Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Translation on a torus.

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Minimal translation: every point has a dense orbit in \mathbb{T}^{k}.

Fundamental domain

Let \mathcal{D} be a subset of \mathbb{R}^{k} of finite volume which tiles the space by action of \mathbb{Z}^{k}.

$$
\begin{aligned}
\mathbb{T}^{k} & \rightarrow \mathbb{T}^{k} \\
\mid & \left.\rightarrow\right|^{D}
\end{aligned}
$$

The translation becomes a piecewise translation defined on \mathcal{D}.

Examples in dimension one

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Same value for a, different partitions.

Example in dimension two

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Picture for every value of \mathbf{a}. The set \mathcal{D} is an hexagon with parallel sides.

Example in dimension two

Translations on a torus: Minimal complexity

Nicolas Bédaride,
Jean françois Bertazzon

Definitions

Coding

Particular value of \mathbf{a}.

Dimension three

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding
Results
Bound
Proof

Piecewise translation associated to a translation

Consider $\left(T, \mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right)$ as a map defined on $\mathcal{D}=\bigcup_{i=1}^{m} \mathcal{D}_{i}$ such that for each $\mathbf{x} \in \mathcal{D}: T(\mathbf{x})=\mathbf{x}+\mathbf{a}+\mathbf{n}(\mathbf{x})$ where:

- $\mathbf{n}: \mathcal{D} \mapsto \mathbb{Z}^{k}$ is a measurable map,
- $\mathcal{D}=\bigcup_{i=1}^{m} \mathcal{D}_{i}$ is a fundamental domain of the torus,
- for each integer $i \in\{1, \ldots, m\}$, there exists a vector $\mathbf{r}_{i} \in \mathbb{Q}^{k}$ such that:

$$
\int_{\mathcal{D}_{i}} \mathbf{n}(\mathbf{x}) \mathrm{d} \lambda(\mathbf{x})=\lambda\left(\mathcal{D}_{i}\right) \mathbf{r}_{i}
$$

- The domain of \mathcal{D} is not assumed to be bounded.
- The dynamical symbolic system is not conjugate to the translation on the torus
- We allow multiple vectors of translation in each subset of the fundamental domain.
- The map \mathbf{n} can take an infinity of values.

Words

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

- Alphabet
- Orbit of a point
- Word (infinite)

Question

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Coding

Fundamental domain \mathcal{D} with the lowest complexity?

Theorem

Let $k \geq 1$ and $m \geq 1$ be two integers, let \mathbf{a} be a vector in \mathbb{R}^{k} such that the translation by a on the torus \mathbb{T}^{k} is minimal. Let $\left(T, \mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right)$ be a piecewise translation associated to this translation. Then the complexity function of the piecewise translation fulfills

$$
\forall n \geq 1, \quad p_{k}(n) \geq k n+1 .
$$

Remark

Same result in dimension two by Bertazzon.

 Bernzon

Substitutions

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Morphism of free monoid:

$$
\sigma_{k}=\sigma:\left\{\begin{array}{l}
a_{1} \mapsto a_{1} a_{2} \\
a_{2} \mapsto a_{1} a_{3} \\
\vdots \\
a_{k} \mapsto a_{1}
\end{array}\right.
$$

k-bonacci substitution

Theorem (Messaoudi)

The fixed point of k-bonacci substitution is an infinite word of complexity

$$
p(n)=(k-1) n+1 .
$$

The associated subshift is conjugated to a translation on the torus \mathbb{T}^{k-1}.

Remark

The bound is sharp in Theorem 1. The vector a is an eigenvector of the matrix of the substitution σ_{k}.

Translations on a torus: Minimal complexity

Nicolas Bédaride,
Jean françois Bertazzon

Theorem (Chevallier)
For a minimal translation on the torus \mathbb{T}^{2}, if \mathcal{D} is a polygon, then there exists two constants a, b such that

$$
a n^{2} \leq p_{2}(n) \leq b n^{2}
$$

Examples

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

Definitions

Steps

Proposition

Let $k \geq 1$ and $m \geq 1$ be two integers, a a vector in \mathbb{R}^{k} such that the translation by \mathbf{a} on the torus \mathbb{T}^{k} is minimal. Let $\left(T, \mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right)$ be a piecewise translation associated to this translation. Then we have:

$$
m \geq k+1 .
$$

Proposition

Let $k \geq 1$ and $m \geq 1$ be two integers, a a vector of \mathbb{R}^{k} such that the translation by a on the torus \mathbb{T}^{k} is minimal. Let $\left(T, \mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right)$ be a piecewise translation associated to this translation. Then the complexity function fulfills for every integer n:

$$
p_{k}(n+1)-p_{k}(n) \geq k .
$$

First proposition

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

$$
\begin{gathered}
T^{N}(\mathbf{x})=\mathbf{x}+N \mathbf{a}+\sum_{k=0}^{N-1} \mathbf{n}\left(T^{k} \mathbf{x}\right) \\
=\mathbf{x}+N \mathbf{a}+\sum_{i=1}^{m} \sum_{k=0}^{N-1} \mathbf{n}\left(T^{k} \mathbf{x}\right) 1_{\mathcal{D}_{i}}\left(T^{k} \mathbf{x}\right)
\end{gathered}
$$

$$
\frac{T^{N_{p}}(\mathbf{x})}{N_{p}}=\frac{\mathbf{x}}{N_{p}}+\mathbf{a}+\sum_{i=1}^{m} \frac{1}{N_{p}} \sum_{k=0}^{N_{p}-1} \mathbf{n}\left(T^{k} \mathbf{x}\right) 1_{\mathcal{D}_{i}}\left(T^{k} \mathbf{x}\right)
$$

First proposition

$$
\begin{gathered}
T^{N}(\mathbf{x})=\mathbf{x}+N \mathbf{a}+\sum_{k=0}^{N-1} \mathbf{n}\left(T^{k} \mathbf{x}\right) \\
=\mathbf{x}+N \mathbf{a}+\sum_{i=1}^{m} \sum_{k=0}^{N-1} \mathbf{n}\left(T^{k} \mathbf{x}\right) 1_{\mathcal{D}_{i}}\left(T^{k} \mathbf{x}\right)
\end{gathered}
$$

Since x is a recurrent point for T, there exists an integer sequence $\left(N_{p}\right)_{p \in \mathbb{N}}$ such that $T^{N_{p}}(\mathbf{x}) / N_{p}$ converges to zero.

$$
\frac{T^{N_{p}}(\mathbf{x})}{N_{p}}=\frac{\mathbf{x}}{N_{p}}+\mathbf{a}+\sum_{i=1}^{m} \frac{1}{N_{p}} \sum_{k=0}^{N_{p}-1} \mathbf{n}\left(T^{k} \mathbf{x}\right) 1_{\mathcal{D}_{i}}\left(T^{k} \mathbf{x}\right) .
$$

We deduce

$$
0=\mathbf{a}+A_{1} \mathbf{r}_{1}+\cdots+A_{m} \mathbf{r}_{m} .
$$

Contradiction with the minimality.

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

We deduce

$$
0=\mathbf{a}+A_{1} \mathbf{r}_{1}+\cdots+A_{m} \mathbf{r}_{m} .
$$

Contradiction with the minimality.

Lemma

Let $\alpha_{1}, \ldots \alpha_{m}$ be m real numbers and let $\left(\mathbf{n}_{i}\right)_{1 \leq i \leq m}$ be m vectors of \mathbb{Q}^{k} such that

$$
\mathbf{a}=\alpha_{1} \mathbf{n}_{1}+\cdots \alpha_{m} \mathbf{n}_{m}
$$

Assume $m<k$, then there exists k rational numbers q_{1}, \ldots, q_{k}, non all equal to zero, such that

$$
a_{1} q_{1}+\cdots a_{k} q_{k}=0
$$

Nicolas Bédaride, Jean françois Bertazzon

Second proposition

Translations on a torus: Minimal complexity

Nicolas Bédaride, Jean françois Bertazzon

- Same method.
- Definition of the Rauzy graphs.
- Euler characteristic of the graph.

