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Abstract: We establish almost sure convergence of least ent cases by Lai and Wei [7], Chen and Guo [2], 
squares estimates for general multivariate ARX(p, s) systems, and Viano [10] for example. More recently Duflo 
with stochastic input signal. Results of strong consistency and et al. [4] generalized Lai and Wei's results for 
speed of convergence are obtained with a regularity assump- multivariate A R a ( p )  systems and show that O n is 
tion on the AR part of the system, strongly consistent provided that the system is 

Keywords: ARX systems; least squares; martingale transform; regular. 
regularity; speed of convergence. In this paper, we will study the LS estimator 0 n 

in the multivariate general autoregressive with 
exogenous variables with the regularity hypothe- 

1. Introduction sis first introduced in [4]. We extended Lai and 
Wei, and Duflo's results obtained in AR case, by 

Consider the multivariate linear autoregressive adding an input signal (U n) to the system. Assum- 
with exogenous variables (ARXa(p ,  s))system: ing that the input signal (U n) is stochastic and 

independent of the noise (en), we prove the strong 
A ( z ) Y n = B ( z ) U n + e  n, n ~ X - { 0 } ,  (1) consistency of O n without any stability assump- 

where Yn is an observed output, U n is an ob- tion; we also obtain results about the speed of 
served input and e n is an unobserved random convergence of 0 n toward 0. Without the regular- 
perturbation at stage n. Here z denotes the shift ity assumption, it's not sufficient to choose, like 
operator; A and B are matrix polynomials with here, a signal with an intensity of excitation 
known degrees p and s respectively: equivalent to n, to prove strong consistency of On; 

this problem is studied by Boutahar [1]. p 

A ( z ) = I d +  E A j z  j, B ( z ) =  ~-".Bjz j. 
j= l  j = l  

2. Notations and definitions 

2.1. 

Correspondence to: C. Deniau, Fac. des Sciences de Luminy, 
D~pt. de Math~matiques, Case 901,163 Av. de Luminy, 13288 Denote by zi, i = 1, . . . ,  dp, the roots of the 
Marseille Cedex 9, France. polynomial z dp d e t ( A ( 1 / z ) )  associated to the 
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system (1). The  system (1) is: being the compan ion  matrix of  A ( z ) ,  

- s table ,  if V i ,  I z i  ] < 1 ( ]" J denotes  the modu-  

- uns tab le ,  if V i ,  ] z i]  <~ 1, B = • . . . . . . . .  0 

- explos ive ,  if Yi, I zi]  > 1, 

- general ,  if no assumpt ion  on the roots loca- • . . . . . . . .  0 

tion of  z i is made ,  0 0 . - .  0 0 
- regular ,  if no p rope r  subspace  associated to 

an eigenvalue h of  A c, such that  [ A[ > 1, is 1 r 0 • - • 0 0 

of dimension higher  than 1 (A c is the com- K1 = 0 I r 0 " ' "  0 

panion matrix of  A ( z ) ) .  

The  scalar p roduc t  ~ d  is deno ted  by ( . , . ) ;  
0 " -  0 I r 0 II X II, s ' ,  and X *  denote  respectively the Eu- 

clidian norm,  the t ranspose  and the t ranspose  and e n = ( e ' ,  0 . . . . .  0, Un', 0 , . . . ,  0)'. Conse-  
conjugate  of  X. quently 

For  a given (d,  d)  matr ix  A, denote  Ami n (A)  
(resp. Amax(A)) the min imum (resp. the maxi- d e t ( d - Z l d p + r ~  ) = z  rs d e t ( A  c - z l a p  ) 

m u m )  eigenvalue of  A; we write A > 0 to say that  = z  ~÷ap det  A z 
A is positive definite. If  A is symmetr ic  and • 
non-negat ive  definite,  we denote  by A 1/2 a n  arbi- 
t rary square root  of  A, i.e: A = A 1 / Z ( A I / 2 )  *. I a 

denotes  the (d,  d)  identity matrix, d iag(G 1 . . . . .  2.3. 

Gp) is the matr ix  where  the diagonal  blocks are Finally we recall that  the LS es t imator  0, of  0 
G 1 . . . . .  Gp. is given by 

2.2. 0 " = 1 "  I ~ ~ k - l Y k  * (5) 
k = l  

n We recall that  we can write the system (1) into where  P,  = E~= ~ k - l q ~ k - 1 .  
its regression form: 

Yn = 0 ~  1 + en ( 2 )  3. G e n e r a l  h y p o t h e s i s  (,,T") 

where  0. All the r andom variables cons idered  here  
are of  complex values and def ined in the same t 

~ ,  = (Yn; . . . ,  Yn-p+l; U,; . . . ,  U' ,_ ,+ ~) . (3) probabil i ty  space (.(2, ~¢-, ~')~ 

1. ( e , )  is a m a r t i n g a l e  d i f f e rence  sequence  with 
F rom (1) and (2), we deduce  that: respect  to an increasing sequence  of ~r-fields U: = 

q)n =~¢q~n 1 +e~  (4) (~-)n (i.e. e n is ~ - m e a s u r a b l e  and E ( e J S r n _ l )  
' = 0, ~ - a . s .  for every n) such that  

where  (a) s u p , E (  II e~ II"/g-n-~) < oo .~-a.s. for some 
real constant  a > 2; 

(Ac B )  (b)  f ° r  every  n' E ( e n e * / 3 - . - l ) = F ~ > O '  ~7"~- 

= 0 Kj ' a.s.  
2. (U,,) satisfies the same hypothesis  as (e n) 

- A  1 - A  e . . . .  A p _  1 - A p  with covariance F,,, a constant  /3 instead of  a ,  
I d 0 " "  0 0 and is independen t  of  (en). 

3. The  system (1) is regular .  
A c  = 0 I a 0 • • • 0 

Remark .  In the mult ivar ia te  case, when the sys- 
t em has an explosive part ,  we cannot  r emove  the 

0 . . .  0 I a 0 regulari ty assumption,  as it is shown in [3], p. 60. 
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4. The main result where p is the largest order of multiplicity of 
distinct unitary eigenvalues of ~¢'. Since 

The main result of this paper is: 
n 

Amax(Pn) ~ trace(Pn) = •[1 @k-1 112, 
Theorem. Suppose that in the multivariate system 1 
(1), the hypothesis (,,~) is satisfied, then the LS 
estimator defined by (5) is strongly consistent; the the equality (7) is proved. 
speed of convergence is (b) Now we prove the following inequality: 

( 1 )  
I12= O ( ~ )  ~-a . s .  (6) lim inf Ami n n P n > O  ~-a . s .  (9) II On-O 

/ 

By [9], Theorem 2 there exists p > 0 such that 
The proof of this theorem is given in Section 5; 

before this, we present two lemmas, the first one )tmin(en) >/p)tmin(Vn) (10) 
describes the asymptotic behaviour of 0 n in the where V n , . U '  = Ek=lVkVk and vn = ( n - l , - . . ,  
stable or unstable case; the second one gives U'n_dp_s, e~n-1, '" ,  e'n_dp,~'. Applying the martin- 
some tools to prove the same result in the explo- gale strong law to each block of the matrix V n, we 
sive case. conclude that 

Lemma 1 (stable or unstable case). Under the 1 
lim -- V n = diag( F,, . . . . .  F u; F~ . . . . .  F~) hypothesis ( • ) ,  if  we assume also that the system n--,oo n 

(1) is stable or unstable then 0 n is strongly consis- 
tent and satisfies (6). > 0 9 -a . s .  (11) 

By (10) and (11) the inequality (9) holds. 
Proof. (a) Let us first prove that (c) For a fixed unitary, arbitrary vector v ~ ~d,  

let 
1og(Amax(en) ) = O ( l o g ( n ) )  ~.~-a.s., (7) 

where Pn is defined in (5). It is easy to see that Qn(v)  =e*n(V)Xn(gn*gn)-lgn~'en(v)  
the random sequence (e n) is a martingale differ- where 
ence sequence with respect to (Srn) and by the 
conditional Minkowski inequality, if we denote en( v ) = ( (e  l, v )  . . . . .  ( e n , v ) ) ' , 

y = min(a, /3) ,  we have: X *  = (@ 0 , - . . ,@ , -1 ) .  

E (  II en ItV/o~rn_l) Since Xn*X n = Pn, we can write 

n ° 

~("E(II II )) "en 'g/d'~'-n--1 -'2/'y Qn(V) ---- ~'~1 (ek' U)~i)t-Ip~-IEI CI)k-l(Ek' U) 
<. 

IlV/Srn-l~2h\v/2J/I and using (2) and (5), we obtain + (e( un 
and [[(0n -- 0)* V 112 

E( llenllV/°~-~-l) < E (  llenll~/~rn-1)' = pn-l~ ~k-l(ek'  V) 

e( liun II'/ n-1) IlVn il"/S n_ 
Hence SUpnE( l l en l l ' / J rn_ l )<~ ,  and conse- P n l / 2 E t l b k - l ( e k ' V )  2 n  
quently by [8], Theorem l(i), we conclude that 1 

[[ ~n ll = O(  nO- ]/Z( log( log( n ) ) ) 1/2) ,~-a.s., = [[ Pg-1/21[~Q.( v ) ~ Amax( Pn- l )an (  v ) 

(8) = [Am~.(en)] - lQn(v) .  
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In view of (9), to prove the result of Lemma 1, it (ii) for every x ~ ~d~ the probability distribu- 
suffices to show that tion of  ( x, ~7 ) is continuous, 

(iii) with Pn(1) = v'nm(1) re(l), l"~l  ~ k -  l ~ k  - 1 w e  have Qn(v)  = O( log (n ) )  ~ -a . s .  (12) 

Since ((e~, v))  is a martingale difference se- A t ( l )  "Pn(1)Ac( 1)-n* 
quence with a finite order a > 2 moment,  it fol- 
lows by [6], Lemma 1, (2.4) that ~ F  1 = ~Ac(1) -k 'Or /*Ac(1)  -k* ~-a . s . ,  

1 

On(v) = O(log(Am.x(P~))) J°-a.s. (13) and moreover the matrix F 1 is positive definite. 

on the event F =  {l imn~Amax(P n) = ~}. By (9) 
we get that .~(F)  = 1 and by (7) the equality (12) Proof. (i) Let Mn =A~(1)-~q~ 1) - qO(01); using (15) 
holds. [] we have M.  = E~Ac(1)-kTlek, hence (M. ,  Y) is a 

martingale such that: 
Before proving Lemma 2, we need some linear 

transformations. If system (1) is general, so is the E(  II Mn II 2) 
ARdp+rs(1) system (cI)~)' given bY (4)" We will ( ~ ,  -k . - k . )  
decompose it into two autoregressive systems ~ i ) ,  = trace A~(1) T1K~,T l Ac(1) , 
i = 1, 2, such that  q)~l) is an explosive system and k= l 
@~2) is a stable or unstable system, where 

We can write de t (A(z) )  as a product of two 
polynomials: K~, = diag( F~., 0 . . . .  ,0, F , ,  0 . . . . .  0) ; 

de t ( A ( z ) ) = a 1( z ) a 2 ( Z ), since A ~(1) is an explosive matrix it follows that: 
E( [I Mn JI 2) < ~, and hence (i) holds. 

deg (a s ( z ) )  =d~,  i =  1, 2, (ii) By application of Lemma 2 of [8], it is 
where the roots of al(z) (resp. az (Z) )  a re  strictly sufficient to show that  
inside (resp. outside) the unit disk of ~ .  Denote  

lim inf  Amin(Cn(r)) > 0 ~-a . s ,  for some r>~ 1, by Ac(1) [resp. A~(2)] the companion matrix of 
al(z) [resp. a2(z)], hence Ac(1) is a (dl,  d 1) ex- (17) 
plosive matrix and Ac(2) is a (d2, d 2) stable or 

where 
unstable matrix. There exists a complex non-sin- 

gular matrix T such that: C~(r) = E  Ac(1 ) Tle.r+~e.r+k 
Ts¢=  diag(Ac(1) ,  Ac(2),  Ki)T.  (14) ~=1 

iA ) Define q~i)= T/qb, where T v =  (T 1 T2), T l is a X TI* c(1) ) / ~ n r  " 

(d 1, dp + rs) full rank matrix and T 2 is a (d 2 + 
rs, dp + rs) full rank matrix. From (4) and (14) it 
follows that But 

4~I '~ =A¢(1),/'112t + Tie ~, (15) C.(r)  ~ r-,k . r-k * = Ac(1) rlK .rl (Ac(1)  ) 
k - I  

qDn(2) = Rq~n(2_) 1 + T2en,  (16)  
r - - I  

k , k * 
where R = diag(Ac(2), K1); t h u s  ((J~n (1)) is an ex- = E A t ( l )  r lx~ , , r l  (.4c(1)) = C(r) .  
plosive ARd~(1) and (q~2)) is a stable or unstable k=0 
ARd2+~s(1)" (18) 

The asymptotic behaviour of the explosive sys- 
To obtain the definite positiveness of C(r), it tem (q~l)) remains to be described. 
suffices to show (cf. [3], Proposition 2.III.6) that 

Lemma 2 (explosive case). Consider the system (1  ) 
(15). Under the hypothesis (~,W) we have: lim inf )tmi n - - (Pn(1))  > 0 ~'-a.s.  (19) 

( I ) ( 1 )  c~ - k  n (i) A c ( 1 ) - n ~  1) "q + --, = ~21Ac(1) Tie k 
~-a.s . ,  Note that the inequality (9) remains true for the 
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general system (1). Moreover Pn(1) = T1PnTI* im- unstable and its noise (TEe n) has a finite moment 
plies that of order 3' > 2, it can be shown that 

• max q~(2), Ami,(Pn(1))~Ami,(TiTl*)Amin(Pn) (20) k<n( k_ , (Pn(2 ) ) - ' q5 (2 ) l )=O(1  ) :~-a.s. 

Thus the desired conclusion (19) follows from (9), (23) 

(20) and the fact that Amin(TITI*) > 0. (cf. [7], Theorem 4). Making use of Lemma 2(i) 
(iii) A similar argument to the proof of Theo- and the fact that the matrix Ac(1) is explosive, we 

rein 2(ii) of [7] can be applied to show the almost can obtain, in the same way as in [7], Corollary 
sure convergence of the matrix Ac(1)-nPn(1) l(i), the following equality 
Ac(1) -n* to F 1. The regularity assumption im- 
plies that the minimal polynomial of matrix A c is ,-,,, ~ . ~ ]lAc(1)-n45(l_) ill = O(1)  ~-a . s .  (24) 
equal to its characteristic polynomial, and this 1 
also holds for matrix A~(1); making use of (ii) it From (22)-(24) it follows that 
can be shown that r/, Ac( l ) - l r /  . . . . .  Ac(1)-(dl-l)r/ 
are linearly independent ~-a.s .  (cf [3], Theorem D n -0 0 ~-a . s .  (25) 

5.I.3), and hence Using Lemma 2(iii) and (25) we get (21). 
d l -  1 Now we denote by 0n = 0 n - 0 the estimation 

Y'~ A¢(1)-kr/r /*Ac(1) -k* > 0  ~'-a.s., error at stage n. Then using the nonsingular 
0 linear transformation T defined in (14), we can 

write 
consequently F 1 is positive definite 3'-a.s. [] 

T*-lOn * = (0~ 1)', 0~2)') ' , (26) 

where On(1) is a (d 1, d) matrix and 0 (2) is a (d E + 
5. Proof of the Theorem rs, d) matrix. In view of (2) and (5), it is easy to 

show that 
n Define A n = diag(Ac(1)nF 1/2, Pn(2)x/2), Pn(2) - l O ,  . 

= "~"l'X~k-l't'k-l,g-'nd~(2) rh(2)* K n = A n l T P n T * A n l * ,  where it A ' T *  = / ~ n l A n l T E t ~ k _  1Ek , 

is easy to prove that Aft 1 exists almost surely for 1 
large values of n. Let us prove that: and making use of the /in convergence, we con- 

elude that 
I~ n --* ldp+r s ~-a . s .  (21) [I F~/2*Ac(1) . n  0(1, II 

l~ =(Fll/2Ac(1)-nPn(1)Ac(1)-"*(Fll/2)* D*) 1 

Dn lrs ' and 

where (en(2)'/21"<2, l 
n ( ) 

On = Pn( 2) -1/2 E tlb(2)- t;ib(1)*/A t l ) - n )  * , k - l ~  c, = 0  ( P n ( Z ) ) - ' / 2 2 ' p ~ 2 ) _ , e ~  ' ~ - a . s .  
k = l  1 

X (F~-1/2)*. (27) 

But Thus 

Ilr~/2*A~(1)*nO~l)ll 
(2), p 2 - 

IlDn II 2 ~ ct.m<a~n ( ~ k - l (  n ( ) )  ll~(k2) l) =O( l<k<,max Ilekll~liac(1)-nq'~lL~ll) 

( 1 
X ~ HAc(1)-n~(kl_)l (22) = O (  max Ile~ll) (by equality (24)) 

k = l  l<k<~n 

ct. a positive constant• Since (q~(2)) is stable or = o(x/n-) ~-a .s . ,  
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since e~ = o(,/n-) ~-a.s. ,  because (1/n)E]'  II ek Jl 2 such that 
trace(F,.) ~-a.s .  
Hence, /~¢ = diag( A c , K 1) T. 

I]Ac(1)*"0~l)ll=o(fn -) ~-a .s .  (28) Indeed the matrix Tl2 can be constructed as a 
solution of the following matrix equation: 

Since At(l)  is an explosive matrix, the above 
equality implies that for every real 6, A- 1 < 6 < 1, XK 1 - A c X  = B (34) 

where A is the modulus of the smallest eigenvalue and noting that A c and K1 do not have common 
of At(l): eigenvalues, implies that the last equation has a 
[10~ 1)[[ = o ( ~ / n ~ )  ~-a .s .  (29) single solution (see Gantmacher [5]). Let 

Moreover the random matrix 52]'q~k_l(Z)e ff is a ffA = 0 A _ 0 A, Üff = Of f -  0 8. 
martingale transform. Then a similar argument as 

Then (13) can be used to obtain that 

(Pn(2))-l/2~q)(k2)-'e~zl T * -  10n* = ( _ T120 n*'AO# + ~ff )" 

= O(log(Ama~(P,(2)))) (30) Thus (29) and (33) become 

almost surely on the event I[o~l] = o ( f n ~  n) ~-a . s .  (35) 

F 2 = {lim n __,~Amax(Pn(2))= oo}. and 

We have, as for (19), 

l iminf  Amin(Pn(2)) /n>O g-a .s . ,  (31) ][_ . ' A  ~B]] [ ' [  l°g(n)  ) T120 . + _ _ , , 2 = O -  9 -a . s .  (36) 
n 

and hence ~ ( F  2) = 1. The system (q~n(2)) is an Consequently by (35) and (36) we conclude that 
ARd2+~,(1), stable or unstable. Then we can ob- 
tain ,n same way a s , 7 ,  

Iog(Amax(Pn(2)) ) = O( log(n ) )  ~-a .s .  (32) 

From (27), (30), (31) and (32), it follows that Hence, we deduce: 

Corollary. Consider the LS estimator in (1); under 
hypothesis (~F), an&'if we assume also that the 

From (26), (29) and (33) we obtain (6). [] system is explosive then O n is strongly consistent. 
The autoregressive part o f  On has an exponential 
speed of  convergence, i.e. 

6. Particular case: Explosive system l[ ~ II = 6 n) ~,-a .s., 

We assume that system (1) is explosive, and we and the signal part o f  On has a speed of  conver- 
denote gence given by 

O=(OA,  O~), 0n=(0A,  0 f ) ,  ( ~ )  

where O A = ( - A 1 , . . . , - A p ) ,  O B = ( B 1 , . . . , B s )  II°fl]2=Ok ~-a .s .  

and 0 A (resp. Off) is the part of 0 n corresponding 
to 0 A (resp. to oA). 

Like in (14), we choose here a particular and 
non-singular matrix /~ given by References 
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