Dual billiards

N. Bedaride

Universite Paul Cezanne
Marseille

May 262008

Coding

Consider a dynamical system (X, T).
Assume there exists a partition $\left(\mathcal{P}_{i}\right)_{i}$ of X in a finite number of cells.
The coding of an orbit $\left(T^{n} m\right)_{n}$ is a sequence $\left(v_{n}\right)$ defined as

$$
v_{n}=i \Longleftrightarrow T^{n} m \in \mathcal{P}_{i}
$$

$$
\phi: m \mapsto\left(v_{n}\right)_{n \in \mathbb{N}}
$$

Example of dynamical system with a partition

Example

Two sequences:

$$
\begin{gathered}
\phi(m)=0101010101 \ldots \\
\phi(p)=10101010 \ldots
\end{gathered}
$$

The 0,1 are called letters. The block $v_{i} \ldots v_{n-1+i}$ is called a finite word of length n.
For example 101010 is a finite word of length 6. The sequence $\phi(m)$ is an infinite word.

If the partition has some properties then there is a semi-conjugacy:

$$
\begin{array}{ccc}
X & \xrightarrow{T} & X \\
\phi \downarrow & & \downarrow \phi \\
\phi(X) & \xrightarrow{s} & \phi(X)
\end{array}
$$

where $\phi(m)=\left(v_{n}\right)_{n}$ and S is the shift map.
We can study the system (Σ, S), where $\Sigma=\overline{\phi(X)}$.

Complexity

Definition

If v is an infinite word, we define the COMPLEXITY function $p(n, v)$ as the number of different words of length n inside v.

Example

$v=0100011011000 \ldots p(n, v)=2^{n}$

Complexity

Definition

If v is an infinite word, we define the COMPLEXITY function $p(n, v)$ as the number of different words of length n inside v.

Example

$v=0100011111 \ldots p(n, v) \leq 6$

In fact we can compute two different complexities:

- The complexity of one word: $p(n, v)$.
- The complexity of the union of all the words: $p(n)$.

Let v be a word corresponding to the orbit of m, and \mathcal{L}_{v} its language. Consider the following language

$$
\mathcal{L}=\bigcup_{m} \mathcal{L}_{V}, \quad p(n)=\operatorname{card} \mathcal{L}(n)
$$

Fibonacci

A substitution is a morphism of free monoid. For example for $\{0 ; 1\}^{*}$ we have:

$$
\phi\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 0
\end{array}\right.
$$

Fibonacci

A substitution is a morphism of free monoid. For example for $\{0 ; 1\}^{*}$ we have:

$$
\begin{gathered}
\phi\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 0
\end{array}\right. \\
\phi^{2}(0)=010, \phi^{3}(0)=01001 .
\end{gathered}
$$

Fibonacci

A substitution is a morphism of free monoid. For example for $\{0 ; 1\}^{*}$ we have:

$$
\begin{gathered}
\phi\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 0
\end{array}\right. \\
\phi^{2}(0)=010, \phi^{3}(0)=01001 . \\
v=\lim _{n \rightarrow+\infty} \phi^{n}(0), v=\phi(v) .
\end{gathered}
$$

Fibonacci

A substitution is a morphism of free monoid. For example for $\{0 ; 1\}^{*}$ we have:

$$
\begin{gathered}
\phi\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 0
\end{array}\right. \\
\phi^{2}(0)=010, \phi^{3}(0)=01001 . \\
v=\lim _{n \rightarrow+\infty} \phi^{n}(0), v=\phi(v) \\
v=0100101001001010 \ldots
\end{gathered}
$$

For a fixed point v of a substitution, the dynamical system is (Σ, S) where

$$
\Sigma=\overline{\bigcup_{n \in \mathbb{N}} S^{n} v}
$$

Theorem (Buzzi 2001)

Every piecewise isometry has zero topological entropy.

Theorem (Bressaud-Poggiaspalla 06)

Classification of piecewise isometries defined on a triangle.

Example

We define a piecewise isometry (Y, R) on the union of two triangles

$$
Y=A F C \bigcup H F E,
$$

where $R: Y \mapsto Y$ is defined as follows:

- The triangles $A F C$, HFE are isoscele triangles, and $\hat{A}=2 \pi / 5$.
- a rotation of center O_{1} and angle $-3 \pi / 5$ which sends C to E, if m belongs to AFC.
- a rotation of center O_{2} and angle $-\pi / 5$ which sends H to C otherwise.

$A F C \mapsto B A E$
$H F E \mapsto C B H$

Tabachnikov 1995

Substitution and first return map

We denote the first rotation by a and the second by b. For some affine map D we remark

$$
\left\{\begin{array}{l}
D a(x)=\text { aababaa } D(x) \quad x \in A F C, \\
D b(y)=\operatorname{aaa} D(y) \quad y \in H F E
\end{array}\right.
$$

Thus we introduce the substitution σ :

$$
\left\{\begin{array}{l}
a \mapsto \text { aababaa } \\
b \mapsto a a a
\end{array}\right.
$$

The language of this piecewise isometry is given by the fixed point of the susbtitution σ for the aperiodic points:

aababaaaababaaaaaaababaaaaa...

There is a complete description of the dynamics.

Dual billiard

Consider a convex polygon in \mathbb{R}^{2}. Fix one orientation.

The billiard map is defined in $\mathbb{R}^{2} \backslash P$ by reflection through the verteces of P.

There is a natural coding with the following regions:

Question Compute $p(n)$, and describe the symbolic dynamics.

A polygon is said to be rational if there exists a lattice which contains P.

Theorem

For a rational polygon every orbit is periodic.
For a quasi-rational polygon every orbit is bounded.

- Vivaldi-Shaidenko 87.
- Kolodziej 89.
- Gutkin-Simanyi 92

Every regular polygon is a quasi-rational polygon.

Theorem (Tabachnikov 95)

For the regular pentagon we have:

- Almost every point has a periodic orbit.
- There exists some points with non periodic orbit.
- The set of non periodic point is a fractal set.
- Computation of Hausdorff dimension.

Background

Theorem (Gutkin-Tabachnikov 06)

If P is rational then $a n^{2} \leq p(n) \leq b n^{2}$.
If P is a polygon with k verteces, then

$$
a n \leq p(n) \leq b n^{r+2}
$$

The integer r is the rank of the abelian group generated by translations in the sides of P.

We have $r \leq k-1$ and if P is rational then $r=2$. For a regular pentagon we find $r=3$.

Remark

If h is an affine map, then $h(P)$ has the same properties than P.

Theorem (B-Cassaigne 08)

With the notation $p(n)=k p_{L^{\prime}}(n-1)$ where k is the number of vertices of the polygon we have:

Polygons	$p_{L^{\prime}}(n)$
Triangle	$\frac{5 n^{2}+14 n+f(r)}{24}$
Square	$\frac{1}{2}\left\lfloor\frac{(n+2)^{2}}{2}\right\rfloor$
Hexagon	$\left\lfloor\frac{5 n^{2}+16 n+15}{12}\right\rfloor$

$$
n=12 q+r .
$$

r	0	1	2	3	4	5	6	7	8	9	10	11
$f(r)$	24	29	24	9	8	21	24	17	0	-3	8	9

Theorem (B-Cassaigne 08)

For the regular pentagon we obtain

$$
p_{L^{\prime}}(n) \sim C n^{2}
$$

where

$$
C=\frac{1}{5}+2 \sum_{n \geq 0}\left(\frac{7}{52.6^{n}+28-10(-1)^{n}}+\frac{7}{192.6^{n}+28-10(-1)^{n}}\right)
$$

Method

The method consists in

- Define a new map \hat{T} on one cone.
- Find a set where the first return map of \hat{T} is "simple".
- Describe the language of \hat{T}.
- Compute the complexity function.

We will explain the method for the square and the regular pentagon.

New map

We consider one regular polygon P and one cone V. We denote by R the rotation centered in the center of the polygon with angle $2 \pi / k$. Then we denote by \hat{T} the map defined on V :

$$
\hat{T}(x)=R^{n_{T x}}(T x), \quad n_{y}=\min \left\{n, R^{n} y \in V\right\}
$$

Lemma

The map \hat{T} is a piecewise isometry defined on $\left\lfloor\frac{k+1}{2}\right\rfloor$ sets.
This map has a natural coding due to preceding Lemma.

Link between the codings

If $\left(u_{n}\right)_{n \in \mathbb{N}},\left(v_{n}\right)_{n \in \mathbb{N}}$ are two sequences obtained as coding for a point m, then

$$
v_{n}=u_{n+1}-u_{n} \quad \bmod k
$$

For the square the codings of m are

$$
\begin{gathered}
u=012301230123 \ldots \\
v=111111 \ldots
\end{gathered}
$$

For the square the map \hat{T} has the following form:

Language

We deduce a description of the language of \hat{T}

Lemma

The language of \hat{T} is the union of finite words included in

$$
\bigcup_{n \in \mathbb{N}}\left(12^{n}\right)^{\omega} .
$$

There are only periodic words of different periods. 121212...
122122122...
122212221222...

It remains to compute the complexity of this language.

Pentagon

Consider the three substitutions:

$$
\sigma:\left\{\begin{array}{l}
1 \rightarrow 1121211 \\
2 \rightarrow 111
\end{array} \quad \psi:\left\{\begin{array}{l}
1 \rightarrow 2223223 \\
2 \rightarrow 223 \\
3 \rightarrow 2^{-1}
\end{array} \quad \xi:\left\{\begin{array}{l}
1 \rightarrow 31111 \\
2 \rightarrow 2
\end{array}\right.\right.\right.
$$

Theorem

The language of the dual billiard map for the regular pentagon is given by

$$
\bigcup_{n, m \in \mathbb{N}} \sigma^{n}(1) \cup \psi^{m} \circ \sigma^{n}(1) \cup \psi^{m} \circ \xi \circ \sigma^{n}(1) .
$$

The first return map \hat{T} for the regular pentagon is given by

Lemma

The map \hat{T} is defined on three subsets: the triangle $A C F$, the triangle HFE, the infinite quadrilateral CHE.

There is an invariant subset where the map coincides with the piecewise isometry defined by Tabachnikov.

Bispecial words

Let $\mathcal{L}(n)$ the set of words of length n in a language. For $v \in \mathcal{L}(n)$ let

$$
\begin{aligned}
s(n) & =p(n+1)-p(n) \\
m_{l}(v) & =\operatorname{card}\{a \in \Sigma, \quad a v \in \mathcal{L}(n+1)\} \\
m_{r}(v) & =\operatorname{card}\{b \in \Sigma, \quad v b \in \mathcal{L}(n+1)\} \\
m_{b}(v) & =\operatorname{card}\left\{(a, b) \in \Sigma^{2}, \quad a v b \in \mathcal{L}(n+2)\right\} \\
b(n) & =\sum_{v \in \mathcal{L}(n)}\left(m_{b}(v)-m_{r}(v)-m_{l}(v)+1\right)
\end{aligned}
$$

Definition

A word v is:

- right special if $m_{r}(v) \geq 2$,
- left special if $m_{l}(v) \geq 2$,
- bispecial if it is right and left special.

We have

Lemma (Cassaigne 97)

For all integer n we have

$$
s(n+1)-s(n)=b(n)
$$

Fibonacci word

$$
v=0100101001001010 \ldots
$$

The left special words are

Fibonacci word

$$
v=0100101001001010 \ldots
$$

The left special words are

- 0

Fibonacci word

$$
v=0100101001001010 \ldots
$$

The left special words are

- 0
- 01

Fibonacci word

$$
v=0100101001001010 \ldots
$$

The left special words are

- 0
- 01
- 010

Fibonacci word

$$
v=0100101001001010 \ldots
$$

The left special words are

- 0
- 01
- 010
- 0100

Fibonacci word

$$
v=0100101001001010 \ldots
$$

The left special words are

- 0
- 01
- 010
- 0100
- Prefix of v.

One left special word for every length n.

Example

$$
v=0100101001001010 \ldots
$$

The right special words are

Example

$$
v=0100101001001010 \ldots
$$

The right special words are

- 0

Example

$$
v=0100101001001010 \ldots
$$

The right special words are

- 0
- 10

Example

$$
v=0100101001001010 \ldots
$$

The right special words are

- 0
- 10
- 010

Example

$$
v=0100101001001010 \ldots
$$

The right special words are

- 0
- 10
- 010
- 0010

Example

$$
v=0100101001001010 \ldots
$$

The right special words are

- 0
- 10
- 010
- 0010
- Mirror image of prefix of v.

Example

$$
v=0100101001001010 \ldots
$$

The right special words are

- 0
- 10
- 010
- 0010
- Mirror image of prefix of v.

The bispecial words are:

Example

$$
v=0100101001001010 \ldots
$$

The right special words are

- 0
- 10
- 010
- 0010
- Mirror image of prefix of v.

The bispecial words are:

- 0
- 010
- 010010
- Palindromic prefixs.

For example 010 can be extended in

- 00100
- 00101
- 10100

Thus we have $i(010)=3-2-2+1=0$.

For example 010 can be extended in

- 00100
- 00101
- 10100

Thus we have $i(010)=3-2-2+1=0$.
For all bispecial word $i(v)=3-2-2+1=0$.

Questions

- Complexity for a quasi-rational polygon.
- Geometry of $\lim \frac{p(n)}{n^{2}}$.
- Complexity for a non quasi-rational polygon.

