

Année universitaire 2012/2013

Site:	☐ Luminy	☐ St-Charles	☐ St-Jérôme	☐ Cht-Gombert	☐ Aix-Montperrin	☐ Aubagne-SATIS
Sujet se	ession de : 🗖 1 ^{er}	semestre - □ 2 ^{ème} s	semestre - 🗆 Session	n 2	Durée de l'épreuve : 2	heures
Examen de : \Box L1/ \Box L2/ \Box L3 - \Box M1/ \Box M2 - \Box LP - \Box DU				Nom diplôme : Licence Physique Chimie		
Code Apogée du module : SPC1U1TA Libellé du module : Mathématiques 1						
Docum	ent autorisé : \square	OUI - □ NON		Calculatrices autorisé	es : □ OUI - □ NON	

Exercice 1. Soit le nombre complexe

$$\omega = 1 - \sqrt{3}i.$$

- 1. Déterminer l'écriture exponentielle de ω .
- 2. Calculer ω^{2013} .
- 3. En utilisant l'écriture algébrique, calculer les racines carrées complexes de ω .
- 4. En utilisant l'écriture exponentielle, calculer les racines carrées complexes de ω .

Exercice 2. Soit f la fonction définie sur $]-\infty, 1[\cup]1, +\infty[$ par

$$f(x) = x^{2} + \arctan(\frac{1+x}{1-x}) - \arctan(x).$$

1. Rappeler l'expression de la dérivée de la fonction g définie par

$$q(x) = arctan(u(x))$$

où u désigne une fonction dérivable.

2. Démontrer que pour tout $x \in]-\infty, 1[\cup]1, +\infty[$

$$f'(x) = 2x.$$

- 3. Déterminer la valeur f(0).
- 4. Que vaut la fonction f sur l'intervalle $]-\infty, 1[$?
- 5. Rappeler la limite de la fonction arctan $en + \infty$.
- 6. Déterminer la limite de $f(x) x^2$ quand x tend vers $+\infty$.
- 7. Que vaut la fonction f sur l'intervalle $]1, +\infty[$?

Exercice 3. Calculer les intégrales suivantes

- 1. $\int_0^2 (1+x) \exp(-x) dx$ en effectuant une intégration par parties.
- 2. $\int_0^{\sqrt{2}/2} \frac{dx}{\sqrt{1-x^2}} \text{ en effectuant le changement de variables } x = \cos(u).$
- 3. $\int_0^{\pi} -\sin(x) \exp(\cos(x)) dx.$

Exercice 4. On considère la fonction réelle à deux variables réelles f définie par

$$f(x,y) = x \ln(y).$$

- 1. Déterminer l'ensemble de définition de f.
- 2. Etudier la différentiabilité de f.
- 3. Déterminer l'expression de la différentielle de f en (x, y).
- 4. Déterminer $\overrightarrow{grad}(f)$.
- 5. Désormais, on pose

$$\begin{cases} x(u,v) = u + 2v \\ y(u,v) = -2u + v \end{cases}$$

On définit ainsi une nouvelle fonction g en posant

$$g(u,v) = f[x(u,v),y(u,v)].$$

- (a) Déterminer l'expression de g en fonction des variables u et v, puis en déduire $\frac{\partial g}{\partial u}$.
- (b) Calculer d'une autre façon $\frac{\partial g}{\partial u}$.