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Abstract. We give the limiting distribution of the least-squares estimator in the general autore-

gressive model driven by a long-memory process. We prove that with an appropriate normalization

the estimation error converges, in distribution, to a random vector which contains: (1) a stochastic

component, due to the presence of the unstable roots, which are multiple Wiener–Itô integrals and

a non-linear functionals of stochastic integrals with respect to a Brownian motion; (2) a constant

component due to the stable roots; (3) a stochastic component, due to the presence of the explosive

roots, which is a mixture of normal distributions.
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1. Introduction

Consider the univariate autoregressive model

yt = a1yt−1 + · · · + apyt−p + εt , (1)

where yt is the t th observation on the dependent variable, yt = 0 if t 6 0, and εt is

a disturbance assumed to be a stationary Gaussian process with regularly varying

spectral density f (λ) of the form

f (λ) = |λ|1−2H L(|λ|−1), 1
2

< H < 1, (2)

where L is a slowly varying function (i.e. L(na)/L(n) → 1 as n → ∞ for any

a > 0), bounded in all finite intervals and f is integrable on [−π, π ]. It is well

known that εt can be written as the Fourier transform of Gaussian random measure,

that is,

εt =

∫ π

−π

eitλf 1/2(λ)W(dλ), (3)

where W(.) is the Gaussian random measure corresponding to a white noise. β =

(a1, . . . , ap)′ is the unknown parameter which is estimated by the least-squares

estimator (L.S.E.):
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βn =

(

n
∑

k=1

8k−18
′
k−1

)−1 n
∑

k=1

8k−1yk, (4)

where 8t−1 = (yt−1, . . . , yt−p)′. Recall that the least-squares estimation error

satisfies

βn − β =

(

n
∑

k=1

8k−18
′
k−1

)−1 n
∑

k=1

8k−1εk. (5)

Models having a long-memory disturbance received considerable attention by

researchers from various disciplines. The monograph by Beran [1] provides an

updated survey of recent developments of long-memory processes in statistics (see

also [15, 20]). Yajima [21, 22] considers the L.S.E. in the regression model with

deterministic design, he proves the strong consistency of the L.S.E. and its limiting

normal distribution. If model (1) is stationary, which is the case when the charac-

teritic polynomial ϕ(z) = 1 − a1z − · · · − apzp is stable (i.e. ϕ(z) = 0 =⇒ |z| >

1), then β can also be estimated by other methods. Dahlhaus [6] considers the

maximum likelihood estimator and proves its strong consistency and asymptotic

normality by assuming that model (1) is Gaussian. Under the latter assumption,

Giraitus and Taqqu [9] obtained the same results as Dahlhaus [6] for the Whittle

estimator. If model (1) is non-stationary, which is the case if ϕ(z) is unstable (i.e.

ϕ(z) = 0 =⇒ |z| > 1), then the above results no longer hold.

The almost sure properties of βn were studied by Lai and Wei [11] when (εt ) is a

martingale difference sequence. They showed that βn is strongly consistent without

imposing any assumption on the roots of the polynomial ϕ(z) (i.e. a general model).

The limiting distribution of βn for the unstable model (i.e. ϕ(z) = 0 =⇒ |z| > 1)

is given in [4]. Chan and Terrin [5] established the limiting distribution of βn

when the polynomial ϕ(z) is unstable and the disturbance is a long-memory pro-

cess. The fractional integrated autoregressive moving average (ARFIMA), popular

in econometrics, indicates the usefulness of these theoretical developments (see

[7, 16]).

We can write model (1) in a multivariate form

8n = A8n−1 + en, (6)

where A is the companion matrix of the polynomial ϕ(z), en = (εn, 0, . . . , 0)′.

Model (6) was studied by many authors. Duflo et al. [8] considered model (6)

with arbitrary matrix A. They proved the consistency of the L.S.E. by assuming

that the sequence (en) is a white noise. The limiting distribution of the L.S.E. was

given by Touati [17] for the stable-explosive (i.e when some eigenvalues are within

the unit circle and others are ouside) model, and by Touati [18] for the general

model when (en) is an i.i.d. sequence.

Tsay and Tiao [19] considered a multivariate ARMA model with (en) a mar-

tingale difference sequence. They assumed that the characteristic polynomial of
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the model has roots on or outside the unit circle and proved the consistency of the

L.S.E.

To study the cointegration of time series, Jeganathan [10] considered model

(6) with a more general matrix A and (en) a fractionally integrated process. He

gave a procedure to identify the approximate unit eigenvalues of matrix A based

on a Wald-type approach. However the null and the contiguous alternatives that he

considered are asymptotically equivalent. Moreover under the null, the eigenvalues

of matrix A are bounded in absolute value by unity. When a contiguous alternat-

ive is accepted, then eigenvalues of A estimated close to unity in absolute values

are adjusted to unity. Consequently, the final model that he retained is such that

the eigenvalues of A are either on (and represent the non-stationary trend) or in-

side (and represent the cointegrating relationship) the unit circle. In model (6)

above, we do not impose Jeganathan’s condition on matrix A which can have

eigenvalues greater than unity in absolute value. Moreover eigenvalues outside

the unit circle are not necessary close to unity and will be called explosive eigen-

values.

The purpose of this paper is to extend the work of [4, 5] by letting the charac-

teristic polynomial to be arbitrary. In other words, we do not make any assumption

on the roots of ϕ(z) (and consequently any assumption on the eigenvalues of its

companion matrix A).

The paper is organized as follows. Section 2 studies the explosive model (i.e.

ϕ(z) = 0 =⇒ |z| < 1), and gives the paper’s main contribution namely: the

consistency of βn and its non-Gaussian limiting distribution. Section 3 considers

the general model and gives the limiting distribution of βn.

2. Explosive Model

In this section we assume that the polynomial ϕ(z) is explosive (i.e. ϕ(z) = 0 =⇒

|z| < 1). Denote by
Lp

−→ and
L

−→ the convergence in Lp(�) and in law re-

spectively, ||.|| stands for the Euclidian norm, for a given matrix A we define

||A|| = sup||x||=1 ||Ax|| ; and for a given random matrix or vector X, we denote

its norm in Lp(�) by ||X||p = (E(||X||p))1/p.

X ; Np(m,6) means that X is a p-dimensional Gaussian random vector with

mean m and covariance 6.

THEOREM 2.1.

A−n8n

L2
−→ L =

∫ π

−π

(e−iλA − Ip)−1f 1/2(λ)W(dλ)e1. (7)

The random variable x′L has a continuous distribution for all x ∈ R
p − {0}.

A−n

n
∑

k=1

8k−18
′
k−1A−n′ L1

−→ 6662 =

∞
∑

k=1

A−kLL′A−k′

. (8)
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Moreover

P(6662 > 0) = 1. (9)

Proof. From (1) and (3),

A−n8n =

n
∑

k=1

A−kεke1 =

∫ π

−π

n
∑

k=1

A−keikλf 1/2(λ)W(dλ)e1.

Clearly

n
∑

k=1

A−keikλ → (e−iλA − Ip)−1

pointwise, and

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

A−keikλ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= O(1),

hence
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

A−keikλ − (e−iλA − Ip)−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2([−π,π],f (λ) dλ)

−→ 0,

consequently the convergence (7) follows by the L2-continuity of the stochastic

integrals.

For all x ∈ R
p − {0}, x′L is a Gaussian random variable with zero mean and

variance
∫ π

−π

∣

∣x′(eiλA − Ip)−1e1

∣

∣

2
f (λ) dλ, then it has a continuous distribution

provided that it is non-degenerate, if we assume that var(x′L) = 0 then

x′(Ipei• − A)−1e1 = 0, almost everywhere on [0, π ]. (10)

Then there exist (λj , 1 6 j 6 p), a p distinct reals in [0, π ], such that

x′(Ipeiλj − A)−1e1 = 0, 1 6 j 6p; (11)

now let

Zj = [ϕ∗(eiλj )]−1(ei(p−1)λj , ei(p−2)λj , . . . , eiλj , 1)′,

where ϕ∗(z) = zpϕ(z−1). Since the roots of ϕ∗(z) are strictly outside the unit

circle, it follows that ϕ∗(eiλj ) 6= 0 and hence the Zj are well-defined; moreover

det(Z1, . . . , Zp) 6= 0 since (Z1, . . . , Zp) is the Vandermonde matrix. It is easy to

see that

(Ipeiλk − A)Zk = e1 or Zk = (Ipeiλk − A)−1e1,
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hence (11) implies that

x′Zk = 0, ∀1 6 k 6 p,

and this implies that x is orthogonal to the whole space Cp and must be equal to

zero.

To prove (8) we will adapt the proof of [11, Theorem 2] and use the following

result:
∣

∣

∣

∣A−n
∣

∣

∣

∣ = O(ρnnν−1), (12)

where

ρ = max
1 6 j 6 p

∣

∣λj

∣

∣ , ν = max{mj ,
∣

∣λj

∣

∣ = ρ}, (λj , 1 6 j 6 p)

are the eigenvalues of the matrix A−1, and mj is the multiplicity of the eigen-

value λj .

Let Ln = A−n8n, Fn =
∑n

i=1 A−iLnL
′
nA−i′,1n = A−n

∑n
k=1 8k−18

′
k−1A−n′

−

Fn. Then

||1n||1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

A−iLn−iL
′
n−iA

−i′ − Fn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

6

n
∑

i=1

∣

∣

∣

∣A−i
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣A
−i′
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣Ln−iL
′
n−i − LnL

′
n

∣

∣

∣

∣

1

6

n
∑

i=1

∣

∣

∣

∣A−i
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣A
−i′
∣

∣

∣

∣

∣

∣ (||Ln−i ||2 + ||Ln||2) ||Ln − Ln−i ||2

→ 0,

since ||Ln||2 < ∞, ||Ln − Ln−i||2 → 0 and by using (12).

||Fn − 6662||1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

A−i(LnL
′
n − LL′)A−i′ +

∞
∑

i=n+1

A−iLL′A−i′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

6
∣

∣

∣

∣LnL
′
n − LL′

∣

∣

∣

∣

1

n
∑

i=1

∣

∣

∣

∣A−i
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
A−i′

∣

∣

∣

∣

∣

∣

+
∣

∣

∣

∣LL′
∣

∣

∣

∣

1

∞
∑

i=n+1

∣

∣

∣

∣A−i
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣A
−i′
∣

∣

∣

∣

∣

∣

→ 0, (13)

by using (12) and the convergence
∣

∣

∣

∣LnL
′
n − LL′

∣

∣

∣

∣

1
6 (||Ln||2 + ||L||2) ||Ln − L||2 → 0.

The proof of (9) is exactly the same as in [11, Theorem 2]. 2
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The following theorem gives the limiting distribution of the L.S.E. βn and proves

its consistency.

THEOREM 2.2.

(An)′(βn − β)
L

−→ 666−1
2 N2, (14)

where N2 = A1Z2, A1 =
∫ π

−π
(Ip − e−iλA)−1f (λ)1/2W(dλ), Z2 ; Np(0, 6̃2),

6̃2 =
∫ π

−π
(Ipe−iλ − A)−1e1e

′
1(Ipeiλ − A′)−1f (λ) dλ, e1 = (1, 0, . . . , 0)′ , and Z2

and A1 are independent.

The L.S.E. βn is consistent with the speed of convergence

||βn − β||2 = op(d(n)ρ2nn2(ν−1)), (15)

where ρ and ν are given by (12), and for every sequence d(n) ↑ ∞.

Remark. If p = 1, then N2 = σ 2
1 X1X2, where X1 ; N(0, 1),X2 ; N(0, 1),

X1 and X2 are independent, and σ 2
1 =

∫ π

−π

∣

∣1 − aeiλ
∣

∣

−2
f (λ) dλ, hence the charac-

teristic function of N2 is given by

ϕN2(t) = E
(

e−σ 4
1 X2

2 t2/2
)

,

the distribution of N2 is called a mixture of normal distributions (see, [14]).

We will use the theorem of Riemann–Lebesgue (see [23, Theorem (4.4)]), which

states that the Fourier coefficient cn of every integrable function is such that cn → 0

as |n| → ∞; and the following two lemmas. Hereafter, let R(z) = (zIp − A)−1.

LEMMA 2.3. ∀g1 and g2 ∈ L2([−π, π ], dλ); such that g1, g2 are Hermitians, we

have

2

∫ ′′

g1(λ1)g2(λ2)W(dλ1)W(dλ2)

= 2α

∫ ′′

g2(λ1)g2(λ2)W(dλ1)W(dλ2) +

+

∫ π

−π

g1(λ)W(dλ)

∫ π

−π

g2(λ)W(dλ) − α

(∫ π

−π

g2(λ)W(dλ)

)2

,

where α = 〈g2, g1〉L2([−π,π], dλ)/ ||g2||
2
L2([−π,π], dλ)

, and
∫ ′′

is the multiple Wiener–

Itô integral defined in [13, § 4] denoted by IG(f ).

The proof of this lemma follows immediately by application of the Itô formula

(see [13, Theorem 4.2]) to the orthogonal system (g2, g1 − αg2).

LEMMA 2.4. Let vec (A1) stands for the column vector obtained by stacking the

columns of the matrix A1,

Zn =

(

(vec(A1))
′,

(∫ π

−π

R(e−iλ)einλf (λ)1/2W(dλ)e1

)

′

)

′.



GENERAL AUTOREGRESSIVE MODELS 327

Then

Zn
L

−→ Z =
(

(vec(A1))
′, Z′

2

)′
.

Proof. It is sufficient to prove that for all u ∈ R
p2+p,

u′Zn
L

−→ u′Z.

Let u = (u′
1, u

′
2)

′, u1 = vec(u1(j, k), j = 1, . . . , p, k = 1, . . . , p), u2 = (u2(j),

j = 1, . . . , p)′; now observe that

u′Zn =

∫ π

−π

H(λ)W(dλ),

where

H(λ) =





∑

j,k

u1(j, k)Rj,k(e
iλ)e−iλ +

∑

j

u2(j)Rj,1(e
−iλ)einλ



 f 1/2(λ),

and Rj,k(z) is the (j, k)th term of the matrix R(z), it follows that u′Zn is a Gaussian

random variable with zero mean. We will prove that

φu′Zn
(t)−→φu′Z(t),

where φu′Zn
(t) and φu′Z(t) are the characteristic functions of u′Zn and u′Z.

φu′Zn
(t) = e−var(u′Zn)t2/2,

where var(u′Zn) = u′ var(Zn)u = u′ŴŴŴnu,

ŴŴŴn =

(

ŴŴŴ1 ŴŴŴ1,2(n)

ŴŴŴ′
1,2(n) 6̃2

)

.

ŴŴŴ1 = var(vec(A1)),ŴŴŴ1,2(n)

= cov

(

vec(A1),

∫ π

−π

R(e−iλ)e1e
inλf (λ)1/2W(dλ)

)

,

hence

φu′Zn
(t) = e−(u′

1ŴŴŴ1u1+u′
26̃2u2+u′

1ŴŴŴ1,2(n)u2+u′
2ŴŴŴ

′
1,2(n)u1)(t

2/2).

∀(j, k, l)

E

((∫ π

−π

Rj,k(e
iλ)e−iλf 1/2(λ)W(dλ)

)

×

×

(∫ π

−π

Rl,1(e
−iλ)einλf 1/2(λ)W(dλ)

))

=

∫ π

−π

Rj,k(e
iλ)e−iλRl,1(e

iλ)e−inλf (λ) dλ

−→ 0,



328 MOHAMED BOUTAHAR

by Riemann–Lebesgue’s theorem since Rj,k(e
−iλ)e−iλRl,1(e

−iλ)f (λ) is integrable

on [−π, π ], therefore

φu′Zn
(t) −→ e−(u′

1ŴŴŴ1u1+u′
26̃2u2)(t2/2) = φu′Z(t).

2

Proof of Theorem 2.2. We shall prove that

A−n

n
∑

1

8k−1εk

L
−→ N2. (16)

A−n

n
∑

1

8k−1εk = A−n

n
∑

t=1

t−1
∑

k=1

At−k−1εtεke1

= A−n

n
∑

t=1

t−1
∑

k=1

At−k−1

[

2

∫ ′′

[−π,π]2

eikλ1eitλ2 ×

×f 1/2(λ1)f
1/2(λ2)W(dλ1)W(dλ2) +

+

∫ π

−π

ei(t−k)λf (λ) dλ

]

e1, by the Itô formula

= T1 + T2. (17)

Consider first the second term in the right-hand side of (17); after some computa-

tions we obtain

T2 =

∫ π

−π

A−n

n
∑

t=1

t−1
∑

k=1

At−k−1ei(t−k)λf (λ) dλe1

=

∫ π

−π

(A − e−iλIp)−1(Ip − eiλA)−1A−nf (λ) dλe1 +

+

∫ π

−π

(e−iλIp − A)−1(Ip − eiλA)−1einλf (λ) dλe1 +

+

∫ π

−π

n(Ipe−iλ − A)−1A−nf (λ) dλe1

= I1 + I2 + I3. (18)

By using (12), it follows that

I1 = o(n−δ) and I3 = o(n−δ), ∀δ > 0. (19)

Let g(λ) = (Ipe−iλ −A)−1(Ip −eiλA)−1e1f (λ), since ||g(λ)|| 6 Cf (λ), for some

positive constant C and for all λ ∈ [−π, π ], it follows that all the components

of g(λ) are integrable on [−π, π ], consequently the Riemann–Lebesgue’s theorem
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implies that

I2 =

∫ π

−π

(Ipe−iλ − A)−1(Ip − eiλA)−1einλf (λ) dλe1

= o(1). (20)

From (18) to (20) we deduce that

T2 = o(1). (21)

The first term in (17) is equal to

T1 = 2

∫ ′′

[−π,π]2

A−n

n
∑

t=1

At−1eitλ2

t−1
∑

k=1

A−keikλ1 ×

×f 1/2(λ1)f
1/2(λ2)W(dλ1)W(dλ2)e1, (22)

after some computations we obtain

A−n

n
∑

t=1

At−1eitλ2

t−1
∑

k=1

A−keikλ1

= (Ip − eiλ1A−1)−1(Ip − eiλ2A)−1ei(λ1+λ2)A−(n+1) +

+(Ip − e−iλ1A)−1(Ip − eiλ2A)−1ei(n+1)λ2 −

−(Ip − eiλ1A−1)−1A−(n+1)ei(λ1+λ2)
ein(λ1+λ2) − 1

ei(λ1+λ2) − 1
.

By using (12), it follows that

T1 = op(1) + Nn, (23)

where

Nn = 2

∫ ′′

[−π,π]2

(Ip − e−iλ1A)−1(Ip − eiλ2A)−1ei(n+1)λ2 ×

×f 1/2(λ1)f
1/2(λ2)W(dλ1)W(dλ2)e1. (24)

Now, we will prove that

Nn = op(1) +

∫ π

−π

(Ip − e−iλA)−1f 1/2(λ)W(dλ) ×

×

∫ π

−π

(Ip − eiλA)−1ei(n+1)λf 1/2(λ)W(dλ)e1. (25)

The (j, k)th term of the matrix in the right-hand side of (24) is equal to

Ij,k =

p
∑

l=1

∫ ′′

[−π,π]2

×

× eiλ1Rj,l(e
iλ1)Rl,k(e

−iλ2)einλ2f 1/2(λ1)f
1/2(λ2)W(dλ1)W(dλ2),
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where Rj,l(z) is the (j, l)th term of the matrix R(z). Application of Lemma 2.3

with g1(λ) = eiλRj,l(e
iλ)f 1/2(λ), g2(λ) = Rl,k(e

−iλ)f 1/2(λ)einλ implies that

Ij,k =

p
∑

l=1

αnI1(l) + I2(l) − αnI3(l),

where

αn =

∫ π

−π

Rj,l(e
−iλ)Rl,k(e

−iλ)ei(n−1)λf (λ) dλ ×

×

∫ π

−π

∣

∣Rl,k(e
−iλ)

∣

∣

2
f (λ) dλ −→ 0,

I1(l) = 2

∫ ′′

Rl,k(e
−iλ1)Rl,k(e

−iλ2)ein(λ1+λ2) ×

×f 1/2(λ1)f
1/2(λ2)W(dλ1)W(dλ2),

I2(l) =

(∫

eiλRj,l(e
iλ)f 1/2(λ)W(dλ)

)(∫

Rl,k(e
−iλ)f 1/2(λ)einλW(dλ)

)

,

I3(l) =

(∫

Rl,k(e
−iλ)f 1/2(λ)einλW(dλ)

)2

;

since Rl,k(e
−iλ1)Rl,k(e

−iλ2)ein(λ1+λ2)f 1/2(λ1)f
1/2(λ2) is symmetric

||αnI1(l)||
2
2 = α2

n

(∫ π

−π

∣

∣Rl,k(e
−iλ)

∣

∣

2
f (λ) dλ

)2

−→ 0,

||αnI3(l)||1 = |αn|

∫ π

−π

∣

∣Rl,k(e
−iλ)

∣

∣

2
f (λ) dλ −→ 0;

therefore,

I (j, k) = op(1) +

p
∑

l=1

(∫

Rj,l(e
iλ)e−iλf 1/2(λ)W(dλ)

)

×

×

(∫

Rl,k(e
−iλ)f 1/2(λ)einλW(dλ)

)

,

and the last term is the (j, k)th term of the matrix in the right-hand side of (25).

Consequently,

Nn = op(1) + A1

∫

R(e−iλ) e1f
1/2(λ)einλW(dλ).

The components of the last vector are continuous functionals of the components

of the vector Zn defined in Lemma 2.4, hence the joint convergence (16) follows

from (17), (21), (23), the Lemma 2.4 and the continuous mapping theorem [2,

Theorem 5.1].
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Finally the convergence (14) is obtained from (8) and (16). To prove (15), let

λmin(A) [resp. λmax(A)] denotes the minimum [resp. maximum] eigenvalue of the

matrix A. We use (14) to obtain

[d(n)]−1(βn − β)′An(An)′(βn − β)
P

−→ 0,

which implies that

λmin(A
n(An)′) ||βn − β||2 = op(d(n)),

moreover, using (12),

1

λmin(A
n(An)′)

= λmax((A
−n)′A−n) =

∣

∣

∣

∣A−n
∣

∣

∣

∣

2
= O(ρ2nn2(ν−1)).

2

3. General Model

In this section we consider the general AR(p) model. This means that we do not

make any assumption on the roots of the characteristic polynomial ϕ(z). To obtain

the limiting distribution of βn we use Lai and Wei’s [11] classical technique: (i) To

transform the original model into various components corresponding to the location

of their roots relative to the unit circle, (ii) To analyze each component separately.

The polynomial ϕ(z) can be written as

ϕ(z) = ϕu(z)ϕe(z), deg(ϕu) = p1, deg(ϕe) = r, p = p1 + r,

where ϕe(z) is an explosive polynomial and ϕu(z) is an unstable polynomial which

can be written as

ϕu(z) = (1 − z)a(1 + z)b

l
∏

m=1

(1 − 2z cos θm + z2)dmϕs(z),

ϕs(z) is a stable polynomial, deg(ϕs) = q, p1 = q + a + b + 2
∑l

1 dm. If we

define

ye
t = ϕ(z)ϕ−1

e (z)yt , yu
t = ϕ(z)ϕ−1

u (z)yt ,

then

ϕe(z)y
e
t = εt

(i.e. (ye
t ) is the explosive AR(r) studied in Section 2), and

ϕu(z)y
u
t = εt

(i.e. (yu
t ) is the unstable AR(p1) considered in [4, 5]. There exists a non-singular

matrix M, (see [11]) such that

M8t−1 = (8u′

t−1,8
e′

t−1)
′,
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where (8u
t−1) and (8e

t−1) are the regressor vectors corresponding to the unstable

and the explosive model given by

8u
t−1 = (yu

t−1, . . . , y
u
t−p1

)′, 8e
t−1 = (ye

t−1, . . . , y
e
t−r)

′.

Let

Dn = diag(A1/2
n , Ir), Qn = diag(GnQ, A−n

e ),

A1/2
n = diag(n−H+1/2L(n)−1/2Ia, L(n)−1/2Ib+2

∑l
m=1 dm

, n−1/2Iq),

where Ae is the companion matrix of the explosive polynomial ϕe(z). The matrices

Q and Gn are the same as in [4, 5]. Q is such that

Q8u
t = (u′

t , v′
t , x′

t (1), . . . , x′
t (l), z′

t )
′, ut = (ut , . . . , ut−a+1)

′,

vt = (vt , . . . , vt−b+1)
′, xt (m) = (xt (m), . . . , xt−2dm+1(m))′,

zt = (zt , . . . , zt−q+1)
′,

where

ut = ϕu(z)(1 − z)−ayu
t , vt = ϕu(z)(1 + z)−byu

t ,

xt (m) = ϕu(z)(1 − 2z cos θm + z2)−dmyu
t , 1 6 m6 l,

zt = ϕu(z)(ϕs(z))
−1yu

t .

Gn = diag (Jn, Kn, Ln(1), . . . , Ln(l), Mn) , Jn = diag(n−a+j−1, 1 6 j 6 a)M,

Kn = diag(n−b+j−1, 1 6 j 6 b)M̃, Ln(m) = diag(n−j I2, 1 6 j 6 dm)Cm,

Mn = Iq , the matrices M, M̃ and Cm, 1 6 m6 l are given in [4].

Combining the preceding results and Theorem 6.1 of [5] we obtain the follow-

ing theorem.

THEOREM 3.1. (M′Q′
n)

−1(βn − β)

L
−→

(

(F−1ξ)′, (
∼

F
−1

η)′, (D−1
1 ζ1)

′, . . . , (D−1
l ζl)

′, (6−1
1 N1)

′, (6−1
2 N2)

′

)′

,

the matrices F
∼

F, Dm, and the vectors ξ, η, ζm, 1 6 m6 l are the same as in [5],

N1 =
∫ π

−π
(eiλIp − A)−1f (λ) dλe1, 61 =

∫ π

−π
(eiλIp − A)−1e1e

′
1(e

−iλIp − A′)−1

f (λ)dλ, e1 = (1, 0, . . . , 0)′, 62 and N2 are given by Theorems 2.1 and 2.2.
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