On the Number of Balanced Words of Given Length and Height over a Two-Letter Alphabet

Nicolas BÉdaride
Université Aix-Marseille III
Avenue de l'Escadrille Normandie-Niémen
13397 Marseille Cedex 20, France
email : Nicolas.Bedaride@univ.u-3mrs.fr

Eric Domenjoud, Damien Jamet, Jean-Luc Rémy
ADAGIo Team - LORIA BP 239
F- 54506 Vandoeuvre-lès-Nancy Cedex
email : \{Eric.Domenoud, Damien.Jamet, Jean-Luc.Remy\}@loria.fr
ADAGio

Context : discrete geometry for computer graphics

Definition (Arithmetical discrete Lines (J.-P. Reveilles, 1991))

Let $\mathbf{v}=\left(v_{1}, v_{2}\right) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}\left(v_{1}, v_{2}\right)=1, \mu \in \mathbb{Z}$ and $\theta \in \mathbb{Z}$. The arithmetical discrete line $D(\mathbf{v}, \mu, \theta)$ with normal vector \mathbf{v}, shift μ and arithmetical thickness θ is the subset of \mathbb{Z}^{2} defined by

$$
D(\mathbf{v}, \mu, \theta)=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{2} \text { and } 0 \leq\langle\mathbf{x}, \mathbf{v}\rangle-\mu<\theta\right\}
$$

FIG.: general discrete line in \mathbb{Z}^{2}

Context : discrete geometry for computer graphics

Definition (Arithmetical discrete Lines (J.-P. Reveilles, 1991))

Let $\mathbf{v}=\left(v_{1}, v_{2}\right) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}\left(v_{1}, v_{2}\right)=1, \mu \in \mathbb{Z}$ and $\theta \in \mathbb{Z}$. The arithmetical discrete line $D(\mathbf{v}, \mu, \theta)$ with normal vector \mathbf{v}, shift μ and arithmetical thickness θ is the subset of \mathbb{Z}^{2} defined by

$$
D(\mathbf{v}, \mu, \theta)=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{2} \text { and } 0 \leq\langle\mathbf{x}, \mathbf{v}\rangle-\mu<\theta\right\}
$$

FIG.: general discrete line in \mathbb{Z}^{2}

Discrete lines are usually represented using unit squares called pixels.

Context : discrete geometry for computer graphics

Definition (Arithmetical discrete Lines (J.-P. Reveilles, 1991))

Let $\mathbf{v}=\left(v_{1}, v_{2}\right) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}\left(v_{1}, v_{2}\right)=1, \mu \in \mathbb{Z}$ and $\theta \in \mathbb{Z}$. The arithmetical discrete line $D(\mathbf{v}, \mu, \theta)$ with normal vector \mathbf{v}, shift μ and arithmetical thickness θ is the subset of \mathbb{Z}^{2} defined by

$$
D(\mathbf{v}, \mu, \theta)=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{2} \text { and } 0 \leq\langle\mathbf{x}, \mathbf{v}\rangle-\mu<\theta\right\}
$$

Fig.: standard discrete line : $\theta=\|\mathbf{v}\|_{1}$

The standard discrete line is the thinest 1-connected discrete line.

Context : discrete geometry for computer graphics

Definition (Arithmetical discrete Lines (J.-P. Reveilles, 1991))

Let $\mathbf{v}=\left(v_{1}, v_{2}\right) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}\left(v_{1}, v_{2}\right)=1, \mu \in \mathbb{Z}$ and $\theta \in \mathbb{Z}$. The arithmetical discrete line $D(\mathbf{v}, \mu, \theta)$ with normal vector \mathbf{v}, shift μ and arithmetical thickness θ is the subset of \mathbb{Z}^{2} defined by

$$
D(\mathbf{v}, \mu, \theta)=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{2} \text { and } 0 \leq\langle\mathbf{x}, \mathbf{v}\rangle-\mu<\theta\right\}
$$

FIG.: naive discrete line : $\theta=\|\mathbf{v}\|_{\infty}$

The naive discrete line is the thinest (0-)connected discrete line.

Context : discrete geometry for computer graphics

Definition (Arithmetical discrete Lines (J.-P. Reveilles, 1991))

Let $\mathbf{v}=\left(v_{1}, v_{2}\right) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}\left(v_{1}, v_{2}\right)=1, \mu \in \mathbb{Z}$ and $\theta \in \mathbb{Z}$. The arithmetical discrete line $D(\mathbf{v}, \mu, \theta)$ with normal vector \mathbf{v}, shift μ and arithmetical thickness θ is the subset of \mathbb{Z}^{2} defined by

$$
D(\mathbf{v}, \mu, \theta)=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{2} \text { and } 0 \leq\langle\mathbf{x}, \mathbf{v}\rangle-\mu<\theta\right\}
$$

FIG.: disconnected discrete line : $\theta<\|\mathbf{v}\|_{\infty}$

Context : discrete geometry for computer graphics

Definition (Arithmetical discrete Lines (J.-P. Reveilles, 1991))

Let $\mathbf{v}=\left(v_{1}, v_{2}\right) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}\left(v_{1}, v_{2}\right)=1, \mu \in \mathbb{Z}$ and $\theta \in \mathbb{Z}$. The arithmetical discrete line $D(\mathbf{v}, \mu, \theta)$ with normal vector \mathbf{v}, shift μ and arithmetical thickness θ is the subset of \mathbb{Z}^{2} defined by

$$
D(\mathbf{v}, \mu, \theta)=\left\{\mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{2} \text { and } 0 \leq\langle\mathbf{x}, \mathbf{v}\rangle-\mu<\theta\right\}
$$

FIG.: disconnected discrete line : $\theta<\|\mathbf{v}\|_{\infty}$

In this talk, we consider only naive discrete lines

Discrete segments

Definition

A (naive) discrete segment is a finite connected subset of a (naive) discrete line.

Discrete segments

Definition

A (naive) discrete segment is a finite connected subset of a (naive) discrete line.

Questions

1 How many discrete segments exist of a given length L ?
2. How many discrete segments exist of a given length L and height h ?

Discrete segments

Definition

A (naive) discrete segment is a finite connected subset of a (naive) discrete line.

Questions

1 How many discrete segments exist of a given length L ?
2 How many discrete segments exist of a given length L and height h ?

For symmetry reasons, we consider only segments with $0 \leq h \leq L$

Question

How many discrete segments exist of a given length L ?

Theorem (F. Mignosi, 1991)

The number $s(L)$ of discrete segments of length L is

$$
s(L)=1+\sum_{i=1}^{L}(L+1-i) \varphi(i)
$$

where φ is Euler totient function.

Example

$s(L)=1,2,4,8,14,24,36,54,76,104 \ldots$

Question

How many discrete segments exist of a given length L and height h ?

Fig.: The 6 discrete segments of length 5 and height 2

Question

How many discrete segments exist of a given length L and height h ?

Fig.: The 6 discrete segments of length 5 and height 2 and the corresponding encodings

Discrete segments are encoded by finite balanced words.

Definition (Balanced words)

A word w over the alphabet $\{0,1\}$ is balanced iff for all subwords u and v of w,

$$
|u|=\left.|v| \Longrightarrow| | u\right|_{1}-|v|_{1} \mid \leq 1 .
$$

Properties

- A balanced word never contains both the subwords 00 and 11 \Longrightarrow in a balanced word, at least one letter (0 or 1) is isolated.
- A word w encodes a discrete segment iff w is balanced.

$$
\underbrace{\ldots 010 \ldots 010 \ldots . . .010 \ldots 010 \ldots}
$$

blocks of 0 's separated by isolated 1's

$$
\underbrace{\ldots 101 \ldots 101 \ldots \ldots 101 \ldots 101 \ldots}_{\text {blocks of } 1 \text { 's separated by isolated } 0 \text { 's }}
$$

Question

How many balanced words exist of a given length L and height h ?

Notations

- Let \mathbb{S} denote the set of finite balanced words over the alphabet $\{0,1\}$.
- For all $L, h \in \mathbb{N}$ such that $0 \leq h \leq L$,

$$
S(L, h)=\left\{\left.w|w \in \mathbb{S},|w|=L \text { and }| w\right|_{1}=h\right\}
$$

and for all $L, h \in \mathbb{Z}$,

$$
s(L, h)= \begin{cases}|S(L, h \bmod L)| & \text { if } L \geq 1 \\ 1 & \text { if } L=0 \text { and } h=0 \\ 0 & \text { if } L<0 \text { or }(L=0 \text { and } h \neq 0)\end{cases}
$$

- For all $L, h \in \mathbb{N}$ such that $0 \leq h \leq L$ and all $x, y \in\{0,1\}^{*}$,

$$
S_{x, y}(L, h)=\left\{w \mid w \in S(L, h) \text { and } \exists u, v \in\{0,1\}^{\star}, w=x u=v y\right\}
$$

and

$$
s_{x, y}(L, h)=\left|S_{x, y}(L, h)\right| .
$$

$$
s(L, h)=s_{\epsilon, \epsilon}(L, h)=\left\{\begin{array}{l}
1 \quad \text { if } L=h=0, \\
s_{0,0}(L, h)+s_{0,1}(L, h)+s_{1,0}(L, h)+s_{1,1}(L, h) \quad \text { if } L>0 .
\end{array}\right.
$$

Lemma (Symmetry)

If $w \in S(L, h)$ and $h>L / 2$ then $\bar{w} \in S(L, L-h)$ and we have $L-h<L / 2$
\Longrightarrow We have $s(L, h)=s(L, L-h)$ and we may restrict to the case $h \leq L / 2$, i.e. to the words w which contain more 0's than 1's (1's are isolated).

Definition (Step contraction)

Let $w \in S(L, h), w=0^{\lambda_{0}} 10^{\lambda_{1}} 1 \ldots 10^{\lambda_{h-1}} 10^{\lambda_{h}}$ with $\lambda_{0}, \lambda_{h} \geq 0$ et $\lambda_{1}, \ldots, \lambda_{h-1} \geq 1$:

$$
\theta_{0}(w)=0^{\lambda_{0}^{\prime}} 10^{\lambda_{1}-1} 1 \ldots 10^{\lambda_{h-1}-1} 10^{\lambda_{h}^{\prime}}
$$

with $\lambda_{i}^{\prime}=\max \left(0, \lambda_{i}-1\right)$
(θ_{0} erases a 0 in each maximal block of 0 's)

Example

$$
w=010001
$$

$$
\theta_{0}^{2}(w)=101
$$

$$
\theta_{0}(w)=1001
$$

\rightarrow

Lemma

If w is balanced, then so is $\theta_{0}(w)$.

Lemma

If $h>L / 2$ then

- θ_{0} is a bijection from $S_{0,0}(L, h)$ to $S_{\epsilon, \epsilon}(L-(h+1), h)$
- θ_{0} is a bijection from $S_{0,1}(L, h)$ to $S_{\epsilon, 1}(L-h, h)$ and from $S_{1,0}(L, h)$ to $S_{1, \epsilon}(L-h, h)$
- θ_{0} is a bijection from $S_{1,1}(L, h)$ to $S_{1,1}(L-(h-1), h)$

Idea of the proof

Let $w \in S_{0,1}(L, h)$

$$
w=\underbrace{\underbrace{0 \ldots 0}_{\geq 1} 1 \underbrace{0 \ldots 0}_{\geq 1} 10 \ldots \ldots 01 \underbrace{\underbrace{\ldots 0}_{\geq 1}}_{\geq 1} 1}_{h \text { blocks of } 0 \text { 's }}
$$

- θ_{0} erases $h 0$'s $\Rightarrow\left|\theta_{0}(w)\right|=L-h \Rightarrow \theta_{0}(w) \in S(L-h, h)$
- The number of 0 's at the beginning of w is ≥ 1
\Rightarrow The number of 0 's at the beginning of $\theta_{0}(w)$ is ≥ 0
\Rightarrow The first letter of $\theta_{0}(w)$ is unknown but the last one is 1
$\Rightarrow \theta_{0}(w) \in S_{\epsilon, 1}(L-h, h)$
- Injection is obvious, surjection a bit less.

Other cases are similar.

Lemma

If $h>L / 2$ then

- θ_{0} is a bijection from $S_{0,0}(L, h)$ to $S_{\epsilon, \epsilon}(L-(h+1), h)$
- θ_{0} is a bijection from $S_{0,1}(L, h)$ to $S_{\epsilon, 1}(L-h, h)$ and from $S_{1,0}(L, h)$ to $S_{1, \epsilon}(L-h, h)$
- θ_{0} is a bijection from $S_{1,1}(L, h)$ to $S_{1,1}(L-(h-1), h)$

Corollary

If $L>2 h$ then

- $s_{0,0}(L, h)=s_{\epsilon, \epsilon}(L-(h+1), h)$
- $s_{0,1}(L, h)=s_{\epsilon, 1}(L-h, h)$
- $s_{1,0}(L, h)=s_{1, \epsilon}(L-h, h)$
- $s_{1,1}(L, h)=s_{1,1}(L-(h-1), h)$

Recurrence formula

Theorem

For all $L, h \in \mathbb{Z}^{2}$,

$$
s(L, h)= \begin{cases}0 & \text { if } L<0 \text { or } L=0 \text { and } h \neq 0 \\ 1 & \text { if } L \geq 0 \text { and } h=0 \\ s(L, h \bmod L) & \text { if } L>0 \text { and }(h<0 \text { or } h>L) \\ s(L, L-h) & \text { if } L>0 \text { and } L / 2<h \leq L\end{cases}
$$

and

$$
s(L, h)=s(L-h-1, h)+s(L-h, h)-s(L-2 h-1, h)+s(h-1, L-2 h)+s(h-1, L-h)
$$

otherwise.

Sample values of $s(L, h)$

$L \backslash h$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	4	4	1						
5	1	5	6	6	5	1					
6	1	6	8	6	8	6	1				
7	1	7	11	8	8	11	7	1			
8	1	8	13	12	8	12	13	8	1		
9	1	9	17	13	12	12	13	17	9	1	
10	1	10	20	16	16	10	16	16	20	10	1

Generating function

$$
G_{h}(X)=\sum_{L \geq 0} s(L, h) X^{L} \Longleftrightarrow s(L, h)=\frac{G_{h}^{(L)}(0)}{L!}
$$

Theorem

$$
G_{0}(X)=\frac{1}{1-X}, \quad G_{1}(X)=\frac{X}{(1-X)^{2}}
$$

and for $h \geq 2$,

$$
G_{h}(X)=\frac{\sum_{L=0}^{2 h-1} s(L, h) X^{L}-\sum_{L=0}^{h-1} s(L, h) X^{L+h}-\sum_{L=0}^{h-2} s(L, h) X^{L+h+1}-X^{2 h-1}}{\left(1-X^{h}\right)\left(1-X^{h+1}\right)}
$$

Asymptotic behaviour

$$
\begin{aligned}
G_{h}(X) & =\frac{F_{h}(X)}{\left(1-X^{h-1}\right)\left(1-X^{h}\right)\left(1-X^{h+1}\right)} \\
& =\frac{R_{h}(X)}{(1-X)^{3}}+\frac{A_{h}(X)}{1-X^{h-1}}+\frac{B_{h}(X)}{1-X^{h}}+\frac{C_{h}(X)}{1-X^{h+1}}
\end{aligned}
$$

where $\operatorname{deg}\left(R_{h}\right)<3, \operatorname{deg}\left(A_{h}\right)<h-1, \operatorname{deg}\left(B_{h}\right)<h$ and $\operatorname{deg}\left(C_{h}\right)<h+1$.

Corollary

For all $h \geq 2$, there exist $u_{0}, \ldots, u_{h-2}, v_{0}, \ldots, v_{h-1}, w_{0}, \ldots, w_{h} \in \mathbb{Q}$ such that

$$
\forall L \geq 0, \quad s(L, h)=\alpha L^{2}+\beta L+u_{L \bmod (h-1)}+v_{L \bmod h}+w_{L \bmod (h+1)}
$$

where

$$
\begin{aligned}
& \alpha=\frac{\sum_{r=0}^{h-2} s(h-1, r)}{h\left(h^{2}-1\right)}=\frac{1}{h\left(h^{2}-1\right)} \sum_{i=1}^{h-1}(h-i) \varphi(i) \\
& \beta=\frac{\sum_{r=0}^{h-1} s(h, r)-\sum_{r=0}^{h-2} s(h-1, r)}{h(h+1)}=\frac{1}{h(h+1)} \sum_{i=1}^{h} \varphi(i)
\end{aligned}
$$

Symmetric discrete segments

$w=10001$

$w=01010$

Fig.: The 2 symmetric segments of length 5 and height 2 and the corresponding encodings.

Symmetric segments are encoded by balanced palindromes.

Questions

1 How many balanced palindromes exist of a given length?
2 How many balanced palindromes exist of a given length L and height h ?

Question

How many balanced palindromes exist of a given length?

Theorem (De Luca \& de Luca, 2005)

The number $p(L)$ of balanced palindromes of length L is

$$
p(L)=1+\sum_{i=0}^{\lceil L / 2\rceil-1} \varphi(L-2 i)
$$

Notations

- Let \mathbb{P} denote the set of finite balanced palindromes over the alphabet $\{0,1\}$.
- For all $L, h \in \mathbb{N}$ such that $0 \leq h \leq L$,

$$
P(L, h)=\left\{\left.w|w \in \mathbb{P},|w|=L \text { and }| w\right|_{1}=h\right\}
$$

and for all $L, h \in \mathbb{Z}$,

$$
p(L, h)= \begin{cases}|P(L, h \bmod L)| & \text { if } L \geq 1 \\ 1 & \text { if } L=0 \text { and } h=0 \\ 0 & \text { if } L<0 \text { or }(L=0 \text { and } h \neq 0)\end{cases}
$$

Recurrence formula

Theorem

$$
p(L, h)= \begin{cases}0 & \text { if } L<0 \text { or } L=0 \text { and } h \neq 0 \\ 1 & \text { if } L \geq 0 \text { and }(h=0 \text { or } h=L) \\ L \bmod 2 & \text { if } L \geq 0 \text { and }(h=1 \text { or } h=L-1) \\ p(L, h \bmod L) & \text { if } L>0 \text { and }(h<0 \text { or } h>L)\end{cases}
$$

and

$$
p(h-1,(L-1) \bmod (h-1))+p(L-h-1,(L-1) \bmod (L-h-1))
$$

otherwise.

Sample values of $p(L, h)$

$L \backslash h$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	1									
2	1	0	1								
3	1	1	1	1							
4	1	0	2	0	1						
5	1	1	2	2	1	1					
6	1	0	2	0	2	0	1				
7	1	1	3	2	2	3	1	1			
8	1	0	3	0	2	0	3	0	1		
9	1	1	3	3	2	2	3	3	1	1	
10	1	0	4	0	2	0	2	0	4	0	1

Generating function

$$
G_{h}(X)=\sum_{L \geq 0} p(L, h) X^{L} \quad \Longleftrightarrow \quad p(L, h)=\frac{G_{h}^{(L)}(0)}{L!}
$$

Theorem

$$
G_{0}(X)=\frac{1}{1-X}, \quad G_{1}(X)=\frac{X}{1-X^{2}}
$$

and for $h \geq 2$,

$$
G_{h}(X)=\frac{1}{1-X^{h+1}}\left(\sum_{L=1}^{h-1} p(L, h) X^{L}+\frac{X^{h}}{1-X^{h-1}} \sum_{r=0}^{h-2} p(h-1, r) X^{r}\right)
$$

We get for instance :

$$
\begin{array}{ll}
G_{2}(X)=\frac{X}{(1-X)\left(1-X^{3}\right)} & G_{3}(X)=\frac{X}{\left(1-X^{2}\right)\left(1-X^{4}\right)} \\
G_{4}(X)=\frac{X}{(1-X)\left(1-X^{5}\right)} & G_{5}(X)=\frac{X\left(1+X^{2}+X^{6}\right)}{\left(1-X^{4}\right)\left(1-X^{6}\right)}
\end{array}
$$

Asymptotic behaviour

$$
G_{h}(X)=\frac{F_{h}(X)}{\left(1-X^{h-1}\right)\left(1-X^{h+1}\right)}
$$

If h is even, $\quad G_{h}(X)=\frac{R_{h}(X)}{(1-X)^{2}}+\frac{A_{h}(X)}{1-X^{h-1}}+\frac{B_{h}(X)}{1-X^{h+1}}$
If h is odd, $\quad G_{h}(X)=\frac{Q_{h}(X)}{(1+X)^{2}}+\frac{R_{h}(X)}{(1-X)^{2}}+\frac{A_{h}(X)}{1-X^{h-1}}+\frac{B_{h}(X)}{1-X^{h+1}}$
where $\operatorname{deg}\left(Q_{h}\right)<2, \operatorname{deg}\left(R_{h}\right)<2, \operatorname{deg}\left(A_{h}\right)<h-1$ and $\operatorname{deg}\left(B_{h}\right)<h+1$.

Corollary

If h is even, then there exist $u_{0}, \ldots, u_{h-2}, v_{0}, \ldots, v_{h} \in \mathbb{Q}$ such that

$$
\forall L \geq 0, \quad p(L, h)=\alpha L+u_{L \bmod (h-1)}+v_{L \bmod (h+1)}
$$

If h is odd, then there exist $u_{0}, \ldots, u_{h-2}, v_{0}, \ldots, v_{h} \in \mathbb{Q}$ such that

$$
\forall L \geq 0, \quad p(L, h)=\alpha\left(1-(-1)^{L}\right) L+u_{L \bmod (h-1)}+v_{L \bmod (h+1)}
$$

where

$$
\alpha=\frac{1}{h^{2}-1} \sum_{r=0}^{h-2} p(h-1, r)=\frac{1}{h^{2}-1} \sum_{i=0}^{\lceil(h-1) / 2\rceil-1} \varphi(h-1-2 i)
$$

Perspectives

1 Find a closed formula for the generating functions which do not depend on $s(L, h)$ and $p(L, h)$.
■ Adapt the counting method to $m \times n$ local configurations of discrete planes.

FIG.: $2 \times n$ planar configurations.

