the parameter 6 for the stable vectorial autoregressive model ex-
cited by a deterministic input signal (denoted by VARX ,(p, s)). There is a large
number of similar works in the purely autoregressive case, for example (Chan
(1988), Dickey & Fuller (1979), adn Touati (1990)). For ARX scalar models there
are also some very interesting results: Crowder (1980) obtains the asymptotic
normality without homoscedasticity of the model noise i.e.: E(e2/%,_,) = a?; Lai
& Wei (1982) consider a multiple regression model with a convergent sequence
o2, ie.: lim,., 62 = 6% and obtain the same results. In a more general context
(ie. the model noise follows an ARMA equation), Reinsel (1979) proves the
asymptotic normality in a VARX model.

The motivation of this paper is to give, under a slightly stronger assumption
than in Lai & Wei (1982): i) a more simple proof of asymptotic normality; and
ii) explicitly the covariance matrix of the limit distribution, which is given in the
frequency domain.

The studied model is defined by:

p s
<I,,+ZA,-zi>Y,,=<ZB,-z‘>U,,+£,,, neA* (1)
i=1 i=1

z is the backward shift operator (ie: zX, = X,_,), U, € &, Y, and ¢, (vectors of
#%) are respectively the input signal, the observable output and the unobservable
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random noise at stage n; the matrices (A;), . ;<, and (B;), < <, are (d, d) an (d, r)
respectively.
The associated regression model is:

Y, =00, , +5¢,, ()
where

0=(—Ay,...,—A,B;,...,B);
and

®By= (Y, oos Yty Ups ooy Uy

We recall that the O.L.S.E. estimator of 6, denoted by 6, is a solution of the
following equation:

P.0, = kZ1 D1 Y, A)

where 0, is the transpose of 6,, P, = Y 7oy &, _, ;.
Taking (2) and (3) into account, the estimation error satisfies:

Pn(gn - 9)/ = kzl ¢k—18;( (4)
The regression vector (®,) can be computed recursively by:
b, = M¢n—1 +e,

. ’ ! U —_ AC B
with e, = (€,,0,...,0,U,,0,...,0) , ,q{._<0 K)’

where A_ is the companion matrix of A(z) = I, + Y % Az,

o .. - 0

]:)1 B2 l:)s ) ]r 0o ... . 0

B- |, k=|o0 [ 0 ..0
0] o 0 o1 O
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2 Model Assumptions

(H,): The model (1) is stable, i.e: the roots of det(A4(z)) are strictly out-side the
unit disk of C.
(H,): The noise (g,) is a martingale difference sequence with respect to an in-
creasing sequence of o-fields F = (#,), (i.e: ¢, is #,-measurable and E(e,/%,_,) =
0 a.s., for every n) such that:

a. There exists o > 2, such that:

sup E(lle,[|*/#,-1) <0, as.,

b. For all n, E(¢,¢,/%,_,) =T, as.
(H;): The input signal (U,) is deterministic and has an empirical second moment
(called here covariance), i.e:

n

1
lim- Y UU.=I(0), leZ.

n—-o N k=0

Remarks and Discussions:

1) With regards to the noise: The assumptions upon (¢,) can be replaced by: (¢,)
is a sequence of independent and identically distributed (i.i.d.) random variables
with covariance matrix /.

i) The assumption (H;) is satisfied by the two following signals:

a)

k
unz{o n#2 ke, neN*

\/R n=2%,

which is unbounded and has an empirical mean.
b) u, = (=1, ne[2% 2" [,k e A4, ne #* which is bounded and doesn’t have
an empirical mean.

iii) The model (5) is not an autoregressive model; indeed (e,) is not a martingale
difference sequence and then the results obtained in Boutahar (1991) for random
input signal cannot be applied.
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3 Asymptotic Normality of the O.L.S.E.

The main result of this section is given by the following theorem:

Theorem: Under the assumptions (H;), i = 1, 2, 3, the O.L.S.E. 0, satisfies:

R ES S ©

N
T ~ N(O, I, ® P) a gaussian matrix with zero mean and covariance I, ® P, where

P= | Lie®)dé, (@)Ll

-n

and L(z) = (Ijp4ps — Azt £,(.) is the spectral measure of (e,) ,

(® denotes the tensor product).

Proof: By (4):

1
NG
where T, = ) ko @y ;¢

(T,) is a F-martingale with conditional variance:

LR, —or=-T, )
n

(T2 Y EUTAT)%)

where AT, = T, — T, _; = @, _,&; since D, is #-measurable and E(e. &/ % -1) =
I',, we deduce that

<7:.> = re@kzx ¢k—1¢l,(—l

=I,®P,.
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By (5) and the stability assumption on the model we get &, = L(z)e,. Applying
the strong law of large number for martingales, we obtain

11m . Z ecen . = diag(6) T,
n—o k=

0, 1),0,...,0) as.
(64 is the Kronecker symbol); consequently the spectral measure of (e,) exists (cf.
Rauzy (1976)).
Hence
Z (2)e,e L(z) - P ®)
0
and then
ATy ST, ®P

)
It remains to show that (T, F) satisfies the conditional Lindeberg condition

A

:1»—‘

n , P
Z (1P &l * ya_yep 158 o)/ Fa-1) = O,

Yo >0 ;
Now, for all random vector X and all o-field %, we have:
Vo' >0, V>0 E(|X|*1x55)/F) < 5 E(IX)***/#) ,
consequently

n
n kz_:[ E(”(p"‘lg;"lzl{llﬂ 181> /g';( 1)

1 2
1 E<<__;; [Pl |8k|> 1{“/\/';”‘4’1«1|£u|>6}/9’1_1>
1 C a +2
<7 L ((ﬁllrbk 1|1|‘c,,(|> /grk_l>’

=
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if we choose o = a — 2, where a is given by assumptions (H,). a, then

1 L .
vV, < KWT“:)/—ZEI: By 172,

1 a’l n
SK{-—\/—; max ”(Dk—l“} "121: D12,

1<k<n

By (8) we have

1 n a.s
n Z H‘Pk—lllz - trace(P) ,
1

therefore

L max ||P,_,|l =o(l), as.

\/; 1<k<n

Since o' > 0, we conclude that

V.50 ;

this and (9) imply

1
. T.3T,

n

where T ~ N(0, I, ® P); and this completes the proof [J.
Using the covariance function of the input signal (U,), let:

() rqy ... .. I'dp+s—1)
I(1) ' :
: L r
rdp+s—1 ... .. IQ ()

Corollary: If, in addition to the assumptions (H;), i = 1, 2, 3, we assume also that
the matrices A ,, I', and R are regular, then:
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Jno,— 0y SpiT, (10)

This result is a direct consequence of the previous theorem and (8) when P is
positive definite. To establish the positive definiteness of P, it sufficient to show
that:

1
hrg,lmi,,(;iP,,)>0 as. | (11)

(Amin denotes here the smallest eigenvalue). To show (11), we use a classical result
upon the transfer of excitation {Lai & Wei (1986), theorem 2} which implies that
there exists p > 0 such that

lmin <! Pn) = plmin ('1 xn) s
n n

where X, =Y, x,x; and x, = (Up_y, ..., Up_4p—s, €n—1s .-, Engp) ; MOTEOVET
1 a.s. .
-X, > X =diagR, I,,..., I}) , as. ;
n

and the matrix X is obviously positive definite; then the desired conclusion
holds. [J

Example: Consider the scalar model:
Vo=ay,_y +bu, , +¢,, lal <1 . (12)

The noise (g,) is a martingale difference sequence such that E(¢?/%,_,) = 62 >
0; the input signal (u,) is deterministic given by

u, = sin(nw; + @) , w, €]0,n[ , @ arbitrary . (13)

It is easy to show that (u,) has a persistent excitaton of degree 2, and an
intensity equivalent to n, (cf. Viano (1987)). It satisfies:
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a) |u,l < 1.
b)

QL 1
rn 4 n 2; w4 1) = 5005(1601) .

If we denote by 6, (.) the Dirac distribution at w,, we can easily show that
the spectral measure of e, = (¢,, u,)’ is given by:

0.2

) 0
2n @
d (w) = s
1
0 —2-5w1(w)dw
1 bz
Now L(z) = | A(z) A(z)|,A(z)=1—az.
0 1
Then
1 a? b? be'
] A_——(e‘w)A(e“r‘Ji z—nd(v + m;ww)A(e_iw)éwl(w)dw 52Wjéml(a))dw
P = j B
" be'® 1 '
Z—ATeE) 0y, (w)dw —z-éwl(w)dw
and after computation of the integrals we obtain:
o2 . b2/2 b(cos(w,) — a)/2
1—a? " (1 —acos(w,;))? + a’sin(w,)> (1 —acos(w,))? + a* sin(w,)?
P= s
b(cos(w,) — a)/2 1
(1 — a cos(w,))* + a? sin(w,)? 2

which is positive definite.
Hence the asymptotic normality of the O.L.S.E. of § = (a, b) is obtained, the
limiting distribution is a gaussian vector with zero mean and covariance ¢2P!.

Remark: The assumptions about the regularity of the matrix R is realistic.
Indeed, it is tied to the richness of the input signal; and is equivalent to a
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persistent excitation of degree dp + s and an intensity of excitation equal to n
(see Bay & Sastry (1987), Moore (1983), for more details).
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