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Abstract We establish the limiting distributions for empirical estimators of the

coefficient of skewness, kurtosis, and the Jarque–Bera normality test statistic for long

memory linear processes. We show that these estimators, contrary to the case of short

memory, are neither
√
n-consistent nor asymptotically normal. The normalizations

needed to obtain the limiting distributions depend on the long memory parameter d.

A direct consequence is that if data are long memory then testing normality with the

Jarque–Bera test by using the chi-squared critical values is not valid. Therefore, statis-

tical inference based on skewness, kurtosis, and the Jarque–Bera normality test, needs

a rescaling of the corresponding statistics and computing new critical values of their

nonstandard limiting distributions.

Keywords Hermite polynomials · Jarque–Bera normality test · Kurtosis ·
Long memory data · Skewness

1 Introduction

Let (xt ) be a covariance stationary process with mean E(xt ) = µ and autocovariance

function γx (k) = E(xt+k − µ)(xt − µ), σ 2 = γx (0). We say that (xt ) is short or

long memory according whether the sum
∑

k∈Z |γx (k)| is finite or infinite. The sum

is infinite if the process (xt ) satisfies one of the following:

• There exist d ∈ (0, 1/2) and a constant c1 > 0 such that

γx (k) k
−2d+1 → c1 as k → ∞, (1)

M. Boutahar (B)

GREQAM, University of Méditerranée, Marseille, France

e-mail: mohammed.boutahar@univmed.fr

123



194 M. Boutahar

or

• There exist d ∈ (0, 1/2) and a constant c2 > 0 such that

|λ|2d fx (λ) → c2 as λ → 0, (2)

where fx (λ) is the spectral density function of (xt ), i.e.

fx (λ) =
∑

k∈Z
γx (k)e

−ikλ/2π.

For short memory processes, the covariance decays quickly (exponential decay),

and the spectral density is at least bounded. The stationary and invertible ARMA is

a short memory process. For long memory processes, the covariance decays slowly

(hyperbolic decay) and the spectral density is unbounded at frequency 0. A well known

long memory process is the ARFIMA (p, d, q) defined by

φ(L)(1 − L)d xt = θ(L)ut ,

where φ(L) = 1 − φ1L − · · · − φpL
p, θ (L) = 1 + θ1L + · · · + θqL

q , d ∈ R is the

memory parameter, L is the backward shift operator Lxt = xt−1, ut is a white noise

with mean 0 and variance σ 2, (1 − L)d is the fractional difference operator defined

by the binomial series

(1 − L)d =
∞∑

j=0

Ŵ ( j − d)

Ŵ ( j + 1) Ŵ (−d)
L j ,

whereŴ is the gamma function, see Beran (1994), Doukhan et al. (2003) and Robinson

(2003) among others.

The coefficient of skewness and kurtosis are defined as

S =
µ3

σ 3
=

E(xt − µ)3

(
E(xt − µ)2

)3/2
and K =

µ4

σ 4
=

E(xt − µ)4

(
E(xt − µ)2

)2
, µ2 = σ 2.

Sample estimates of S and K are obtained by replacing population moments µ j =
E(xt − µ) j by the sample moments µ̂ j =

∑n
k=1(xk − xn)

j/n, xn =
∑n

k=1 xk/n,

i.e.

Ŝ =
µ̂3

µ̂
3/2
2

and K̂ =
µ̂4

µ̂2
2

. (3)

The statistic Ŝ is useful for testing symmetry of data around the sample mean, see

Delong and Summers (1985). The statistic K̂ is informative about the tail behaviour

of data in many empirical studies, see Boumahdi (1996) and Heinz (2001). There are

many tests of normality in the literature. Almost all these tests can be gathered into

four classes. The first class measures the distance between the theoretical distribution
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Behaviour of skewness, kurtosis and normality tests in long memory data 195

function and the empirical distribution function (Kolmogorov 1933; Anderson and

Darling 1954). The second class of statistics is derived by combining skewness and

kurtosis (Bowman and Shenton 1975; Jarque and Bera 1987). The third class is based

on generalization of the classical chi-square distance (Pearson 1900). The last class

relies on linear regression procedures (Shapiro and Wilk 1965 and D’Agostino 1972

which are based on order statistics). See Yazici and Yolacan (2007) for comparison of

various tests of normality.

In this paper we will be interested to the second class by considering the Jarque–

Bera statistic (1987) given by JB = (Ŝ2/6 + (K̂ − 3)2/24). It has been extensively

used to find out whether a sample is drawn from a normal distribution or not. It has

become very popular since it is very easy to compute. See, for example, Hassler and

Wolters (1995), Caporin (2003), Forsberg and Ghysels (2007) and Ajmi et al. (2008)

among others. If (xt ) are independent and identically distributed (i.i.d.) N (µ, σ 2) then

it is well known that

√
n

(
µ̂3

µ̂4 − 3µ̂2
2

)
L→ N (0, 6) , 6 =

(
6µ3

2 0

0 24µ4
2

)
, (4)

which implies that JB
L→ χ2

2 , a chi-square distribution with 2 degrees of freedom.

As the skewness and kurtosis measures are based on moments of the data, these

tests can have a large size distortion in many situations: heteroskedastic data, presence

of outliers and correlated data. Moreover, without taking into account such situations

can make these tests worthless.

Concerning heteroskedastic data, Fiorentini et al. (2004) show that the Jarque–Bera

test can still be applied to a broad class of GARCH-M processes,

xt = µt (θ)+ σt (θ)εt , (5)

but it can have a size distortions for processes such that the following condition is

violated

√
3n

2

{
1

n

n∑

t=1

ε2
t (θ̃n)− 1

}
= op(1),

where εt (θ̃n) are the estimated standardized innovations and θ̃n is the pseudomaximum

likelihood estimator of θ, (see Fiorentini et al. 2004, p. 309).

Some robust versions of the Jarque–Bera test have been suggested by Brys et al.

(2004) and Gel and Gastwirth (2008) to handle outliers.

For correlated data, such as ARMA processes, if (xt ) is a Gaussian short memory

then (see Lomnicki 1961; Gasser 1975) the convergence (4) becomes

√
n

(
µ̂3

µ̂4 − 3µ̂2
2

)
L→ N (0, 6) , 6 =

(
6F (3) 0

0 24F (4)

)
, (6)
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196 M. Boutahar

where

F (r) =
∑

k∈Z
(γx (k))

r , r = 3, 4. (7)

Gasser (1975) suggests consistent estimators of F (3)and F (4) by truncating the

infinite sums in (7). Lobato and Velasco (2004) consider an estimator of F (r) which

is the sample analog of (7), i.e.

F̂ (r) =
∑

|k|<n
(γ̂x (k))

r , γ̂x (k) =
1

n

n−|k|∑

t=1

(xt+k − xn)(xt − xn). (8)

They show that if (xt ) is a Gaussian short memory then F̂ (r) is a consistent estimator

of F (r), and hence a statistic to test normality under serially correlated data is given

by

G = n

(
µ̂2

3

6F̂ (3)
+

(
µ̂4 − 3µ̂2

2

)2

24F̂ (4)

)
, (9)

which has an asymptotic χ2
2 distribution.

Bai and Ng (2005) consider short memory processes that satisfy the following

Central Limit Theorem (CLT)

1
√
n

n∑

t=1

Z t
L→ N (0,8), (10)

where Z t = (xt − µ, (xt − µ)2 − σ 2, (xt − µ)3, (xt − µ)4 − 3σ 4)′ and 8 is the

spectral density matrix at frequency 0 of Zt . By considering a consistent estimator of

8, they suggest a robust version of J B to test normality under serial correlation. Like

Lobato and Velasco’s (2004) results, the normalization needed is equal to n and the

limiting distribution is a χ2.

However, Lobato and Velasco’s (2004) and Bai and Ng’s (2005) results no longer

hold if the data are long memory. Lobato and Velasco’s (2004) results are based on

building consistent estimators of F (3)and F (4), but if (xt ) satisfies (1) with 3/8 <

d < 1/2 then F (3) = F (4) = ∞. In Bai and Ng (2005), serial dependence in (xt ) was

explicitly taken into account through the spectral density at frequency 0 of (xt ). If (xt )

is long memory then the spectral density is unbounded at frequency 0 and the CLT

(10) no longer holds. In this paper we obtain a very different picture. In Theorems 1

and 2, we will show that the normalizations needed for the sample skewness and kur-

tosis depend on the long memory parameter d. Moreover, the limiting distributions of

which are not χ2.
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Behaviour of skewness, kurtosis and normality tests in long memory data 197

We shall consider covariance stationary processes satisfying (1) with the following

MA(∞) representation

xt = µ+
∞∑

j=0

ψ jut− j , (11)

where (u j ) is a sequence of i.i.d. random variables with zero mean and variance σ 2
u ,

(ψ j ) is a sequence which decays hyperbolically, i.e.

ψ j ∼ δ j−β , δ > 0, β = 1 − d, as j → ∞, (12)

E(u4
t ) = σ 4

u (3 + κ) for some constant κ ≥ 0. (13)

It can be shown that the ARFIMA process satisfies the representation (11) with ψ j ∼
|θ(1)|

|φ(1)|Ŵ(d) jd−1 as j → ∞ (see Hosking 1996, p. 272).

Our paper excludes processes with long memory in volatility such as fraction-

ally integrated generalized autoregressive conditional heteroskedasticity (FIGARCH)

and long memory stochastic volatility (LMSV ) processes. Recall that a FIGARCH is

defined by

xt = σtεt , (14)

(εt ) is a white noise with mean 0 and variance σ 2 and x2
t is an ARFIMA(p, d, q):

φ(L)(1 − L)d x2
t = θ(L)vt , vt = x2

t − σ 2
t .

It is well known that the unconditional variance of xt is infinite (see Baillie et al. 1996,

p. 3) and neither xt nor x2
t are covariance stationary, consequently our result can not

to be applied to test normality of xt or x2
t even if the process x2

t admits the MA(∞)

representation (11)–(13).

The long memory stochastic volatility process, introduced by Breidt et al. (1998),

is defined by (14) where (εt ) is a sequence of i.i.d. random variables with zero mean

and variance 1, σt = σ exp(vt/2) and (vt ) is an ARFIMA independent of (εt ). If both

εt and vt are Gaussian it can be shown that the coefficient of kurtosis of (xt ) is given

by K = 3(exp(γv(0))− 1) > 3, consequently the process (xt ) displays an excess of

kurtosis and hence is non Gaussian.

Throughout this paper we shall use the following notations:
P→ denotes the convergence in probability.
L→ denotes the convergence in distribution.

||X ||p =
{
E(|X |p

}1/p
denotes the Euclidian norm of the random variable X ∈

L p(�).
L p(�)→ denotes the convergence in the L p(�) space.

a j ∼ b j as j → ∞ means that a j/b j → 1 as j → ∞.
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198 M. Boutahar

un = Op(vn) means that there exists a positive constant C such that P(|un/vn| <
C) = 1.

un = op(vn) means that un/vn
P→ 0.

H0 : data have a normal distribution.

H1 : data do not have a normal distribution.

2 Preliminary results

Assume that the process (xt ) satisfies (1) and let yt = (xt −µ)/σ be the process with

zero mean and variance 1,

Si,n =
n∑

k=1

yik, Hi,n =
n∑

k=1

Hi (yk), 1 ≤ i ≤ 4, (15)

where Hn(x) is the nth Hermite polynomial which is given by

Hn(x) = (−1)ne
x2

2
dn

dxn

(
e− x2

2

)
, n = 0, 1, . . .

It can also be computed recursively by

Hn(x) = xHn−1(x)− (n − 1)Hn−2(x), n = 2, . . . , H0(x) = 1, H1(x) = x .

The first five Hermite polynomials are

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3.

The limiting distribution of the sample skewness and kurtosis coefficients will be

established by using the following two lemmas.

Lemma 1 Assume that the process (xt ) is covariance stationary satisfying (1) and

define c = c1/σ
2,

Zm =
(

4m!
[2 − 2m(1 − 2d)] [2 − m(1 − 2d)]

)1/2

Zm(1),

Zm(t) = K (m, d)

”∫

Rm

ei(λ1+···+λm )t − 1

i(λ1 + · · · + λm)
|λ1|−d · · · |λm |−d (16)

×W (dλ1) · · ·W (dλm),

K (m, d) =
(

[2 − 2m(1 − 2d)] [2 − m(1 − 2d)]

4m! (2Ŵ(1 − 2d) sin dπ)m

)1/2

,
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Behaviour of skewness, kurtosis and normality tests in long memory data 199

where W (.) is the Gaussian “white noise” complex–valued random measure satisfy-

ing:

W (dλ) = W (−dλ), EW (dλ) = 0, E
(
W (dλ)W (dµ)

)
=




dλ if λ = µ

0 if λ 6= µ

,

∫ ”
Rm is the multiple Wiener-Itô integral defined in Major (1981). Then under H0 we

have

1. If 0 < d < 1/2 then

H1,n

c1/2nd+1/2

L→ Z1. (17)

2. If 1/4 < d < 1/2 then

(
H1,n

c1/2nd+1/2
,
H2,n

cn2d

)
L→ (Z1, Z2) . (18)

3. If 1/3 < d < 1/2 then

Z1,n =
(

Hm,n

cm/2n1−(1/2−d)m
, 1 ≤ m ≤ 3

)
L→ Z1 = (Zm, 1 ≤ m ≤ 3) . (19)

4. If 3/8 < d < 1/2 then

Z2,n =
(

Hm,n

cm/2n1−(1/2−d)m
, 1 ≤ m ≤ 4

)
L→ Z2 = (Zm, 1 ≤ m ≤ 4) . (20)

Proof The proof can be obtained from (Taqqu 1975; Dobrushin and Major 1979) and

hence is omitted.

Lemma 2 Assume that the process (xt ) is covariance stationary satisfying (1) and

(11)–(13) and let γ̂x (k) =
∑n−|k|

t=1 (xt+k − xn)(xt − xn)/n be the empirical estimator

of γx (k). Then for all fixed k ≥ 0, γ̂x (k) is a consistent estimator of γx (k), i.e.

γ̂x (k)
P→ γx (k). (21)

Proof From Theorem 3 of Hosking (1996), it is not difficult to show that for all k,

||γ̂x (k)− γx (k)||2 ∼





c2
1n

2(2d−1) if 1
4
< d < 1

2

c2
2

log n
n

if d = 1
4

c2
3n

−1 if 0 < d < 1
4
,

(22)

123
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for some positive constants c1, c2 and c3, which implies that for all d ∈ (0, 1/2),

γ̂x (k)
L2(�)→ γx (k) for all k ≥ 0,

and then γ̂x (k)
P→ γx (k) for all k ≥ 0. Hence the desired conclusion holds.

3 Behaviour of the sample skewness

Let

ZS = Z3 − 3Z1Z2 + 2Z3
1, (23)

where the random variables Zm, 1 ≤ m ≤ 3, are given by (16), σ 2
H3

=
∑

k∈Z γH3(k),

γH3(k) is the covariance function of the process H3(yk) = y3
k −3yk, yt = (xt −µ)/σ.

Theorem 1 Assume that the process (xt ) is covariance stationary satisfying (1) and

(11)–(13) and define c = c1/σ
2. Then under H0 we have

1. If 1/3 < d < 1/2 then

n3(1/2−d) Ŝ
L→ c3/2ZS . (24)

2. If d = 1/3 then

n1/2

(log n)1/2
Ŝ

L→
(

12c3
)1/2

N (0, 1). (25)

3. If 0 < d < 1/3 then

n1/2 Ŝ
L→ σH3 N (0, 1). (26)

Proof See the Appendix.

Usually, the statistic b1 = nŜ2/6 is used to test symmetric behaviour of time series.

Theorem 1 implies that

• If 1/3 < d < 1/2 then b1 ∼ Cn2(3d−1) and hence b1
P→ +∞,

• If d = 1/3 then b1 ∼ C log n which implies that b1
P→ +∞,

• If 0 < d < 1/3 then b1
L→ (σ 2

H3
/6)χ2

1 .

Consequently, for all 1/3 ≤ d < 1/2, a test based on b1 will reject more often the null

of symmetric behaviour even data are normally distributed. The rejection frequencies

increase with d and the sample size n.
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Behaviour of skewness, kurtosis and normality tests in long memory data 201

The normalization needed to establish the limiting distribution of the sample skew-

ness coefficient Ŝ can be written as nαn(d) where

αn(d) =





1
2

if 0 < d < 1
3

1
2

− 1
2

log log n
log n

if d = 1
3

3
2

− 3d if 1
3
< d < 1

2
.

The function αn is a nondecreasing and continuous for all d ∈ (0, 1/2), d 6= 1/3.

4 Behaviour of the sample kurtosis

Let

ZK = Z4 − 4Z1Z3 + 12Z2
1 Z2 − 3Z2

2 − 6Z4
1, (27)

where the random variables Zm, 1 ≤ m ≤ 4, are given by (16); σ 2
H4

=
∑

k∈Z γH4(k),

γH4(k) is the covariance function of the process H4(yk) = y4
k − 6y2

k + 3, yt =
(xt − µ)/σ.

Theorem 2 Assume that the process (xt ) is covariance stationary satisfying (1) and

(11)–(13) and define c = c1/σ
2. Then under H0 we have

1. If 3/8 < d < 1/2 then

n4(1/2−d)(K̂ − 3)
L→ c2ZK . (28)

2. If d = 3/8 then

n1/2

(log n )1/2
(K̂ − 3)

L→
(

48c2
)1/2

N (0, 1). (29)

3. If 0 < d < 3/8 then

n1/2(K̂ − 3)
L→ σH4 N (0, 1). (30)

Proof See the Appendix.

The leptokurtic behaviour of data is tested by the statistic b2 = n(K̂ − 3)2/24. If

data are long memory, then Theorem 2 implies that

• If 3/8 < d < 1/2 then b2 ∼ Cn2d and hence b2
P→ +∞,

• If d = 3/8 then b2 ∼ C log n which implies that b2
P→ +∞,

• If 0 < d < 3/8 then
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b2
L→ b2,∞ = (σ 2

H4
/24)χ2

1 =

(
1 +

∑

k∈Z∗
(ρx (k))

4 /24

)
χ2

1 ,

where ρx (k) = γx (k)/σ
2 is the autocorrelation function of (xt ).Note that b2,∞ ≥ χ2

1 .

Therefore, for all 0 < d < 1/2, a test based on b2 will reject more often the null

even data are normally distributed. The rejection frequencies increase with d and the

sample size n if 3/8 ≤ d < 1/2.

The normalization needed to establish the limiting distribution of the sample excess

of kurtosis coefficient K̂ − 3 can be written as nβn(d) where

βn(d) =





1
2

if 0 < d < 3
3

1
2

− 1
2

log log n
log n

if d = 3
8

2 − 4d if 3
8
< d < 1

2
.

Note that the function βn is discontinuous at d = 3/8.

5 Behaviour of the Jarque–Bera test statistic

The Jarque–Bera test statistic JB combines the skewness and the kurtosis to test nor-

mality of data. If data are long memory then the behaviour of JB can be described by

the following

Theorem 3 Assume that the process (xt ) is covariance stationary satisfying (1) and

(11)–(13) and define c = c1/σ
2, σ 2

Hi
=

∑
k∈Z γHi

(k), γHi
(k) is the covariance func-

tion of the process Hi (yk), i = 3, 4, yt = (xt − µ)/σ. Then under H0 we have

1. If 3/8 < d < 1/2 then

n6(1/2−d)

c3
Ŝ2 +

n8(1/2−d)

c4
(K̂ − 3)2

L→ Z2
S + Z2

K

and

n2(1−3d) JB
L→

c3

6
Z2
S,

where ZS and ZK are given by (23) and (27) respectively. Therefore JB ∼
Cn2(3d−1) and hence JB

P→ +∞.

2. If d = 3/8 then

n3/4

c3
Ŝ2 +

n

48c2 log n
(K̂ − 3)2

L→ Z2
S + χ2

1 (31)
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and

JB

n1/4

L→
c3

6
Z2
S,

which implies that JB ∼ Cn1/4 and J B
P→ +∞.

3. If 1/3 < d < 3/8 then

n6(1/2−d)

c3
Ŝ2 +

n

σ 2
H4

(K̂ − 3)2
L→ Z2

S + χ2
1 (32)

and

n2(1−3d) JB
L→

c3

6
Z2
S,

therefore J B ∼ Cn2(3d−1) and hence J B
P→ +∞.

4. If d = 1/3 then

n

12c3 log n
Ŝ2 +

n

σ 2
H4

(K̂ − 3)2
L→ χ2

2

and

1

log n
J B

L→ 2c3χ2
1 ,

which implies that J B ∼ C log n and J B
P→ +∞.

5. If 0 < d < 1/3 then

n

(
Ŝ2

σ 2
H3

+
(K̂ − 3)2

σ 2
H4

)
L→ χ2

2 .

Proof The proof follows by combining Theorems 1 and 2.

5.1 Example

Assume that (xt ) is a Fractional Gaussian Noise, i.e. the stationary Gaussian process

with mean 0 and covariance

γx (k) =
σ 2

2

{
|k + 1|2d+1 − 2 |k|2d+1 + |k − 1|2d+1

}
. (33)

and let

123
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JB = n

(
Ŝ2

6
+
(K̂ − 3)2

24

)
and JBs = n

(
Ŝ2

σ 2
H3

+
(K̂ − 3)2

σ 2
H4

)
. (34)

• If d = 0, i.e. (yt ) is an i.i.d. N (0, 1), then γy(k) = 0 for all k 6= 0 which implies

that σ 2
H3

= 3!
∑

k∈Z (γy(k))
3 = 6 and σ 2

H4
= 4!

∑
k∈Z (γy(k))

4 = 24 since

γH3(k) = 3!(γy(k))3 and γH4(k) = 4!(γy(k))4, hence J Bs = J B.

• If 0 < d < 1/3, then the covariance γx (k) is positive, which implies that σ 2
H3
> 6

and σ 2
H3

> 24, consequently JB > J Bs . Let p-valueJB = 1 − Fχ2
2
( ĴB) and

p-valueJBs =1 − Fχ2
2
( ĴBs) be the p-value corresponding to the observed value

of the Jarque–Bera statistic ĴB and the observed statistic ĴBs respectively, where

Fχ2
2
(.) is the cumulative χ2

2 distribution. We have p-valueJB < p-valueJBs , hence

if the Jarque–Bera test is applied without taking into accounts the correlation of

data, then the test will reject the null of normality more often.

• If 1/3 ≤ d < 1/2, then the rejection frequencies increase with d and the sample

size n.

As a conclusion, in long memory environment, a rescaled versions of the skewness,

kurtosis, and the Jarque–Bera normality test statistics are needed. Moreover, a simu-

lation/bootstrap method for computing critical values or p-values of the nonstandard

distributions given in Theorems 1–3 is required to make a correct statistical inference.

6 Monte Carlo simulations

In this section, we study the size of the Jarque–Bera test. We generate two Gaussian

long memory processes. The first one is an ARFIMA generated by using the function

arima.fracdiff.sim in SPLUS 6.0. The second is a fractional Gaussian noise (FGN )

by using Beran’s code in Beran (1994).

We carry out an experiment of 1,000 samples for three long memory processes: an

ARFIMA(0, d, 0), an ARFIMA(1, d, 1) and a fractional Gaussian noise. We consider

five values for d, d = 0, d = 3/10, d = 1/3, d = 3/8 and d = 7/16; and we use

four different sample sizes, n = 500, n = 1,000, n = 2,000 and n = 5,000.

6.1 The analysis of the simulation results for an ARFIMA (0,d,0)

and an ARFIMA (1,d,1)

The data generating processes are

(1 − L)d yt = ut , where (ut ) ∼ i.i.d.N (0, 1), (35)

and

(1 − φ1L)(1 − L)d yt = (1 + θ1L)ut , where (ut ) ∼ i.i.d.N (0, 1), (36)

θ1 is fixed to 0.6, whereas the parameter φ1 takes three values φ1 = 0, φ1 = 0.5 and

φ1 = 0.8.
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Table 1 Empirical test sizes

(in %)

Table 1 contains rejection

frequencies of the null

hypothesis of normality.

Rejection frequencies are based

on 1,000 replications generated

from the DGP: (1 − L)d yt = ut ,

ut ∼ i.i.d.N (0, 1), the nominal

significance levels are

α = 1%, α = 5% and α = 10%,

the sample sizes are n = 500,

n = 1,000, n = 2,000 and

n = 5,000

α (%) d = 0 d = 3
10 d = 1

3 d = 3
8 d = 7

16

n = 500

1 2.4 1.5 1.7 4 5.7

5 5.9 6.7 8.1 9 13.7

10 8 12.2 12.3 12.7 22.3

n = 1,000

1 0.8 2.3 3.2 5 10.4

5 5.6 7.7 8.5 10.7 19.3

10 10 13.7 15 17.7 33.3

n = 2,000

1 1 1.9 4.1 6.9 17

5 4.7 6.9 10.5 15.7 31.6

10 9.2 13 18.5 21.6 40.5

n = 5,000

1 1 3.1 4.1 9.4 26.4

5 5.9 8.3 12.6 19.7 42.4

10 10.6 15.2 19.1 26 52.8

6.1.1 The analysis of the simulation results for an ARFIMA(0, d, 0)

From Table 1, we observe that if d = 0, i.e. the data are i.i.d. then the Jarque–Bera test

has a good performance. If d > 0, then the Jarque–Bera test suffers from a size dis-

tortion; for example, if d = 7/16 and α = 5%, then the empirical size of Jarque–Bera

test is 42.4% if n = 5,000. If d ≥ 1/3, we observe that for α fixed, the rejection fre-

quencies of the null increase with the sample size n. The rejection frequencies increase

also with d. If α = 5%, the empirical size is equal to 8.5% if (d, n) = (1/3, 1,000)

and 10.5% if (d, n) = (1/3, 2,000), i.e. if d = 1/3 then the empirical size increases

by 2% when the sample size n increases from 1,000 to 2,000. However, if d = 3/8 and

d = 7/16 then the empirical size increases by 5% and by 11.3% respectively when

the sample size n increases from 1,000 to 2,000. This of course is in accordance with

our theoretical finding in Theorem 3 which implies that JB ∼ C log n if d = 1/3,

JB ∼ Cn1/4 if d = 3/8 and JB ∼ Cn5/8 if d = 7/16.

6.1.2 The analysis of the simulation results for an ARF I MA(1, d, 1)

From Table 2, we observe that if d = 0, i.e. the data are short memory (the DGP is

an MA(1)) then the Jarque–Bera test has a small size distortion. If d > 0, then the

Jarque–Bera test suffers from a size distortion. We observe also that the presence of

short memory component increases the size distortion, for example, if d = 7/16,

α = 5% and n = 5,000 then the empirical size of Jarque–Bera test is 42.4% if θ1 = 0

(Table 1) and increases to 58.9% if θ1 = 0.6 (Table 2).

From Table 3, we observe that if d = 0, i.e. the data are short memory (the DGP

is an ARMA(1,1)) then the Jarque–Bera test has a size distortion. The effect of the
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Table 2 Empirical test sizes

(in %), φ1 = 0

Table 2 contains rejection

frequencies of the null

hypothesis of normality.

Rejection frequencies are based

on 1,000 replications generated

from the DGP:

(1 − L)d yt = ut + 0.6ut−1,

ut ∼ i.i.d.N (0, 1)

α (%) d = 0 d = 3
10 d = 1

3 d = 3
8 d = 7

16

n = 500

1 1.9 5.5 6.2 8.9 13.6

5 5.7 13.9 16.4 19.6 37.9

10 8.8 19.6 25.4 28.5 38

n = 1,000

1 1.6 6.8 9.9 11.9 21

5 5.3 17.3 20.7 28.4 38.4

10 12.6 24.5 29.6 37 44.7

n = 2,000

1 1.4 9.9 11.3 18.5 31.8

5 6.9 20.8 22.1 30 47.8

10 13.1 28.1 31.8 40.3 59.2

n = 5,000

1 2.3 10.8 17 23.8 46.2

5 6.5 24.1 28.7 37.9 58.9

10 13.9 32.5 37.3 48.6 66.7

Table 3 Empirical test sizes

(in %), φ1 = 0.5

Table 3 contains rejection

frequencies of the null

hypothesis of normality.

Rejection frequencies are based

on 1,000 replications generated

from the DGP:

(1 − 0.5L)(1 − L)d yt =
ut + 0.6ut−1,

ut ∼ i.i.d.N (0, 1)

α (%) d = 0 d = 3
10 d = 1

3 d = 3
8 d = 7

16

n = 500

1 7.3 16.9 17.8 22.3 31.8

5 14.5 31 34.3 40.1 50.2

10 22.6 43.7 44.6 52.9 59.8

n = 1,000

1 4.3 18.8 25 31.1 40.7

5 16.9 36.9 41.8 50.6 56.9

10 25.1 48.1 51.2 59.1 66.9

n = 2,000

1 6.6 27.9 32 36.8 53.7

5 16.1 42.7 47.3 55.5 65.6

10 23.5 53.8 58.8 63.5 73.7

n = 5,000

1 7 31.2 37.6 47.2 64.1

5 16 46.3 52.3 59.9 77.3

10 24.6 55.5 60.5 67.5 80.2

autoregressive component is more marked; for example, if α = 5% and n = 5,000

then the empirical size of Jarque–Bera test is 16% if φ1 = 0.5 (Table 3) and increases

to 39.7% if φ1 = 0.8 (Table 3). If d > 0, then the Jarque–Bera test suffers from a
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Table 4 Empirical test sizes

(in %), φ1 = 0.8

Table 4 contains rejection

frequencies of the null

hypothesis of normality.

Rejection frequencies are based

on 1,000 replications generated

from the DGP:

(1 − 0.8L)(1 − L)d yt =
ut + 0.6ut−1,

ut ∼ i.i.d.N (0, 1)

α (%) d = 0 d = 3
10 d = 1

3 d = 3
8 d = 7

16

n = 500

1 15.9 38.7 43.2 48.7 55.7

5 29.4 57.3 63.9 66.8 70.7

10 43 67.9 68.5 71.9 78.2

n = 1,000

1 19 49.6 51.4 57.6 66.4

5 37 62.1 66.2 70.1 78.8

10 44.5 73 75.3 76.9 82.1

n = 2,000

1 22.5 55.2 61 66.5 72.3

5 38.9 66.6 72.2 77.8 82.5

10 46.5 74.6 77 81.5 84.9

n = 5,000

1 24 60.9 66.2 72.2 78.9

5 39.7 73.5 77.7 80.5 88.1

10 51.6 77.1 79.5 85 88.8

Table 5 Empirical test sizes

(in %)

Table 5 contains rejection

frequencies of the null

hypothesis of normality.

Rejection frequencies are based

on 1,000 replications generated

from the Fractional. Gaussian

Noise (33)

α (%) d = 0 d = 3
10 d = 1

3 d = 3
8 d = 7

16

n = 500

1 2.4 2.2 3 4.6 7.1

5 5.9 6.2 8.7 13.5 18.8

10 8 12.6 15.2 18.5 27.5

n = 1,000

1 0.8 2.6 4 5.9 14.7

5 5.6 8.5 11.9 15.4 27.2

10 10 15.4 17.7 24.2 37.1

n = 2,000

1 1 3.3 5.1 9.8 24

5 4.7 8.4 14 19.7 36

10 9.2 14.9 21.3 27.7 45.9

n = 5,000

1 1 3.6 6 14.9 33.9

5 5.9 11 16.5 26.2 47.2

10 10.6 18.7 25.2 34.7 59.5

large size distortion. For example, if d = 7/16, α = 5% and n = 5,000 then the

empirical size of Jarque–Bera test is 77.3% if φ1 = 0.5 (Table 3) and increases to

88.1% if φ1 = 0.8 (Table 4).
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6.2 The analysis of the simulation results for FGN

The DGP is the FGN given by (33) with σ 2 = 1. From Table 5, we observe that the

results obtained for the Fractional Gaussian Noise are fairly similar to those obtained

in Table 1 for an ARFIMA(0, d, 0). The rejection frequencies are slightly greater in

the former case. For example, if d = 7/16, α = 5% and n = 5,000 then the empirical

size of Jarque–Bera test is 42.4% if the DGP is an ARFIMA(0, d, 0) (Table 1) and

increases to 47.2% if the DGP is a Fractional Gaussian Noise (Table 5).

Acknowledgments I would like to thank the referees for their constructive comments.

Appendix

Proof of Theorem1

1. By applying Lemma 2, it follows that Ŝ has the same limiting distribution as S̃

given by

S̃ =
µ̂3(
σ 2

)3/2

=
1

n

n∑

k=1

(
xk − xn

σ

)3

=
1

n

n∑

k=1

(
yk − yn

)3
, (37)

since yk = (xk − µ)/σ implies that yn = (xn − µ)/σ and that

yk − yn =
xk − µ

σ
−

1

σ
(xn − µ)

=
xk − xn

σ
.

Moreover, by using (15), S̃ can be rewritten as

S̃ =
1

n

n∑

k=1

y3
k − 3yn

1

n

n∑

k=1

y2
k + 2

(
yn

)3

=
S3,n

n
−

3

n2
S1,nS2,n + 2

(
S1,n

n

)3

=
H3,n + 3H1,n

n
−

3

n2
H1,n(H2,n + n)+ 2

(
H1,n

n

)3

=
H3,n

n
−

3

n2
H1,nH2,n + 2

(
H1,n

n

)3

. (38)
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Hence

n3(1/2−d)

c3/2
S̃ =

n3(1/2−d)

c3/2

{
H3,n

n
−

3

n2
H1,nH2,n + 2

(
H1,n

n

)3
}

=
H3,n

c3/2n3d−1/2
− 3

(
H1,n

c1/2nd+1/2

) (
H2,n

cn2d

)
+ 2

(
H1,n

c1/2nd+1/2

)3

.

Note that n3(1/2−d) S̃ /c3/2 is a continuous functional from R3 into R of the vector

Z1,n given by the left hand side of (19), hence Lemma 1 and the continuous mapping

theorem imply that

n3(1/2−d)

c3/2
S̃

L→ ZS,

therefore (24) follows.

2. From Lemma 1, it follows that for all d > 1/4 we have H1,n = Op(n
d+1/2) and

H2,n = Op(n
2d).Hence if d = 1/3 then H1,n = Op(n

5/6) and H2,n = Op(n
2/3). Let

L(|t |) = γH3(t) |t | and L3(n) =
∑n

k=−n γH3(k). By using the fact that the Hermite

polynomials satisfy

E
(
H j (η)Hk(ζ )

)
=

{
k! (E(ηζ ))k if j = k,

0 if j 6= k,
(39)

we have

γH3(k) = E (H3(yt+k)H3(yt ))

= 3!(γy(k))3

∼ 3!
(
ck2d−1

)3

∼
3!c3

k
,

since from (1), γy (k) ∼ ck2d−1.

Hence L(|t |) ∼ 3!c3 and L3(n) ∼ 12c3 log(n). Since L and L3 are slowly varying

functions (i.e. for all a > 0, L(at)/L(t) → 1 and L3(at)/L3(t) → 1 if t → +∞),

and L3(n)→ ∞ as n → ∞, application of Theorem 6 of Giraitis and Surgailis (1985)

leads to

1

(nL3(n) )
1/2

n∑

k=1

H3(yk)
L→ N (0, 1)

or

H3,n

(n log n )1/2
=

1

(n log n )1/2

n∑

k=1

H3(yk)
L→

(
12c3

)1/2
N (0, 1).
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From (38), it follows that

n1/2

(log n)1/2
S̃ =

H3,n

(n log n)1/2
−

3n1/2

n2 (log n)1/2
H1,nH2,n + 2

n1/2

(log n)1/2

(
H1,n

n

)3

=
H3,n

(n log n)1/2
− Op

(
n1/2

n2 (log n)1/2
n5/6n2/3

)

+Op

(
n1/2

n3 (log n)1/2
n5/2

)

=
H3,n

(n log n)1/2
+ Op

(
1

(log n)1/2

)
.

Consequently

n1/2

(log n )1/2
S̃

L→
(

12c3
)1/2

N (0, 1).

Therefore (25) follows.

3. If 0 < d < 1/3 then σ 2
H3

=
∑

k∈Z γH3(k) ∼ 3!c3
∑

k∈Z
(
k2d−1

)3
< ∞, hence

from Theorem 6 of Giraitis and Surgailis (1985) we have

H3,n

n1/2

L→ σH3 N (0, 1), (40)

moreover (17) implies that

n1/2

(
H1,n

n

)3

= Op

(
n1/2

(
nd+1/2

n

)3
)

= Op

(
n1/2

(
nd+1/2

n

)3
)

= Op

(
n3d−1

)

= op(1) since d <
1

3
.

Hence

n1/2 S̃ =
H3,n

n1/2
−

3n1/2

n2
H1,nH2,n + 2n1/2

(
H1,n

n

)3

=
H3,n

n1/2
−

3n1/2

n2
H1,nH2,n + op(1). (41)

Now we will examine the behaviour of second term in the right hand side of (41).

123



Behaviour of skewness, kurtosis and normality tests in long memory data 211

3.1. If 1/4 < d < 1/3 then from (18) we obtain H1,n = Op(n
d+1/2) and H2,n =

Op(n
2d) which implies that

3n1/2

n2
H1,nH2,n = Op

(
n1/2

n2
nd+1/2n2d

)

= Op

(
n3d−1

)

= op(1) since d <
1

3
. (42)

3.2. If d = 1/4 then let L2(n) =
∑n

k=−n γH2(k), from (39) it follows that

γH2(k) = E (H2(yt+k)H2(yt ))

= 2!(γy(k))2

∼ 2
(
ck2d−1

)2

∼
2c2

k
.

This implies that L2(n) ∼ 4c2 log(n). Since L2(n) is a slowly varying function and

L2(n) → ∞ as n → ∞, application of Theorem 6 of Giraitis and Surgailis (1985)

leads to

1

(n log n )1/2

n∑

k=1

H2(yk)
L→ 2cN (0, 1),

which implies that H2,n = Op

(
(n log n )1/2

)
. Consequently

3n1/2

n2
H1,nH2,n = Op

(
n1/2

n2
nd+1/2 (n log n )1/2

)

= Op

(
(log n )1/2

n1/4

)

= op(1). (43)

3.3. If 0 < d < 1/4 then σ 2
H2

=
∑

k∈Z γH2(k) ∼ 2c2
∑

k∈Z
(
k2d−1

)
2 < ∞, hence

from Theorem 5 of Giraitis and Surgailis (1985) we have

H2,n

n1/2

L→ σH2 N (0, 1), (44)
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which implies, together with (17), that

3n1/2

n2
H1,nH2,n = Op

(
n1/2

n2
nd+1/2n1/2

)

= Op

(
nd−1/2

)

= op(1) since d <
1

2
. (45)

From (41), (42), (43) and (45), it follows that for all d, 0 < d < 1/3,

n1/2 S̃ =
H3,n

n1/2
+ op(1). (46)

The desired conclusion (26) follows from (40) and (46).

Proof of Theorem2 1. By writing K̂ − 3 = µ̂4/µ̂
2
2 − 3 = (µ̂4 − 3µ̂2

2)/µ̂
2
2, and

applying Lemma 2, it follows that K̂ −3 has the same limiting distribution as K̃ given

by

K̃ =
µ̂4 − 3µ̂2

2

σ 4

=
1

n

n∑

k=1

(
xk − xn

σ

)4

− 3

(
1

n

n∑

k=1

(
xk − xn

σ

)2
)2

=
1

n

n∑

k=1

(
yk − yn

)4 − 3

(
1

n

n∑

k=1

(
yk − yn

)2

)2

.

Straightforward computations lead to

K̃ =
H4,n

n
−

4

n2
H1,nH3,n +

12

n3
H2

1,nH2,n −
3

n2
H2

2,n −
6

n4
H4

1,n,

consequently

n4(1/2−d)

c2
K̃ =

H4,n

2n1−4(1/2−d)
− 4

(
H1,n

c1/2nd+1/2

) (
H3,n

c3/2n3d−1/2

)

+12

(
H1,n

c1/2nd+1/2

)(
H2,n

cn2d

)
− 3

(
H2,n

cn2d

)2

−6

(
H1,n

c1/2nd+1/2

)4

,

since 3/8 < d < 1/2, the convergence (20) and the continuous mapping theorem

imply (28).
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2. If d = 3/8 then from (19) we deduce that Hi,n = Op

(
n1−(1/2−d)i

)
, i = 1, 2, 3,

and then H1,n = Op

(
n7/8

)
, H2,n = Op

(
n3/4

)
and H3,n = Op

(
n5/8

)
. Therefore

n1/2

(log n )1/2
K̃ =

n1/2

(log n )1/2

×
(
H4,n

n
−

4

n2
H1,nH3,n +

12

n3
H2

1,nH2,n −
3

n2
H2

2,n −
6

n4
H4

1,n

)

=
H4,n

(n log n )1/2
+ Op

(
n1/2

n2 (log n )1/2
n7/8n5/8

)

+Op

(
n1/2

n3 (log n )1/2
n7/4n3/4

)
+ Op

(
n1/2

n2 (log n )1/2
n3/2

)

+Op

(
n1/2

n4 (log n )1/2
n7/2

)

=
H4,n

(n log n )1/2
+ Op

(
1

(log n )1/2

)

=
H4,n

(n log n )1/2
+ op (1) . (47)

Let L4(n) =
∑n

k=−n γH4(k). From (39), it follows that

γH4(k) = E (H4(yt+k)H4(yt ))

= 4!(γy(k))4

∼ 24
(
ck2d−1

)4

∼
24c4

k
.

Hence L4(n) ∼ 48c4 log(n). Since L4(n) is a slowly varying function and L4(n)

→ ∞ as n → ∞, application of Theorem 6 of Giraitis and Surgailis (1985) leads to

1

(n log n )1/2
H4,n

L→
(

48c2
)1/2

N (0, 1). (48)

Combining the last convergence with (47) yields (29).

3. If 0 < d < 3/8 then from previous results we deduce the following:

• If 0 < d < 1/4 then H1,n = Op

(
nd+1/2

)
, H2,n = Op

(
n1/2

)
and H3,n =

Op

(
n1/2

)
.

• If d = 1/4 then H1,n = Op

(
n3/4

)
, H2,n = Op

(
(n log n )1/2

)
and H3,n =

Op

(
n1/2

)
.

• If 1/4 < d < 1/3 then H1,n = Op

(
nd+1/2

)
, H2,n = Op

(
n2d

)
and H3,n =

Op

(
n1/2

)
.
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• If d = 1
3

then H1,n = Op

(
n5/6

)
, H2,n = Op

(
n2/3

)
and H3,n = Op(

(n log n )1/2
)
.

• If 1/3 < d < 3/8 then H1,n = Op

(
nd+1/2

)
, H2,n = Op

(
n2d

)
and H3,n =

Op

(
n3d−1/2

)
.

This implies that for all d such that 0 < d < 3/8,

n1/2 K̃ = n1/2

(
H4,n

n
−

4

n2
H1,nH3,n +

12

n3
H2

1,nH2,n −
3

n2
H2

2,n −
6

n4
H4

1,n

)

=
H4,n

n1/2
+ op(1). (49)

Moreover, if 0 < d < 3/8 then σ 2
H4

=
∑

k∈Z γH4(k) ∼ 4!c4
∑

k∈Z
(
k2d−1

)4
< ∞,

hence from Theorem 5 of Giraitis and Surgailis (1985) we have

H4,n

n1/2

L→ σH4 N (0, 1). (50)

Therefore, the convergence (30) follows from (49) and (50).
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