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Coding

Consider a dynamical system (X ,T ).
Assume there exists a partition (Pi )i of X in a finite number of
cells.
The coding of an orbit (T nm)n is a sequence (vn) defined as

vn = i ⇐⇒ T nm ∈ Pi .

φ : m 7→ (vn)n∈N

T0

T

1 T10

Example of dynamical system with a partition
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Example

Two sequences:
φ(m) = 0101010101 . . .

φ(p) = 10101010 . . .

The 0, 1 are called letters. The block vi . . . vn−1+i is called a finite
word of length n.
For example 101010 is a finite word of length 6.
The sequence φ(m) is an infinite word.
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If the partition has some properties then there is a semi-conjugacy:

X
T−→ X

φ ↓ ↓ φ
φ(X )

S−→ φ(X )

where φ(m) = (vn)n and S is the shift map.

We can study the system (Σ, S), where Σ = φ(X ).
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Complexity

Definition

If v is an infinite word, we define the complexity function
p(n, v) as the number of different words of length n inside v .

Example

v = 0100011011000 . . . p(n, v) = 2n
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Complexity

Definition

If v is an infinite word, we define the complexity function
p(n, v) as the number of different words of length n inside v .

Example

v = 0100011111 . . . p(n, v) ≤ 6

N. Bedaride Dual billiards



Symbolic dynamics
Isometries

Dual billiard
Method of proof

Complexity
Open questions

Partition
Complexity
Substitutions

In fact we can compute two different complexities:

The complexity of one word: p(n, v).

The complexity of the union of all the words: p(n).

Let v be a word corresponding to the orbit of m, and Lv its
language. Consider the following language

L =
⋃
m

Lv , p(n) = cardL(n).
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Fibonacci

A substitution is a morphism of free monoid. For example for
{0; 1}∗ we have:

φ

{
0 7→ 01

1 7→ 0

φ2(0) = 010, φ3(0) = 01001.

v = lim
n→+∞

φn(0), v = φ(v).

v = 0100101001001010 . . .
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For a fixed point v of a substitution, the dynamical system is
(Σ,S) where

Σ =
⋃
n∈N

Snv .
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Theorem (Buzzi 2001)

Every piecewise isometry has zero topological entropy.

Theorem (Bressaud-Poggiaspalla 06)

Classification of piecewise isometries defined on a triangle.
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Example

We define a piecewise isometry (Y ,R) on the union of two
triangles

Y = AFC
⋃

HFE ,

where R : Y 7→ Y is defined as follows:

The triangles AFC ,HFE are isoscele triangles, and Â = 2π/5.

a rotation of center O1 and angle −3π/5 which sends C to E ,
if m belongs to AFC .

a rotation of center O2 and angle −π/5 which sends H to C
otherwise.
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C

A
F

C

B

E
E A

H H

AFC 7→ BAE

HFE 7→ CBH

Tabachnikov 1995
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Substitution and first return map

We denote the first rotation by a and the second by b. For some
affine map D we remark{

Da(x) = aababaaD(x) x ∈ AFC ,

Db(y) = aaaD(y) y ∈ HFE

Thus we introduce the substitution σ:{
a 7→ aababaa

b 7→ aaa
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The language of this piecewise isometry is given by the fixed point
of the susbtitution σ for the aperiodic points:

aababaaaababaaaaaaababaaaaa . . .

There is a complete description of the dynamics.
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Dual billiard

Consider a convex polygon in R2. Fix one orientation.

T^2m

T

m

Tm

The billiard map is defined in R2 \ P by reflection through the
verteces of P.
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There is a natural coding with the following regions:

Question Compute p(n), and describe the symbolic dynamics.
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A polygon is said to be rational if there exists a lattice which
contains P.

Theorem

For a rational polygon every orbit is periodic.
For a quasi-rational polygon every orbit is bounded.

Vivaldi-Shaidenko 87.

Kolodziej 89.

Gutkin-Simanyi 92

Every regular polygon is a quasi-rational polygon.

N. Bedaride Dual billiards



Symbolic dynamics
Isometries

Dual billiard
Method of proof

Complexity
Open questions

Definitions
Background
Result

Theorem (Tabachnikov 95)

For the regular pentagon we have:

Almost every point has a periodic orbit.

There exists some points with non periodic orbit.

The set of non periodic point is a fractal set.

Computation of Hausdorff dimension.
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Background

Theorem (Gutkin-Tabachnikov 06)

If P is rational then an2 ≤ p(n) ≤ bn2.
If P is a polygon with k verteces, then

an ≤ p(n) ≤ bnr+2.

The integer r is the rank of the abelian group generated by
translations in the sides of P.

We have r ≤ k − 1 and if P is rational then r = 2. For a regular
pentagon we find r = 3.

Remark

If h is an affine map, then h(P) has the same properties than P.
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Theorem (B-Cassaigne 08)

With the notation p(n) = kpL′(n − 1) where k is the number of
vertices of the polygon we have:

Polygons pL′(n)

Triangle 5n2+14n+f (r)
24

Square 1
2b

(n+2)2

2 c
Hexagon b5n2+16n+15

12 c

n = 12q + r .

r 0 1 2 3 4 5 6 7 8 9 10 11

f(r) 24 29 24 9 8 21 24 17 0 -3 8 9
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Theorem (B-Cassaigne 08)

For the regular pentagon we obtain

pL′(n) ∼ Cn2

where

C =
1

5
+ 2

∑
n≥0

(
7

52.6n + 28− 10(−1)n
+

7

192.6n + 28− 10(−1)n
).
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Method

The method consists in

Define a new map T̂ on one cone.

Find a set where the first return map of T̂ is ”simple”.

Describe the language of T̂ .

Compute the complexity function.

We will explain the method for the square and the regular
pentagon.
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New map

We consider one regular polygon P and one cone V . We denote by
R the rotation centered in the center of the polygon with angle
2π/k . Then we denote by T̂ the map defined on V :

T̂ (x) = RnTx (Tx), ny = min{n,Rny ∈ V }.

Lemma

The map T̂ is a piecewise isometry defined on bk+1
2 c sets.

This map has a natural coding due to preceding Lemma.

N. Bedaride Dual billiards



Symbolic dynamics
Isometries

Dual billiard
Method of proof

Complexity
Open questions

Method
Square
Pentagon

Link between the codings

If (un)n∈N, (vn)n∈N are two sequences obtained as coding for a
point m, then

vn = un+1 − un mod k.

For the square the codings of m are

u = 012301230123 . . .

v = 111111 . . .
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For the square the map T̂ has the following form:

2

1

2

1
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Language

We deduce a description of the language of T̂

Lemma

The language of T̂ is the union of finite words included in⋃
n∈N

(12n)ω.
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There are only periodic words of different periods.

121212 . . .

122122122 . . .

122212221222 . . .

It remains to compute the complexity of this language.
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Pentagon

Consider the three substitutions:

σ :

{
1→ 1121211

2→ 111
ψ :


1→ 2223223

2→ 223

3→ 2−1

ξ :

{
1→ 31111

2→ 2
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Theorem

The language of the dual billiard map for the regular pentagon is
given by ⋃

n,m∈N
σn(1) ∪ ψm ◦ σn(1) ∪ ψm ◦ ξ ◦ σn(1).
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The first return map T̂ for the regular pentagon is given by

Lemma

The map T̂ is defined on three subsets: the triangle ACF , the
triangle HFE , the infinite quadrilateral CHE .

There is an invariant subset where the map coincides with the
piecewise isometry defined by Tabachnikov.
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G

T

A A EF

B

C

I
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Bispecial words

Let L(n) the set of words of length n in a language. For v ∈ L(n)
let

s(n) = p(n + 1)− p(n).

ml(v) = card{a ∈ Σ, av ∈ L(n + 1)}.
mr (v) = card{b ∈ Σ, vb ∈ L(n + 1)}.
mb(v) = card{(a, b) ∈ Σ2, avb ∈ L(n + 2)}.

b(n) =
∑

v∈L(n)

(mb(v)−mr (v)−ml(v) + 1).
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Definition

A word v is:

right special if mr (v) ≥ 2,

left special if ml(v) ≥ 2,

bispecial if it is right and left special.

We have

Lemma (Cassaigne 97)

For all integer n we have

s(n + 1)− s(n) = b(n).

N. Bedaride Dual billiards



Symbolic dynamics
Isometries

Dual billiard
Method of proof

Complexity
Open questions

Method
Example

Fibonacci word

v = 0100101001001010 . . .

The left special words are

0

01

010

0100

Prefix of v .

One left special word for every length n.
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Example

v = 0100101001001010 . . .

The right special words are

0

10

010

0010

Mirror image of prefix of v .

The bispecial words are:

0

010

010010

Palindromic prefixs.
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For example 010 can be extended in

00100

00101

10100

Thus we have i(010) = 3− 2− 2 + 1 = 0.

For all bispecial word i(v) = 3− 2− 2 + 1 = 0.
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Questions

Complexity for a quasi-rational polygon.

Geometry of lim p(n)
n2 .

Complexity for a non quasi-rational polygon.
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