Exercices d'algèbre linéaire Agrégation externe 2016-2017

N. Bédaride

Les exercices marqués d'un \square sont à savoir faire absolument. Ceux marqués d'un \maltese peuvent servir de développement.

1 Espaces vectoriels

1.1 Généralités

Exercice 1. \square Soit E un espace vectoriel et soient F_1 et F_2 deux sous-espaces vectoriels de E.

- 1) Montrer que $E = F_1 \oplus F_2$ si et seulement si $E = F_1 + F_2$ et $F_1 \cap F_2 = \{0\}$.
- 2) On suppose que $E = F_1 \oplus F_2$. Soit G un sous-espace vectoriel de E. A-t-on $G = (F_1 \cap G) \oplus (F_2 \cap G)$?
- 3) Généraliser le résultat de la première question à un nombre quelconque de sous-espaces vectoriels.

Exercice 2. \square Soient E, F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire.

- 1) Rappeler pourquoi Ker(f) (respectivement Im(f)) est un sous-espace vectoriel de E (respectivement de F).
- 2) Montrer que f est injective si et seulement si f transforme toute famille libre de E en une famille libre de F.
- 3) Montrer que f est surjective si et seulement si f transforme toute famille génératrice de E en une famille génératrice de F.
- 4) Montrer que f est bijective si et seulement si f transforme toute base de E en une base de F.

Exercice 3. \square Soient E un espace vectoriel et f un endomorphisme de E.

- 1) Montrer que $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$ si et seulement si $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0\}.$
- 2) On suppose de plus que E est de dimension finie. Montrer que les assertions suivantes sont équivalentes :
 - (i) $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$.
 - (ii) $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.
 - (iii) $\operatorname{Im}(f) = \operatorname{Im}(f^2)$.

Exercice 4 (Espaces vectoriels quotients). \square Soient E un espace vectoriel et F un sousespace vectoriel de E.

- 1) Soit \mathcal{R} la relation binaire définie sur E par $x\mathcal{R}y$ si $x-y\in F$. Montrer que \mathcal{R} est une relation d'équivalence sur E.
 - On notera E/F l'ensemble quotient et $p: E \to E/F$ l'application naturelle de passage au quotient.
- 2) Montrer qu'il existe une unique structure d'espace vectoriel sur E/F telle que p soit une application linéaire. Montrer que F = Ker(p).
- 3) On dit que F est de codimension finie dans E si E/F est de dimension finie, et on appelle codimension de F dans E la dimension de E/F. Cette codimension sera notée codim_E(F). Montrer que F est de codimension finie dans E si et seulement si F admet un supplémentaire G de dimension finie dans E et que dans ce cas dim(G) = codim_E(F).
- 4) Soit f une application linéaire de source E. Montrer que Im(f) est isomorphe à E/Ker(f).

Exercice 5. \square *Montrer que dans l'ensemble des applications de* \mathbb{R} *vers* \mathbb{R} , *les familles suivantes sont libres :*

- (i) (sin, cos).
- (ii) $(P_n)_{n\in\mathbb{N}}$, où chaque P_n est un polynôme de degré n.
- (iii) $(f_a)_{a\in\mathbb{R}}$, où $f_a: x \in \mathbb{R} \mapsto |x-a| \in \mathbb{R}$.

Exercice 6. Soit (G, +) un groupe abélien.

- 1) Montrer que G peut être muni d'au plus une structure de \mathbb{Q} -espace vectoriel.
- 2) Montrer que pour que G puisse être muni d'une structure de \mathbb{Q} -espace vectoriel, il faut et il suffit qu'il vérifie les deux conditions suivantes :
 - (i) G est sans torsion
 - (ii) G est divisible, c'est-à-dire que pour tout $x \in G$ et tout $n \in \mathbb{N}^*$, il existe $y \in G$ tel que ny = x.

Exercice 7. On note C l'espace vectoriel réel des suites convergentes de réels et C_0 le sous-espace des suites qui convergent vers 0.

- a) On note Φ l'application de C dans \mathbb{R} qui à chaque suite $x=(x_n)_{n\geq 1}$ associe $\Phi(x)=\lim_n x_n$. Montrer que Φ est une forme linéaire sur C. Quel est son noyau?
- b) Etant donnée une suite $x = (x_n)_{n\geq 1} \in C$ on lui associe la suite $y = (y_k)_{k\geq 1}$ définie par $y_1 = \Phi(x)$ et pour $k = 1, 2, \ldots, y_{k+1} = x_k \Phi(x)$. Montrer que $y \in C_0$. Montrer que l'application $u: C \to C_0$ ainsi définie est un isomorphisme.
 - c) On désigne par C_{st} le sous-espace de C des suites constantes. Montrer que $C = C_0 \oplus C_{st}$.

1.2 Dimension et dualité

Exercice 8. Définir la dimension d'un espace vectoriel. Enoncer le théorème de la base incomplète. **Exercice 9.** \square *Montrer que tout sous espace vectoriel d'un espace de dimension finie est de dimension finie.*

Exercice 10. \square Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Montrer que E et F sont isomorphes si et seulement si ils ont la même dimension.

Exercice 11. Soit \mathbb{K} un corps commutatif.

- 1) Montrer que l'anneau $\mathbb{K}[X]$ est un anneau principal.
- 2) Soient $P \in \mathbb{K}[X]$ un polynôme de degré supérieur ou égal à 1 et (P) l'idéal engendré par P. Montrer que $\mathbb{K}[X]/(P)$ est un corps si et seulement si P est irréductible.
- 3) Montrer que $\mathbb{K}[X]/(P)$ est un \mathbb{K} -espace vectoriel de dimension finie et calculer cette dimension.

Exercice 12. Soit \mathbb{K} un corps fini (commutatif).

- 1) Montrer que la caractéristique de K est un nombre premier p.
- 2) Montrer que le cardinal de \mathbb{K} est une puissance de p.

Exercice 13. \square Soit $E = \mathbb{R}[X]$ et $(e_n)_{n \in \mathbb{N}}$ la base donnée par $e_n = X^n$.

- 1. Montrer que le système dual ne forme pas une base de E^* .
- 2. Montrer que E^* est isomorphe à $\mathbb{R}^{\mathbb{N}}$.

Exercice 14. Soit x_0, \ldots, x_n des points différents de [0,1]. Monter qu'il existe $\alpha_0, \ldots, \alpha_n$ réels tels que pour tout $P \in \mathbb{R}_n[X]$ on ait

$$\int_0^1 P(x)dx = \sum_{i=0}^n \alpha_i P(x_i)$$

Exercice 15. \square Soient f_1 et f_2 les deux applications de \mathbb{R}^2 dans \mathbb{R} définies pour chaque X = (x, y) par $f_1(X) = x + y$ et $f_2(X) = x + 2y$.

- a) Montrer que (f_1, f_2) est une base de $[\mathbb{R}^2]^*$.
- b) Exprimer f_1 et f_2 à l'aide de la base duale de la base canonique de \mathbb{R}^2 .
- c) Déterminer la base de \mathbb{R}^2 dont (f_1, f_2) est la base duale.

Exercice 16. Soit E un \mathbb{K} -espace vectoriel et $(e_i)_{i\in I}$ une base de E. Pour tout $i\in I$, on définit une forme linéaire e_i^* sur E par $e_i^*(e_j)=0$ si $i\neq j$ et $e_i^*(e_i)=1$.

- 1) On suppose que E est de dimension finie. Montrer que les $(e_i^*)_{i\in I}$ forment une base du dual E^* et en déduire que E et E^* ont même dimension.
- 2) Si E est de dimension infinie, montrer que les $(e_i^*)_{i\in I}$ forment une famille libre. Cette famille est-elle génératrice?
- 3) On suppose de nouveau que E est de dimension finie. Si $x \in E$, on définit une application $\phi_x : f \in E^* \mapsto f(x) \in \mathbb{K}$. Montrer que ϕ_x est un élément de E^{**} et que l'application $x \in E \mapsto \phi_x \in E^{**}$ est un isomorphisme.

Exercice 17.

- 1) Rappeler la définition de la trace d'une matrice carrée et redémontrer les propriétés principales de la trace.
- 2) Soit $f \in M_n(\mathbb{R})^*$ une forme linéaire sur $M_n(\mathbb{R})$. Montrer qu'il existe une matrice $A \in M_n(\mathbb{R})$ telle que pour toute matrice $X \in M_n(\mathbb{R})$, f(X) = Tr(AX).
- 3) Rappeler la définition de la trace d'un endomorphisme.

Exercice 18. Montrer que $GL_n(\mathbb{R})$ coupe tout hyperplan de $M_n(\mathbb{R})$.

1.3 Dimension finie

Exercice 19. \square

- 1) Dans \mathbb{R}^3 , on considère les vecteurs de coordonnées (1,0,1), (-1,1,2) et (-2,2,2). Montrer que ces vecteurs forment une base de \mathbb{R}^3 et calculer les coordonnées d'un vecteur quelconque dans cette base.
- 2) Dans \mathbb{R}^4 , trouver le rang de la famille de vecteurs suivants : (1,1,1,1), (2,2,3,-1), (1,2,1,2), (0,-1,2,1), (0,1,2,3).

Exercice 20. \square Soit F le sous-ensemble de \mathbb{R}^4 défini par les équations x+y+z+t=0 et 2x+3y-2z-2t=0. Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 , en donner une base et déterminer un supplémentaire de F dans \mathbb{R}^4 .

Exercice 21. Soient E un espace vectoriel de dimension finie et F,G deux sous-espaces vectoriels de E. Calculer la dimension de F+G en fonction des dimensions de F, G et $F \cap G$.

Exercice 22. Soient u, v deux endomorphismes de E. Montrer que

$$rg(u) - rg(v \circ u) = dim(Imu \cap Kerv)$$

Exercice 23. Soient p, q deux projecteurs. Montrer les équivalences :

$$p+q \ est \ un \ projecteur \iff p\circ q+q\circ p=0 \iff \begin{cases} Im(p)\subset Ker(q)\\ Im(q)\subset Ker(p). \end{cases}$$

Chercher alors le noyau et l'image de p + q.

Montrer que rg(p) = tr(p) en dimension finie.

Exercice 24.

- 1) Montrer que $M_n(\mathbb{R})$ est somme directe de l'ensemble des matrices symétriques et de l'ensemble des matrices antisymétriques.
- 2) Montrer que l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} est somme directe de l'ensemble des fonctions paires et de l'ensemble des fonctions impaires.

Exercice 25.

1) Soient \mathbb{K}_1 et \mathbb{K}_2 deux corps commutatifs avec $\mathbb{K}_1 \subset \mathbb{K}_2$. Montrer que \mathbb{K}_2 est de façon naturelle muni d'une structure de \mathbb{K}_1 -espace vectoriel. On note $[\mathbb{K}_2 : \mathbb{K}_1]$ la dimension (éventuellement infinie) de cet espace vectoriel.

- 2) Soit \mathbb{K}_3 un autre corps commutatif, avec $\mathbb{K}_1 \subset \mathbb{K}_2 \subset \mathbb{K}_3$. Montrer que $[\mathbb{K}_3 : \mathbb{K}_1] < \infty$ si et seulement si $[\mathbb{K}_3 : \mathbb{K}_2] < \infty$ et $[\mathbb{K}_2 : \mathbb{K}_1] < \infty$.
- 3) En déduire dans ce cas la formule

$$[\mathbb{K}_3:\mathbb{K}_1] = [\mathbb{K}_3:\mathbb{K}_2].[\mathbb{K}_2:\mathbb{K}_1]$$

Exercice 26 (Hyperplans). \square

Soient E un espace vectoriel et H un sous-espace vectoriel de E. On dit que H est un hyperplan de E si H est de codimension 1 dans E. Montrer que les assertions suivantes sont équivalentes :

- 1. H est un hyperplan de E.
- 2. Il existe une forme linéaire non nulle $f \in E^*$ telle que $H = \operatorname{Ker} f$.

Donner un exemple classique.

Exercice 27.

- 1) Montrer que tout \mathbb{C} -espace vectoriel est de façon naturelle un \mathbb{R} -espace vectoriel et donner la relation entre les dimensions correspondantes.
- 2) On considère \mathbb{R} comme un \mathbb{Q} -espace vectoriel. Montrer que \mathbb{R} est de dimension infinie.

Exercice 28. Soient E un espace vectoriel de dimension finie et F,G deux sous-espaces vectoriels de E. Montrer que F et G ont même dimension si et seulement s'ils ont un supplémentaire commun. (On pourra faire une récurrence sur la codimension de F.)

1.4 Applications linéaires

Exercice 29. Pour $x, y \in \mathbb{R}_+^*$ et $\lambda \in \mathbb{R}$, on pose $x \oplus y = xy$ et $\lambda \odot x = x^{\lambda}$. Montrer que $(\mathbb{R}_+^*, \oplus, \odot)$ est un \mathbb{R} -espace vectoriel isomorphe à $(\mathbb{R}, +, .)$.

Exercice 30 (Théorème du rang).

- 1) Enoncer et démontrer le théorème du rang.
- 2) Montrer qu'une application linéaire entre espaces vectoriels de même dimension finie est bijective si et seulement si elle est injective et si et seulement si elle est surjective.
- 3) Cette propriété est-elle vraie en dimension infinie?

Exercice 31. Soit n un entier naturel non nul, et soit E un espace vectoriel de dimension n muni d'une base (e_1, e_2, \ldots, e_n) . A toute permutation σ du groupe symétrique S_n , on associe l'unique endomorphisme f_{σ} de E tel que $f_{\sigma}(e_i) = e_{\sigma(i)}$, pour $i = 1, \ldots, n$.

- 1) Montrer que $\sigma \mapsto f_{\sigma}$ est un morphisme injectif de S_n dans GL(E).
- 2) Soit D le sous-espace vectoriel de E engendré par le vecteur $\sum_{i=1}^{n} e_i$, et H celui formé des $x = \sum_{i=1}^{n} x_i e_i$ tels que $x_1 + \dots + x_n = 0$. Montrer que $E = H \oplus D$. (On pourra utiliser la base $(e_1 e_2, \dots, e_1 e_n)$ de H.)

3) Montrer que les seuls sous-espaces vectoriels de E stables par tous les f_{σ} sont $\{0\}$, D, H, et E. (Si V est un tel sous-espace qui n'est pas inclus dans D, on pourra utiliser le fait que $e_1 - e_i \in V$ pour tout i.)

Exercice 32. Soit E un espace vectoriel de dimension finie.

- 1) Soit f un endomorphisme de E. Montrer que f est une homothétie si et seulement si pour tout $x \in E$, la famille (x, f(x)) est liée.
- 2) Déterminer le centre de GL(E).

Exercice 33. Soit $A \in M_n(\mathbb{Z})$. Donner une condition nécessaire et suffisante pour que A admette un inverse à coefficients entiers.

Exercice 34. Soit E un \mathbb{R} -espace vectoriel de dimension finie et soit f un endomorphisme de E. Montrer qu'il existe deux automorphismes u et v de E tels que f = u - v.

2 Réduction

2.1 Matrices équivalentes, matrices semblables

Exercice 35. Montrer que la matrice $A \in M_n(\mathbb{R})$ est de rang r si et seulement si il existe P, Q matrices inversibles de $M_n(\mathbb{R})$ telles que

$$PAQ = J_r$$

En déduire que $rg(A) = rg({}^{t}A)$.

Exercice 36.

- 1. Montrer que si deux matrices de $M_n(\mathbb{R})$ sont semblables alors elles ont même déterminant, trace, rang, polynôme caractéristique et valeurs propres.
- 2. Montrer que le polynôme minimal et le polynôme caractéristique forment un invariant global pour cette relation dans $M_2(\mathbb{R})$.
- 3. Est ce vrai dans $M_3(\mathbb{R})$?
- 4. Trouver un contre exemple en dimension plus grande avec des matrices nilpotentes.

Exercice 37.

- 1) Soient A et B deux matrices de $M_n(\mathbb{R})$ semblables sur \mathbb{C} . Montrer que A et B sont aussi semblables sur \mathbb{R} .
- 2) En déduire que A et tA sont semblables sur \mathbb{R} .

2.2 Résultats classiques

Exercice 38. Soient E un espace vectoriel de dimension finie et f un endomorphisme de E. On suppose qu'il existe un sous-espace vectoriel non-trivial F de E qui est stable par f et on note g la restriction de f à F, qu'on considère comme un endomorphisme de F. Montrer que le polynôme caractéristique de g divise celui de f.

Exercice 39. Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E. Si $\lambda \in \mathbb{K}$ est une valeur propre de f, on note E_{λ} le sous-espace propre associé.

- 1) Montrer que E_{λ} est stable par f.
- 2) Montrer que des sous-espaces propres de f associés à différentes valeurs propres sont en somme directe.

Exercice 40. Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in L(E)$.

1) Soit $P \in \mathbb{K}[X]$. On suppose que $P = P_1...P_k$, avec les polynômes P_i premiers entre eux deux à deux. Montrer que

$$Ker(P(f)) = Ker(P_1(f)) \oplus \ldots \oplus Ker(P_k(f)).$$

- 2) Montrer que f est diagonalisable si et seulement s'il existe un polynôme $P \in \mathbb{K}[X]$ scindé à racines simples tel que P(f) = 0.
- 3) On suppose qu'il existe un sous-espace vectoriel F de E stable par f. Montrer que si f est diagonalisable, alors $f|_F$ est aussi diagonalisable.

Exercice 41. Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in L(E)$. On note P le polynôme caractéristique de f, et pour $\lambda \in \mathbb{K}$, on pose $E_{\lambda} = \operatorname{Ker}(f - \lambda \operatorname{Id})$.

- 1) On suppose que λ est une racine de P d'ordre α . Montrer que $\dim(E_{\lambda}) \leq \alpha$.
- 2) Montrer que les assertions suivantes sont équivalentes.
 - (i) f est diagonalisable.
 - (ii) P est scindé sur \mathbb{K} et pour toute racine λ de P d'ordre α , on a dim $(E_{\lambda}) = \alpha$.
 - (iii) Il existe des valeurs propres $\lambda_1, \ldots, \lambda_p$ de f telles que $E = E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_p}$.

Exercice 42. Soient E un espace vectoriel de dimension finie $m \neq 0$ et f un endomorphisme de E.

- 1) Montrer que la suite $(\operatorname{Im}(f^p))_{p\in\mathbb{N}}$ (respectivement la suite $(\operatorname{Ker}(f^p))_{p\in\mathbb{N}}$) décroît strictement puis devient stationnaire (respectivement croît strictement puis devient stationnaire).
- 2) On suppose que f est nilpotent et on note n son indice de nilpotence (c'est-à-dire $f^n = 0$ et $f^{n-1} \neq 0$).
 - 1. Montrer que $n \leq m$ en remarquant que la suite $(\operatorname{Im}(f^p))_{p \in \mathbb{N}}$ décroît strictement jusqu'à p = n puis devient stationnaire.
 - 2. Retrouver le même résultat en montrant qu'il existe un vecteur $x \in E$ tel que la famille $(x, f(x), \ldots, f^{n-1}(x))$ soit libre.
- 3) Donner dans $M_4(\mathbb{R})$ des exemples de matrices nilpotentes d'indices différents.

Exercice 43. Soient E un \mathbb{K} - espace vectoriel de dimension finie et $f \in L(E)$. Montrer que f est trigonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbb{K} . En déduire que toute matrice à coefficients complexes est trigonalisable.

Exercice 44. Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in L(E)$. On pose $I = \{P \in \mathbb{K}[X] \mid P(f) = 0\}$.

- 1) Montrer que I est un idéal de $\mathbb{K}[X]$, non réduit à $\{0\}$, et en déduire qu'il existe un unique polynôme unitaire M tel que I soit engendré par M. M est appelé le polynôme minimal de f.
- 2) Montrer que M divise le polynôme caractéristique de f.
- 3) Montrer que $\lambda \in \mathbb{K}$ est une valeur propre de f si et seulement si $M(\lambda) = 0$.
- 4) Si E est de dimension infinie, on peut encore définir I de la même manière. Est-il forcément non trivial?

Exercice 45. Montrer que tout endomorphisme d'un \mathbb{R} -espace vectoriel de dimension finie admet une droite stable ou un plan stable.

Exercice 46. Soit $A \in SL_2(\mathbb{Z})$ telle qu'il existe un entier n avec $A^n = Id$. Montrer que $A^{12} = Id$.

Exercice 47. Trouver les matrices telles que $A^2 - 4A + 3Id = 0$.

Exercice 48. Trouver le commutant de la matrice

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}.$$

2.3 Calculs

Exercice 49. \square Diagonaliser ou trigonaliser les matrices suivantes dans \mathbb{C} .

$$\begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix} \quad \begin{pmatrix} 2 & 2 & -3 \\ 5 & 1 & -5 \\ -3 & 4 & 0 \end{pmatrix}.$$

Exercice 50. \square On considère la matrice

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

Calculer $A^k, k \in \mathbb{N}$. Pour cela on décomposera en éléments simples $\frac{X^k}{M_A(X)}$.

Exercice 51. \square Résoudre le système différentiel suivant :

$$\begin{cases} x' = 2x + y \\ y' = x + 2y \end{cases}$$

Montrer qu'il existe une unique solution vérifiant x(0) = 1 et y(0) = 0.

Exercice 52. \square Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les deux suites définies par la donnée de u_0 et v_0 et les relations

$$\begin{cases} u_{n+1} = 4u_n + 2v_n \\ v_{n+1} = u_n + 3v_n \end{cases}$$

Donner une expression explicite de u_n et v_n en fonction de n, u_0 et v_0 .

Exercice 53. Calculer le polynôme minimal des matrices suivantes :

$$\begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix} \quad \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}.$$

Exercice 54. Calculer la décomposition de Dunford de la matrice suivante en décomposant en éléments simples la fraction $\frac{1}{\chi_m(X)}$.

$$M = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}.$$

3 Déterminants

Exercice 55.

1. Calculer le déterminant des matrices suivantes

$$\begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ a_1 & a_2 & \dots & a_0 \end{pmatrix}$$

$$(|i-j|)_{1 \le i,j \le n}, (\min(i,j))_{1 \le i,j \le n}$$

On fera intervenir les matrices auxiliaires suivantes ou ω est une racine primitive de l'unité :

$$A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & \omega & \dots & \omega^{n-1} \\ & & & \\ 1 & \omega^{n-1} & \dots & \omega^{(n-1)^2} \end{pmatrix}, B_{i,j} = \begin{cases} 1 & i \leq j \\ 0 & sinon \end{cases}$$

2. Calculer le déterminant de la matrice suivante ou $a_i + b_j \neq 0$ pour tous i, j.

$$\left(\frac{1}{a_i + b_j}\right)_{1 \le i, j \le n},$$

Exercice 56. Soient A, B, C, D quatre matrices carrées de taille n, avec A inversible et AC = CA. Calculer le déterminant de

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

en fonction de celui de AD - BC. De quelle hypothèse peut on se passer?

Exercice 57. Soit $A \in M_n(\mathbb{R})$.

- 1. Calculer le déterminant de l'endomorphisme $M \mapsto AM$.
- 2. Montrer que λ est valeur propre de M si et seulement si elle est valeur propre de l'endomorphisme considéré.

Exercice 58. Soit $A \in M_n(\mathbb{R})$ de coefficients ± 1 . Montrer que le déterminant est divisible par 2^{n-1} en utilisant des opérations élémentaires.

4 Utilisation de la réduction

Exercice 59. Montrer qu'une matrice M est nilpotente si pour tout entier k on a $tr(M^k) = 0$.

Exercice 60.

- 1. Soit $f = \lambda Id + N$ avec $\lambda \in \mathbb{C}$ et N matrice nilpotente. Donner une condition nécessaire et suffisante pour que la suite $(f^k)_{k \in \mathbb{N}}$ soit bornée.
- 2. Même question si f est quelconque.

Exercice 61. \maltese Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in L(E)$. On rappelle que le commutant de f est le sous-ensemble C(f) de L(E) défini par $C(f) = \{g \in L(E) \mid fg = gf\}$. On suppose que f est diagonalisable. On note $\lambda_1, \ldots, \lambda_p$ les valeurs propres de f, et pour $i = 1, \ldots, p$, on note E_{λ_i} le sous-espace propre associé à λ_i et on pose $d_i = \dim(E_{\lambda_i})$.

- 1) Montrer que C(f) est une algèbre.
- 2) Montrer que g commute avec f si et seulement si g laisse invariant les sous espaces propres de f.
- 3) Montrer que C(f) est isomorphe à $L(E_{\lambda_1}) \times \ldots \times L(E_{\lambda_p})$.
- 4) Montrer que $\dim(C(f)) = \dim(E)$ si et seulement si toutes les valeurs propres de f sont simples.
- 5) Si f n'est plus diagonalisable, montrer que $\dim(C(f)) \ge \dim E$ en trigonalisant f.

Exercice 62. Soient E un espace vectoriel de dimension finie et $(f_i)_{i\in I}$ une famille d'endomorphismes de E commutant deux à deux.

- 1) On suppose que pour tout i, f_i est diagonalisable. Montrer qu'il existe une base de E diagonalisant simultanément les f_i .
- 2) On suppose que pour tout i, f_i est trigonalisable. Montrer qu'il existe une base de E trigonalisant simultanément les f_i .

On pensera à faire une récurrence.

Exercice 63. Soient A et B deux matrices de $M_n(\mathbb{C})$. On note P le polynôme caractéristique de A. Montrer que A et B n'ont aucune valeur propre commune si et seulement si P(B) est inversible.

Exercice 64. Montrer que

$$M_n(\mathbb{R}) \to M_n(\mathbb{R})$$
 $M \mapsto {}^t M$

est diagonalisable.

Exercice 65. Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie. On suppose qu'il existe un polynôme annulateur P de f vérifiant P(0) = 0 et $P'(0) \neq 0$. Montrer que $E = \text{Ker}(f) \oplus \text{Im}(f)$.

Exercice 66. L'objectif de cet exercice est de montrer qu'il existe une base de $M_n(\mathbb{R})$ formée de matrices diagonalisables. On note E_{ij} les matrices de la base canonique de $M_n(\mathbb{R})$.

- 1) Soit D la matrice diagonale D = diag(1, 2, ..., n). Pour i, j = 1, ..., n, on pose $F_{ij} = D + E_{ij}$ si $i \neq j$, et $F_{ii} = E_{ii}$. Montrer que les F_{ij} sont diagonalisables.
- 2) Montrer que les F_{ij} engendrent $M_n(\mathbb{R})$. (Si $A = (a_{ij})$ est donnée, on pourra considérer la matrice $A \sum_{i \neq j} a_{ij} F_{ij}$.)
- 3) Conclure.

Exercice 67. Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension finie telle qu'il existe un entier $k \geq 1$ tel que f^k soit inversible et diagonalisable. Montrer que f est diagonalisable.

Exercice 68. Soit f un endomorphisme de \mathbb{C}^n . Montrer que son polynôme caractéristique et son polynôme minimal ont les mêmes facteurs irréductibles. Généraliser au cas des endomorphismes de \mathbb{R}^n .

Exercice 69 (Groupes de matrices). \maltese Soit \mathbb{K} un corps commutatif. L'objectif de cet exercice est d'étudier les groupes de matrices, c'est-à-dire les sous-ensembles de $M_n(\mathbb{K})$ qui sont des groupes pour la multiplication des matrices.

- 1) Soit $M \in M_n(\mathbb{K})$ une matrice idempotente. Montrer que M constitue à elle seule un groupe. En donner un exemple et en déduire que l'élément neutre d'un groupe de matrices n'est pas nécessairement la matrice identité I_n .
- 2) Montrer que soit aucune matrice d'un groupe de matrices n'est inversible dans $M_n(\mathbb{K})$, soit elles le sont toutes. Dans ce cas, préciser l'élément neutre du groupe et l'inverse dans le groupe d'une matrice donnée.
- 3) Soit G un groupe de matrices non inversibles et soit J son élément neutre. Montrer que tous les éléments de G ont le même rang r. (On pourra utiliser le fait que pour $M \in G$, on a MJ = JM = M.)
- 4) Soit φ l'endomorphisme de \mathbb{K}^n dont la matrice dans la base canonique est J. Montrer que $\mathbb{K}^n = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$ et $\operatorname{Im}(\varphi) = \operatorname{Ker}(\operatorname{Id} \varphi)$.
- 5) Pour tout entier $r \leq n-1$, on note G_r l'ensemble des matrices $M \in M_n(\mathbb{K})$ diagonales par blocs du type $M = \operatorname{diag}(N,0)$, avec $N \in Gl_r(\mathbb{K})$. Montrer que G_r est un groupe de matrices et en préciser l'élément neutre J_r .
- 6) Soit G un groupe comme dans la question 3). Montrer que J est semblable à J_r .
- 7) Soit $P \in Gl_n(\mathbb{K})$ une matrice telle que $J_r = P^{-1}JP$. Montrer que l'application $M \mapsto P^{-1}MP$ est un morphisme injectif de G dans G_r .
- 8) Conclure en décrivant tous les groupes de matrices de $M_n(\mathbb{K})$.

Exercice 70. Décrire les matrices $A \in M_6(\mathbb{R})$ de polynôme caractéristique et de polynôme minimal donnés par

$$(X-2)^4(X-4)^2, (X-2)^3(X-4)$$

Exercice 71. \(\mathbb{H}\) Montrer que tout endomorphisme de E espace vectoriel de dimension finie peut s'écrire de manière unique sous la forme

$$f = d + n$$

avec

- d diagonalisable,
- n nilpotente,
- $-d \circ n = n \circ d.$

En déduire que l'exponentielle est surjective sur $M_n(\mathbb{C})$.

Exercice 72. \maltese Montrer que l'enveloppe convexe de O(n) dans $M_n(\mathbb{R})$ muni de la norme induite par la norme euclidienne est la boule unité.

Exercice 73. Soit E un \mathbb{R} espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Soit $x \in E$. Montrer qu'il existe un polynome P_x qui génère l'idéal

$$\{P \in \mathbb{R}[X], P(f)(x) = 0\}$$

Montrer alors que P_x divise le polynôme minimal de f.

Exercice 74. \maltese Soit E un $\Bbb R$ espace vectoriel de dimension finie. Un endomorphisme est dit semi-simple si pour tout espace stable par f, il existe un supplémentaire stable par f. Montrer alors :

- 1. Si le polynôme minimal est irréductible, alors f est semi-simple.
- 2. f est semi-simple si et seulement si son polynôme minimal est produit de polynômes irréductibles deux à deux distincts.
- 3. f est semi-simple si et seulement si il est diagonalisable sur \mathbb{C} .

Exercice 75. \maltese Soit G un sous groupe de $GL_n(\mathbb{C})$. Montrer que G est fini si et seulement si il existe e entier tel que tout élément de G vérifie $g^e = Id$.

Exercice 76. \maltese Une transvection est une matrice de la forme $Id + \lambda E_{i,j}$ avec $i \neq j$ et $\lambda \in \mathbb{R}$. Une dilatation est une matrice de la forme $Id + (\alpha - 1)E_{i,i}, \alpha \in \mathbb{R}$.

- 1. Montrer que les transvections engendrent $SL_n(\mathbb{R})$.
- 2. Montrer que les transvections et les dilatations engendrent $GL_n(\mathbb{R})$.
- 3. En déduire que $SL_n(\mathbb{R})$ est connexe par arcs.

Exercice 77. \maltese Décrire l'algorithme donnant les invariants de similitudes pour $A \in M_{n,p}(\mathbb{Z})$.

Exercice 78. \maltese Soit $P \in \mathbb{R}[X]$ de racines $\alpha_1, \ldots, \alpha_n$. On note $s_i = \sum_{j=1}^n \alpha_j^i$ pour tout entier i. Soit Q la forme quadratique donnée sur \mathbb{R}^n par

$$Q(x) = \sum_{0 \le i \le j \le n-1} s_{i+j} x_i x_j$$

Montrer que la signature de Q détermine le nombre de racines réelles distinctes de P.