i i J
Least Squares Estimator for Regression Models I. DU )
with some Deterministic Time Varyi... )

Boutahar, Mohamed; Deniau, Claude .
NIEDERSACHSISCHE STAATS- UND
pp 57 _ 68 UNIVERSITATSBIBLIOTHEK GOTTINGEN

Terms and Conditions

The Gottingen State and University Library provides access to digitized documents strictly for noncommercial
educational, research and private purposes and makes no warranty with regard to their use for other purposes.
Some of our collections are protected by copyright. Publication and/or broadcast in any form (including
electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's
online system to access or download a digitized document you accept there Terms and Conditions.
Reproductions of material on the web site may not be made for or donated to other repositories, nor may be
further reproduced without written permission from the Goettingen State- and University Library

For reproduction requests and permissions, please contact us. If citing materias, please give
proper attribution of the source.

Contact:

Niedersichsische Staats- und Universitétshibliothek
Digitalisierungszentrum

37070 Goettingen

Germany

Email: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF
for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation
in the document. For availability and pricing, please contact:

Niedersaechisische Staats- und Universitaetsbibliothek Goettingen - Digitalisierungszentrum

37070 Goettingen, Germany, Email: gdz@www.sub.uni-goettingen.de



.
Metrika (1996) 43:57-67 M() t l.l k zl

Least Squares Estimator for Regression Models with
some Deterministic Time Varying Parameters
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Abstract: Here we study the least squares estimates in some regression models. We assume that the
evolution of the parameter is linearly explosive (i.e. polynomial), or stable (i.e. sinusoidal). We prove
the strong consistency, and establish the rate of convergence.
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1 Introduction

Models with time varying parameters are usually taken to be stochastic and used
in applied works of adaptive control for example. Is the relevance of a regression
model with deterministically changing parameters doubtful? Suppose we use a
simple regression model y, = bu,_, + ¢, instead of a true model with a trend
evolution y, = (b + 0.001n)u,_, + &,in an applied problem of control. For small
values of n, error in model is not serious; but what happens if the evolution is
assumed to continue indefinitely? It seems important to detect and identify
quickly the trend coefficient. At least for this reason this type of model seems to
be of practical importance.

To the best of the author’s knowledge, there are few works about almost sure
convergence of the least squares estimator (L.S.E.) of deterministic time varying
parameters in stochastic regression models (see Chow (1983), Sant (1977)).
Here we study the case in which the evolution of the parameter is given by
0, = Bo@Pno + B1@n1 +  + B@,,, Where (¢, )o<i<, is a given deterministic
functional basis time varying and f; are the parameters to be estimated. We
consider two kind of evolutions, an explosive (polynomial) evolution, 6, = f, +
Bin + -+ + B.n", a stable (sinusoidal) evolution, 6, = 4 sin(nw + ¢).

Note that the model considered here can be regarded as a regression model
with constant parameters and trending regressor, and the problem becomes a
classical one of estimation of constant parameters (cf. Lai and Wei (1982),
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Davidov et al. (1992), Tsypkin and Bondarenko (1992)). The strong consistency
of the L.S.E. can be deduced from many nice papers in the literature (Lai and
Wei (1982), Duflo (1990), Chen and Guo (1991)). The purpose of the paper is to
examine some particular cases of the functional basis (¢, ;)o<i<, and to give a
more precise rate of convergence which can not be obtained directly from the
results in the previous papers. For the polynomial case we obtain a rate related
to the degree of the trend, | B, (n) — B,)? = O(log(n)/n***'); and for the sinusoidal
evolution we obtain the rate log(n)/n.

2  General Assumptions

Consider the scalar regression model with time varying parameters:
Yn = bl(n)un—l + &n > (1)

where y, is an observed output, u, is an observed input, and ¢, is an unobserved
random perturbation at stage n. We assume that the parameter

bi(n) = BoPno + Bi@u1 + "+ B, »

in which ¢, ; are elementary functions of n.

Noise (&,):

H.1: (g,) is a martingale difference sequence with respect to F = (£,), (i.e. ¢, is
Z,-measurable and E(g,/%,_,) = 0 for all n) such that:

a.

sup E(|&,|*/%,-1) < © for some a > 2 ,

b. for all n, E(¢2/%,_,) = 62 > 0.
H'.I: (g,) is a sequence of i.i.d. random variables with variance 42 > 0.

Input signal (u,):
H.2: For all n, u,_, is %#,_,-measurable.
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3 Main Result

We can write the model (1) into the following form:
Yn = 6,¢n—1 + €n (2)

Where ¢n—l = ((pn,O’ (pn.l’ LR ] (pn,r),un—-l and 0 = (ﬂO! RS ﬁr)"
The least squares estimator 6, of 0 is the solution of the fundamental equa-
tion:

=

A

Pn n = ‘ ¢k—1yk (3)

k

where P, = ) 124 &, ;.

Proposition 3.1: Under the assumptions H.1. and H.2., if we assume also that there
is a sequence of invertible matrices (4,) with limit 0 as n tends to infinity such that

4,P,4,—=5>P ,  whereP is a positive definite matrix . @)

Then the estimation errors 0, = 9,, — 0 satisfy:

(4,1 0,12 = 0(10g(Amax(4,1(451))))  ass. )
and hence
16,12 = 0108 (Amax (47 (A7) ) Amin( 471 (471)))  as. (6)

where A;.(*) and A, () are the smallest and the largest eigenvalue.

Remark 3.2: If we replace H.1. by H'.l., then the rate of convergence is

slightly modified i.e: the O(10g(Amad,(4;1))) in (5) can be replaced by
1

0(f(108(Amax(451(4;1)))) for all f such that {——dt < oo (cf. Duflo 1990, th.

f@®
211.8).
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Proof: Because of (4) 1,,;,(4,P,4,) is bounded away from zero and 4,,,(4,P,4,)
is bounded from above. Therefore, with some positive constants c;, the following
chain of inequalities holds a.s.

(41 Ol < Amin(4,Pudy) (4, 6,112
< 0,4, 4,P,4,4,"Y8, =GP0,
< ¢, log(4,,..(P,)) according to Lai and Wei 1982 (2.4)
< €3 108[ Anax(4nPyd}) Aman(4, 1 (471))]

< C3 + Cs log[}'max(dn_l(An—l)’)]

As A, (4,1(4;1)) = oo, the result (5) follows. [

4 Particular Cases
4.1 Polynomial Evolution

If we assume thatA(p,,_,‘ = n* then by(n) = B, + Pin+ -+ B,n". Denote 9" =
%ﬁo(n), cee [?,(n))’, (Bi(n) is the least squares estimator of B, 0 <k <r); f(n) =
k(1) — B

Corollary 4.1: Under the assumptions H.1. and H.2., if we assume also that the
regressor vector satisfies the following law of large numbers

l n a.s.
- Y u—"562>0, (7

ni=1
then we have
147"y 81> = O(log(n)) ass. , @®)

where
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4, = diag(n™2, n=¥2,  n~@rth2y

consequently for the coefficient f, 0 < k < r, we obtain the following rate:

~ log(n)

Bml? = 0<ng—) as ©)
To prove the corollary 4.1, we first establish the following

Lemma 4.2: Suppose that (®,) satisfies:

, a.s.

1 n
— Y BB T, ;
n k=1

where I'y is a deterministic matrix, then for all i € N:

1 I : a.s. r¢
g ko, b — —— ;
nl+l k;] k" k i+ 1 ’

Proof: Let Ry =0, R, = Y r_; &P}, then &, &, = R, — R, _;.

LS igd =5 (XY R — R+ 'R, — 'R
ni+1 k; k k_;k; ; k k-1 ; n n n—1 »

)R-
n k n
1t (kY i (1
-3 <B> Rk<—; - 0<E>> + Ty +o(1)

since

k+ 1Y i 1 1
(T) =1+E+0<7€> and ﬁRn_F¢+O(1) 5

then
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k\'R, R
;> "+7k0(1)+1"¢+o(1)

_ iy [(S) + 0(1)J(r¢ +o(1)) + Iy + o(1)

Proof of corollary 4.1: We need to prove (4).
The (i, j) element of 4,P, 4, is given by:

n

. 1 i+jm .
p,,(t,])=n,.—+j_7kzlk+’ uz 1<ij<r+1

hence by (7) and lemma 4.2

2

p.(i,j) — l—-é—j——Y s

P is an Hilbert matrix, therefore it is positive definite (cf. Choi (1983)). (]

Remark 4.3: We can define a least squares estimator for b,(n) by:
bun) = 3, B’ ,
=

and we find the waited result:

o0 — . = 0 E) as 1)

Possible Extension: The result of corollary 4.1 can be extended to a more general
regression model:

Yn= 6::¢n—1 + &n 5
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where

6,=Y Pn’ with g, e R* | 0<j<r;
=0

To obtain the result of corollary 4.1 we need the assumption H.1. and &, _, is
%,-,-measurable satisfying a strong law of large numbers:

1 & a.s.
=Y BB, 25T, >0,
N k=1

then

r

b= 3. B!

j=0

is a strongly consistent estimator of 6, in the sense that

16, — 6,1% = o("lg_(_’_,’))
n

4.2 Sinusoidal Evolution

Here b,(n) = A sin(nw + ¢), ® € ]—n, a[ — {0} is given, 4 and ¢ two unknown
parameters. We can write by(n) = o, o + B¢, 1, Where f, = A cos(¢), f; =
A sin(@), ¢, o = sin(nw), @, ; = cos(nw).

We obtain the following

Corollary 4.4: Under assumptions H.1. and H.2., if we assume also that (u,)
satisfies:

a.

sup E(|u,|?/#,_,) <00  for somef >2 ,
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b. foralln, Eu2/%,_,) = 62 > 0.

Then the estimation errors satisfy

18,12 = 0 (l"i(")> as. (11)

Proof:

P,

n

i sin? kw sin ko cos ko ,
= . uz_
T \sin ko cos ko cos? kw k=1

Let w, = u? — o2, (w,) is a martingale difference sequence such that

sup E(w,/°/#,-)) <0, ford=p2>1,
then by theorem 3.3.3 of Stout (1974) we get that

1 3 a.s.

- Z Wk—-——->0 N

n k=1

consequently

1 a.s 2
P, ;»%"12 >0 (12)

1
L.

7

hence (4) is proved with 4, =

Remarks and Discussion:

1) Like in paragraph 4.1, we can define the least squares estimator of b, (n):
El(n) = (sin nw, cos nw)é,, ,

and we obtain

1b,(n) — by(n)|? = o(l"g(")) as. (13)

n
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2) The last corollary can easily be extended to the case
by(n) = Y A;sin(nw; + @) ;
i=0

where o; # w;, w; € 1—n, n[ — {0}, (4;, ¢;), 0 < i < r, are unknown parame-
ters.

3) The rate log(n)/n is obtained for every functional basis (¢, ;)o<i<, and input
signal (u,) which satisfy

1 n

2 a.s.
- Z Ok, iPx, jUc-1 — Py .
n k=1

where P is a positive definite matrix. This result is similar to those obtained
in the frame of classical stable models with constant parameters (see for
example Chen (1991), Dulfo (1990)) even for ARMA or ARMAX models.

5 Simulation Results
5.1 Polynomial Evolution

We simulate the following model:

Yo = (0.5 + 0.002n%)u,_, + ¢, ,

T A A
LAY s

0
i H"i ) 9 & 17 146 175

i :

4 ‘"T' ............................................................................................................................................
i

b ,..,'_,.,_ -
H

8 4eenete et n e heaeasnaee s e tasa e s et et a bttt et semes et e e e ee

Fig. 1. B, and fy(n), n = 0 to 200
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Fig. 4. b;(n) and b,(n), n = 0 to 200
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in which (¢,) and (u,) are independent gaussian white noises N(0, 1) (hence H'.1.
and H.2. are fulfilled).

_ Fig. 1 and Fig. 2 allow us to compare the respective rates of convergence of
Po(n) and [?z(n). Figure 3 shows the estimates of b, (n).

5.2 Sinusoidal Evolution

This simulated model is:

—lsin 2nn+n U,y +
yn_i 50 T 12/t €n >

with the same assumptions as in 5.1.
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