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Abstract: We establish almost sure convergence of least
squares estimates for general multivariate ARX( p, s) systems,
with stochastic input signal. Results of strong consistency and
speed of convergence are obtained with a regularity assump-
tion on the AR part of the system.
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1. Introduction

Consider the multivariate linear autoregressive
with exogenous variables (ARX ,(p, 5)) system:

A(2)Y,=B(z)U,+¢,, nes —{0}, (1)

where Y, is an observed output, U, is an ob-
served input and g, is an unobserved random
perturbation at stage n. Here z denotes the shift
operator; A and B are matrix polynomials with
known degrees p and s respectively:

p s
A(z)y=I1,+ )} 4,2/, B(z)= Y B;z'.
j=1 j=1
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multivariate

The parameters to be estimated are the matrix
coefficients of these polynomials:

8=(-4,,...,~A,, B,,...,B),

where (A4;, 1<i<p) are (d, d) matrices with
(det(Ap) # 0), (B}-, 1<j<s) are (d, r) matrices.
We use the Least Squares (LS) estimator denoted
by 6,.

The strong consistency of 8, has been studied
by many authors. In particular results about speed
of convergence were recently obtained in differ-
ent cases by Lai and Wei [7], Chen and Guo [2],
and Viano [10] for example. More recently Duflo
et al. [4] generalized Lai and Wei’s results for
multivariate AR ,(p) systems and show that 6, is
strongly consistent provided that the system is
regular.

In this paper, we will study the LS estimator 6,
in the multivariate general autoregressive with
exogenous variables with the regularity hypothe-
sis first introduced in [4]. We extended Lai and
Wei, and Duflo’s results obtained in AR case, by
adding an input signal (U,) to the system. Assum-
ing that the input signal (U,) is stochastic and
independent of the noise (¢,,), we prove the strong
consistency of 8, without any stability assump-
tion; we also obtain results about the speed of
convergence of 6, toward 6. Without the regular-
ity assumption, it’s not sufficient to choose, like
here, a signal with an intensity of excitation
equivalent to n, to prove strong consistency of 4,,;
this problem is studied by Boutahar {1].

2. Notations and definitions
2.1

Denote by z,, i=1,...,dp, the roots of the
polynomial z9” det(A(1/z)) associated to the

0167-6911 /92 /$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved



158 M. Boutahar, C. Deniau / Almost sure convergence of LS estimates for ARX systems

system (1). The system (1) is:

— stable, if Vi, | z;| < 1 (|- | denotes the modu-

lus),

~ unstable, if Vi, | z;1< 1,

~ explosive, if Vi, | z,]> 1,

— general, if no assumption on the roots loca-
tion of z; is made,

— regular, if no proper subspace associated to
an eigenvalue A of 4, such that [A| > 1, is
of dimension higher than 1 (4, is the com-
panion matrix of A(z)).

The scalar product ¢ is denoted by (-, );
X, X', and X* denote respectively the Eu-
clidian norm, the transpose and the transpose
conjugate of X.

For a given (d, d) matrix A, denote A, (4)
(resp. A,,(A4)) the minimum (resp. the maxi-
mum) eigenvalue of 4; we write 4 > 0 to say that
A is positive definite. If A4 is symmetric and
non-negative definite, we denote by 4!/? an arbi-
trary square root of A4, i.e: A =A"*(4AV?)* I,
denotes the (d, d) identity matrix, diag(G,,...,
G,) is the matrix where the diagonal blocks are
G....G,

2.2.

We recall that we can write the system (1) into
its regression form:

)/nzod)nfl*_gn (2)
where
gpn=(Yn’7"'7lel~p+l’(Jnl""’L]n,—s-é-l)' (3)

From (1) and (2), we deduce that:

D, =D, | +e,, (4)
where
A, B
0 K,V
-4, -4, A, -4,
1, 0 0 0
A, = 0 1, 0 0
0 0 1, 0

being the companion matrix of A(z),

B] BZ Bs—l Bs
B=1 e

0 0

0 0 0 0

L 0 0 0
K-|0 L 0 0

0o .- 0 I 0

and e,=1(¢,0,...,0, U, 0,...,0)".
quently

det(& —zl,,,,)=2" det(A,—zl,,)

1
e det(A(—)).
z

2.3

Finally we recall that the LS estimator 8, of 6
is given by

0"*=Pn71 Z q)k*IYk* (5)
k=1

where P, =27 _ @, _ P}

3. General hypothesis (#)

0. All the random variables considered here
are of complex values and defined in the same
probability space (2, F, ).

1. (e,) is a martingale difference sequence with
respect to an increasing sequence of o-fields F =
(#), G.e. g, is F,-measurable and E(¢,/F,_,)
=0, 2-a.s. for every n) such that

(@) sup, EClle, I/, _1) <w, P-as. for some
real constant o > 2;

(b) for every n, F(e,ef/%F,_)=1I >0, »-
a.s.

2. (U,) satisfies the same hypothesis as (g,)
with covariance I, a constant B instead of «,
and is independent of (¢,).

3. The system (1) is regular.

Remark. In the multivariate case, when the sys-
tem has an explosive part, we cannot remove the
regularity assumption, as it is shown in [3], p. 60.



M. Boutahar, C. Deniau / Almost sure convergence of LS estimates for ARX systems 159

4. The main result
The main result of this paper is:

Theorem. Suppose that in the multivariate system
(1), the hypothesis (#) is satisfied, then the LS
estimator defined by (5) is strongly consistent; the
speed of convergence is

lost) ) Fas.

n

||o,,—o||2=o( (6)

The proof of this theorem is given in Section 5;
before this, we present two lemmas, the first one
describes the asymptotic behaviour of 6, in the
stable or unstable case; the second one gives
some tools to prove the same result in the explo-
sive case.

Lemma 1 (stable or unstable case). Under the
hypothesis (%), if we assume also that the system
(1) is stable or unstable then 6, is strongly consis-
tent and satisfies (6).

Proof. (a) Let us first prove that
10g(A max( P,)) = O(log(n)) P-as., (7

where P, is defined in (5). It is easy to see that
the random sequence (e,) is a martingale differ-
ence sequence with respect to (%) and by the
conditional Minkowski inequality, if we denote
v = min(e, B), we have:

E(lle,I"/5,_,)
—E((Ile, 2 +15, 1) /5,_,)
<{(E(Ne,I7/5,- 1))
+EQ, /5, )Y
and
E(lle, I/, ) <E(lle, 1/, _,),
E(IU,/%,)<E(IU, /%, _,).

Hence sup,E(|le,|I’/#,_,) <, and conse-
quently by [8], Theorem 1(i), we conclude that

&, = O(n"‘l/z(log(log(n)))l/z) P-as.,
(8)

where p is the largest order of multiplicity of
distinct unitary eigenvalues of &. Since

n
Amax(I)n) < trace(Pn) = Z” (pk—l “2’
1

the equality (7) is proved.
(b) Now we prove the following inequality:

1
lim inf )\min(—Pn) >0 Pas. (9)
n

By [9], Theorem 2 there exists p > 0 such that
/\min(Pn) >p’\min(l/n) (10)

where ¥V, =Xi_woFf and v,=W,_, ...,
U,/ _4p—s» En—1s+--»En_q,) - Applying the martin-
gale strong law to each block of the matrix V,,, we
conclude that

1
lim =V, =diag(Il,,....I; I.,...,T,)
n—ow N
>0 Pas. (11)
By (10) and (11) the inequality (9) holds.

(c) For a fixed unitary, arbitrary vector v € ¢,
let

0,(v) =eX (V) X, (X X,) " X e,(v)

n

where

e, (v) = (&, 0),...,{e,, 1)),
Xx*=(Dy,....D,_,).

Since XX, =P,, we can write

n

Qn(v) = Z<£k7 U>¢I:<—1Pn_—12(pk—l<8k’ U>
1

1

and using (2) and (5), we obtain
* 2

(6, 6) vl

2

n
P YD, (g, 0)
1

5 2
<lp 172

n
Pn_1/22¢k—1<5k’ v)
1

=172 Qu(v) < Amax( P )Qu(v)
= [Amin(Pn)] _1Q”(U).
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In view of (9), to prove the result of Lemma 1, it
suffices to show that

Q.(v)=0(log(r)) -as. (12)

Since ({e,, v)) is a martingale difference se-
quence with a finite order a > 2 moment, it fol-
lows by [6], Lemma 1, (2.4) that

Q,(v) =0(log(A,(P,))) F-as. (13)

on the event I'={lim, A, (P,)=x}. By (9)
we get that #(I") = 1 and by (7) the equality (12)
holds. O

Before proving Lemma 2, we need some linear
transformations. If system (1) is general, so is the
AR, (1) system (&,), given by (4). We will
decompose it into two autoregressive systems @S,
i =1, 2, such that @ is an explosive system and
@ is a stable or unstable system.

We can write det(A(z)) as a product of two
polynomials:

det(A(2)) =a,(2)ay(2),
deg(a,(z))=d;, i=1,2,

where the roots of a(z) (resp. a,(z)) are strictly
inside (resp. outside) the unit disk of #. Denote
by 4.(1) [resp. 4.(2)] the companion matrix of
a,(z) [resp. ay(z)], hence 4 (1) is a (d,, d,) ex-
plosive matrix and 4.(2) is a (d,, d,) stable or
unstable matrix. There exists a complex non-sin-
gular matrix T such that:

T = diag(A,(1), 4,(2), K,)T. (14)
Define @) =T.®,, where T"=(T, T,), T, is a

(d,, dp + rs) full rank matrix and T, is a (d, +
rs, dp + rs) full rank matrix. From (4) and (14) it

follows that
PP =A ()P, + Tee,, (15)
&P =RPD  + T,e,, (16)

where R = diag(4.(2), K,); thus (@) is an ex-
plosive AR (1) and (@) is a stable or unstable
ARd2+rs(1)'

The asymptotic behaviour of the explosive sys-
tem (@) remains to be described.

Lemma 2 (explosive case). Consider the system
(15). Under the hypothesis (%) we have:

(i) 4. )7"PD 50 =P+ 74 (1) *Te,
P-a.s.,

(ii) for every x € 1 the probability distribu-
tion of {x, m) is continuous,
(i) with P(1) = TP &% we have

A1) TP (A T

—>F=YA4,0) “qgna (1) 2as,
1
and moreover the matrix F| is positive definite.

Proof. (i) Let M, =A ()P — dLV; using (15)
we have M, = Y74 (1)"*T,e,, hence (M,, ) is a
martingale such that:

E(IM, 1)
n
=trace| Y A(1)*T,K_ T*4,(1)"*],
k=1
where
KEM = dlag(n’ 0""707 Fu’ 0’50)7

since 4 (1) is an explosive matrix it follows that:
E(l M, ||*) < o, and hence (i) holds.

(i) By application of Lemma 2 of [8], it is
sufficient to show that

lim inf A, (C,(r))>0 -as, for some r > 1,

(17)
where
Cn(r) =L Z Ac(l)rileenr+ke:r+k
k=1
{"“ r—k *
XTF(A(D) ") /7,
But
_ 4 r—k * r—k *
Cn(r) - Z Ac(l) TleuTl (AC(]‘) )
k=1
r—1 *
= ZAC(I)leKEuTl*(AC(l)k) =C(r)'
k=0
(18)

To obtain the definite positiveness of C(r), it
suffices to show (cf. [3], Proposition 2.1I1.6) that

1
lim inf )\min(—(Pn(l)) >0 P-as. (19)
n

Note that the inequality (9) remains true for the



M. Boutahar, C. Deniau / Almost sure convergence of LS estimates for ARX systems 161

general system (1). Moreover P(1) = T, P,T* im-
plies that
’\min(Pn(l)) >)‘min(TlTl*))‘min(Pn)' (20)

Thus the desired conclusion (19) follows from (9),
(20) and the fact that A, (T,T;*) > 0.

(iii) A similar argument to the proof of Theo-
rem 2(ii) of [7] can be applied to show the almost
sure convergence of the matrix A4 (1)7"P(1)
A (1)7"* to F,. The regularity assumption im-
plies that the minimal polynomial of matrix A is
equal to its characteristic polynomial, and this
also holds for matrix 4 .(1); making use of (ii) it
can be shown that 7, 4.(1)7!n,..., 4 (1)@~ by
are linearly independent 2-a.s. (cf [3], Theorem
5.1.3), and hence

d,—1
Y oA() Fgn*a, (1) >0 Pas.,
0

consequently F, is positive definite #-a.s. 0O

5. Proof of the Theorem

Define 4, = diag(4 (1)"F]/%, P(2)'/?), P(2)
=P <1>(2“;, K, A 1TP T*A,;'*, where it
is easy to prove that a4, ! exists almost surely for
large values of n. Let us prove that:

K, =1y, P-as. (21)
We have

— —-n — *
g =(Ff1/2Ac(1) "R (DAL (FTV?) Dn*)
n D I b

n rs

where

—P,,(Z)_l/z i (2) (D(l)*(A (1) )*

k=1
“(F)
But
D, I% < ct.Tu(¢(Z’*(P (2))"'o@,)
<n

n 2
¥ 4.0 "o |l (22)

k=1

ct. a positive constant. Since (@) is stable or

unstable and its noise (T,e,) has a finite moment
of order y > 2, it can be shown that

max(cbf)";(P (2)) '@ ) =0(1) P-as.

(23)
(cf. [7], Theorem 4). Making use of Lemma 2(i)
and the fact that the matrix 4.(1) is explosive, we

can obtain, in the same way as in {7], Corollary
1(i), the following equality

Sla " ep -0y sas. (4
1

From (22)-(24) it follows that
D,—»0 P-as. (25)
Using Lemma 2(iii) and (25) we get (21).

Now we denote by 6, =6, — 6 the estimation
error at stage n. Then using the nonsingular

linear transformation T defined in (14), we can
write

T* 16 = (6, 62, (26)
where 8" is a (d;, d) matrix and 8 is a (d, +
rs, d) matrix. In view of (2) and (5), it is easy to
show that
n

AXT* 6 =K 'AT'TY. @, _ e,

1
and making use of the Kn convergence, we con-
clude that

| Fl/2xa.(1)* 60|
=o(”F;‘/2AC(1)‘"i¢;3> EF ) P-as.,
and 1
(7. 0]
=o("(Pn(2))“‘/2i¢;21,s:) Pas.
| (27)

Thus
| F172%4,(1)* 6D

_o( max || ||2|lAc(1)‘"¢£‘llll)

I<k<n

=o( max |l e, ||) (by equality (24))

l<k<n

= o(\/rT) P-a.s.,



162 M. Boutahar, C. Deniau / Almost sure convergence of LS estimates for ARX systems

since ¢, = o(y¥n) P-as., because A/n)t e, I?
— trace(I,) P-as.

Hence,
| 4.(1)* 6" = o(Vr)  #-as. (28)

Since A.(1) is an explosive matrix, the above
equality implies that for everyreal §, A7! <6 < 1,
where A is the modulus of the smallest eigenvalue
of 4.(1):

6] = o(Vn 6") 2-as. (29)

Moreover the random matrix i@, _(2)ef is a
martingale transform. Then a similar argument as
(13) can be used to obtain that

2

“(P,,(2))’”2$¢£2118:

= O(log(Aax(P(2)))) (30)
almost surely on the event
Ty = {lim, oA o (P(2)) = ).
We have, as for (19),
lim inf A, (P,(2))/n>0 P-as., (31)

and hence 2(I,) = 1. The system (®,2)) is an
AR, ., (1), stable or unstable. Then we can ob-
tain, in the same way as (7),

108( A max(Pn(2))) = O(log(n)) &-as. (32)
From (27), (30), (31) and (32), it follows that
log(n) )

P-a.s.

Jo2F = of )

From (26), (29) and (33) we obtain (6). O

6. Particular case: Explosive system

We assume that system (1) is explosive, and we
denote

o=(040%), 6,=(67,67),
where 64 =(-4,,...,-4,), 6°=(B,...,B)
and 87 (resp. 67) is the part of 6, corresponding
to 8 (resp. to 64).

Like in (14), we choose here a particular and
non-singular matrix T given by
F= Idp T, ’

0 I

rs

such that
T = diag( A, K,)T.

Indeed the matrix T,, can be constructed as a
solution of the following matrix equation:

XK, -A,X=B (34)

and noting that 4. and K, do not have common
eigenvalues, implies that the last equation has a
single solution (see Gantmacher [5]). Let

6 =0"—04 87 =08 — 95
Then
A

T* '9* = ! :

? —T367 + 62
Thus (29) and (33) become
16 |=o(Vn5") Pas. (35)
and

” - Tlgéf + éf

g O( logrgn) ) P-a.s. (36)

Consequently by (35) and (36) we conclude that

|68 HZ = O( log() ) P-as.

n

Hence, we deduce:

Corollary. Consider the LS estimator in (1); under
hypothesis (#), andyif we assume also that the
system is explosive then 0, is strongly consistent.
The autoregressive part of 6, has an exponential
speed of convergence, i.e.

6] =o(yn8") Z-as.

and the signal part of 6, has a speed of conver-
gence given by

log(n)
n

||§f”2=0( ) P-a.s.
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