Combinatorics of billiards

N. Bedaride

Universite Paul Cezanne Marseille

э

< 日 > < 同 > < 三 > < 三 >

General method

Billiards Isometries Dual billiard Method of proof

Partition Complexity

Plan

- General method
 - Partition
 - Complexity
- 2 Billiards
 - Polygons
 - Dimension d
 - First return map
- Isometries
 - Definitions
 - Properties
 - Rotations
 - Relationship with the billiard
 - Problems
 - 4 Dual billiard
 - Definitions

Partition Complexity

Symbolic dynamics

Consider a dynamical system (X, T). Assume there exists a partition $(\mathcal{P}_i)_i$ of X in a finite number of cells.

The **coding** of an orbit $(T^n m)_n$ is a sequence (v_n) defined as

$$v_n = i \iff T^n m \in \mathcal{P}_i.$$

$$\phi: m \mapsto (v_n)_{n \in \mathbb{N}}$$

Example of dynamical system with a partition

Partition Complexity

Example

Two sequences:

$$\phi(m) = 12121212...$$

 $\phi(p) = 21212121...$

1,2 are called **letters**. The block $v_i \dots v_{n-1+i}$ is called a finite word of length *n*.

For example 212121 is a **finite word** of length 6.

-

Partition Complexity

If the partition has some properties then there is a semi-conjugacy:

$$\begin{array}{cccc} X & \xrightarrow{T} & X \\ \phi \downarrow & & \downarrow \phi \\ \phi(X) & \xrightarrow{S} & \phi(X) \end{array}$$

where $\phi(m) = (v_n)_n$ and S is the shift map.

We can study the system (Σ, S) , where $\Sigma = \overline{\phi(X)}$.

- **→** → **→**

Partition Complexity

Questions

For some dynamical system, with a good partition:

э

- 4 同 ト 4 ヨ ト 4 ヨ ト

Partition Complexity

Questions

For some dynamical system, with a good partition:

• Ergodic properties of the subshift.

A ►

→ 3 → < 3</p>

Partition Complexity

Questions

For some dynamical system, with a good partition:

- Ergodic properties of the subshift.
- Combinatorial properties of these words.

.⊒ . ►

Partition Complexity

Questions

For some dynamical system, with a good partition:

- Ergodic properties of the subshift.
- Combinatorial properties of these words.
- Link with the dynamical system (X, T).

We will describe three systems

Partition Complexity

Questions

For some dynamical system, with a good partition:

- Ergodic properties of the subshift.
- Combinatorial properties of these words.
- Link with the dynamical system (X, T).

We will describe three systems

• Polyhedral billiard.

Partition Complexity

Questions

For some dynamical system, with a good partition:

- Ergodic properties of the subshift.
- Combinatorial properties of these words.
- Link with the dynamical system (X, T).

We will describe three systems

- Polyhedral billiard.
- Piecewise isometries.

Partition Complexity

Questions

For some dynamical system, with a good partition:

- Ergodic properties of the subshift.
- Combinatorial properties of these words.
- Link with the dynamical system (X, T).

We will describe three systems

- Polyhedral billiard.
- Piecewise isometries.
- Dual billiard.

General method

Billiards Isometries Dual billiard Method of proof Partition Complexity

Complexity

Definition

If v is an infinite word, we define the COMPLEXITY function p(n, v) as the number of different words of length n inside v.

Example

 $v = abaaabbabbaaa... p(n, v) = 2^n$

General method

Billiards Isometries Dual billiard Method of proof

Partition Complexity

Complexity

Definition

If v is an infinite word, we define the COMPLEXITY function p(n, v) as the number of different words of length n inside v.

Example

 $v = abaaabbbbb \dots p(n, v) \leq 6$

In fact we can compute two different complexities:

- The complexity of one word: p(n, v).
- The complexity of the union of all the words: p(n).

Let v be a word corresponding to the orbit of m, and \mathcal{L}_v its language. Consider the following language

$$\mathcal{L} = \bigcup_m \mathcal{L}_v, \quad p(n) = card\mathcal{L}(n).$$

Polygons Dimension d First return map

Plan

- General method
 - Partition
 - Complexity

2 Billiards

- Polygons
- Dimension d
- First return map
- Isometries
 - Definitions
 - Properties
 - Rotations
 - Relationship with the billiard
 - Problems
 - 4 Dual billiard
 - Definitions

Polygons Dimension d First return map

Trajectories

Polygons Dimension d First return map

Definition

Let P be a polyhedron of \mathbb{R}^d , $m \in \partial P$ and $\omega \in \mathbb{RP}^{d-1}$.

The point moves along a straight line until it reaches the boundary of P.

On the face: orthogonal reflection of the line over the plane of the face.

$$T: \quad X \longrightarrow \partial P \times \mathbb{RP}^{d-1}.$$
$$T: \quad (m, \omega) \mapsto (m', \omega').$$

If a trajectory hits an edge, it stops.

Polygons Dimension d First return map

Coding

Definition

We associate one letter to each face of the polyhedron. In the case of the cube we give the same letters to the parallel faces.

Definition

The complexity of the word v generated by the orbit of (m, ω) is denoted by $p(n, \omega)$.

/⊒ > < ∃ >

Polygons Dimension d First return map

Definition

Let *P* be a polyhedron in \mathbb{R}^d , and s_i the linear reflections over the faces of *P*. We denote by G(P) the group generated by all the reflections s_i : $G(P) \subset O(d)$. The polyhedron is called rational if G(P) is finite.

Consider the orbit of one point (m, ω) . Then the differents directions are included inside $G\omega$, where $\omega \in \mathbb{R}^3$.

$$(T^n(m,\omega))_n \subset \partial P * G\omega.$$

Polygons Dimension d First return map

Polygons	$p(n,\omega)$	<i>p</i> (<i>n</i>)
rational	an + b	n ³
Irrational	$n^{1+arepsilon}$??

$$\lim \frac{\log p(n)}{n} = 0.$$

▲ロト ▲圖ト ▲屋ト ▲屋ト

Polygons Dimension d First return map

Theorem (Boshernitzan-Masur 1986)

In any polygon we have

$$\int_{S^1} \overline{p(n,\omega)} d\omega = Cn.$$

Corollary

For any $\varepsilon > 0$ and almost every ω we have

$$\overline{p(n,\omega)} = O(n^{1+\varepsilon}).$$

Paper of Gutkin-Rams 2007

▲ □ ▶ ▲ 三 ▶ ▲

э

Polygons Dimension d First return map

Theorem (Arnoux-Mauduit-Shiokawa-Tamura; Baryshnikov; B 94-95-03)

For the cubic billiard, under some hypothesis on ω :

• In
$$\mathbb{R}^3$$
, $p(n, \omega) = n^2 + n + 1$.

• In
$$\mathbb{R}^{d+1}$$
, $p(n,\omega) \sim n^d$.

Remark

For the square we obtain

$$p(n,\omega)=n+1.$$

- **→** → **→**

Polygons Dimension d First return map

Theorem (B 07)

٢

Consider a cube of \mathbb{R}^{d+1} , then we have:

- Fix n, d ∈ N, then the map ω → p(n, d, ω) is constant on the set of B directions.
- Moreover if we denote it by p(n, d) we have

$$p(n+2,d) - 2p(n+1,d) + p(n,d) = d(d-1)p(n,d-2)$$

$$p(n,d,\omega) = \sum_{i=0}^{\min(n,d)} \frac{n!d!}{(n-i)!(d-i)!i!} \quad \forall n,d \in \mathbb{N}.$$

▲□ ► < □ ► </p>

Polygons Dimension d First return map

Theorem (B 07)

In any convex polyhedron the billiard map T fulfills:

 $h_{top}(T)=0.$

Theorem (B-Hubert 07)

Consider the cube of \mathbb{R}^{d+1} , then there exists a, b > 0 such that

$$a \leq rac{p(n)}{n^{3d}} \leq b.$$

Polygons Dimension d First return map

	Square	Cube
$p(n,\omega)$	n+1	$p(n,\omega) \sim n^d$
<i>p</i> (<i>n</i>)	$\sim n^3$	$p(n) \approx n^{3d}$

	Polygons	Polyhedrons
$p(n,\omega)$	an + b	n^2 ?
p(n)	$\approx n^3$	n ⁶ ?
Entropy	$h_{top}=0$	$h_{top}=0$

▲ロト ▲圖ト ▲屋ト ▲屋ト

Polygons Dimension d First return map

Let P be a rational polyhedron.

The billiard flow acts on $P * \mathbb{RP}^2$.

Consider the first return map of the billiard flow on a transverse set $I * \{\omega\}$ where I is a rectangle:

Lemma

It is a piecewise isometry defined on the compact set I.

- **→** → **→**

Polygons Dimension d First return map

Cube

For the cube and a direction ω , the return map T_I is a ROTATION on the torus \mathbb{T}^2 .

Image: A image: A

э

Definitions Properties Rotations Relationship with the billiard Problems

Plan

- General method
 - Partition
 - Complexity

2 Billiards

- Polygons
- Dimension d
- First return map

3

Isometries

- Definitions
- Properties
- Rotations
- Relationship with the billiard
- Problems

Definitions

< E

э

Isometries

Definition

Consider a finite number of hyperplanes H_i in \mathbb{R}^d .

$$X=\mathbb{R}^d\setminus\bigcup H_i.$$

The map T is defined on the connected components of X as an isometry of \mathbb{R}^d .

Example

Interval exchanges:

- Piecewise isometry in dimension one, with translations.
- defined on a compact set,
- bijective

General method
BilliardsDefinitions
PropertiesIsometries
Dual billiard
Method of proofRelationship with the billiard
Problems

Interval exchange

Polygon exchange

<ロ> <同> <同> < 同> < 同>

Definitions Properties Rotations Relationship with the billiard Problems

Theorem (Buzzi 2001)

Every piecewise isometry has zero topological entropy.

Theorem (Bressaud-Poggiaspalla 06)

Classification of piecewise isometries defined on a triangle.

< 日 > < 同 > < 三 > < 三 >

Definitions Properties Rotations Relationship with the billiard Problems

Interval exchanges

For interval exchanges, there are a lot of results:

- Boshernitzan, Masur: ergodic properties of the subshift.
- Rauzy induction: first return map.
- Marmi-Moussa-Yoccoz: Cohomogical equation.
- Ferenczi-Zamboni: characterization of the language.

Remark

For an interval exchange we have $p(n, v) \leq an$.

General method	Definitions
Billiards	Properties
Isometries	Rotations
Dual billiard	Relationship with the billiard
Method of proof	Problems

- A two interval exchange is called a rotation.
- It corresponds to the map $x \mapsto x + \alpha \mod 1$.
- $\bullet\,$ In the coding, the first interval has length $1-\alpha.$

•
$$p(n, v) = n + 1$$
.

Rotations

Theorem (Morse-Hedlund 1940.)

Let v be an infinite word, assume there exists n such that $p(n, v) \leq n$. Then v is an ultimately periodic word.

A word v such that p(n, v) = n + 1 for all integer n, is called a Sturmian word.

Theorem (Coven-Hedlund 1973)

Let v be a sturmian word, then there exists m, α in \mathbb{R} such that for the rotation of angle α the orbit of m fulfills:

$$\phi(m)=v.$$

 General method
 Definitions

 Billiards
 Properties

 Isometries
 Rotations

 Dual billiard
 Relationship with the billiar

 Method of proof
 Problems

Global complexity

Consider the set of all rotations. **Computation** of p(n).

Proof of:

- Tarannikov, Lipatov: (1982).
- Mignosi: (1991).
- Berstel-Pocchiola.
- Cassaigne-Hubert-Troubetzkoy.

- **→** → **→**

General method Definitions Billiards Properties Isometries Rotations Dual billiard Relationship with the billiard Method of proof Problems

Theorem

For all integer n:

$$p(n) = \sum_{i=0}^{n} \phi(i)(n+1-i) \sim Cn^3,$$

where ϕ is the Euler function.

æ

< 日 > < 同 > < 三 > < 三 >

 General method
 Definitions

 Billiards
 Properties

 Isometries
 Rotations

 Dual billiard
 Relationship with the billiard

 Method of proof
 Problems

Dictionnary

- 4 同 ト 4 ヨ ト 4 ヨ

General method	Definitions
Billiards	
Isometries	
Dual billiard	Relationship with the billiard
Method of proof	

The complexity p(n) represents the number of different billiard words of length n.

For another polygon there is no equivalence with the interval exchange words.

Definitions
Properties
Rotations
Relationship with the billiard
Problems

No general result on piecewise isometry in dimension two:

Problems:

- Classification of polygons exchanges.
- Minimality.
- Size of rational polyhedrons.
- Periodic islands.

Definitions Properties Rotations Relationship with the billiard **Problems**

э

Definitions Background Work in progress

Plan

- General method
 - Partition
 - Complexity
- 2 Billiards
 - Polygons
 - Dimension d
 - First return map
- Isometries
 - Definitions
 - Properties
 - Rotations
 - Relationship with the billiard
 - Problems

Definitions

< E

э

Definitions Background Work in progress

Dual billiard

Consider a convex polygon in \mathbb{R}^2 . Fix one orientation.

The billiard map is defined in $\mathbb{R}^2 \setminus P$ by reflection through the verteces of P.

- **→** → **→**

Definitions Background Work in progress

There is a natural coding with the following regions:

Question Compute p(n), and describe the symbolic dynamics.

Definitions Background Work in progress

A polygon is rational if there exists a lattice which contains P.

Theorem (Gutkin-Simanyi 92)

For a rational polygon every orbit is periodic. For a quasi-rational polygon every orbit is bounded.

Every regular polygon is a quasi-rational polygon.

Theorem (Tabachnikov 95)

For the regular pentagon we have:

- almost all point has a periodic orbit.
- There exists some points with non periodic orbit.
- The set of non periodic point is a fractal set.
- Computation of Hausdorff dimension.

Image: A = A

Definitions Background Work in progres

Theorem (Gutkin-Tabachnikov 06)

If P is rational then $an^2 \le p(n) \le bn^2$. If P is a quasi-rational polygon with k verteces, then

 $an \leq p(n) \leq bn^{k+1}$.

▲□ ► < □ ► </p>

Definitions Background Work in progress

Theorem (B-Cassaigne 08)

Computation of p(n) for

- Triangle, square, regular hexagon, regular octogon.
- Regular pentagon.

$$p(n) \sim Cn^2$$
.

Remark

If h is an affine map, then h(P) has the same properties than P.

▲□ ► ▲ □ ► ▲

Fibonacci word Method Bispecial words

Plan

- General method
 - Partition
 - Complexity
- 2 Billiards
 - Polygons
 - Dimension d
 - First return map
- Isometries
 - Definitions
 - Properties
 - Rotations
 - Relationship with the billiard
 - Problems
- 4 Dual billiard
 - Definitions

Fibonacci word Method Bispecial words

Example

$$\sigma \begin{cases} \mathsf{a} \to \mathsf{a} \mathsf{b} \\ \mathsf{b} \to \mathsf{a} \end{cases}$$

N. Bedaride Combinatorics of billiards

<ロ> <同> <同> < 同> < 同>

Fibonacci word Method Bispecial words

Example

$$\sigma \begin{cases} \mathsf{a} \to \mathsf{a}\mathsf{b} \\ \mathsf{b} \to \mathsf{a} \end{cases}$$

$$\sigma^2(a) = aba, \sigma^3(a) = abaab.$$

<ロ> <同> <同> < 同> < 同>

Fibonacci word Method Bispecial words

Example

$$\sigma egin{cases} \mathsf{a} o \mathsf{a} \mathsf{b} \ \mathsf{b} o \mathsf{a} \ \sigma^2(\mathsf{a}) = \mathsf{a} \mathsf{b} \mathsf{a}, \sigma^3(\mathsf{a}) = \mathsf{a} \mathsf{b} \mathsf{a} \mathsf{a} \mathsf{b}. \end{cases}$$

$$v = \lim_{n \to +\infty} \sigma^n(a), v = \sigma(v).$$

<ロ> <同> <同> < 回> < 回>

Fibonacci word Method Bispecial words

Example

$$\sigma egin{cases} a o ab\ b o a \end{cases}$$

$$\sigma^2(a) = aba, \sigma^3(a) = abaab.$$

$$v = \lim_{n \to +\infty} \sigma^n(a), v = \sigma(v).$$

 $v = abaababaabaababa \dots$

<ロ> <同> <同> < 回> < 回>

Fibonacci word Method Bispecial words

Bispecial words

Let $\mathcal{L}(n)$ the set of words of length n in a language. For $v \in \mathcal{L}(n)$ let

$$egin{aligned} &s(n) = p(n+1) - p(n). \ &m_l(v) = card\{a \in \Sigma, & av \in \mathcal{L}(n+1)\}. \ &m_r(v) = card\{b \in \Sigma, & vb \in \mathcal{L}(n+1)\}. \ &m_b(v) = card\{(a,b) \in \Sigma^2, & avb \in \mathcal{L}(n+2)\}. \ &b(n) = \sum_{v \in \mathcal{L}(n)} (m_b(v) - m_r(v) - m_l(v) + 1). \end{aligned}$$

▲ □ ▶ ▲ □ ▶ ▲

-

Fibonacci word Method Bispecial words

Definition

A word v is:

- right special if $m_r(v) \ge 2$,
- left special if $m_l(v) \ge 2$,
- bispecial if it is right and left special.

We have

Lemma (Cassaigne 97)

For all integer n we have

$$s(n+1)-s(n)=b(n).$$

▲□ ► ▲ □ ► ▲

-

Fibonacci word Method Bispecial words

Example

The leftt special words are

- a
- ab
- aba
- abaa
- Prefix of v.

One left special word for every length:

$$s(n) = 1.$$

 $p(n, v) = n + 1.$

/⊒ > < ∃ >

э

Fibonacci word Method Bispecial words

Example

The right special words are

- o a
- ba
- aba
- aaba
- Mirror image of prefix of v.

The bispecial words are:

- a
- aba
- abaaba
- Palindromic prefixs.

For all bispecial word i(v) = 3 - 2 - 2 + 1 = 0.

Fibonacci word Method Bispecial words

The fibonacci word corresponds to a billiard trajectory inside the square starting from 0 and with slope $\phi-1.$