I am mainly interested in 2D Conformal Field Theory, and more precisely Toda CFTs, that generalize Liouville CFT and exhibit rich additional symmetries. I try to understand these models when defined on surfaces with boundaries. The study of such theories and of their symmetry algebras, implies many different mathematical techniques, such as probability theory and Gaussian calculus, representation theory, and vertex operator algebras.

Contact
- Email: firstname.lastname@univ-amu.fr
- Building 7, Campus St-Charles
Talks
- June 2025 (scheduled): Journées de Probabilités 2025, Institut de Mathématiques de Marseille
- November 2024: Workshop "Probabilistic methods in conformal field theory", CIRM Marseille
- November 2024: Team seminar - Chair of random geometry, EPFL Lausanne
- May 2024: Probability team seminar, Institut de Mathématiques de Marseille
- Dec 2023: PhD students seminar, Institut de Mathématiques de Marseille
Publications
- Higher-spin symmetry in the
boundary Toda conformal field Theory II: Singular vectors and BPZ equations
with Baptiste Cerclé
arXiv:2503.20548 - Higher-spin symmetry in the
boundary Toda conformal field Theory I: Ward identities
with Baptiste Cerclé
arXiv:2412.13874 - Boundary Toda conformal field theory from the path integral
with Baptiste Cerclé
arXiv:2402.02888