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Abstract This paper introduces the new FITVGARCH model to describe both long

memory and structural change behaviour in the volatility process by allowing for time

varying dynamic structure in the conditional variance. The parameters of the condi-

tional variance in the FIGARCH model are allowed to change smoothly over time. We

derive an LM-type test for parameter constancy of the FIGARCH model against the

alternative of time dependent parameters. Simulation analysis shows that both empiri-

cal size and power of the constancy test are quite good. An empirical application to the

stock market volatility indicates that this new class of model seems to outperform the

FIGARCH model in the description of the daily NASDAQ composite index returns.

Keywords Modeling volatility · Long memory · Structural changes ·
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1 Introduction

A large body of research suggests that there is significant evidence of long memory

in the conditional volatility of various financial and economic time series; see Ding
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400 A. Ben Nasr et al.

et al. (1993), Baillie et al. (1996), Andersen and Bollerslev (1997), Bollerslev and

Mikkelsen (1996), Lobato and Savin (1998) and Davidson (2004) for evidence that

persistence in the volatility can be characterized as a long memory process. The frac-

tionally integrated GARCH (FIGARCH) model, introduced by Baillie et al. (1996),

proved to be successful in modeling the observed persistence in the volatility of many

time series such as stock market returns and option prices (Bollerslev and Mikkelsen

1996), exchange rates (Tse 1998) and inflation rates (Baillie et al. 2002). Breidt et al.

(1998) propose the long memory stochastic volatility model (LMSV) as a time series

representation of persistence in conditional volatility.

Another related discussion on financial time series suggested that there is strong

evidence for the occurrence of structural changes in the volatility process. See for

example, Bos et al. (1999) and Andreou and Ghysels (2002). Recent Econometric

models allow for stochastic time variation in the parameters of a GARCH specifica-

tion. Hamilton and Susmel (1994) and Cai (1994) have introduced independently the

Markov switching ARCH-model while Dueker (1997) has extended the approach to

GARCH models. In this approach, the conditional variances are allowed to switch

between a finite numbers of regimes with the transition between regimes governed

by an unobserved Markov chain. So et al. (1998) generalized the stochastic volatility

model by incorporating the Markov regime switching properties. A nonlinear version

of the GARCH process based on smooth transition approach has been proposed by

Hagerud (1997) and Gonzalez-Rivera (1998). They introduced the Smooth Transition

GARCH (STGARCH) process to model the asymmetric behaviour of the conditional

variance. Anderson et al. (1999) proposed the Asymmetric Nonlinear Smooth Tran-

sition GARCH (ANSTGARCH) model. The STGARCH model has been extended

to model the structural change in the conditional variance in Amado and Teräsvirta

(2008). They proposed the Time varying GARCH (TVGARCH) model to allow for

time dependent parameters in the GARCH process. Engle and Rangel (2008) intro-

duced the Spline-GARCH model that allows for time-variation in the unconditional

volatility level.

A related line of research on long memory and structural changes in the volatility

discusses the connection between these phenomena. In fact, the volatility persistence

may be due to structural breaks in the volatility process. This approach has been orig-

inally suggested by Diebold (1986) and Lamoureux and Lastrapes (1990). Hamilton

and Susmel (1994), and Cai (1994), among Others, suggest that regime switching may

be the main reason for the persistence of the volatility. Articles by Beine and Laurent

(2001); Breidt and Hsu (2002) and Granger and Hyung (2004) show that presence of

occasional structural breaks in the data can produce slowly decaying autocorrelations

which corresponds to long-memory behavior generally observed in the conditional

volatility of exchange rates and stock returns. This literature concludes that it is very

difficult to distinguish between true and spurious long memory processes.

However, recent contributions to this literature have attempted to discriminate

between long memory and structural changes in the volatility process. Stărică and

Granger (2005) concluded that log-absolute returns of the S&P 500 index are best

described as an iid series affected by occasional shifts in the unconditional vari-

ance. Mikosch and Stărică (2004) have analyzed the properties of the autocorre-

lation function of the S&P 500 absolute returns over the period 1953–1977. They
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Fractionally integrated time varying GARCH model 401

found that the autocorrelation function has the properties of long memory process

when taking the whole sample but resembles to that of short memory process when

taking only the period 1953–1973. They explained this finding by the fact that the

volatility has increased over the period 1973–1977. Perron and Qu (2007) have shown

that the behavior of the log-periodogram estimate of the fractional integration param-

eter for the processes of short memory with breaks is not equivalent to that of the short

memory process. They note that the estimates of the fractional integration parameter

will vary with the number of frequencies m for a short-memory series with breaks,

but it seems to be independent of m for truly long-memory process. Perron and Qu

(2009) have shown that stock market volatility may be better characterized by a short-

memory process affected by occasional level shifts. They also present a test designed

to distinguish between long memory and short-memory process with level shifts.

Another body of research has suggested that both long memory and structural

change characterize the structure of financial returns volatility. Relevant references on

this issue include Lobato and Savin (1998), Beine and Laurent (2001), Morana and

Beltratti (2004) and Martens et al. (2004). More recently, Baillie and Morana (2009)

introduced a new long-memory volatility model, denoted by Adaptive FIGARCH,

which allows for jointly modeling long-memory and structural change behaviors in

the conditional variance process. The structural change is modeled in this Adaptive

FIGARCH model by allowing the intercept to follow a slowly varying function.

Motivated from the above summary of literature, in particular the line of research

that suggests the co-existence of both long memory and structural change in the volatil-

ity process of financial markets data, we present a new model that allows the volatility

to have such behaviors. The idea is to allow the parameters in the conditional variance

equation of the FIGARCH model to be time dependent. More precisely, the change

of the parameters is assumed to be smooth over time using logistic smooth transition

function.

The paper is organized as follows. Section 2 presents the classical GARCH and FI-

GARCH models. In Sect. 3 we introduce the new Fractionally Integrated Time Varying

GARCH (FITVGARCH) model. Testing for parameter constancy is derived in Sect. 4

while the empirical size and power properties are evaluated by means of Monte Carlo

experiments in Sect. 5. The estimation procedure for the FITVGARCH parameters

and the covariance matrix are discussed in Sect. 6. This section also includes simu-

lation results of estimating the model by QMLE method. In Sect. 7 we discuss the

test of serial dependence in the squared standardized errors as a misspecification test.

Section 8 contains empirical evidence on financial market volatility. Section 9 con-

cludes.

2 The FIGARCH model

As a starting point, we present the generalized autoregressive conditional heteroske-

dasticity (GARCH) model, developed by Engle (1982), Bollerslev (1986), Nelson

(1991) and others, to model the time varying volatility. The GARCH(p,m) model is

defined as

yt = µ+ εt (1)
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εt = ηt h
1/2
t , ηt ∼ N (0, 1)

ht = ω + α(L)ε2
t + β(L)ht

(2)

where µ is the mean of the process, ht is the conditional variance of yt , α(L) =

α1L + · · · + αm Lm, β(L) = β1L + · · · + βp L p where L denotes the lag operator.

The GARCH process is covariance stationary if the following restriction is satisfied:

α(1) + β(1) < 1. The conditions ω ≥ 0, αi ≥ 0 for i = 1, . . . ,m, and β j ≥ 0 for

j = 1, . . . , p, are assumed, in Bollerslev (1986), to ensure that the conditional vari-

ance ht is positive. However, Nelson and Cao (1992) showed that the non-negativity of

these coefficients is not necessary. They derived necessary and sufficient conditions for

the nonnegativity of GARCH(p, q) models with p ≤ 2 and sufficient conditions for

p > 2. For example, the conditions for the GARCH(1, 2) are α1 ≥ 0, β1α1 + α2 ≥ 0

and 0 ≤ β1 < 1. Clearly, these restrictions allow α2 to be negative. Recently, Tsai

and Chan (2008) showed that the conditions of Nelson and Cao (1992) for p > 2 are

not only sufficient, but also necessary. By rearranging the terms in the equation of the

conditional variance in (2), it follows that

[1 − α(L)− β(L)]ε2
t = ω + [1 − β(L)]vt (3)

which is the so-called “ARMA in squares” representation of the GARCH equation,

where vt = (ε2
t −ht ). All the roots of [1−α(L)−β(L)] and [1−β(L)] are assumed to

lie outside the unit circle. However, many empirical applications of the GARCH(p,m)

model for volatility indicate the existence of unit root in the estimated lag polynomial

[1 − α̂(L)− β̂(L)]. To solve this problem, Engle and Bollerslev (1986) proposed the

Integrated GARCH, or IGARCH(p, q), model, in a way that the autoregressive polyno-

mial in (3) has one unit root. This assumes that [1−α(L)−β(L)] ≡ (1−φ(L))(1−L)

where all the roots of (1−φ(L)) lie outside the unit circle. φ(L) = φ1L +· · ·+φq Lq

where q = max{p,m} − 1. Then the IGARCH(p, q) model may be defined as

(1 − φ(L))(1 − L)ε2
t = ω + [1 − β(L)]vt (4)

The IGARCH model implies infinite persistence of the conditional variance to a

shock in squared returns. However, empirical evidence suggests that, in most situ-

ations, the volatility process is mean-reverting and the IGARCH model seems to be

too restrictive as it implies infinite persistence of a volatility shock. Such a feature

stands in sharp opposition to the observed behaviour of agents and does not match

more closely the persistence in observed volatility. (see Bollerslev and Engle 1993;

Baillie et al. 1996). As a consequence, many researchers have proposed extensions of

GARCH models which can produce such long-memory behaviour; Robinson (1991)

introduced the ARCH(∞), as the first model permitting long memory in the condi-

tional variance. Baillie et al. (1996) introduced the Fractionally Integrated GARCH

(FIGARCH) model that allows for fractional order of integration to describe the long

memory properties in the volatility. The study of fractional integration in time series

processes was introduced to econometrics by Granger and Joyeux (1980) and Granger

(1981) using the autoregressive fractionally integrated moving average (ARFIMA)
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model. It is based on the fractional differencing operator (1 − L)d where d can take

value other than 0 or 1.

The FIGARCH(p, d, q)model of Baillie et al. (1996) is simply obtained by replac-

ing the operator (1−L) in the IGARCH model in (4) by the fractional operator (1−L)d ;

(1 − φ(L))(1 − L)dε2
t = ω + [1 − β(L)]vt (5)

where φ(L) and β(L) are as before, such that (1 −φ(L)) and [1 −β(L)] are assumed

to have all their roots lying outside the unit circle, and the fractional differencing

parameter d lies between 0 and 1. Note that (5) is the ARFIMA representation of the

squared errors ε2
t . The fractional difference operator (1 − L)d can be defined as

(1 − L)d =

∞
∑

j=0

Ŵ( j − d)

Ŵ( j + 1)Ŵ(−d)
L j

= 1 − d L −
d(1 − d)

2!
L2 −

d(1 − d)(2 − d)

3!
L3 − · · ·

= 1 −

∞
∑

j=1

b j (d)L
j , (6)

where Ŵ(·) denotes the gamma function.

The FIGARCH processes are not covariance stationary, in contrast to the hyperbolic

GARCH (HYGARCH) and long-memory GARCH (LMGARCH) models which have

been examined in Davidson (2004) and Karanasos et al. (2004) respectively. However,

some results seemingly suggest that the FIGARCH processes are indeed strictly sta-

tionary for 0 ≤ d ≤ 1 (see Baillie et al. (1996) and Davidson (2004)). For d < 1, the

process is mean reverting, with the effect of the shocks dying away in the long run.

If d is higher than 0, the process is said to be long memory, so-named because of the

slow hyperbolic rate of decay after a volatility shock instead of the faster geometric

rate of the GARCH model or the permanence of the IGARCH model. When d = 0,

then (5) reduces to the standard GARCH model; and when d = 1, then (5) becomes

the Integrated GARCH, or IGARCH model, and implies infinite persistence of the

conditional variance to a shock in squared returns.

An alternative representation of (5) is given by

ht = ω +
[

1 − β(L)− (1 − φ(L))(1 − L)d
]

ε2
t + β(L)ht (7)

Thus, the FIGARCH model implies the following ARCH(∞) representation

ht =
ω

(1 − β(1))
+

[

1 −
(1 − φ(L))(1 − L)d

(1 − β(L))

]

ε2
t (8)

= ω̃ + ψ(L)ε2
t (9)

where ψ(L) = ψ1L +ψ2 L2 +· · ·. To guarantee the non-negativity of the conditional

variance as surely for all t , all the coefficients in the ARCH (∞) representation in (8)
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must be non-negative, i.e. ω̃ > 0, and ψi ≥ 0 for all i ≥ 1. For a FIGARCH (1, d, 1)

model, various different sets of sufficient parameter constraints for the conditional

variance to be strictly positive are discussed in the literature. Baillie et al. (1996)

imposed the conditions ω > 0, 0 ≤ β1 ≤ φ1 +d and 0 ≤ d ≤ 1−2φ1. Bollerslev and

Mikkelsen (1996) state the following sufficient conditions β1 − d ≤ φ1 ≤ (2 − d)/3

and d(φ1 − (1 − d)/2) ≤ β1 (φ1 − β1 + d). Chung (1999) suggests another set of

sufficient constraints which is given by 0 ≤ φ1 ≤ β1 ≤ d < 1. More recently, Conrad

and Haag (2006) have proposed less restrictive constraints. As denoted by them, the

parameters of the polynomial ψ(L) can be derived recursively as ψ1 = φ1 − β1 + d

and ψ j = β1ψ j−1 +
(

f j − φ1

) (

−g j−1

)

for all j > 1, where f j = ( j − 1 − d) /j

and g j = f j g j−1 with g0 = 1. The set of necessary and sufficient conditions of

Conrad and Haag (2006) are stated as: case (1) 0 < β1 < 1, either ψ1 ≥ 0 and

φ1 ≤ f2 or ψ j−1 ≥ 0 and f j−1 < φ1 ≤ f j for j > 2; case (2) −1 < β1 < 0,

either ψ1 ≥ 0, ψ2 ≥ 0 and φ1 ≤ f2(β1 + f3)/(β1 + f2) or ψ j−1 ≥ 0, ψ j−2 ≥ 0 and

f j−2(β1 + f j−1)/(β1 + f j−2) < φ1 ≤ f j−1(β1 + f j )/(β1 + f j−1) for j > 3. The

conditions of Conrad and Haag (2006) are necessary and sufficient for the non-nega-

tivity of the process and allow the model for more flexibility to capture the dynamics

in the conditional variance.

3 Fractionally integrated time varying GARCH model

As mentioned above, there are motivations from the recent econometric literature

on financial time series to allow for both long memory and structural change in the

volatility process. Hence, the main focus of this study is to take account for the co-

existence of long memory and structural change in the conditional volatility. To this

end, we extend the FIGARCH model of Baillie et al. (1996) by allowing the con-

ditional variance parameters to change over time. Changing of the parameters can

be done using smooth transition function. Smooth transition has been used in recent

studies to describe nonlinearity or structural change phenomena in the volatility pro-

cesses. Hagerud (1997), Gonzalez-Rivera (1998), and Anderson et al. (1999) have

discussed the smooth transition GARCH (ST-GARCH), as a nonlinear version of

the GARCH process, to model the asymmetric behaviour of the conditional vari-

ance. Amado and Teräsvirta (2008) considered the time varying parameter GARCH

(TV-GARCH) model for modeling structural change in the volatility process. The

TV-GARCH(p, q) model of Amado and Teräsvirta (2008) allows the parameters of

the GARCH(p, q) model to change with the time. It is defined as

yt = µt + εt

εt = ηtσt , ηt ∼ N (0, 1)

where µt is the conditional mean of the innovations εt , assumed to be equal to zero

in Amado and Teräsvirta (2008) in order to focus only on the conditional variance σ 2
t

which can have either an additive form as

σ 2
t = ht + gt (10)
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or a multiplicative form as

σ 2
t = ht gt (11)

where ht follows the standard GARCH(p, q) model

ht = ω1 + α1(L)ε
2
t + β1(L)ht

with α1(L) = α1,1L + · · · + α1,q Lq , β1(L) = β1,1L + · · · + β1,p L p, and gt is the

time-varying component of the conditional variance σ 2
t . For the additive structure in

(10), the function gt can be defined as

gt =
(

ω2 + α2(L)ε
2
t + β2(L)ht

)

F(t∗; γ, c)

with α2(L) = α2,1L + · · · + α2,q Lq , β2(L) = β2,1L + · · · + β2,p L p, F(t∗; γ, c) is

a logistic smooth transition function defined as

F(t∗; γ, c) =

(

1 + exp

{

−γ

K
∏

k=1

(t∗ − ck)

})−1

, (12)

γ > 0, c1 ≤ c2 ≤ · · · ≤ cK .

where the transition variable is the standardized time variable t∗ = t/T and T is

the sample size. The transition function F(t∗; γ, c) is a continuous function bounded

between 0 and 1. The parameter γ corresponds to the speed of transition between

the two regimes, while the parameter ck , known as the threshold parameter, indicates

when, in the range of t , the transition takes place.

The most common choices of K in the logistic transition function (12) are K = 1

and K = 2. For K = 1, the logistic function F changes from 0 to 1 as t increases.

The smoothness parameter, γ , measures the slope of the logistic function and, there-

fore, governs the speed with which the transition between regimes takes place. As γ

increases, the logistic function approaches to the indicators function I [t∗ > c1] that

takes up basically two values; I (·) = 1 if argument is true and I (·) = 0 otherwise.

As a result the transition between regimes happens instantaneously when t∗ = c1.

For K = 2, the logistic function F changes symmetrically around the mid-point

(c1 + c2)/2 where this logistic function attains its minimum value. The minimum lies

between 0 and 1/2, reaching 0 when γ → ∞ and equaling 1/2 when c1 = c2 and

γ < ∞.

For the multiplicative case, Amado and Teräsvirta (2008) note that when assuming

ω2 = δω1, α2,i = δα1,i and β2, j = δβ1, j for i = 1, . . . , q and j = 1, . . . , p, and

setting gt = (1 + F(t∗; γ, c)) in (11), the model can be seen as a particular case of

the additive model in (10).

Recent studies have used the smooth transition approach for jointly modeling

long memory and nonlinearity in time series, see van Dijk et al. (2002) and Ajmi

et al. (2008) among others. Following Amado and Teräsvirta (2008), we extend the
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FIGARCH model by assuming that the conditional variance parameters of this model

vary smoothly over time. The main objective of this model is to take account for

both long memory and smooth structural change in the volatility process. To this end,

we adopt an additive decomposition of the conditional variance in the FIGARCH

model. The conditional variance will be decomposed into two components. The first

follows the standard FIGARCH process and the second is a time varying component.

Assume for simplicity that µ = 0, the new Fractionally Integrated Time Varying

GARCH(p, d, q) (FITVGARCH(p, d, q)) model can be defined as

yt = εt (13)

εt = ηt h
1/2
t , ηt ∼ N (0, 1) (14)

[1 − φt (L)](1 − L)dε2
t = ωt + [1 − βt (L)]vt (15)

whereωt =ω1 +ω2 F(t∗; γ, c), φt (L)=φ1(L)+φ2(L)F(t
∗; γ, c);φ1(L)=φ1,1L +

· · · + φ1,q Lq , φ2(L)=φ2,1L + · · · + φ2,q Lq , βt (L)=β1(L) + β2(L)F(t
∗; γ, c);

β1(L)=β1,1L + · · · + β1,p L p and β2(L)=β2,1L + · · · + β2,p L p. We assume that

the roots of the polynomials [1 − φt (L)] and [1 − βt (L)] are outside the unit circle

for all t . This implies that [1 − φt (1)] > 0 and [1 − βt (1)] > 0. With K = 1, the

parameters of the FIGARCH model change smoothly over time from (ω1, φ1,i , β1, j )

to (ω1 + ω2, φ1,i + φ2,i , β1, j + β2, j ), i = 1, . . . , q, j = 1, . . . , p. The transi-

tion between regimes happens instantaneously when t∗ = c1. When γ → 0, the

FITVGARCH(p, d, q)model in (15) nests the FIGARCH(p, d, q)model in (5) since

the logistic transition function becomes constant and equal to 1/2. As for the FIGARCH

model, the fractional parameter d is assumed to be in the interval [0,1]. However, unlike

the FIGARCH process, the FITVGARCH process is not strictly stationary, due to the

time varying parameters. Noting that (15) is the ARFIMA representation of the squared

errors ε2
t , and it is the time varying version of (5). After Rearrangement of terms in

(15), an alternative representation for the FITVGARCH(p, d, q) model is

[1 − βt (L)]ht = ωt +
[

1 − βt (L)− (1 − φt (L))(1 − L)d
]

ε2
t (16)

Then, the conditional variance of the FITVGARCH(p, d, q)model is given by the

following ARCH representation

ht = ωt [1 − βt (L)]
−1 +

{

1 − [1 − βt (L)]
−1(1 − φt (L))(1 − L)d

}

ε2
t

= ω̃t +

∞
∑

j=1

ψ j,tε
2
t− j (17)

Similarly to the FIGARCH model, conditions on the parameters of the FITV-

GARCH process have to be imposed to guarantee that the conditional variance is

positive almost surely for all t . To this end, we assume that all the time varying

parameters in the infinite ARCH representation (17) are positive for all t ; i.e., ω̃t ≥ 0

and ψ j,t ≥ 0, for j = 1, 2, . . ., and for t = 1, . . . , T . For a FITVGARCH(1, d, 1)
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model, and following Conrad and Haag (2006) for the FIGARCH(1, d, 1) model,

we can derive recursively the ARCH(∞) time varying coefficients in (17) as ψ1,t =

φ1,t − β1,t + d and ψ j,t = β1,tψ j−1,t +
(

f j − φ1,t

) (

−g j−1

)

for all j > 1. ψ1,t ≥ 0

impliesφ1,t−β1,t+d ≥ 0. Ifβ1,t ≥ 0 andφ1,t ≤ f2 it follows recursively thatψ j,t ≥ 0

for all j > 1 since g j−1 ≤ 0 and φ1,t ≤ f j because f j is increasing. Thus, to guar-

antee that the conditional variance remains non-negative almost surely for all t , it is

sufficient to impose the conditions ωt ≥ 0, 0 ≤ β1,t ≤ φ1,t + d and φ1,t ≤ (1 − d)/2,

i.e. ω1 +ω2 F(t∗; γ, c) ≥ 0, 0 ≤ β1,1 +β2,1 F(t∗; γ, c) ≤ φ1,1 +φ2,1 F(t∗; γ, c)+ d

and φ1,1 + φ2,1 F(t∗; γ, c) ≤ (1 − d)/2. As F(t∗; γ, c) is increasing function and

bounded between 0 and 1, the sufficient conditions can be stated asω1 ≥ 0, ω1 +ω2 ≥

0, 0 ≤ β1,1 ≤ φ1,1 + d, 0 ≤ β1,1 + β2,1 ≤ φ1,1 + φ2,1 + d, φ1,1 ≤ (1 − d)/2 and

φ1,1 + φ2,1 ≤ (1 − d)/2.

The conditional variance of the FITVGARCH(p, d, q)model in (16) can be written

as

ht = ω1 +
[

1 − β1(L)− (1 − φ1(L))(1 − L)d
]

ε2
t + β1(L)ht

+
(

ω2 + [φ2(L)(1 − L)d − β2(L)]ε
2
t + β2(L)ht

)

F(t∗; γ, c) (18)

Note that if d = 0, (18) is reduced to the TV-GARCH model discussed in Amado

and Teräsvirta (2008).

The FITVGARCH model can be considered as a regime switching model char-

acterizing two extreme regimes, each associated with one of the two extreme values

of the transition function F(·) = 0 and F(·) = 1. The transition between these two

regimes is allowed to be smooth and is governed by the transition variable t∗. For

K = 1, it is easy to see that if γ = 0, the transition function F(·) become equal to
1
2 and the FITVGARCH model in (18) reduces to the FIGARCH model in (7) where

(ω, φ′, β ′)′ = (ω1, φ
′
1, β

′
1)

′ + 1
2 (ω2, φ

′
2, β

′
2)

′. This new long memory model is capa-

ble of generating instability in the volatility structure, which makes it an interesting

tool for modeling financial market time series, exhibiting jointly long memory and

structural change in their dynamic properties over time. Before fitting a specific time

varying equation to the conditional variance in the FIGARCH model for volatility, it

is common practice first to test whether this specification can be suitable for the data.

4 Testing parameter constancy

Testing parameter constancy is an important tool to check the adequacy of a model with

parameter stability. The assumption of parameter constancy implies that the model’s

parameters remain constant across the estimation period. In the statistical and econo-

metric literature, the maintained hypothesis of parameter stability has been tested both

against specified and unspecified forms of alternative hypothesis. From unspecified

alternative tests, see for example the CUSUM tests of Brown et al. (1975). Alterna-

tively, parameter stability tests can be designed against a specified form. An example

of specific alternative is that developed by Eitrheim and Teräsvirta (1996) for the

STAR model. In this section, we propose an LM-type test for parameter constancy
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in the FIGARCH model, which explicitly allows the parameters to change smoothly

over time based on the additive structure as specified in Sect. 3. If the null hypothesis

of parameter constancy against smoothly changing parameters is rejected, one can

conclude that the structure of the conditional variance of the process is changing over

time.

The null hypothesis of parameter constancy can be expressed as equality of the

FIGARCH parameters in the two regimes. As in Lin and Teräsvirta (1994); Eitrheim

and Teräsvirta (1996), the alternative hypothesis is that the parameters may change

smoothly over time. Thus, the null hypothesis can be stated as H0 : γ = 0 against

alternative hypothesis H1 : γ > 0. Testing for parameter constancy is complicated

because of the existence of unidentified nuisance parameters under the null hypothesis

H0. More explicitly, when γ = 0, F(t∗; γ, c) = 1/2. This makes the parameters γ

and c not identified in (18) when the null hypothesis is valid. The identification prob-

lem is circumvented, following Luukkonen et al. (1988), using a Taylor expansion

for the transition function about γ = 0. From a first-order Taylor approximation we

obtain

F1(t
∗; γ, c) = F(t∗; 0, c)+ γ

∂F(t∗; γ, c)

∂γ

∣

∣

∣

∣

γ=0

+ R1(t
∗; γ, c)

=
1

2
+

1

4
γ

K
∏

k=1

(t∗ − ck)+ R1(t
∗; γ, c) (19)

where R1(t
∗; γ, c) is a remainder term. It is easy to see that (19) can be expressed as

F1(t
∗; γ, c) =

1

2
+

K
∑

k=0

γ c∗
k t∗k + R1(t

∗; γ, c) (20)

where c∗
k , k = 0, . . . , K − 1, are functions of the parameters c1, . . . , cK , c∗

K = 1
4 .

Replacing F(t∗; γ, c) in (18) by F1(t
∗; γ, c) in (20) gives

ht = ω∗ + [1 − β∗(L)]ε2
t − [1 − φ∗(L)]et + β∗(L)ht

+

K
∑

k=1

(

δk t∗k + ϕk(L)et t
∗k + λk(L)(ht − ε2

t )t
∗k

)

+ R∗
1,t (21)

where

et = (1 − L)dε2
t ;

ω∗ = ω1 +

(

1

2
+ γ c∗

0

)

ω2;

β∗(L) = β1(L)+

(

1

2
+ γ c∗

0

)

β2(L);

φ∗(L) = φ1(L)+

(

1

2
+ γ c∗

0

)

φ2(L);
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δk = γ c∗
kω2, k = 1, . . . , K .

ϕk(L) = γ c∗
kφ2(L), k = 1, . . . , K .

λk(L) = γ c∗
kβ2(L), k = 1, . . . , K .

R∗
1,t =

(

ω2 + φ2(L)et + β2(L)(ht − ε2
t )

)

R1(t
∗; γ, c)

with ϕk = (ϕk,1, . . . , ϕk,q)
′ and λk = (λk,1, . . . , λk,p)

′, k = 1, . . . , K . It is clear that

under H0 : γ = 0, the parameters δk, ϕk,i and λk, j , for i = 1, . . . , q and j = 1, . . . , p,

become equal to zero. Thus, the null hypothesis H0 can be written equivalently as

H ′
0 : δk =ϕk,i = λk, j = 0. Under the null hypothesis of parameter constancy, R∗

1,t = 0,

such that this remainder does not affect the distribution theory. Under H0 the FITV-

GARCH model reduces to a simple FIGARCH model.

Given that εt |I
t−1 ∼ N (0, ht ), in (21), where I t−1 is the information set at time

t − 1, the conditional normal quasi log-likelihood function for observation t is given

by

lt (θ) = −
1

2
log(2π)−

1

2
log(ht )−

1

2

ε2
t

ht

(22)

where θ = (θ ′
1, θ

′
2)

′, such that under H ′
0, θ2 = 0. Let θ1 = (ω∗, φ∗′, β∗′, d)′ and

θ2 = (θ ′
2,1, . . . , θ

′
2,K )

′ where θ2,k = (δk, ϕ
′
k, λ

′
k)

′, k = 1, . . . , K . The first order partial

derivative of the conditional quasi log-likelihood function in (22), at time t , with

respect to θ is

∂lt (θ)

∂θ
=

1

2

(

ε2
t

ht

− 1

)

1

ht

(

z1,t

z2,t

)

(23)

where z1,t = 1
ht

∂ht

∂θ1
and z2,t = 1

ht

∂ht

∂θ2
.

This test can be carried out using standard LM test. Under H0, the LM type statistic

is defined as

L M =
1

2

(

T
∑

t=1

ût ẑ
′
2,t

)

A
−1
T

(

T
∑

t=1

ût ẑ2,t

)

, (24)

where

AT =

T
∑

t=1

ẑ2,t ẑ
′
2,t −

T
∑

t=1

ẑ2,t ẑ
′
1,t

(

T
∑

t=1

ẑ1,t ẑ
′
1,t

)−1 T
∑

t=1

ẑ1,t ẑ
′
2,t ,

ût =

(

ε̂2
t

ĥ0
t

− 1

)

, ẑ1,t = 1

ĥ0
t

∂ ĥt

∂θ1

∣

∣

∣

H0

and ẑ2,t = 1

ĥ0
t

∂ ĥt

∂θ2

∣

∣

∣

H0

.
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Under H ′
0, the partial derivatives of the conditional variance ht in (21) with respect

to θ1 are

∂ ĥt

∂θ1

∣

∣

∣

∣

∣

H0

= (ŵ′
t , x̂t )

′ +

p
∑

j=1

β̂∗
j

∂ ĥt− j

∂θ1

∣

∣

∣

∣

∣

H0

(25)

where ŵt =
(

1, êt−1, . . . , êt−q ,

(

ĥt−1 − ε̂2
t−1

)

, . . . ,

(

ĥt−p − ε̂2
t−p

))′
, êt = (1 −

L)d̂ε2
t and x̂t =

∑t−1
j=1

êt− j

j
−

∑q
i=1

∑t−i−1
n=1 φ∗

i
êt−i−n

n
.

The partial derivatives of ht , under H ′
0, with respect to the parameters vector θ2 are

given by a vector of the partial derivative of ht with respect to each parameter in θ2

∂ ĥt

∂θ2

∣

∣

∣

∣

∣

H0

=

(

(

ŵt t
∗
)′
,

(

ŵt t
∗2

)′
, . . . ,

(

ŵt t
∗K

)′
)′

+

p
∑

j=1

β̂∗
j

∂ ĥt− j

∂θ2

∣

∣

∣

∣

∣

H0

(26)

The proofs of (24)–(26) are provided in the Appendix A.

The partial derivatives of lt with respect to θ , under the null hypothesis H0, are

given by

∂ l̂t (θ)

∂θ

∣

∣

∣

∣

∣

H0

=
1

2

(

ε̂2
t

ĥ0
t

− 1

)

(

ẑ1,t

ẑ2,t

)

(27)

In practice, the LM test of parameter constancy may be carried out using the fol-

lowing steps:

1. Estimate the parameters of the conditional variance under the null hypothesis and

compute ût =

(

ε̂2
t

ĥ0
t

− 1

)

, t = 1, . . . , T , and the sum of squares SSR0 =
∑T

t=1 û2
t .

2. Regress ût on ẑ1,t and ẑ2,t , t = 1, . . . , T and compute the sum of squared residuals

SS R1.

3. Compute the L M test statistic as

L MK = T
SS R0 − SS R1

SS R0

Under the null hypothesis, the statistic L MK of parameter constancy test is χ2

distribution with K (p + q + 1) degrees of freedom.

5 Size and power

In order to examine the empirical size and the power of the LM type test for parameter

constancy in the finite sample we perform a set of Monte-Carlo experiments. We gener-

ate time series from FIGARCH model in (7) and time series from FITVGARCH model
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Table 1 Empirical size of the parameter constancy test

d β1 φ1 Nominal
size (%)

T = 1,000 T = 2,000 T = 3,000

L M1 L M2 L M3 L M1 L M2 L M3 L M1 L M2 L M3

0.25 0.35 0.15 1 0.9 1.6 2.1 1.3 1.3 1.8 1.9 1.3 2.0

5 6.7 7.6 8.5 7.2 6.7 6.9 7.3 7.6 7.1

10 12.9 12.9 13.9 12.1 12.8 11.8 12.5 15.4 12.8

0.5 0.2 −0.15 1 1.7 2.3 1.5 2.2 2.1 1.7 1.4 1.6 1.9

5 7.4 7.2 8.0 6.2 6.8 8.1 6.3 7.1 6.5

10 14.2 13.8 13.7 12.8 12.0 13.0 13.8 14.2 14.2

0.75 0.2 −0.15 1 1.0 1.6 1.2 1.6 1.4 1.7 0.9 1.4 1.3

5 5.0 7.1 6.5 5.6 5.9 5.6 5.4 5.7 5.1

10 11.5 12.8 12.2 11.8 10.5 11.5 13.0 11.1 10.5

Note: The table contains rejection frequencies of the null hypothesis of parameter constancy of the LM-
type test where L MK , K = 1, 2 and 3, denotes the LM-type test based on the K th order logistic smooth
transition regression. The data are generated by the DGP 1

in (18). The sample sizes for each model are T = 1,000,T = 2,000 and T = 3,000.

The number of replications for each model is set equal to 1,000. The testing procedure

discussed above is made for these simulated time series with K = 1, 2 and 3.

The data generating processes are:

DGP 1: FIGARCH(1, d, 1)model in (5) withµ= 0, d = {0.25, 0.5, 0.75}, ω= 0.1,

β1 = {0.2, 0.35}, φ1 = {−0.15, 0.15}.

DGP 2: FITVGARCH(1, d, 1) model in (18) with d = {0.25, 0.5, 0.75}, ω1 = 0.1,

β1,1 = {0.2, 0.35, 0.7}, φ1,1 = {−0.15, 0.1, 0.15}, ω2 = {−0.05, 0, 0.2}

β2,1={−0.3,−0.1, 0}, φ2,1={−0.1, 0, 0.2, 0.25}, c = 0.5, γ={10, 20, 50}.

The empirical sizes of the test are reported in Table 1 which contains the rejection

frequencies of the null hypothesis of parameter constancy by the χ2 version of the

LM-type test, at nominal sizes 1, 5, and 10%, where the data are generated by the

DGP 1. It is clear from the simulation results that the empirical sizes of the test are

reasonably close to the nominal levels for all parameter combinations examined, for all

sample sizes T and for all K . It is interesting to notice that there is no general tendency

for the empirical size to deviate from the nominal size when increasing the sample

size or changing K . However, we can note that the empirical sizes are improved when

increasing d from 0.5 to 0.75.

Table 2 shows rejection frequencies, for series generated by the DGP 2. To conserve

space, we report the empirical power only at 5% of significance. For d = 0.25, we

investigate the cases of a change in one parameter, in two parameters or in the three

parameters of the conditional variance. The power of the test when there is a change

in β is higher than the cases of a change in ω or in φ. It seems that the test is very

powerful when there is a change in the two parameters β and φ and that the power

is negatively affected by allowing for a change in ω. For d = 0.5, the test is less

powerful but when increasing d to 0.75, the power increases. It is clear that the power
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Table 2 Empirical power of the parameter constancy test

ω2 β2 φ2 γ T = 1,000 T = 2,000 T = 3,000

L M1 L M2 L M3 L M1 L M2 L M3 L M1 L M2 L M3

d = 0.25, β1,1 = 0.35, φ1,1 = 0.15

0.2 0 0 10 35.2 27.5 23.7 60.5 47.9 43.3 75.4 63.8 59.6

20 38.6 31.2 27.6 65.7 53.6 53.2 80.4 70.7 70.8

50 39.1 30.7 28.5 65.3 52.6 53.5 80.4 70.5 72.2

0 −0.3 0 10 60.7 48.9 45.9 90.2 81.7 77.6 98.4 95.0 93.7

20 71.0 57.4 55.4 95.3 90.7 87.6 99.7 98.2 97.7

50 73.9 60.3 60.6 96.4 92.0 90.8 99.7 99.0 99.0

0 0 0.2 10 31.8 24.8 24.2 54.8 41.4 38.8 74.4 61.8 57.0

20 36.9 28.0 27.8 62.2 50.1 48.1 82.4 72.2 69.3

50 37.8 29.5 29.5 64.9 53.2 51.9 84.2 74.6 73.6

0.2 −0.3 0 10 56.4 43.5 38.5 85.6 75.2 70.8 96.7 91.9 89.5

20 64.8 51.4 47.9 91.1 85.0 83.2 98.5 96.4 96.6

50 67.0 54.3 51.8 91.9 86.8 87.1 98.7 97.1 97.8

0.2 0 0.2 10 50.5 40.4 35.5 79.9 68.8 63.6 93.1 85.8 82.2

20 58.7 47.6 43.5 86.8 77.7 74.8 96.3 92.0 91.5

50 59.2 47.4 46.0 88.3 78.4 79.6 96.3 92.7 93.8

0 −0.3 0.2 10 94.4 89.5 86.2 100 100 99.6 100 100 100

20 97.5 94.3 93.7 100 100 100 100 100 100

50 98.0 95.4 95.5 100 100 100 100 100 100

0.2 −0.3 0.2 10 84.9 74.3 70.1 99.2 98.0 96.6 100 99.9 99.9

20 91.4 83.2 83.9 99.8 99.6 99.6 100 100 100

50 92.7 85.1 87.2 100 99.7 99.7 100 100 100

d = 0.5, β1,1 = 0.2, φ1,1 = −0.15

0.2 −0.1 0.25 10 58.9 46.6 41.6 88.3 78.6 74.4 96.9 92.4 90.5

20 68.5 55.3 50.7 94.2 87.3 85.7 99.1 96.7 95.7

50 72.1 57.3 56.0 95.1 88.8 88.5 99.4 97.9 96.8

d = 0.75, β1,1 = 0.2, φ1,1 = −0.15

0.2 −0.1 0.25 10 64.8 52.3 47.7 92.8 83.8 81.0 98.7 96.4 95.5

20 74.2 61.4 58.3 96.6 93.0 91.2 99.9 98.9 98.6

50 76.5 63.9 63.3 97.3 94.3 93.9 100 99.4 99.0

d = 0.75, β1,1 = 0.7, φ1,1 = 0.1

−0.05 −0.3 −0.1 10 77.9 69.3 64.7 97.3 93.0 91.8 99.4 99.1 98.5

20 84.5 78.3 76.8 98.3 96.6 97.1 99.8 99.7 99.7

50 86.1 80.5 80.5 98.7 97.9 98.0 99.8 99.7 99.7

Note: The table contains rejection frequencies of the null hypothesis of parameter constancy of the
LM-type test where L MK , K = 1, 2 and 3, denotes the LM-type test based on the K th order logistic
smooth transition regression. The data are generated by the DGP 2
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of the test depends on the values of the parameters. The results prove also that the test

becomes more powerful as the sample size and γ increase. For example, the results

in the last panel of Table 2 indicate that with K = 1 and γ = 20, and by increasing

the sample size T from 1,000 to 2,000 and to 3,000 improves the power from 84.5 to

98.3 and to 99.8%, respectively. Similarly, for K = 1 and T = 2, 000, the power of the

test increases from 97.3% for γ = 10 to 98.3% for γ = 20 and to 98.7% for γ = 50. It

should be noted that as expected L M1 is more powerful than L M2 and L M3 versions.

This is explained by the fact that the parameter change is monotonic since K = 1 in the

DGP 2. It is to note that the DGP produces nonmonotonic symmetrical change when

K = 2 and nonmonotonic and nonsymmetrical change when K = 3. In summary, the

simulations indicate that both empirical size and power of the constancy test are quite

good.

6 Estimation

The most widely used estimation method for FIGARCH model is the Quasi Maxi-

mum Likelihood (QML) estimation procedure. As shown by Baillie et al. (1996) and

Bollerslev and Wooldridge (1992), the QML estimates obtained with the assump-

tion that the innovations are normally distributed behave relatively well. Following

Bollerslev and Wooldridge (1992) and Baillie et al. (1996), we propose the QML

procedure to estimate the FITVGARCH model. Consequently, the estimates for the

parameters may be obtained by maximizing the following Gaussian log-likelihood

function

l(θ) = −
T

2
log 2π −

1

2

T
∑

t=1

[

log(ht )+
ε2

t

ht

]

(28)

where θ = (ω1, φ
′
1, β

′
1, ω2, φ

′
2, β

′
2, c, γ, d)′ is the parameter vector of the FITV-

GARCH model defined in (18). Because of the positive value of the fractional differ-

encing parameter d, it is required to use a sufficiently high truncation lag order. Indeed,

as shown by Teyssière (1997) through Monte Carlo simulations, using a too low order

induces severe biases. To keep this estimation problem aside, the truncation order of

the infinite polynomial (1 − L)d is set to 1000 lags. Following Baillie et al. (1996),

the pre-sample values of squared innovations, for t = 0,−1,−2, . . . ,−1,000, are set

equal to the sample unconditional variance of the process. Baillie et al. (1996) suggest

that pre-sample values might be expected to have a bigger impact than with stationary

GARCH processes. Finally, starting values for the parameters must be fixed in the

optimization procedure. As mentioned above, the most common choices of K in the

logistic transition function (12) are K = 1 and K = 2. For simplicity we only focus in

our study on the case of K = 1. Then, the logistic transition function in (12) becomes

F(t∗; γ, c) =
[

1 + exp
{

−γ (t∗ − c)
}]−1

, γ > 0 (29)
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Let us now move to the estimation of the variance–covariance matrix of the param-

eters. Under certain regularity conditions, the asymptotic distribution of the QMLE is

T 1/2(θ̂ − θ0) ∼ N (0,C) (30)

where θ0 denotes the true parameter vector. In the literature, there are three most

widely used estimation methods of the asymptotic covariance matrix C . The first, as

suggested by Efron and Hinkley (1978), is based on the estimates of the Hessian matrix

ÂT evaluated at the maximum likelihood estimated parameter vector θ̂ , namely

ĈHE = Â−1
T (31)

where

ÂT = −
1

T

T
∑

t=1

∂2lt (θ̂)

∂θ̂∂θ̂ ′
(32)

with lt (θ) is the log likelihood function at time t .

The second is based on the outer product of the gradient B̂T suggested by Berndt

et al. (1974).

ĈOP = B̂−1
T (33)

where

B̂T =
1

T

T
∑

t=1

ĝt ĝ
′
t (34)

where ĝt is the gradient of the log likelihood function evaluated at θ̂ .

ĝt =
∂lt (θ̂)

∂θ̂
(35)

The last estimator is known as the Quasi Maximum Likelihood Estimator (QMLE)

(White (1982))

ĈQMLE = Â−1
T B̂T Â−1

T (36)

As it is clear from the different estimation methods of the covariance matrix of the

parameters, first and second partial derivatives of the log likelihood function of the

FITVGARCH model in (18) must be computed. Consider the log likelihood function

at time t .

lt (θ) = −
1

2
log(2π)−

1

2
log(ht )−

1

2

ε2
t

ht

, (37)
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the first partial derivative of lt (θ) with respect to the parameter vector θ is given by

∂lt (θ)

∂θ
=

1

2

(

ε2
t

ht

− 1

)

1

ht

∂ht

∂θ
(38)

The partial derivatives of the conditional variance to build the outer product of gradient

matrix are contained in Appendix B.

The asymptotic properties of the QMLE for the ARCH and GARCH models have

been studied under various conditions. Lee and Hansen (1994) and Lumsdaine (1996)

proved consistency and asymptotic normality of the QMLE for the GARCH(1,1) where

the process is strictly stationary and ergodic. Berkes et al. (2003) shows consistency

and asymptotic normality of QMLE for the general strictly stationary and ergodic

GARCH(p,q) model.

Jensen and Rahbek (2004) proved consistency and asymptotic normality of the

GARCH(1,1) even when the process is nonstationary and nonergodic. Formal results

of the asymptotic properties of QMLE for the FIGARCH model are not yet avail-

able. However, empirical evidence for the FIGARCH process, based on Monte Car-

lo simulation, suggests that QMLE is consistent and asymptotically normal (see,

for example, Baillie et al. (1996)). The formal proofs of the asymptotic proper-

ties of QMLE for the FIGARCH process as well as for the FITVGARCH process

are beyond the scope of this paper. However, in order to assess the adequacy of

this estimation method for the FITVGARCH process, we performed a simulation

study where the model is simulated with FITVGARCH(1, d, 1) model in (18) with

d = {0.25, 0.5, 0.75}, ω1 = 0.1, β1,1 = {0.2, 0.35}, φ1,1 = {−0.15, 0.15}, ω2 =

0.2, β2,1 = {−0.3,−0.1}, φ2,1 = {0.2, 0.25}, c = 0.5, γ = 20. We have generated

1,000 replications for each design. The sample sizes are T = 1,000, 2,000, and 3,000.

We report in Table 3 the simulation results of estimating the long memory parameter

and the threshold parameter, which determines the date of the structural change, from

the FITVGARCH model. We present the average bias, the root mean squared errors

(RMSE) as well as the average of the standard error (SE) for each parameter. The

simulations indicate that both long memory parameter and threshold parameter are

estimated very well by the QMLE method. Indeed, the results suggest a very small

bias in both parameters. The bias in the differencing parameter is negative only for the

first parameter design, that is, when d is equal to 0.25 and positive when d increases to

0.5 and 0.75. Interestingly, the simulation results indicate that the long memory param-

eter is slightly overestimated, especially when is large and that the bias is decreasing,

in absolute value, with the sample size T . The bias of c is usually negative which

suggests that the QMLE method slightly underestimates the threshold parameter.

Both RMSE and SE of the differencing parameter estimates tend to decrease as

the sample size increases. For the threshold parameter, there is slight improvement in

term of RMSE when T increases. Hence, the quality of the application of the QMLE

is generally very satisfactory, in that the degree of persistence and de location of the

change are correctly estimated. To check the effect of ignoring structural change on

long memory parameter estimates, we report in Table 4 the simulation results of esti-

mating the long memory parameter from the standard FIGARCH model when the data

are generated using the FITVGARCH process. For d = 0.25, we investigate the cases
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of a change in one parameter, in two parameters or in the three parameters of the con-

ditional variance. The results indicate that d frequently exhibits a negative bias, except

when there is only a change in the constant parameter or in the ω and φ parameters. In

these cases, the bias is positive, increasing with the sample size, and is more important

in the case of only a change in ω. This upward bias in long memory parameter esti-

mates seems to be caused by neglecting structural change in the constant parameter.

This finding is consistent with the results in Baillie and Morana (2009) in that their

simulations also suggest an upward bias in the differencing parameter estimated from

the FIGARCH model when generating the data by the A-FIGARCH model, in which

only the constant parameter is subject to structural change. However, it is important

to note that no additional persistence is detected when allowing for structural change

in the constant parameter jointly with a change in the β parameter. The same result

holds when allowing for a change only in β parameter and/or in the φ parameter. In

these cases the bias is very small and decreasing, in absolute value, with T . It is also

to be mentioned that when allowing for structural change in all parameters leads to a

downward bias in estimates of the differencing parameter, but the bias is decreasing, in

absolute value, as the sample size increases. For d = 0.5 and d = 0.75, the simulation

results suggest a very small positive bias for d = 0.5 and negative one for d = 0.75.

Comparing the simulation results of estimating d from Tables 3 and 4 reveals that

the bias is very small for both models, with slightly higher bias, in absolute value,

for the FIGARCH model than for the FITVGARCH model when d is equal to 0.25.

In term of RMSE, the results indicate that both models give almost the same RMSE

of long memory parameter estimates in all cases. However, the SE of the estimate

of d is generally lower from the estimation of the FITVGARCH model compared to

the corresponding FIGARCH model. Hence, the FITVGARCH model seems to work

quite well in modeling both long memory and structural change in time series.

Table 3 Simulation results of estimating the FITVGARCH(1,d,1) model

d β1,1 φ1,1 ω2 β2 φ2 T d̂ ĉ

Bias RMSE SE Bias RMSE SE

0.25 0.35 0.15 0.2 −0.3 0.2 1,000 −0.033 0.103 0.077 −0.016 0.199 0.090

2,000 −0.015 0.062 0.052 −0.026 0.193 0.131

3,000 −0.010 0.048 0.042 −0.017 0.182 0.111

0.5 0.2 −0.15 0.2 −0.1 0.25 1,000 0.039 0.126 0.103 −0.007 0.215 0.140

2,000 0.025 0.078 0.067 −0.025 0.204 0.128

3,000 0.019 0.060 0.051 −0.012 0.206 0.143

0.75 0.2 −0.15 0.2 −0.1 0.25 1,000 0.035 0.088 0.082 −0.019 0.214 0.152

2,000 0.016 0.055 0.052 −0.029 0.210 0.129

3,000 0.011 0.043 0.041 −0.012 0.210 0.145

Note: The table reports the average bias, the root mean squared errors (RMSE) and the average of the
standard error (SE) of the QMLE of the estimates of d and c from the FITVGARCH(1,d,1) model. Simula-
tions are based on 1,000 replications generated from the FITVGARCH(1,d,1) model in (18). In all cases,
ω1 = 0.1,c = 0.5, and γ = 20. The sample sizes are T = 1,000, 2,000 and 3,000
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7 Misspecification tests

The final stage of specifying the FITVGARCH model consists on evaluating it using

misspecification tests. In this section, we focus on testing serial dependence in the

squared standardized errors. We use the test proposed by Lundbergh and Teräsvirta

(2002) as a parametric LM type tests of no ARCH in standardized errors. To describe

the test we assume that the misspecification structure in the FITVGARCH model has

the additive form

ht = ω1 + [1 − β1(L)− (1 − φ1(L))(1 − L)d ]ε2
t + β1(L)ht

+
(

ω2 + [φ2(L)(1 − L)d − β2(L)]ε
2
t + β2(L)ht

)

F(t∗; γ, c)

+π ′νt (39)

where νt = (η2
t−1, . . . , η

2
t−r )

′ and π = (π1, . . . , πr )
′. The null hypothesis of no serial

dependence in η2
t up to the r th order is defined as H0 : π1 = π2 = · · · = πr = 0.

Under H0, the LM type statistic is defined as in (24) where ût =

(

ε̂2
t

ĥ0
t

− 1

)

, ẑ1,t =

1

ĥ0
t

∂ ĥt

∂θ

∣

∣

∣

H0

, θ = (θ ′
1, θ

′
2, c, γ, d)′, θ1 = (ω1, φ

′
1, β

′
1)

′, θ2 = (ω2, φ
′
2, β

′
2)

′ and

ẑ2,t =
1

ĥ0
t

∂ ĥt

∂π

∣

∣

∣

∣

∣

H0

=
1

ĥ0
t



(η̂2
t−1, . . . , η̂

2
t−r )

′ +

p
∑

j=1

[

β̂1, j + β̂2, j F(t∗; γ̂ , ĉ)
] ∂ ĥt− j

∂π

∣

∣

∣

∣

∣

H0





The LM test for r th order serial dependence in the squared standardized errors can

be performed in three stages as follows:

1. Estimate the parameters of the FITVGARCH model under the null hypothesis and

compute ût = (
ε̂2

t

ĥ0
t

− 1), t = 1, . . . , T , and the sum of squares SS R0 =
∑T

t=1 û2
t .

2. Regress ût on ẑ1,t and ẑ2,t , t = 1, . . . , T and compute the sum of squared resid-

uals SS R1.

3. Compute the L M test statistic as

L M = T
SS R0 − SS R1

SS R0

which under the null hypothesis is approximately χ2 distributed with r degrees

of freedom.
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Fig. 1 Graphical presentation of time series for daily NASDAQ composite index. Upper panel displays
time series plots for daily index and for daily index returns. Lower panel displays autocorrelation functions
for daily returns and for daily squared returns

8 Empirical evidence

8.1 Data

In this section, The FITVGARCH model is performed for US stock market. The data

we consider is the daily NASDAQ composite index spanning the period from January

2, 1998 to May 2, 2007, with a total of 2,346 observations. In Fig. 1, the upper panel

shows the level and the daily returns time series of the NASDAQ composite index.

Daily returns are obtained by taking 100 times the first difference of the natural log

of the index. A visual inspection of this plot, gives the impression that the structure

of the daily returns time series exhibits two different periods of volatility. That is,

the volatility displays structural change over time. More precisely, the first period of

daily returns time series is characterized by very high volatility whereas the second

period is described by a very low volatility. This can be explained by the fact that

the dynamic structure of the volatility has changed over time. Another remark which

appears interesting is that the change was not carried out instantaneously. This can be

preliminary evidence in favour of the use of smooth transition model to these data. The

lower panel of Fig. 1 displays autocorrelation functions for daily returns and for daily

squared returns. It is clear that daily returns seem to be not autocorrelated. However,

for the squared returns, autocorrelations show strong temporal dependence and exhibit

a hyperbolic rate of decay. Those features may suggest that long-range dependence
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Table 5 LM-type tests for parameter constancy of FIGARCH model against FITVGARCH model for
NASDAQ composite daily index returns

L Mk LM statistic p-Value

L M1 19.702 2 × 10−4

L M2 34.134 6 × 10−6

L M3 42.164 3 × 10−6

Note: The table contains LM statistics and p-values of parameter constancy test where L MK , K = 1, 2,
and 3, denotes the LM-type test for parameter constancy based on the K th order logistic smooth transition
regression

of squared returns may be modelled by a fractionally integrated process. In view of

all this, we propose our new FITVGARCH model to describe the volatility structure

of the NASDAQ composite daily index returns. In fact, this model is able to capture

both long memory and structural change in the volatility process.

8.2 Testing for parameter constancy

We begin the modelling procedure by testing parameter constancy in the standard

FIGARCH (1, d, 1) model against smoothly changing parameters (FITVGARCH

(1,d,1) model) using the test discussed above.

Table 5 contains the statistics and the corresponding p-values of the LM test for

constancy of the FIGARCH parameters against the alternative of time dependent

parameters as specified by the FITVGARCH model. The test is performed based on

the K th order logistic smooth transition regression; K = 1, 2 and 3. The results indi-

cate that there is strong evidence of time varying FIGARCH parameters since the null

hypothesis of parameter constancy is strongly rejected for all orders K . Those results

are in accord with the idea that volatility structure of the NASDAQ composite index

returns is changing over time.

8.3 Estimation results

The second stage of the analysis is the estimation of FITVGARCH(1, d, 1) model in

(18) for the data based on the quasi maximum likelihood estimation procedure dis-

cussed above. As the estimation of the ful model indicated that φ̂1,1 is not significant

even at 10% level and does not contribute to the explanatory power of the model,

we removed this parameter from the conditional variance equation and we repeated

the estimation. The results are reported in the columns 1 and 2 of Table 6. Columns

1 shows parameter estimates while standard errors are given in columns 2. Standard

errors are estimated using the outer product of gradient method. For comparison pur-

poses, we also estimate a FIGARCH(1, d, 1) model where the parameter estimates

and their asymptotic standard errors are reported, respectively, in columns 3 and 4 of

Table 6. The long memory parameter d̂ is significantly different from zero for both

models; of about 0.51 for the FITVGARCH model and 0.43 for the FIGARCH. The
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Table 6 Summary of estimated
models for NASDAQ composite
daily index returns

Note: Standard errors are given
in parentheses

Parameters FITVGARCH(1, d, 1) FIGARCH(1, d, 1)

d̂ 0.505 (0.061) 0.435 (0.064)

ĉ 0.354 (0.100) − –

γ̂ 15.09 (16.09) − –

ω̂1 0.190 (0.076) 0.044 (0.013)

φ̂1,1 − – 0.052 (0.041)

β̂1,1 0.415 (0.084) 0.483 (0.075)

ω̂2 −0.187 (0.076) − –

φ̂2,1 0.237 (0.060) − –

β̂2,1 0.327 (0.070) − –

Q(20) 16.268 [0.700] 15.431 [0.751]

Q2(20) 16.839 [0.663] 13.382 [0.860]

L MSC 26.329 [0.155] − –

AIC 8,552.57 8,567.29

Log Lik −4,268.29 −4,279.65

fact that the estimated value of the long memory parameter decreases when estimat-

ing it by the FIGARCH model should not be surprising given the simulation results

reported in Sect. 6. It has been noted that only a change in the constant parameter

leads to an upward bias in the estimate of d. However, when all conditional variance

parameters are subject to structural change, the parameter d is biased downward. The

significance of d indicates strong evidence of long memory in the squared returns. The

conditional variance parameters of the FITVGARCH model are highly significant in

the two regimes. For the FIGARCH model, the parameter φ̂1 is significant only at 10%

level while the parameters ω̂ and β̂1 are highly significant at 5% significance level.

Looking now at the transition function parameters in the FITVGARCH model, the

threshold parameter ĉ is highly significant with a value about 0.354 indicating that the

structural change of the volatility process was happen at time t̂ = 0.354×T, (t̂ ≃ 830),

where T is the number of observations. Nevertheless, this structural change is not

instantaneously at time of the turning point because of the smoothness of the tran-

sition function. In fact, this structural change can be instantaneous at turning points

if the smoothness parameter γ is very large. This is not the case for our data since

the estimates parameter γ̂ is equal to 15.09 that is not sufficiently high to imply a

quick change between regimes. This can be observed from the first panel of Fig. 2

which plots the logistic transition function in (29) as a function of time. It is clear that

the transition between the extreme regimes is rather smooth. The long term volatility

level depends on the estimates of the constant parameter in the conditional variance.

In the second panel of Fig. 2, we contrast the estimated time varying parameter ω̂t

from the FITVGACRH model with the constant one, ω̂, from the FIGARCH model.

It is clear from the figure that, using the FIGARCH model, the long term volatility is

largely underestimated for the first 830 observations and is overestimated for the latter

observations.
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Logistic smooth transition function versus time
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Fig. 2 Estimated logistic transition function from the FITVGARCH model and estimated constant param-
eter in the conditional variance from FIGARCH and FITVGARCH models

Comparing the FIGARCH (1, d, 1) model with FITVGARCH(1, d, 1) model, the

first panel of Fig. 3 indicates that both models tend to have high and increasing

volatility estimates in the first regime and decreasing volatility estimates in the second

regime. It seems also that the volatility estimates have persistence property which

confirms the evidence of long memory and structural change behaviours in the vola-

tility. The residuals obtained from both models, showed in the second panel of Fig. 3,

cannot reject the null of white noise series according to the Ljung-Box portmanteau test

statistic Q(20). Similarly, Ljung-Box statistic Q2(20) indicates that the hypothesis of

serial dependence, up to order 20, in squared standardized errors is strongly rejected for

both models. The misspecification test discussed in section 7 also indicates, according

to L MSC statistic, that the squared standardized errors from the FITVGARCH model

seem to not be autocorrelated up to the 20th order. However, it is not difficult to reach

a conclusion that the empirical evidences are in favor of FITVGARCH(1, d, 1)model

for NASDAQ index returns time series according to the Akaike information criterion

(AIC) and to the log-likelihood values.

9 Conclusions

In this paper, a new FITVGARCH model was proposed to capture both long mem-

ory and structural change in the volatility process. The model allows for time
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Fig. 3 Estimation results of FITVGARCH and FIGARCH models for daily NASDAQ index returns. Upper

panel displays the estimated conditional standard deviation. Lower panel displays the estimated residuals

varying dynamic structure in the conditional variance of the process. The struc-

tural change is assumed to be smooth between regimes. More precisely, the con-

ditional variance parameters of the FIGARCH model are allowed to change smoothly

over time. We have derived an LM-type test for parameter constancy of the FI-

GARCH model against the alternative of time dependent parameters (FITVGARCH

model). Simulation analysis shows that both empirical size and power of the con-

stancy test are quite good. The quality of the application of the QMLE for the

FITVGARCH model, examined by simulation study, is generally very satisfac-

tory. Our application has been to NASDAQ stock market volatility. Results indi-

cate that this new class of model seems to outperform the FIGARCH model in

the description of the daily NASDAQ composite index returns. The volatility of

these data seems to be characterized by both long memory and structural change.

Indeed, the volatility structure changes over time where the transition between the

extreme regimes seems to be smooth. For instance, we have assumed that the vola-

tility structure, with long memory property, changes between two regimes. Further

research should also examine the feasibility of considering more than one structural

change.
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in a much-improved paper.
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Appendix

A Analytical derivatives for parameter constancy test

In order to derive the parameter constancy test, partial derivatives of the log likelihood

function of the FITVGARCH model, with respect to the parameters are considered.

The first order partial derivative of the conditional quasi log-likelihood function in

(22), at time t , with respect to θ is

∂lt (θ)

∂θ
=

1

2

(

ε2
t

ht

− 1

)

1

ht

∂ht

∂θ
(A.1)

The average score vector is defined as

g =
1

T

T
∑

t=1

∂lt (θ)

∂θ
(A.2)

The average score vector can be partitioned as g = (g′
1, g′

2)
′ such that g1 = (1/T )

∑T
t = 1

∂lt (θ)/∂θ1 and g2 = (1/T )
∑T

t = 1 ∂lt (θ)/∂θ2. Under the null hypothesis ĝ1 = 0 and

the Lagrange multiplier statistic is given by

L M = T ĝ′ I (θ̂)−1ĝ (A.3)

where I (θ̂ ) is the information matrix evaluated under the null hypothesis. The informa-

tion matrix is defined as the expected negative value of the average Hessian matrix AT

I (θ) = E [−AT ]

where

AT =
1

T

T
∑

t=1

∂2lt (θ)

∂θ∂θ ′

=
1

T

T
∑

t=1

1

2ht

(

ε2
t

ht

− 1

) (

∂2ht

∂θ∂θ ′
−

1

ht

∂ht

∂θ

∂ht

∂θ ′

)

−
ε2

t

2h3
t

∂ht

∂θ

∂ht

∂θ ′

which gives

I (θ) = E

[

1

T

T
∑

t=1

ε2
t

2h3
t

∂ht

∂θ

∂ht

∂θ ′

]

=
1

2T

T
∑

t=1

E(zt z
′
t )
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where zt = (z′
1,t , z′

2,t )
′, z1,t = 1

ht

∂ht

∂θ1
and z2,t = 1

ht

∂ht

∂θ2
. So that, the information matrix

can be estimated consistently as

I (θ̂) =
1

2T

T
∑

t=1

ẑt ẑ
′
t

where ẑt = (ẑ′
1,t , ẑ′

2,t )
′, ẑ1,t = 1

ĥ0
t

∂ht

∂θ1

∣

∣

∣

H0

and ẑ2,t = 1

ĥ0
t

∂ht

∂θ2

∣

∣

∣

H0

. Let ût =

(

ε̂2
t

ĥ0
t

− 1

)

,

the average score vector evaluated under the null hypothesis is obtained by

ĝ =
1

2T

T
∑

t=1

ût (0, ẑ′
2,t )

′

Thus, the Lagrange multiplier test statistic in (A.3) becomes

L M = T

(

1

2T

T
∑

t=1

ût (0, ẑ′
2,t )

′

)′ (

1

2T

T
∑

t=1

ẑt ẑ
′
t

)−1 (

1

2T

T
∑

t=1

ût (0, ẑ′
2,t )

′

)

=
1

2

(

T
∑

t=1

ût ẑ
′
2,t

)

A
−1
T

(

T
∑

t=1

ût ẑ2,t

)

,

where

AT =

T
∑

t=1

ẑ2,t ẑ
′
2,t −

T
∑

t=1

ẑ2,t ẑ
′
1,t

(

T
∑

t=1

ẑ1,t ẑ
′
1,t

)−1 T
∑

t=1

ẑ1,t ẑ
′
2,t .

The partial derivatives of the conditional variance ht with respect to the parameter

vector θ1 are

∂ht

∂ω∗
= 1 + β∗(L)

∂ht

∂ω∗
+

K
∑

k=1

(

λk(L)
∂ht

∂ω∗
t∗k

)

+
∂R∗

1,t

∂ω∗

∂ht

∂φ∗
= (et−1, . . . , et−q)

′ + β∗(L)
∂ht

∂φ∗
+

K
∑

k=1

(

λk(L)
∂ht

∂φ∗
t∗k

)

+
∂R∗

1,t

∂φ∗

∂ht

∂β∗
= ((ht−1 − ε2

t−1), . . . , (ht−p − ε2
t−p))

′ + β∗(L)
∂ht

∂β∗
+

K
∑

k=1

(

λk(L)
∂ht

∂β∗
t∗k

)

+
∂R∗

1,t

∂β∗
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∂ht

∂d
= −[1 − φ∗(L)]

∂et

∂d
+ β∗(L)

∂ht

∂d
+

K
∑

k=1

(

ϕk(L)
∂et

∂d
t∗k + λk(L)

∂ht

∂d
t∗k

)

+
∂R∗

1,t

∂d

Under H ′
0, ϕk = λk = 0 and R∗

1,t = 0, then the partial derivative of ht with respect

to d is

∂ht

∂d

∣

∣

∣

∣

H0

= −[1 − φ∗(L)]
∂et

∂d

∣

∣

∣

∣

H0

+ β∗(L)
∂ht

∂d

∣

∣

∣

∣

H0

where et = (1 − L)dε2
t . The derivative of et with respect to d is

∂et

∂d
=
∂(1 − L)d

∂d
ε2

t

= ln(1 − L)(1 − L)dε2
t

= −

∞
∑

n=1

Ln

n
et

Under H0,

∂et

∂d

∣

∣

∣

∣

H0

= −

t−1
∑

n=1

êt−n

n

where êt = (1 − L)d̂ε2
t , then

∂ht

∂d

∣

∣

∣

∣

H0

= [1 − φ∗(L)]

t−1
∑

n=1

êt−n

n
+ β∗(L)

∂ht

∂d

∣

∣

∣

∣

H0

(A.4)

=

t−1
∑

j=1

êt− j

j
−

q
∑

i=1

t−i−1
∑

n=1

φ∗
i

êt−i−n

n
+

p
∑

j=1

β∗
j

∂ht− j

∂d

∣

∣

∣

∣

H0

(A.5)

Let wt = (1, et−1, . . . , et−q , (ht−1 − ε2
t−1), . . . , (ht−p − ε2

t−p))
′ and

xt =

t−1
∑

j=1

êt− j

j
−

q
∑

i=1

t−i−1
∑

n=1

φ∗
i

êt−i−n

n
.

Under H ′
0, λk = 0 and R∗

1,t = 0, then the partial derivatives of ht with respect to

θ1 is equal to
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∂ht

∂θ1

∣

∣

∣

∣

H0

= (w′
t , xt )

′ +

p
∑

j=1

β∗
j

∂ht− j

∂θ1

∣

∣

∣

∣

H0

(A.6)

The partial derivatives of ht with respect to the parameters vector θ2 are given

by a vector of the partial derivative of ht with respect to each parameter in θ2

where θ2 = (θ ′
2,1, . . . , θ

′
2,K )

′, θ2,m = (δm, ϕ
′
m, λ

′
m) for m = 1, . . . , K with ϕm =

(ϕm,1, . . . , ϕm,q)
′ and λm = (λm,1, . . . , λm,p)

′.

∂ht

∂δm

= t∗m + β∗(L)
∂ht

∂δm

+

K
∑

k=1

(

λk(L)
∂ht

∂δm

t∗k

)

+
∂R∗

1,t

∂δm

∂ht

∂ϕm

= (et−1, . . . , et−q)
′t∗m + β∗(L)

∂ht

∂ϕm

+

K
∑

k=1

(

λk(L)
∂ht

∂ϕm

t∗k

)

+
∂R∗

1,t

∂ϕm

∂ht

∂λm

= ((ht−1 − ε2
t−1), . . . , (ht−p − ε2

t−p))
′t∗m + β∗(L)

∂ht

∂λm

+

K
∑

k=1

(

λk(L)
∂ht

∂λm

t∗k

)

+
∂R∗

1,t

∂λm

We obtain

∂ht

∂θ2,m
= wt t

∗m + β∗(L)
∂ht

∂θ2,m
+

K
∑

k=1

(

λk(L)
∂ht

∂θ2,m
t∗k

)

+
∂R∗

1,t

∂θ2,m

Under H ′
0, λk = 0 and R∗

1,t = 0. Then, the partial derivative of ht with respect to

θ2 is equal to

∂ht

∂θ2

∣

∣

∣

∣

H0

=
(

(wt t
∗)′, (wt t

∗2)′, . . . , (wt t
∗K )′

)′
+

p
∑

j=1

β∗
j

∂ht− j

∂θ2

∣

∣

∣

∣

H0

(A.7)

B Analytical derivatives for FITVGARCH model

Partial derivative of the conditional variance ht in (18) with respect to the parameters

vector θ = (ω1, φ
′
1, β

′
1, ω2, φ

′
2, β

′
2, c, γ, d)′ are given as follows

∂ht

∂ω1
= 1 + [β1(L)+ β2(L)F(t

∗; γ, c)]
∂ht

∂ω1

∂ht

∂φ1
= ((1 − L)dε2

t−1, . . . , (1 − L)dε2
t−q)

′ + [β1(L)+ β2(L)F(t
∗; γ, c)]

∂ht

∂φ1

∂ht

∂β1
= (ht−1 − ε2

t−1, . . . , ht−1 − ε2
t−q)

′ + [β1(L)+ β2(L)F(t
∗; γ, c)]

∂ht

∂β1
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∂ht

∂ω2
= F(t∗; γ, c)+ [β1(L)+ β2(L)F(t

∗; γ, c)]
∂ht

∂ω2

∂ht

∂φ2
= ((1 − L)dε2

t−1, . . . , (1 − L)dε2
t−q)

′F(t∗; γ, c)

+[β1(L)+ β2(L)F(t
∗; γ, c)]

∂ht

∂φ2

∂ht

∂β2
= (ht−1 − ε2

t−1, . . . , ht−1 − ε2
t−q)

′F(t∗; γ, c)

+[β1(L)+ β2(L)F(t
∗; γ, c)]

∂ht

∂β2

∂ht

∂c
=

[

ω2 + φ2(L)(1 − L)dε2
t + β2(L)(ht − ε2

t )

]

F ′
c(t

∗; γ, c)

+
[

β1(L)+ β2(L)F(t
∗; γ, c)

] ∂ht

∂c

where

F ′
c(t

∗; γ, c) =
∂F(t∗; γ, c)

∂c

= −γ exp(−γ (t∗ − c))[1 + exp −γ (t∗ − c)]−2

= −γ exp(−γ (t∗ − c))F(t∗; γ, c)2

∂ht

∂γ
=

[

ω2 + φ2(L)(1 − L)dε2
t + β2(L)(ht − ε2

t )

]

F ′
γ (t

∗; γ, c)

+
[

β1(L)+ β2(L)F(t
∗; γ, c)

] ∂ht

∂γ

where

F ′
γ (t

∗; γ, c) =
∂F(t∗; γ, c)

∂γ

= (t∗ − c) exp(−γ (t∗ − c))[1 + exp −γ (t∗ − c)]−2

= (t∗ − c) exp(−γ (t∗ − c))F(t∗; γ, c)2

∂ht

∂d
= [φ1(L)+ φ2(L)F(t

∗; γ, c)− 1]
∂(1 − L)d

∂d
ε2

t

+[β1(L)+ β2(L)F(t
∗; γ, c)]

∂ht

∂d

= [1 − φ1(L)− φ2(L)F(t
∗; γ, c)]





t−1
∑

j=1

(1 − L)dε2
t

j





+[β1(L)+ β2(L)F(t
∗; γ, c)]

∂ht

∂d
.
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