#### Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

#### Definitions

Coding

Results

Bound

Proof

# Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

### Translation on a torus.

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

$$\begin{aligned} \mathbb{T}^k &= \mathbb{R}^k / \mathbb{Z}^k \\ \mathbb{T}^k &\to \mathbb{T}^k \\ \mathbf{x} &\mapsto \mathbf{x} + \mathbf{a} \end{aligned}$$

### Minimal translation: every point has a dense orbit in $\mathbb{T}^k$ .

## Fundamental domain

Let  $\mathcal{D}$  be a subset of  $\mathbb{R}^k$  of finite volume which tiles the space by action of  $\mathbb{Z}^k$ .

The translation becomes a piecewise translation defined on  $\ensuremath{\mathcal{D}}.$ 

 $\mathbb{T}^k \rightarrow \mathbb{T}^k$ 

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof



# Example in dimension two



Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

Picture for every value of  $\boldsymbol{a}.$  The set  $\mathcal D$  is an hexagon with parallel sides.

# Example in dimension two



Particular value of a.

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

# Dimension three

#### Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions



#### ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

## Piecewise translation associated to a translation

Consider 
$$(T, D_1, ..., D_m)$$
 as a map defined on  $\mathcal{D} = \bigcup_{i=1}^{i} D_i$   
such that for each  $\mathbf{x} \in \mathcal{D}$ :  $T(\mathbf{x}) = \mathbf{x} + \mathbf{a} + \mathbf{n}(\mathbf{x})$  where:

• 
$$\mathbf{n} : \mathcal{D} \mapsto \mathbb{Z}^k$$
 is a measurable map,  
•  $\mathcal{D} = \bigcup_{i=1}^m \mathcal{D}_i$  is a fundamental domain of the torus,

▶ for each integer  $i \in \{1, ..., m\}$ , there exists a vector  $\mathbf{r}_i \in \mathbb{Q}^k$  such that:

$$\int_{\mathcal{D}_i} \mathbf{n}(\mathbf{x}) \, \mathrm{d}\lambda(\mathbf{x}) = \lambda(\mathcal{D}_i)\mathbf{r}_i.$$

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

m

Results

Bound

Proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

- ▶ The domain of *D* is not assumed to be bounded.
- The dynamical symbolic system is not conjugate to the translation on the torus
- We allow multiple vectors of translation in each subset of the fundamental domain.
- The map n can take an infinity of values.

# Words

Piecewise translations

- Alphabet
- Orbit of a point
- Word (infinite)

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

# Question

Complexity of one orbit ?

Fundamental domain  ${\mathcal D}$  with the lowest complexity ?

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### Theorem

Let  $k \ge 1$  and  $m \ge 1$  be two integers, let **a** be a vector in  $\mathbb{R}^k$  such that the translation by **a** on the torus  $\mathbb{T}^k$  is minimal. Let  $(T, \mathcal{D}_1, \ldots, \mathcal{D}_m)$  be a piecewise translation associated to this translation. Then the complexity function of the piecewise translation fulfills

$$\forall n \geq 1, \quad p_k(n) \geq kn+1.$$

### Remark

Same result in dimension two by Bertazzon.

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

# Substitutions

Morphism of free monoid:

$$\sigma_{k} = \sigma : \begin{cases} a_{1} \mapsto a_{1}a_{2} \\ a_{2} \mapsto a_{1}a_{3} \\ \vdots \\ a_{k} \mapsto a_{1}. \end{cases}$$

k-bonacci substitution

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

### Theorem (Messaoudi)

The fixed point of k-bonacci substitution is an infinite word of complexity

$$p(n)=(k-1)n+1.$$

The associated subshift is conjugated to a translation on the torus  $\mathbb{T}^{k-1}$ .

### Remark

The bound is sharp in Theorem 1. The vector **a** is an eigenvector of the matrix of the substitution  $\sigma_k$ .

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

### Theorem (Chevallier)

For a minimal translation on the torus  $\mathbb{T}^2$ , if  $\mathcal{D}$  is a polygon, then there exists two constants a, b such that

$$an^2 \leq p_2(n) \leq bn^2$$

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

## Examples

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

• In this case for every sturmian word 
$$p_1(n) = n + 1$$
.

• In this case 
$$p_2(n) = n^2 + n + 1$$
.

• In this case for the Tribonacci translation  $p_2(n) = 2n + 1$ .

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 りゅつ

# Steps

### Proposition

Let  $k \ge 1$  and  $m \ge 1$  be two integers, **a** a vector in  $\mathbb{R}^k$  such that the translation by **a** on the torus  $\mathbb{T}^k$  is minimal. Let  $(T, \mathcal{D}_1, \ldots, \mathcal{D}_m)$  be a piecewise translation associated to this translation. Then we have:

$$m \geq k+1$$
.

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

### Proposition

Let  $k \ge 1$  and  $m \ge 1$  be two integers, **a** a vector of  $\mathbb{R}^k$  such that the translation by **a** on the torus  $\mathbb{T}^k$  is minimal. Let  $(T, \mathcal{D}_1, \ldots, \mathcal{D}_m)$  be a piecewise translation associated to this translation. Then the complexity function fulfills for every integer n:

$$p_k(n+1)-p_k(n)\geq k.$$

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

# First proposition

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

$$T^{N}(\mathbf{x}) = \mathbf{x} + N\mathbf{a} + \sum_{k=0}^{N-1} \mathbf{n} \left(T^{k}\mathbf{x}\right)$$

$$= \mathbf{x} + N\mathbf{a} + \sum_{i=1}^{m} \sum_{k=0}^{N-1} \mathbf{n} \left( T^{k} \mathbf{x} \right) \mathbf{1}_{\mathcal{D}_{i}} \left( T^{k} \mathbf{x} \right).$$

$$\frac{T^{N_p}(\mathbf{x})}{N_p} = \frac{\mathbf{x}}{N_p} + \mathbf{a} + \sum_{i=1}^m \frac{1}{N_p} \sum_{k=0}^{N_p-1} \mathbf{n} \left(T^k \mathbf{x}\right) \mathbf{1}_{\mathcal{D}_i} \left(T^k \mathbf{x}\right) \mathbf{a}_{\mathcal{D}_i} \left(T^k \mathbf{x}\right)$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ ○

### First proposition

 $T^{N}(\mathbf{x}) = \mathbf{x} + N\mathbf{a} + \sum_{k=0}^{N-1} \mathbf{n} \left(T^{k}\mathbf{x}\right)$ 

$$= \mathbf{x} + N\mathbf{a} + \sum_{i=1}^{m} \sum_{k=0}^{N-1} \mathbf{n} \left( T^{k} \mathbf{x} \right) \mathbf{1}_{\mathcal{D}_{i}} \left( T^{k} \mathbf{x} \right).$$

Since **x** is a recurrent point for *T*, there exists an integer sequence  $(N_p)_{p \in \mathbb{N}}$  such that  $T^{N_p}(\mathbf{x})/N_p$  converges to zero.

$$\frac{T^{N_p}(\mathbf{x})}{N_p} = \frac{\mathbf{x}}{N_p} + \mathbf{a} + \sum_{i=1}^m \frac{1}{N_p} \sum_{k=0}^{N_p-1} \mathbf{n} \left(T^k \mathbf{x}\right) \mathbf{1}_{\mathcal{D}_i} \left(T^k \mathbf{x}\right).$$

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



We deduce

$$0 = \mathbf{a} + A_1 \mathbf{r}_1 + \cdots + A_m \mathbf{r}_m.$$

Contradiction with the minimality.

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●



We deduce

$$0 = \mathbf{a} + A_1 \mathbf{r}_1 + \cdots + A_m \mathbf{r}_m.$$

Contradiction with the minimality.

#### Lemma

Let  $\alpha_1, \ldots \alpha_m$  be m real numbers and let  $(\mathbf{n}_i)_{1 \le i \le m}$  be m vectors of  $\mathbb{Q}^k$  such that

$$\mathbf{a} = \alpha_1 \mathbf{n}_1 + \cdots + \alpha_m \mathbf{n}_m.$$

Assume m < k, then there exists k rational numbers  $q_1, \ldots, q_k$ , non all equal to zero, such that

$$a_1q_1+\cdots a_kq_k=0.$$

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

# Second proposition

- Same method.
- Definition of the Rauzy graphs.
- Euler characteristic of the graph.

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Results

Bound

Proof

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ