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Abstract. We compute the decomposition numbers of the unipotent characters lying in
the principal ℓ-block of a finite group of Lie type B2n(q) or C2n(q) when q is an odd prime
power and ℓ is an odd prime number such that the order of q mod ℓ is 2n. Along the way, we
extend to these finite groups the results of [12] on the branching graph for Harish-Chandra
induction and restriction.

Introduction

The representation theory of a finite group of Lie type G := G(Fq) over a field of positive
characteristic ℓ coprime to q has a close relationship to the representation theory of the Hecke
algebra of its Weyl group. The decomposition matrix of the Hecke algebra always embeds as
a submatrix of the decomposition matrix of G. When G = GLn(q) is the finite general linear
group, the square unitriangular submatrix of the decomposition matrix of the unipotent blocks
is the same as the decomposition matrix of the q-Schur algebra, a quasihereditary cover of the
Hecke algebra of the symmetric group Sn. This is related to the fact that in characteristic
0, GLn(q) has exactly one cuspidal irreducible unipotent representation as n ranges over N,
namely, the trivial representation of GL1(q). When G is not of type A, less is understood about
the decomposition matrix of the unipotent blocks of G. There are more cuspidal unipotent
representations in characteristic 0 which give rise to multiple Hecke and quasihereditary alge-
bras, all of which play a role in the unipotent blocks of G. However, in the general case, the
knowledge of the decomposition numbers for these algebras is not enough to determine those
of G. In [8] the first author initiated the use of Deligne–Lusztig characters to find the missing
numbers. This proved successful in determining decomposition matrices for finite groups of Lie
type in small rank, see [27], [9], [10], [11].

In this paper, we are concerned with groups of type Bm and Cm such as G = SO2m+1(q)
and G = Sp2m(q) for odd q. If n is the order of q2 in F×

ℓ , the complexity of the decomposition
matrix grows with m/n. For that reason we will consider the case where m = 2n, which is
somehow the simplest case outside of the cyclic defect case. Two situations arise:

• (linear prime case) q has order n in F×
ℓ , in which case n is necessarily odd, and the

representation theory of G behaves as a type A phenomenon and can be deduced from
the representation theory of q-Schur algebras of symmetric groups [26];
• (unitary prime case) q has order 2n in F×

ℓ . Explicit decomposition matrices in that
case were obtained by Okuyama–Waki for m = 2 [32] and by Malle and the first author
for m = 4 [10] and m = 6 [11].

Our main result provides a generalisation of the unitary prime case to any even m. To our
knowledge it is the first general result for defect 2 blocks of finite groups of Lie type outside of
type A phenomena.

Let Φd(q) be the d-th cyclotomic polynomial evaluated at q.
1
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Main Theorem. (Theorems 2.2, 2.3, 2.4, 2.7, 2.8, and 2.10) Let G be a finite group of Lie type
over Fq of type B2n or C2n for q an odd prime power. Let ℓ be an odd prime number such that
the order of q in F×

ℓ is 2n. Then all but two decomposition numbers of the unipotent characters
in the principal ℓ-block of G are known. If Φ2n(q)ℓ > 4n then both these numbers are 2 and the
decomposition numbers are completely known.

Under our assumptions on ℓ and q, studying the unipotent characters in the principal ℓ-
block is a reasonable restriction. First, any other unipotent ℓ-block has defect 0 or 1, and
its decomposition matrix is known by [20]. Second, the decomposition numbers of the non-
unipotent characters in the principal ℓ-block of G may be recovered from those of the unipotent
characters and from partial knowledge of the character table of G by [22, 21].

The methods used to obtain the decomposition matrices are two-fold:

(1) First, we use Harish-Chandra induction and restriction to produce projective indecom-
posable modules (PIMs);

(2) Second, we compute the missing PIMs (corresponding to cuspidal simple modules) using
some partial information on the decomposition of Deligne–Lusztig characters on PIMs.

For both of these steps, we use a truncated version of the Harish-Chandra induction and restric-

tion coming from the categorical ŝl2n-action on unipotent representations defined in [13]. The
recent unitriangularity result in [4] allows us to compute the branching graph for this truncated
induction, which provides the missing information for step (2) to be successful.
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1. Representation theory for types B and C

1.1. Combinatorics.

1.1.1. Partitions and symbols. Let m be a non-negative integer. A partition λ of m is a non-
increasing sequence of non-negative integers λ1 ≥ λ2 ≥ · · · ≥ 0 which add up to m. We call m
the size of λ and we denote it by |λ|. Let s ∈ Z and λ be a partition of m. The charged β-set
of λ is the set

βs(λ) := {λ1 + s, λ2 + s− 1, . . . , λi + s− i+ 1, . . .}.

It is a subset of Z which contains all z ∈ Z such that z ≤ s−#{non-zero parts of λ}.

A bipartition λ = λ1.λ2 ofm consists of a pair (λ1, λ2) of partitions such that |λ| := |λ1|+|λ2|
equals m. If λ2 (resp. λ1) is the empty partition we will write λ = λ1. (resp. λ = .λ2). Given
s = (s1, s2) in Z2, a charged symbol with charge s is a pair Λ = (X,Y ) where X = βs1(λ

1)
and Y = βs2(λ

2) for some bipartition λ = λ1.λ2. The defect of the charged symbol Λ is
D = s1 − s2. We set Λ† = (Y,X). It is a symbol with charge s∗ := (s2, s1) and it is associated
to the bipartition λ2.λ1. Note that the defect of a symbol should not be confused with the other
use of the word “defect” arising in representation theory of finite groups, namely the defect of
a block.

Throughout this paper we shall only be working with charged symbols with odd defect and
with a specific charge. Given t ∈ Z, let us define

(1.1) σt :=

{
(t,−1− t) if t is even,
(−1− t, t) if t is odd.
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Note that σ−1−t = σt. A symbol Λ = (X,Y ) is a charged symbol with charge σt for some
t ∈ Z. If X = {x1, x2, x3, . . .} and Y = {y1, y2, y3, . . .}, we will represent Λ by

Λ =

(
x1 x2 x3 . . .
y1 y2 y3 . . .

)
.

This convention differs from the usual convention, for example the one in Chevie [31] since we
allow both positive and negative defect, and since a symbol in Chevie is necessarily truncated on
the right whereas our symbols are infinite to the right. Nevertheless this will be needed to have
a consistent action of the i-induction operators on all symbols from the various Harish-Chandra
series, and to allow n to grow arbitrarily large, see §1.3 and especially Remark 1.9.

Remark 1.2. The 2-row convention for representing the charged symbol Λ of a bipartition λ

with charge s is the 180◦-rotation of the 2-abacus of λ with charge s as in [24].

We will sometimes find it useful to drop the notation of symbols and work with Young
diagrams. The Young diagram of the bipartition λ is the set of triples

Y (λ) := {(x, y, j) ∈ N× N× {1, 2} | 1 ≤ x ≤ #{nonzero parts of λj}, 1 ≤ y ≤ λjx}.

An element b = (x, y, j) ∈ Y (λ) is called a box of the Young diagram. We will draw the Young
diagram of a bipartition λ by putting the diagrams of λ1 and λ2 side by side. For a box (x, y, j)
in Y (λ), x represents the row and y the column, with the convention that rows are decreasing
in length from top to bottom, as illustrated below for the example λ = 543.21:

Y (543.21) = ·

1.1.2. Cores and co-cores. Let d be a positive integer and let Λ = (X,Y ) be a symbol. A d-hook
in the top row (resp. in the bottom row) of Λ is a pair (x, x+d) such that x+d ∈ X and x /∈ X
(resp. x + d ∈ Y and x /∈ Y ). Removing a d-hook in the top row amounts to changing Λ to
((X r {x+ d})∪ {x}, Y ), and similarly for the bottom row. The d-core is the symbol obtained
by recursively removing all possible d-hooks. Removing or adding d-hooks does not change the
defect of the symbol.

A d-co-hook of Λ is a pair (x, x+ d) such that x+ d ∈ X and x /∈ Y or x+ d ∈ Y and x /∈ X .
The co-hook is removed from Λ by removing x + d from X and adding x to Y , or removing
x + d from Y and adding x to X , and then exchanging X and Y . Recursively removing all
d-co-hooks yields the d-co-core of Λ.

1.1.3. Families. Let Λ = (X,Y ) be a symbol. The composition ̟Λ attached to the symbol
is the non-increasing sequence ̟Λ := (̟1 ≥ ̟2 ≥ ̟3 ≥ · · · ) obtained by considering the
union of X and Y as a multiset. Since X and Y are β-sets of some partitions, any term in the
composition ̟Λ occurs at most twice (and all but finitely many terms appearing do).

The dominance order on compositions defines a relation on symbols. We say that two symbols
Λ and Λ′ lie in the same family and we write Λ ≡ Λ′ if ̟Λ = ̟Λ′ . In other words, two symbols
are in the same family if their multisets of entries are the same. We write Λ ⊳ Λ′ and we say

that Λ′ dominates Λ if ̟Λ⊳̟Λ′ , by which we mean ̟Λ 6= ̟Λ′ and
∑j

i=1̟i ≤
∑j

i=1̟
′
i for all

j ≥ 1. This defines a strict partial order on the set of symbols. We will write ΛE Λ′ if Λ = Λ′

or Λ⊳ Λ′.

Example 1.3. The following four symbols(
1 0 −2 · · ·

−1 −2 · · ·

)
,

(
1 −1 −2 · · ·

0 −2 · · ·

)
,

(
0 −1 −2 · · ·

1 −2 · · ·

)
,

(
−2 · · ·

1 0 −1 −2 · · ·

)
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form a family attached to the composition (1, 0,−1,−2,−2, . . .). The first three symbols have
charge (0,−1) and correspond to the bipartitions 12., 1.1 and .2, whereas the fourth symbol
has charge (−2, 1) and corresponds to the empty bipartition. Note that we have only included
symbols that have charge σt for some t ∈ Z.

1.2. Unipotent representations of finite reductive groups of type B and C.

1.2.1. Representations of finite groups. Let G be any finite group and Λ a commutative ring
with unit. We denote by ΛG-mod the abelian category of finitely generated left ΛG-modules.
The set of isomorphism classes of irreducible (or simple) objects will be denoted by IrrΛG. We
will write K0(ΛG-mod) for the Grothendieck group of the category ΛG-mod.

Let ℓ be a prime number. We shall work with representations over fields of characteristic
zero and ℓ. For that purpose we fix an ℓ-modular system (K,O, k) where K is an extension of Qℓ,
the ring of integers O of K over Zℓ is a complete d.v.r and its residue field k has characteristic ℓ.
Throughout this paper we will assume that this modular system is sufficiently large, so that
the algebras KG and kG split for any finite group G considered, that is, so that all irreducible
representations of G over K (resp. k) remain irreducible over any field extension of K (resp. k).
We will usually identify K0(KG-mod) with the space of virtual characters of G, and its basis
IrrKG by the set of (ordinary) irreducible characters. We will denote by 〈−;−〉G the usual inner
product on K0(KG-mod).

1.2.2. Finite reductive groups and Deligne–Lusztig characters. We fix a non-negative integerm.
Let G be a connected reductive group, quasi-simple of type Bm or Cm, defined over the finite
field Fq. Let F : G −→ G be the corresponding Frobenius endomorphism. The finite group
G := GF is a finite reductive group. IfH is any closed subgroup ofG we will denote byH := HF

the corresponding finite group. We fix an F -stable maximal torus T of G contained in an F -
stable Borel subgroup B of G. We denote by Wm := NG(T)/T the corresponding Weyl group,
which is of type Bm. The choice of B defines a subset of simple reflections S = {s1, s2, . . . , sm}
on which F acts trivially. They are labeled according to the following Coxeter diagram:

s1 s2 s3 sm−1 sm

The G-conjugacy classes of F -stable maximal tori are parametrized by the conjugacy classes
of Wm. Given w ∈ Wm we will denote by Tw a maximal torus of type w. Given θ a K-linear
character of Tw, Deligne–Lusztig defined in [6] a virtual character RG

Tw
(θ) of G over K. We will

write Rw := RG
Tw

(1Tw
) for the Deligne–Lusztig character associated to the trivial character of

Tw. The irreducible constituents of the various Rw’s are the unipotent characters of G.

1.2.3. Harish-Chandra induction and restriction. Given I ⊆ S, we write WI for the subgroup
of W generated by I and PI = BWIB for the corresponding standard parabolic subgroup of
G. It has a Levi decomposition PI = LI ⋉UI where LI is the unique Levi complement of PI

containing T. The Harish-Chandra induction and restriction functors are defined by

RG
LI

:= ΛG/UI ⊗ΛLI
− and ∗RG

LI
:= HomG(ΛG/UI ,−)

where Λ is any of the rings K, O, k. A ΛG-module V is said to be cuspidal if ∗RG
LI
(V ) = 0 for

all I ( S. When ℓ ∤ q, the functors (∗RG
LI
, RG

LI
) form a biadjoint pair of exact functors between

ΛLI-mod and ΛG-mod.
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When Λ = K these functors yield linear maps on characters of G which we will still denote
by RG

LI
and ∗RG

LI
. When I = ∅ we have that LI = T is a split torus. In that case the Harish-

Chandra induction and the Deligne–Lusztig map RG
T defined above coincide, which justifies our

notation.

1.2.4. Unipotent characters. We recall here Lusztig’s parametrization of unipotent characters
of G (see for example [30, §4]). Recall that G is a quasi-simple group of type Bm or Cm. The
finite group G admits a cuspidal unipotent character if and only if m = t2 + t for some t ≥ 0.
We label such a character by the charged symbol of the empty bipartition with the charge σt,
see (1.1), which is given by

Λ =





(
t t−1 . . . . . . . . .

−1−t −2−t . . .

)
if t is even,

(
−1−t −2−t . . .

t t−1 . . . . . . . . .

)
if t is odd.

More generally, if t2 + t ≤ m, one can consider the standard Levi subgroup L of G of type
Bt2+t or Ct2+t. Then the unipotent characters of G lying in the Harish–Chandra series of the
cuspidal unipotent character of L correspond to bipartitions λ = λ1.λ2 of size r = m− t2 − t.
In that case will we write

[
λ1.λ2

]
B

t2+t

for the corresponding unipotent character, or
[
Λ
]
if Λ

is the symbol of charge σt attached to λ. With our convention, the character with smallest
degree in the series is [r.]B

t2+t
when t is even but [.r]B

t2+t
when t is odd. It agrees with the

convention in Chevie [31] when t is even but when t is odd, the components of the bipartition
must be swapped.

The decomposition of the Deligne–Lusztig characters Rw in terms of symbols was determined
by Lusztig. Given an irreducible character χ of Wm over K we can form the almost character

Rχ :=
1

|Wm|

∑

w∈Wm

χ(w)Rw .

Then using [30, Thm. 4.23] one can compute the multiplicity
〈
Rχ;

[
Λ
]〉

G
of the unipotent

character [Λ] for any symbol Λ. Two examples of computations of Deligne–Lusztig characters
are given in the appendix.

1.2.5. Unipotent ℓ-blocks. By an ℓ-block B of G we mean a minimal 2-sided ideal of the group
algebra OG. We have B = OGb for a unique primitive central idempotent b of OG. We
will write IrrKB for the ordinary irreducible characters lying in B, that is, those irreducible
characters χ ∈ IrrKG such that χ(b) 6= 0. An ℓ-block B is unipotent if it contains at least
one unipotent character. In particular, the principal ℓ-block, which is the block containing the
trivial character, is unipotent. We will denote by OG-umod the category of representations over
the sum of the unipotent ℓ-blocks of G.

Assume now that ℓ and q are odd. The ℓ-blocks of G were classified by Fong–Srinivasan in
[19]. There are two situations, depending on whether ℓ is “linear” or “unitary”. Let d be the
multiplicative order of q in F×

ℓ .

• If d is odd, ℓ is said to be a linear prime for G. In that case two unipotent characters[
Λ
]
and

[
Λ′
]
lie in the same block if and only if the symbols Λ and Λ′ have the same

d-core. The number of d-hooks that must be removed to reach the d-core is called the
weight of the block.
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• If d is even, ℓ is said to be a unitary prime for G. Set e := d/2, the order of q2 in
F×
ℓ . Then two unipotent characters

[
Λ
]
and

[
Λ′
]
lie in the same block if and only if

the symbols Λ and Λ′ have the same e-co-core. The number of e-co-hooks that must
be removed to reach the e-co-core is called the weight of the block.

We will often refer to an ℓ-block B as a Φd-block, where Φd stands for the d-th cyclotomic
polynomial. This is justified by the fact that many of the properties of B depend only on d
rather than on ℓ, see [2, Thm. 5.24]. For example, if ℓ > d then any defect group of B is
isomorphic to (Z/Φd(q)ℓ)

r where r is the weight of the block.

1.2.6. Decomposition matrix. Recall that (K,O, k) is an ℓ-modular system which is sufficiently
large for G. Then every KG-module admits an integral form over O, which can then be reduced
modulo ℓ to a kG-module. The image of that module in the Grothendieck group does not
depend on the choice of the integral form and we obtain a linear map

dec : K0(KG-mod) −→ K0(kG-mod)

called the decomposition map. The decomposition matrix is the matrix of this map in the
bases IrrKG and IrrkG. It respects the block decomposition so that we can talk about the
decomposition matrix of an ℓ-block. Dually, every projective kG-module P lifts to a unique

projective OG-module P̃ , up to isomorphism. By the character of P we mean the character

of the KG-module KP̃ . Brauer reciprocity states that the decomposition matrix of G is also
the matrix whose columns are the characters of the PIMs (the projective indecomposable kG-
modules) in the basis IrrKG.

In this paper we shall only be interested in the decomposition matrix of unipotent ℓ-blocks. It
is a reasonable restriction since any block is conjecturally Morita equivalent to some unipotent
block [1]. This was proved for a large class of non-unipotent blocks in [3]. We say that a PIM is
unipotent if it belongs to a unipotent ℓ-block. When ℓ is odd, the unipotent characters form a
basic set of the unipotent ℓ-blocks [22, 21]. If in addition q is odd, this basic set is unitriangular
with respect to the order on families [4] (see [33, §4] for the description of the order in terms of
symbols). This means that there is a labeling of the unipotent PIMs by symbols such that

〈
KP̃Λ; [Λ

′]
〉
G
=

{
1 if Λ = Λ′,
0 if Λ′ 5 Λ.

To avoid cumbersome notation we will denote by Ψ[Λ] the unipotent part of the character of

the PIM corresponding to the unipotent character
[
Λ
]
by unitriangularity.

Similarly, we say that a simple kG-module is unipotent if it belongs to a unipotent ℓ-block.
The unitriangularity of the decomposition matrix gives a natural labeling of the unipotent
simple kG-modules by unipotent characters. If

[
Λ
]
is a unipotent character, we will denote by

S[Λ] the corresponding simple kG-module.

1.3. Branching rules. We recall and complete in this section the main result in [13, §6] on
the branching rules for Harish-Chandra induction and restriction for unipotent representations
of groups of type B and C. Throughout this section we will assume that ℓ and q are odd, and
that d, the multiplicative order of q in F×

ℓ , is even. In particular we have d > 1.

To avoid cumbersome notation we will work with symplectic groups but under our assumption
that ℓ is odd, the main result of this section, Theorem 1.12, remains valid for any group of type
B or C.
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1.3.1. Level 2 Fock spaces. Let λ = λ1.λ2 be a bipartition, and s ∈ Z2. The charged content of
a box b = (x, y, j) in the Young diagram Y (λ) is

co
s(b) = y − x+ sj .

Given another bipartition µ and c ∈ Z, we write µ r λ = c if there exists a box b of µ with
charged content co

s(b) = c such that the Young diagram of λ is obtained from the Young
diagram of µ by removing the box b.

Let {ei, fi}i∈0,...,d−1 be the Chevalley generators of the affine Lie algebra ŝld. The Fock space

F(s) with charge s is the ŝld-module equipped with a C-basis |λ, s〉 labeled by bipartitions on
which the Chevalley generators act by

ei|λ, s〉 =
∑

j≡i mod d
λrµ=j

|µ, s〉 and fi|λ, s〉 =
∑

j≡i mod d
µrλ=j

|µ, s〉.

Note that the action of ŝld depends only on the class of s1 and s2 in Z/d.

1.3.2. Order on bipartitions. We consider here an order on bipartitions defined by Dunkl–
Griffeth in [14, §4]. Let λ be a bipartition and let Y (λ) be its Young diagram. If b = (x, y, j)
is a box in Y (λ) we write j(b) := j. If µ is another bipartition and s ∈ Z2 we write λ �s µ if
for all α ∈ R and j = 1, 2

#{b ∈ Y (λ) | cos(b)− j(b)
d

2
> α or cos(b)− j(b)

d

2
= α and j(b) ≤ j}

≤#{b ∈ Y (µ) | cos(b)− j(b)
d

2
> α or cos(b)− j(b)

d

2
= α and j(b) ≤ j}.

This is exactly the order ≤c defined in [14] with r = 2, c0 = d−1 and d0 = −d1 = (s1 − s2)/d+
1/2. Note that changing s to s + (s, s) for any s ∈ Z does not change the order. We will need
the following lemma which relates the Dunkl–Griffeth order on bipartitions to the dominance
order on charged symbols defined in §1.1.3.

Lemma 1.4. Let σ ∈ Z2 and set s := σ + 1
2 (0, d). Let λ, µ be two bipartitions, and let Λ, Λ′

be the corresponding symbols of charge σ. Then

λ �s µ =⇒ Λ⊳ Λ′ or Λ ≡ Λ′.

Proof. First observe that given a box b in the Young diagram of λ we have

co
s(b)− j(b)

d

2
= co

σ(b)−
d

2
.

We deduce that λ �s µ if and only if for all α ∈ R and j = 1, 2 we have

(1.5)
#{b ∈ Y (λ) | coσ(b) > α or coσ(b) = α and j(b) ≤ j}

≤#{b ∈ Y (µ) | coσ(b) > α or coσ(b) = α and j(b) ≤ j}.

Let us consider the extended Young diagram Ỹ (λ), defined as the set of boxes b = (x, y, j)
with j = 1, 2, x ≥ 1 and y ≤ λjx. Unlike the usual Young diagram we do not assume y ≥ 1 for

the boxes, which means that each row is infinite on the left. The set of boxes in Ỹ (λ)r Y (λ)
does not depend on the bipartition λ, and the number of boxes with a given content is finite,

therefore one can replace Y (λ) and Y (µ) by Ỹ (λ) and Ỹ (µ) in (1.5).

Working with extended Young diagrams makes the computations easier in (1.5). Indeed, if
̟Λ := (̟1 ≥ ̟2 ≥ ̟3 ≥ · · · ) is the composition attached to Λ, that is, the multiset given by
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the union of βσ1(λ
1) and βσ2(λ

2) (see §1.1.3), then we claim that

#{b ∈ Ỹ (λ) | coσ(b) ≥ α} =
∑

̟k≥α

(̟k − ⌈α⌉).

To show the claim we can assume without loss of generality that α ∈ Z since the contents are

integers. Each row in Ỹ (λ) corresponds to an element ̟k, and the highest content in that row
equals ̟k − 1. Consequently, this row contains a box of content β (and only one) if and only
if ̟k − 1 ≥ β. Therefore

#{b ∈ Ỹ (λ) | coσ(b) ≥ α} =
∑

β≥α

#{b ∈ Ỹ (λ) | coσ(b) = β}

=
∑

β≥α

#{k ≥ 1 | ̟k − 1 ≥ β}

=
∑

k,β
̟k−1≥β≥α

1 =
∑

k

∑

β
̟k−1≥β≥α

1

=
∑

k
̟k−1≥α

(̟k − α).

Let ̟Λ′ = (̟′
1 ≥ ̟′

2 ≥ ̟′
3 ≥ · · · ) be the composition attached to the symbol Λ′. We deduce

from (1.5) with j = 2 that for all α ∈ R

(1.6)
∑

̟k≥α

(̟k − ⌈α⌉) ≤
∑

̟′

k
≥α

(̟′
k − ⌈α⌉).

Now, if i ≥ 1 we have

i∑

k=1

(̟k −̟
′
i) ≤

∑

̟k≥̟′

i

(̟k −̟
′
i) ≤

∑

̟′

k
≥̟′

i

(̟′
k −̟

′
i) =

i∑

k=1

(̟′
k −̟

′
i)

where we used (1.6) with α = ̟′
i for the second inequality. This shows that

∑i

k=1̟k ≤∑i

k=1̟
′
k for all i ≥ 1 and completes the proof. �

1.3.3. Categorification of unipotent representations. We recall here the categorification result
of [13, §6]. For m ≥ 0 we set Gm := Sp2m(q). Using the (unique) standard Levi subgroup
Gm−1 × GL1(q) of Gm we can form the chain of subgroups {1} = G0 ⊂ G1 ⊂ · · · ⊂ Gm−1 ⊂
Gm ⊂ · · · . Since d, the multiplicative order of q in F×

ℓ is even, the group GL1(q) is an ℓ
′-group

and the Harish-Chandra induction and restriction induce exact functors between kGm−1-umod

and kGm-umod for all m. We can form the abelian category

kG•-umod :=
⊕

m≥0

kGm-umod

of the modules over all the unipotent ℓ-blocks of the various groups Gm. We will denote by F
and E the endofunctors of this category induced by Harish-Chandra induction and restriction
respectively.

Since ℓ is odd, the unipotent characters form a basic set for the unipotent blocks [22, 21]. In
particular K0(kG•-umod) has a Z-basis given by the image of the unipotent characters under
the decomposition map, see §1.2.6. Recall from §1.2.4 that the unipotent characters in a Bt2+t-
series are labeled by bipartitions, or equivalently by symbols of charge σt. Therefore they are
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in bijection with the standard basis of any Fock space F(s). For our purpose we will consider
the charges st defined by

(1.7) st := σt +
1

2
(0, d) =

{
(t,−1− t+ d

2 ) if t is even,

(−1− t, t+ d
2 ) if t is odd,

for all t ≥ 0. The previous discussion shows that there is an isomorphism of C-vector spaces

(1.8)

⊕

t≥0

F(st)
∼
−→ C⊗Z K0(kG•-umod)

|λ, st〉 7−→ dec
[
λ
]
B

t2+t

which sends an element of the standard basis to the image under the decomposition map of the
corresponding unipotent character. One of the main results in [13, §6] is a categorification of
(1.8). It gives, for every i = 0, . . . , d− 1 a construction of a biadjoint pair of exact endofunctors
(Fi, Ei) of kG•-umod such that

F =
d−1⊕

i=0

Fi and E =
d−1⊕

i=0

Ei

called i-induction and i-restriction functors, which induce an action of ŝld on K0(kG•-umod)

making (1.8) an isomorphism of ŝld-modules.

Remark 1.9. In [13, (6.3)] the authors used the charge s∗t instead of st when t is odd. This does
not affect the categorification result since the Fock spaces F(s∗t ) and F(st) are clearly isomorphic,
but it explains the discrepancy in our notation for unipotent characters with the one in Chevie.
With our convention, under the isomorphism (1.8), the action of fi on a symbol

Λ =

(
x1 x2 x3 . . .
y1 y2 y3 . . .

)

is given by increasing by 1 any xj equal to i modulo d or any yj equal to i+d/2 modulo d, when
possible.

1.3.4. Crystal graph and branching rules. Fix a charge s = (s1, s2) ∈ Z2, let d ∈ Z≥2 (here
we do not require d to be even), and consider the Fock space F(s). Let |λ, s〉 be a charged
bipartition in F(s). A box b of λ is removable if µ := λ \ b is a bipartition. Then b is called an
addable box of the bipartition µ. For each i ∈ Z/dZ, define the i-word of |λ, s〉 as follows: list
all the addable and removable boxes b of |λ, s〉 such that cos(b) ≡ i mod d in increasing order
from left to right according to their value in Z, with the convention that if cos(b) = co

s(b′)
and b ∈ λ1, b′ ∈ λ2, then b′ is smaller than b. Now replace each addable box in the list by
the symbol + and each removable box in the list by the symbol −. The resulting string of
pluses and minuses is called the i-word of |λ, s〉. The reduced i-word of |λ, s〉 is then found from
the i-word by recursively canceling all adjacent pairs (−+). The reduced i-word is of the form

(+)a(−)b for some a, b ∈ Z≥0. The Kashiwara operator f̃i adds the addable i-box corresponding
to the rightmost + in the reduced i-word of |λ, s〉, or if there is no + in the reduced i-word then
it acts by 0. Likewise, the Kashiwara operator ẽi removes the removable i-box corresponding
to the leftmost − in the reduced i-word of |λ, s〉, or if there is no − in the reduced i-word then

it acts by 0. The directed graph with vertices all bipartitions and (Z/dZ-colored) edges λ
i
→ µ

if and only if µ = f̃i(λ), i ∈ Z/dZ, is called the ŝld-crystal on F(s) [28, Section 3], [17, Theorem
2.8].
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Example 1.10. Let λ = 4214.4232213, s = (1, 0), and d = 4.

|λ, s〉 = 1 2 3 4
0 1
-1
-2
-3
-4

· 0 1 2 3
-1 0 1 2
-2 -1 0
-3 -2
-4 -3
-5
-6
-7

Let us find the 0-word of |λ, s〉. The addable 0-boxes (x, y, j), where x is the row, y is the
column, and j is the component, are: (9, 1, 2), (6, 2, 2), (3, 2, 1), (1, 5, 2). The removable 0-boxes
are: (6, 1, 1), (3, 3, 2), (1, 4, 1). Ordering them we obtain the 0-word:

(9, 1, 2) (6, 2, 2) (6, 1, 1) (3, 3, 2) (3, 2, 1) (1, 5, 2) (1, 4, 1)
+ + − − + + −

Iterating cancellations of all adjacent (−+), we obtain the reduced 0-word:

(9, 1, 2) (6, 2, 2) (1, 4, 1)
+ + −

Thus f̃0 adds the box (6, 2, 2) to |λ, s〉, and ẽ0 removes the box (1, 4, 1) from |λ, s〉. That is,

f̃0(λ) = 4214.4232312 and ẽ0(λ) = 3214.4232213.

We will often work with symbols instead of Young diagrams, so it is useful to describe how
the operators f̃i and ẽi act on symbols. Let [λ]B

t2+t
be a bipartition in the Bt2+t series, and

let Λ = (X,Y ) be its symbol with charge σt. Recall that this does not depend on d. Instead of
changing the symbol to depend on d, we define the action so that it depends on d.

Let d ∈ 2N with d ≥ 2. An addable i-box of λ1 is x ∈ X such that x + 1 /∈ X and x ≡ i
mod d. A removable i-box of λ1 is x /∈ X such that x + 1 ∈ X and x ≡ i mod d. The next
condition records the dependence on d. An addable i-box of λ2 is y ∈ Y such that y + 1 /∈ Y
and y + d

2 ≡ i mod d. A removable i-box of λ2 is y /∈ Y such that y + 1 ∈ Y and y + d
2 ≡ i

mod d. We then order all addable and removable i-boxes of λ by the following rule:

• x1 is less than x2 if and only if x1 < x2 in Z,
• y1 is less than y2 if and only if y1 < y2 in Z,
• x is less than y if and only if y + d

2 > x in Z,

• y is less than x if and only if x ≥ y + d
2 in Z,

for all addable and removable boxes x, x1, x2 of λ1 and y, y1, y2 of λ2. We then form the i-
word of λ by listing its addable and removable i-boxes in increasing order as just defined. The
cancellation rule is the same as before, and we obtain the good addable i-box and the good
removable i-box of λ (if they exist) as described before.

Example 1.11. Take λ = 312.2 and consider it as a bipartition in the principal series, so that
t = 0. We have σ0 = (0,−1) and thus the symbol associated to [λ] is

Λ =

(
X
Y

)
=

(
3 0 −1 −3 −4 . . .

1 −2 −3 −4 . . .

)

Now suppose that d = 6. Let us calculate the action of f̃3 and ẽ3 on Λ. The addable 3-boxes of
λ are given by 3,−3 ∈ X, and the removable 3-boxes of λ are given by 0 /∈ Y . Ordering them
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according to our rule, the 3-word of λ is:

+ − +
−3 ∈ X 0 /∈ Y 3 ∈ X

We then cancel the occurrence of (−+), yielding + as the reduced 3-word and −3 ∈ X as the
good addable 3-box. There is no good removable 3-box, so ẽ3Λ = 0. Adding the good addable
3-box to λ yields:

f̃3Λ =

(
3 0 −1 −2 −4 . . .

1 −2 −3 −4 . . .

)
.

Now we recall how the combinatorics of crystals relates to the representation theory of
unipotent blocks. We can define the colored branching graph whose vertices are labeled by the

unipotent simple kGm-modules for all m ≥ 0 and arrows are given by T
i
−→ T ′ if T ′ appears in

the head of Fi(T ), or equivalently if T appears in the socle of Ei(T
′).

Theorem 1.12. The map
|λ, st〉 7→ S[λ]B

t2+t

induces an isomorphism between the union of the crystal graphs of F(st) for t ≥ 0 and the
colored branching graph of Harish-Chandra induction and restriction.

Proof. The proof follows the arguments given in the proof of [12, Thm. 4.37]. Let t ≥ 0. There
is a perfect basis of the Fock space F(st) coming from an upper global basis of a quantum
deformation of F(st) defined by Uglov in [35]. We denote this basis by b∨ (|λ, st〉). It is
unitriangular in the standard basis, with respect to the order �st defined in §1.3. In other
words we have

(1.13) b∨ (|λ, st〉) ∈ |λ, st〉+
∑

λ≺st
µ

C|µ, st〉.

On the other hand, since the decomposition matrix is unitriangular, we have, for every unipotent
character

[
Λ
]
attached to a symbol Λ

(1.14) dec
([
Λ
])
∈ S[Λ] +

∑

Λ⊳Λ′

ZS[Λ′]

in K0(kG•-umod). Now let ψ be the isomorphism in (1.8) sending |λ, st〉 to dec
([
Λ
])

where Λ
is the symbol of charge σt attached to λ. Lemma 1.4 tells us that for all µ such that λ ≺st µ,
it holds that Λ ⊳ Λ′ or Λ ≡ Λ′, where Λ′ is the symbol of charge σt attached to µ. Since
ψ (|µ, st〉) ∈ S[Λ′] +

∑
Λ′⊳Λ′′

CS[Λ′′ ] by (1.14) we deduce that

ψ (|µ, st〉) ∈ S[Λ′] +
∑

Λ⊳Λ′′

CS[Λ′′].

This together with (1.13) gives

(1.15) ψ
(
b∨ (|λ, st〉)

)
∈ S[Λ] +

∑

Λ≺Λ′

CS[Λ′]

where Λ ≺ Λ′ is the transitive closure of the relation

Λ⊳ Λ′, or Λ′ ↔ µ with λ ≺st µ.

If we define ϕ to be the bijection that sends S[Λ] to ψ
(
b∨ (|λ, st〉)

)
, two perfect bases of⊕

t≥0 F(st), then (1.15) shows that ϕ satifies the assumptions of [12, Prop. 1.14] with respect
to the order ≺ and therefore induces a crystal isomorphism. �
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2. The decomposition matrix of the principal Φ2n-block of Sp4n(q) and SO4n+1(q)

We fix an integer n ≥ 0. Throughout this section G = G2n will denote one of the finite groups
SO4n+1(q) or Sp4n(q) for q a power of an odd prime. We are interested in the decomposition
matrix of the principal ℓ-block of G when the order of q in F×

ℓ equals 2n. We will often refer
to this block as the principal Φ2n-block of G (see §1.2.5).

2.1. Unipotent characters in the principal Φ2n-block. Let B be the principal Φ2n-block
of G and b be the corresponding block idempotent. By §1.2.5 the block has weight 2 and the
unipotent characters lying in B are labeled by symbols of rank 2n and n-co-core equal to the
symbol

(2.1)

(
0 −1 −2 . . .
−1 −2 . . .

)
.

Consequently one obtains such symbols by adding two n-co-hooks to the symbol (2.1). Depend-
ing on which rows the co-hooks are inserted in, one gets symbols of defect 1, −3 or 5 which label
unipotent characters in the principal series, the B2-series, or the B6-series of G respectively, see
§1.2.4.

(1) Principal series. There are three families of symbols of defect 1 obtained by adding two
n-co-hooks to the symbol (2.1).
• For 0 ≤ j ≤ n and 0 < i < n, the symbol

(
n−i 0 −1 . . . −̂j . . .

n−j −1 . . . −̂i . . .

)

corresponding to the principal series character
[
(n−i)1j.(n−j+1)1i−1

]
. There are

n2 − 1 such symbols.
• For 0 ≤ j < 2n, the symbol

(
2n−j 0 −1 . . . −̂j . . .

−1 . . . . . . . . .

)

corresponding to the principal series character
[
(2n−j)1j .

]
. There are 2n such

symbols.
• For 0 < i ≤ 2n, the symbol

(
0 −1 . . . . . . . . .

2n−i −1 . . . −̂i . . .

)

corresponding to the principal series character
[
.(2n−i+1)1i−1

]
. Again, there are

2n such symbols.

(2) B2-series. The symbols of defect −3 are given by
(

0 −1 . . . −̂i . . . −̂j . . .
n−i n−j −1 . . . . . . . . . . . . . . .

)

for 0 ≤ i < j ≤ n. There are n(n + 1)/2 such symbols. They correspond to the
unipotent characters

[
2i1j−i−1.(n−i−1)(n−j)

]
B2

, all of which lie in the B2-series.

In terms of bipartitions and their Young diagrams, the unipotent characters [λ]B2

in the principal Φ2n-block are labeled by λ such that λ1 fits inside the rectangle 2n−1,
and λ2 is the reflection across a diagonal line of slope 1 of the skew shape 2n−1 \ λ1
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(in particular, λ2 fits in the rectangle (n− 1)2). This is best illustrated with a picture
(here, for n = 7, we have shaded λ = 2312.31):

·

(3) B6-series. The symbols of defect 5 are given by
(
n−i n−j 0 −1 . . . . . . . . . . . . . . .

−1 . . . −̂i . . . −̂j . . .

)

for 0 < i < j < n. There are (n − 1)(n − 2)/2 such symbols. They correspond to the
unipotent characters

[
(n−i−2)(n−j−1).2i−11j−i−1

]
B6

, all lying in the B6-series.

In terms of bipartitions and their Young diagrams, the unipotent characters [λ]B6

in the principal Φ2n-block are labeled by λ such that λ2 fits inside the rectangle 2n−3,
and λ1 is the reflection across a diagonal line of slope 1 of the skew shape 2n−3 \ λ2

(in particular, λ1 fits in the rectangle (n − 3)2). Again, this is best illustrated with a
picture (here, for n = 7, we have shaded λ = 41.13):

·

Consequently there are 2n2 + 3n unipotent characters in the principal Φ2n-block. By [2], the
number of unipotent characters in the principal Φ2n-block may also be counted by the number
of complex irreducible representations of the complex reflection group G(2n, 1, 2).

2.2. Induced columns. In this section, we describe the columns of the decomposition matrix
of the principal Φ2n-block obtained by Harish-Chandra induction from proper Levi subgroups.
These account for all but four columns of the decomposition matrix. In all cases, we find that
each non-cuspidal column in the principal Φ2n-block is the character of an induced PIM, cut
to the principal block.

Since a group of type Ar has no cuspidal unipotent module (over k) unless r = 0 or r ≥ 2n−1,
a cuspidal support of a simple unipotent kG-module corresponds to either a Levi subgroup of
type A2n−1 or a Levi subgroup of type BCr for some r ≤ 2n. In particular, if Λ is a symbol of
defect D 6= 1 then S[Λ] is a cuspidal kG-module whenever ẽiΛ = 0 for all i.

2.2.1. The B2-series submatrix.

Theorem 2.2. Let λ be a bipartition such that [λ]B2 belongs to the principal Φ2n-block. If λ =
2n−1. then S[λ]B2

is cuspidal and so Ψ[λ]B2
cannot be obtained by Harish-Chandra induction.

Otherwise, using truncated induction we obtain the unipotent parts of projective indecomposable
characters in the B2-series as follows:

• If λ = 2k1n−1−k.(n−1−k) for some 0 ≤ k < n−1, then

Ψ[λ]B2
= [λ]B2 + [2k+11n−2−k.(n−2−k)]B2 .

• If λ = 2n−2.12 then

Ψ[λ]B2
= [λ]B2 + [2n−21.1]B2 .
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• If λ = 2n−1−k.k2 for some 2 ≤ k ≤ n−1 then

Ψ[λ]B2
= [λ]B2 + [2n−1−k1.k(k−1)]B2 + [2n−k1.(k−1)(k−2)]B2 + [2n+1−k.(k−2)2]B2 .

• If λ = 2i1j−i−1.(n−i−1)(n−j) with 0 < i+ 1 < j < n then

Ψ[λ]B2
= [λ]B2 + [2i+11j−i−2.(n−i−2)(n−j)]B2 + [2i1j−i.(n−i−1)(n−j−1)]B2

+ [2i+11j−i−1.(n−i−2)(n−j−1)]B2 .

Proof. If λ = 2n−1. then ẽiλ = 0 for all i ∈ Z/2nZ. Since S[λ]B2
does not have cuspidal

support on a type A parabolic, it follows that S[λ]B2
is cuspidal. For the unipotent part of the

characters of the projective covers of non-cuspidal simple representations in the B2-series, we
will find Ψ[λ]B2

by taking the i-induction of Ψ[µ]B2
for some i ∈ Z/2nZ such that f̃iµ = λ. We

find that in this case, fiΨ[µ]B2
is indecomposable and equals Ψ[λ]B2

. Note that the ℓ-blocks of
G2n−1 have either trivial or cyclic defect groups, so that the PIMs can be easily obtained from
[20].

Let λ = 2k1n−1−k.(n−1−k) for some 0 ≤ k < n − 1. Set µ = 2k1n−1−k.(n−2−k). Then

λ = f̃2n−k−1µ. We have Ψ[µ]B2
= [µ]B2 by [20]. (Note that this implies the cuspidal support

of S[µ]B2
, and thus also of S[λ]B2

, is different from [B2], and is labeled by some non-empty

bipartition in the B2-series, see [20].) Then Ψ[λ]B2
= Ψ[f̃2n−k−1µ]B2

is a summand of

f2n−k−1Ψ[µ]B2
= f2n−k−1[µ]B2 = [λ]B2 + [2k+11n−2−k.(n−2−k)]B2 .

Thus either f2n−k−1Ψ[µ]B2
is the unipotent part of an indecomposable projective character and

equals Ψ[λ]B2
, or it is the sum of the unipotent parts of two indecomposable projective char-

acters, each of which would have to contain a single unipotent character. If k = n − 2 then
Ψ[2k+11n−2−k.(n−2−k)]B2

= Ψ[2n−1.]B2
does not appear as a summand of any induced projective

character by cuspidality. Therefore Ψ[λ]B2
= [λ]B2 + [2k+11n−2−k.(n−2−k)]B2 when k = n − 2.

Then by downwards induction on k, f2n−1−kΨ[µ]B2
= Ψ[λ]B2

for all 0 ≤ k < n− 2 as well, and
in particular, the desired character formula holds.

Next, let λ = 2n−2.12. Set µ = 2n−2.1. Then λ = f̃nµ. We have Ψ[µ]B2
= [µ]B2 by [20].

Therefore Ψ[λ]B2
= Ψ[f̃nµ]B2

is a summand of

fnΨ[µ]B2
= fn[µ]B2 = [λ]B2 + [2n−21.1]B2,

thus either Ψ[λ]B2
= [λ]B2 and [2n−21.1]B2 = Ψ[2n−21.1]B2

, or Ψ[λ]B2
= fnΨ[µ]B2

. We showed

in the previous paragraph that Ψ[2n−21.1]B2
= [2n−21.1]B2 + [2n−1.]B2 . Therefore Ψ[λ]B2

=
fnΨ[µ]B2

and the desired character formula holds.

In the case that λ = 2n−1−k.k2 for 2 ≤ k ≤ n − 1, we have λ = f̃n+k−12
n−1−k.k(k−1). In the

case that λ = 2i1j−i−1.(n−i−1)(n−j) for 1 < j − i < n, we have λ = f̃2n−i−12
i1j−i−1.(n−i−2)(n−j).

By [20] the following characters are the unipotent part of PIMs of G2n−1(q):

Ψ[2n−1−k.k(k−1)]B2
= [2n−k−1.k(k−1)]B2 + [2n−k1.(k−2)2]B2 ,

Ψ[2i1j−i−1.(n−i−2)(n−j)]B2
= [2i1j−i−1.(n−i−2)(n−j)]B2 + [2i1j−i.(n−i−2)(n−j−1)]B2 .

In either case, the cuspidal support of S[λ]B2
is then equal to [B2], see [20] (and the source

vertex of λ in the ŝl2n-crystal is the empty bipartition). This means that if ν is one of the
bipartitions of the first two types listed in the theorem or ν = 2n−1., then Ψ[ν]B2

cannot appear
as a summand of fn+k−1Ψ[2n−1−k.k(k−1)]B2

or f2n−i−1Ψ[2i1j−i−1.(n−i−2)(n−j)]B2
.
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We compute that

fn+k−1Ψ[2n−1−k.k(k−1)]B2
= [2n−1−k.k2]B2 + [2n−1−k1.(k)(k−1)]B2 + [2n−k1.(k−1)(k−2)]B2

+ [2n+1−k.(k−2)2]B2 ,

f2n−i−1Ψ[2i1j−i−1.(n−i−2)(n−j)]B2
= [2i1j−i−1.(n−i−1)(n−j)]B2 + [2i+11j−i−2.(n−i−2)(n−j)]B2

+ [2i1j−i.(n−i−1)(n−j−1)]B2 + [2i+11j−i−1.(n−i−2)(n−j−1)]B2 .

By induction on the number of boxes in λ2, together with the fact that no Ψ[ν]B2
as above can be

a summand of these induced projective characters, it follows that for none of the bipartitions
ρ appearing on the right-hand side of these formulas can Ψ[ρ]B2

be a summand except for
ρ = λ. That is, fn+k−1Ψ[2n−1−k.k(k−1)]B2

= Ψ[2n−1−k.k2]B2
and f2n−i−1Ψ[2i1j−i−1.(n−i−2)(n−j)]B2

=

Ψ[2i1j−i−1.(n−i−1)(n−j)]B2
. We thus get the desired character formulas for Ψ[λ]B2

in the final two
cases listed in the theorem. This concludes the proof. �

2.2.2. The B6-series submatrix. The proof of Theorem 2.3 is identical to the proof of Theorem
2.2, except that the roles of λ1 and λ2 are switched.

Theorem 2.3. Let λ be a bipartition such that [λ]B6 belongs to the principal Φ2n-block. If
λ = .2n−3 then S[λ]B6

is cuspidal and so Ψ[λ]B6
cannot be obtained by Harish-Chandra induction.

Otherwise, using truncated induction we obtain the unipotent parts of projective indecomposable
characters in the B6-series as follows:

• If λ = (n−3−k).2k1n−3−k for some 0 ≤ k < n− 3 then

Ψ[λ]B6
= [λ]B6 + [(n−4−k).2k+11n−4−k]B6 .

• If λ = 12.2n−4 then
Ψ[λ]B6

= [λ]B6 + [1.2n−41]B6 .

• If λ = k2.2n−3−k for some 2 ≤ k ≤ n−3 then

Ψ[λ]B6
= [λ]B6 + [(k)(k−1).2n−3−k1]B6 + [(k−1)(k−2).2n−2−k1]B6 + [(k−2)2.2n−1−k]B6 .

• If λ = (n−i−2)(n−j−1).2i−11j−i−1 for some 0 < i < j−1 < n−2 then

Ψ[λ]B6
= [λ]B6 + [(n−i−3)(n−j−1).2i1j−i−2]B6 + [(n−i−2)(n−j−2).2i−11j−i]B6

+ [(n−i−3)(n−j−2).2i1j−i−1]B6 .

2.2.3. The principal series submatrix. We will give explicit formulas in the theorem below, but
first, for the sake of intuition we sketch a visual and conceptual way to describe the unipotent
constituents of the projective indecomposable characters in the principal Φ2n-block that belong
to the principal series, inspired by [5]. One can make a simple graph with vertices the biparti-
tions λ of 2n belonging to the principal Φ2n-block, and an edge between λ and µ if and only
if µ is obtained from λ by moving either a single row or a single column of boxes preserving
their charged contents mod d. In this case, we place µ below λ if µ ≺s0 λ. We refer the reader
to [25, §5.4–5.5] for a picture of these posets (where they are drawn as simple directed graphs).
The resulting graph is planar.

One can then make a CW-complex where 2-cells fill the diamond-and-triangle-shaped regions
of the graph, each edge is a 1-cell, and each vertex a 0-cell. Each vertex λ in the graph is then
the top vertex of the closure of a cell of maximal possible dimension, or the top vertex of a
union of closures of cells sharing that top vertex. These shapes are either a diamond, a triangle,
a single edge, a pair of edges (this happens only for λ = 1n+1.1n−1), or simply the vertex itself.
There turn out to be two such shapes that are points, and these are the two cuspidals. For the
λ that are top vertices of 1- and 2-dimensional shapes, taking all vertices in the boundary of
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the shape and reading off their labels µ yields the unipotent constituents [µ] of Ψ[λ]. Moreover,
those λ at the top of 2-dimensional shapes label the irreducible representations of the Hecke
algebra, while the λ that are only at the top of 1-dimensional shapes label the simple modules
with cuspidal support in some non-trivial, proper parabolic. All of this is just an interpretation
of the formulas in the following theorem, which are the same formulas as for the principal block
of Category O of the rational Cherednik algebra of B2n at parameters ( 1

2n ,
1
2n ) [25].

Theorem 2.4. Let λ be a bipartition of 2n such that [λ] belongs to the principal Φ2n-block.
If λ = 12n. or .12n then S[λ] is cuspidal and so Ψ[λ] cannot be obtained by Harish-Chandra
induction. Otherwise, the column of the decomposition matrix labeled by λ is given by the
appropriate choice of formula below:

• If λ = (n+ k)1n−k. for some 1 ≤ k ≤ n, then

Ψ[(n+k)1n−k.] = [(n+k)1n−k.] + [(n+k−1)1n−k+1.] + [(n−1)1n−k.k+1] + [(n−1)1n−k+1.k].

• If λ = n1n. then

Ψ[n1n.] = [n1n.] + [(n−1)1n.1] + [(n−1)1n+1.].

• If λ = .(2n− k)1k for some 0 ≤ k ≤ n− 3 then

Ψ[.(2n−k)1k] = [.(2n−k)1k] + [n−1−k.(n+1)1k] + [n−k−2.(n+1)1k+1] + [.(2n−k−1)1k+1].

• If λ = .(n+ 2)1n−2 then

Ψ[.(n+2)1n−2] = [.(n+2)1n−2] + [1.(n+1)1n−2] + [.(n+1)1n−1].

• If λ = 1k+1.(n+ 1− k)1n−2 for some 0 ≤ k ≤ n− 1 then

Ψ[1k+1.(n+1−k)1n−2] = [1k+1.(n+1−k)1n−2] + [1k+2.(n−k)1n−2] + [.(n+1−k)1n−1+k] + [.(n−k)1n+k].

• If λ = (n− k)1n.1k for some 1 ≤ k ≤ n− 2 then

Ψ[(n−k)1n.1k] = [(n−k)1n.1k] + [(n−k−1)1n.1k+1] + [(n−k)1n+k.] + [(n−k−1)1n+k+1.].

• If λ = (n− i)1j .(n− j + 1)1i−1 for some 1 ≤ i ≤ n− 2 and some 0 ≤ j ≤ n− 1 then

Ψ[λ] = [(n−i)1j.(n−j+1)1i−1]+[(n−i)1j+1.(n−j)1i−1]+[(n−i−1)1j.(n−j+1)1i]+[(n−i−1)1j+1.(n−j)1i].

• If λ = 1n+1.1n−1 then

Ψ[1n+1.1n−1] = [1n+1.1n−1] + [12n.] + [.12n].

• If λ = k12n−k. for some 2 ≤ k ≤ n− 1 then

Ψ[(k)12n−k.] = [k12n−k.] + [(k−1)12n−k+1.].

• If λ = .k12n−k for some 2 ≤ k ≤ n+ 1 then

Ψ[.k12n−k] = [.k12n−k] + [.(k−1)12n−k+1].

Proof. The first seven cases deal with λ such that λ labels an irreducible representation of the
Hecke algebra. The formulas are then given by [15]. They may easily be checked to coincide

with FiΨ[µ] for µ and i such that f̃iµ = λ.

Let L be the standard Levi subgroup of G of type A2n−1. If λ = 1n+1.1n−1, we find that
Ψ[λ] occurs as a summand of RG

LΨ12n by maximality of the family of λ among the families of

the three unipotent characters occurring in [λ]+ [12n.]+ [.12n], which equals RG
LΨ12n cut to the

principal Φ2n-block. Write

Ψ[1n+1.1n−1] = [1n+1.1n−1] + α[12n.] + β[.12n]
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for some α, β ∈ {0, 1}. We calculate that

enΨ[1n+1.1n−1] = [1n.1n−1] + β[.12n−1]

which is only a projective character if β ≥ 1. Then we calculate that

e1Ψ[1n+1.1n−1] = [1n+1.1n−2] + α[12n−1.]

which is only a projective character if α ≥ 1. We conclude that α = β = 1.

Now we are ready to show that S[12n.] and S[.12n] are cuspidal. Since their projective covers

are not summands of RG
LΨ12n , these two simple modules are cuspidal if their Harish-Chandra

restriction to a standard Levi subgroup of type BC2n−1 is 0. This is confirmed by checking
that ẽi(1

2n.) = 0 = ẽi(.1
2n) for all i ∈ Z/2nZ. Indeed, for either bipartition, there is only one

removable box, and it is canceled by the addable box of the same residue in the first row of the
same component.

It remains to verify the formulas in the last two cases listed in the theorem. Consider first the
case λ = k12n−k. for some 2 ≤ k ≤ n− 1. We find that ẽk−1λ = (k − 1)12n−k., which belongs
to a defect 1 block. By [20], Ψ[(k−1)12n−k.] = [(k − 1)12n−k.]. Therefore Ψ[λ] is a summand of

fk−1Ψ[(k−1)12n−k.] = fk−1[(k−1)12n−k.] = [k12n−k.]+[(k−1)12n−k+1.]. Now we argue by induction
on k that this is a projective indecomposable character. The base case is k = 2: since S[12n.] is

cuspidal, Ψ[12n.] is not a summand of the projective character f0Ψ[12n−1.] = [212n−2.] + [12n.].
The induction step says that Ψ[k12n−k.] has the desired formula, and therefore is not a summand

of the projective character fkΨ[k12n−k−1] = [(k + 1)12n−k−1.] + [k12n−k.]. Finally, the argument

for the case λ = .k12n−k for some 2 ≤ k ≤ n+ 1 is similar. �

2.3. Cuspidal columns. In the previous section we have accounted for all the columns of the
decomposition matrix of the principal Φ2n-block except the ones corresponding by unitriangu-
larity to the unipotent characters

[
.12n

]
,
[
12n.

]
,
[
2n−1.

]
B2
,
[
.2n−3

]
B6
.

The corresponding projective indecomposable modules (PIMs) are the projective covers of cus-
pidal simple modules. The purpose of this section is to determine those remaining columns
explicitly. As before, we will denote by

Ψ[.12n], Ψ[12n.], Ψ[2n−1.]B2
, Ψ[.2n−3]B6

the unipotent part of the characters of the corresponding PIMs. By unitriangularity of the
decomposition matrix and maximality of .12n in the partial order (by a-value, or by the reverse
dominance order on families), it holds that Ψ[.12n] =

[
.12n

]
, the Steinberg character. For

the remaining three columns we determine the decomposition numbers using arguments from
Deligne–Lusztig theory and from Kac–Moody categorification (truncated induction). The latter
technique allows us to study the image of the corresponding PIMs under certain sequences of i-
induction functors, providing us with an argument that all or all but one of the decomposition
numbers (excepting the one on the diagonal) are zero. Then, two different Deligne–Lusztig
characters give an upper and lower bound for the unique non-zero decomposition number,
which turn out to coincide. Before treating each PIM in turn, we start with the following
lemma.

Lemma 2.5. Let Λ be a symbol corresponding to a unipotent character
[
Λ
]
of G. Let S be a

set of symbols Λ′ < Λ such that

Ψ[Λ] ∈ [Λ] +
∑

Λ′∈S

N[Λ′].



18 OLIVIER DUDAS AND EMILY NORTON

Let i = (i1, i2, . . . , ir) be a tuple of elements of Z/2n and let i∗ = (ir, ir−1, . . . , i1) be the reverse
tuple. Assume that

(i) fiΛ = f̃iΛ = Θ for some symbol Θ;
(ii) if Λ′ ∈ S and Θ′ occurs in fiΛ

′ with Θ′ < Θ then ei∗Θ
′ = Λ′.

Then Ψ[Λ] contains only [Λ] and the characters [Λ′] for symbols Λ′ ∈ S such that there exists
Θ′ occurring in fiΛ

′ with Θ′ < Θ.

Proof. Recall that P[Λ] denotes the PIM corresponding to the unipotent character [Λ] by uni-
triangularity, and that Ψ[Λ] is the unipotent part of its character. Since i-induction functors
are exact, the module fiP[Λ] is projective, and by (i) it contains P[Θ] as a direct summand.
Therefore any unipotent character [Θ′] 6= [Θ] occurring in Ψ[Θ] corresponds to a symbol Θ′

which satisfies the following two conditions:

• there exists Λ′ ∈ S such that Θ′ occurs in fiΛ
′;

• Θ′ < Θ (by unitriangularity of the decomposition matrix).

Now, by (ii), such a symbol satisfies ei∗Θ
′ = Λ′. The result follows from the fact that P[Λ] is a

direct summand of ei∗P[Θ] by (i). �

Remark 2.6. If Λ has a unique addable i-box (i.e. fiΛ is a symbol) and no removable i-box

(i.e. eiΛ = 0) then f̃iΛ = fiΛ by §1.3.4. This is often helpful for checking condition (i) of
Lemma 2.5.

2.3.1. The column corresponding to
[
12n.

]
. The symbol corresponding to this unipotent char-

acter is (
1 0 −1 . . . −̂2n+1 . . .

−1 . . . . . . . . .

)

so that the composition of the associated family is (1, 0,−1,−1,−2,−2, . . . ,−̂2n+1, . . .). It

dominates (0, 0,−1,−1,−2,−2, . . . ,−̂2n, . . .), which is the family of the Steinberg character[
.12n], and does not dominate any other family of unipotent characters of G. Therefore Ψ[12n.] =[
12n.

]
+ α

[
.12n

]
for some α ≥ 0, by unitriangularity. We shall prove that α = 0.

Proposition 2.7. We have

Ψ[12n.] =
[
12n.

]
.

Proof. We apply Lemma 2.5 to the symbol Λ associated to
[
12n.

]
and i = (0). We have

Θ := f0Λ = f0

(
1 0 −1 . . . −̂2n+1 . . .

−1 . . . . . . . . .

)
=

(
1 0 −1 . . . −̂2n . . .

−1 . . . . . . . . .

)
.

By Remark 2.6 it is also equal to f̃0Λ, therefore condition (i) of Lemma 2.5 is satisfied. On
the other hand, the symbol Λ′ associated to

[
.12n

]
is the unique symbol smaller than Λ and it

satisfies

f0

(
0 −1 . . . . . . . . .

0 −1 . . . −̂2n . . .

)
=

(
1 −1 . . . . . . . . .

0 −1 . . . −̂2n . . .

)
.

Since f0Λ and f0Λ
′ lie in the same family, condition (ii) of Lemma 2.5 is empty hence auto-

matically satisfied. As a consequence
[
.12n

]
is not a constituent of Ψ[12n.] and the proposition

is proved. �
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2.3.2. The column corresponding to
[
2n−1.

]
B2

. The unipotent character
[
2n−1.

]
B2

of the B2-

series corresponds to the following symbol of defect −3

Λ =

(
0 −1 . . . −̂n+1 −̂n . . .

1 0 −1 . . . . . . . . . . . .

)
.

The associated composition is (1, 0, 0,−1,−1, . . . ,−n+1,−̂n+1,−̂n,−n, . . .). From the description
in §2.1 one checks that the unipotent characters in the principal Φ2n-block lying in smaller
families are

[
12n.

]
,
[
.212n−2

]
and

[
.12n

]
. Consequently there exist non-negative integers α, β,

and γ such that

Ψ[2n−1.]B2
=
[
2n−1.

]
B2

+ α
[
12n.

]
+ β

[
.212n−2

]
+ γ
[
.12n

]
.

The following theorem explicitly determines these integers whenever the ℓ-part of Φ2n(q) is not
too small.

Theorem 2.8. There exists γ ≤ 2 such that

Ψ[2n−1.]B2
=
[
2n−1.

]
B2

+ γ
[
.12n

]
.

Furthermore, if Φ2n(q)ℓ > 4n, then γ = 2.

Note that by a result of Feit, the condition Φ2n(q)ℓ > 4n is satisfied for at least one prime
number ℓ except for finitely many pairs (q, n) [16].

Proof. Step 1. The first step of the proof establishes that
[
.12n

]
is the only unipotent character

different from
[
2n−1.

]
that can occur in Ψ[2n−1.]B2

with a nonzero coefficient. For that purpose

we use Lemma 2.5 with Λ being the symbol attached to [2n−1.]B2 and i = (1, 2, . . . , n− 1). We
have

fiΛ = f1f2 · · · fn−1Λ =

(
0 . . . −̂n+1 . . . −̂2n+1 . . .

1 0 . . . . . . . . . . . . . . .

)

which also equals f̃1f̃2 · · · f̃n−1Λ by Remark 2.6 so that condition (i) of Lemma 2.5 holds. We
list below the symbols obtained by inducing the ones associated to the unipotent characters[
12n.

]
,
[
.212n−2

]
, and

[
.12n

]
.

[µ] Λ′ f1f2 · · · fn−1Λ
′

[
12n.

] (
1 0 . . . −̂2n+1 . . .

−1 . . . . . .

)
(
1 0 . . . . . . −̂2n+1 . . .

0 . . . −̂n+1 . . . . . .

)

+

(
2 0 . . . . . . −̂2n+1 . . .

0 . . . −̂n+2 . . . . . .

)

[
.212n−2

] (
0 . . . . . . . . . . . .

1 −1 . . . −̂2n+1 . . .

) (
0 . . . . . . . . . . . . . . .

1 0 . . . −̂n+1 . . . −̂2n+1 . . .

)

[
.12n

] (
0 . . . . . . . . .

0 . . . −̂2n . . .

) (
0 . . . . . . . . .

0 . . . −̂3n+1 . . .

)

The only symbol in the last column which is smaller than fiΛ corresponds to the induction
of the symbol Λ′ of [.12n] (the last row in the table). One checks that ei∗fiΛ

′ = Λ′ for that
symbol, so that assumption (ii) of Lemma 2.5 is satisfied. We deduce that [.12n] is indeed the
only unipotent constituent of Ψ[2n−1.]B2

apart from
[
2n−1.

]
B2

.
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Step 2. We now use the method in [8] to show that γ ≤ 2. This requires to know how to
decompose certain Deligne–Lusztig characters on the basis of PIMs, or at least to know the
coefficient of the PIMs corresponding to cuspidal modules. The following lemma will be useful
to deal with PIMs that can be obtained by induction from proper Levi subgroups of G.

Lemma 2.9. Let L (resp. M) be a 1-split Levi of G of type BC2n−1 (resp. A2n−1). We have

U1 := bRG
L

( 2n−1∑

i=1

(−1)i−1
[
i12n−i−1.

])
=
[
12n.

]
+
[
2n.
]
+ (−1)n

[
(n−1)1n.1

]
,

U2 := bRG
L

( n−1∑

j=1

(−1)j+n
[
(n−j)1n.1j−1

])
= (−1)n

[
(n−1)1n.1

]
−
[
1n+1.1n−1

]
,

U3 := bRG
L

( n−2∑

k=0

(−1)k+n
[
2k1n−k−1.n−k−2

]
B2

)
= (−1)n

[
1n−1.n−1

]
B2

+
[
2n−1.

]
B2
,

U4 := bRG
M

([
12n
])

=
[
12n.

]
+
[
.12n

]
+
[
1n+1.1n−1

]
.

In particular the character
[
2n.
]
−
[
.12n] = U1−U2−U4 is a combination of characters induced

from proper Levi subgroups of G.

Proof. The Harish-Chandra induction from L to G of a unipotent character associated to a
bipartition λ = λ1.λ2 is described by adding one box to λ1 or λ2 in all possible ways so that
the result is a bipartition. The formulas for U1, U2 and U3 are easily deduced from that rule
and the description of the principal Φ2n-block given in §2.1. By [23, Prop. 6.1.4] we have
RG

M

([
12n
])

=
∑

i

[
1i.12n−i

]
from which we deduce the value of U4 from §2.1. �

With the notation in §1.2.2 we consider the Coxeter element c = s1s2 · · · s2n ∈ W2n. The
decomposition of the Deligne–Lusztig character of G attached to c can be deduced from [18,
(3.2)]. Most of its constituents do not belong to the principal Φ2n-block and we have

bRc =
[
2n.
]
+
[
.12n

]
+ (−1)n−1

[
1n−1.n−1

]
B2
.

Using the combination of unipotent characters defined in Lemma 2.9, it can be rewritten as

bRc = U1 − U2 − U3 − U4 +
[
2n−1.

]
B2

+ 2
[
.12n]

= U1 − U2 − U3 − U4 +Ψ[2n−1.]B2
+ (2− γ)Ψ[.12n].

Since the Ui’s are obtained by induction from proper Levi subgroups of G, they cannot involve
Ψ[.12n] since it corresponds to a cuspidal module. Therefore the coefficient of Ψ[.12n] in Rc is
exactly 2− γ. By [8, Prop. 1.5], we must have 2− γ ≥ 0 therefore γ ≤ 2.

Step 3. In this final step of the proof, we show that γ ≥ 2 under the assumption that
Φ2n(q)ℓ > 4n. We consider the element w := c2 = (s1s2 · · · s2n)2. By [34, §5.2], it is a 2n-
regular element. Therefore any torus Tw of type w is the centraliser of a Φ2n-Sylow subgroup of
G and the constituents of the Deligne–Lusztig characterRw are exactly the unipotent characters
in the principal Φ2n-block, see [2, Thm. 5.24]. The exact decomposition of Rw can be deduced
for example from [18, (3.2)]. We find in particular

〈
Rw;

[
2n−1.

]
B2

〉
G
= −2 and

〈
Rw;

[
.12n

]〉
G
= 1.

On the other hand, if Φ2n(q)ℓ > 4n then there exists by [11, Ex. 1.17] an ℓ-character of Tw in
general position. By [11, Lem. 1.13] this forces

〈
Rw; Ψ[2n−1.]B2

〉G ≥ 0, which gives

0 ≤
〈
Rw; Ψ[2n−1.]B2

〉G =
〈
Rw;

[
2n−1.

]
B2
〉G + γ

〈
Rw;

[
.12n

]〉
G
= −2 + γ

and therefore proves that γ ≥ 2. Note that it also shows that Ψ[.12n] does not occur in Rc. �
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2.3.3. The column corresponding to
[
.2n−3

]
B6

. We now focus on the last column, corresponding

to the unipotent character
[
.2n−3

]
B6

of the B6-series. It corresponds to the following symbol of

defect 5

Λ =

(
2 1 0 −1 . . . . . . . . . . . .

−1 . . . −̂n+2 −̂n+1 . . .

)

whose associated composition is (2, 1, 0,−1,−1, . . . ,−̂n+2,−̂n+1, . . .). From the description in
§2.1 one checks that it is minimal among the unipotent characters in the B6-series lying in the
principal Φ2n-block. There are 3 unipotent characters in the principal Φ2n-block belonging to
the B2-series which are smaller for the order on families. We list these characters with their
associated symbol:

[
2n−1.

]
B2
←→

(
0 . . . −̂n+1 −̂n . . .

1 0 . . . . . . . . . . . .

)
,

[
2n−21.1

]
B2
←→

(
0 . . . −̂n+2 −n+1 −̂n . . .

2 0 . . . . . . . . . . . . . . .

)
,

[
2n−2.12

]
B2
←→

(
0 . . . −̂n+2 −̂n+1 . . .

2 1 −1 . . . . . . . . .

)
.

Finally, there are 8 unipotent characters in the principal series belonging to the principal Φ2n-
block which are smaller than

[
.2n−3

]
B6

:

[
212n−2.

]
←→

(
2 0 . . . −̂2n+2

−1 . . .

)
,

[
.312n−3

]
←→

(
0 . . . . . . . . .

2 −1 . . . −̂2n+2

)
,

[
.212n−2

]
←→

(
0 . . . . . . . . .

1 −1 . . . −̂2n+1

)
,

[
.12n

]
←→

(
0 . . . . . .

0 . . . −̂2n

)
,

[
12n.

]
←→

(
1 . . . −̂2n+1
−1 . . .

)
,

[
21n.1n−2

]
←→

(
2 0 . . . . . . −̂n

0 . . . −̂n+2 . . .

)
,

[
1n.21n−2

]
←→

(
1 . . . . . . −̂n+1

1 −1 . . . −̂n+1

)
,

[
1n+1.1n−1

]
←→

(
1 . . . . . . . . . −̂n

0 . . . −̂n+1 . . .

)
.

We will show that none of these characters contribute to Ψ[.2n−3]B6
with the exception of

[
12n.

]

Theorem 2.10. There exists β ≥ 0 such that

Ψ[.2n−3]B6
=
[
.2n−3

]
B6

+ β
[
12n.

]
.

Furthermore, if Φ2n(q)ℓ > 4n then β = 2.

Proof. The proof follows that of Theorem 2.8, but more computations are needed since more
characters are involved.

Step 1. We start by computing the image of the various symbols involved under the operator
fi for i = (1, 0). For the symbol Λ corresponding to the unipotent character in the B6-series we
have

(2.11) fiΛ =

(
2 1 0 −1 . . . . . . . . . . . .

−1 . . . −̂n+1 −̂n . . .

)
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which also equals f̃iΛ by Remark 2.6. For the symbols corresponding to characters in the
B2-series we obtain

[Λ′] fiΛ
′

[
2n−1.

]
B2

(
2 −1 . . . −̂n+1 −̂n . . .

1 0 −1 . . . . . . . . . . . .

)

[
2n−21.1

]
B2

(
2 −1 . . . −̂n+2 −n+1 −̂n . . .
2 0 −1 . . . . . . . . . . . . . . .

)

[
2n−2.12

]
B2

(
2 −1 . . . −̂n+2 −̂n+1 . . .
2 1 −1 . . . . . . . . . . . .

)

None of these symbol is smaller than fiΛ. The case of the principal series characters is given
in the following table:

[Λ′] fiΛ
′ [Λ′] fiΛ

′

[
212n−2.

] (
2 1 −1 . . . −̂2n+1

−1 . . . . . .

) [
.312n−3

] (
2 −1 . . . . . .

2 −1 . . . −̂2n+2

)

[
.212n−2

] (
2 −1 . . . . . .

1 −1 . . . −̂2n+1

) [
.12n

] (
2 −1 . . . . . .

0 . . . . . . −̂2n

)

[
12n.

] (
2 0 . . . −̂2n . . .

−1 . . . . . .

) [
21n.1n−2

] (
2 1 −1 . . . . . . −̂n

0 . . . . . . −̂n+1 . . .

)

[
1n.21n−2

] (
2 0 . . . . . . −̂n+1

1 −1 . . . −̂n

) [
1n+1.1n−1

] (
2 . . . . . . . . . −̂n

0 . . . −̂n . . .

)

The induction of the symbols corresponding to the characters
[
1n.21n−2

]
,
[
.312n−3

]
,
[
21n.1n−2

]

and
[
1n+1.1n−1

]
are not strictly dominated by the symbol fiΛ computed in (2.11). The other

symbols Λ′ satisfy ei∗fiΛ
′ = Λ′, therefore Lemma 2.5 shows that there exist non-negative

integers β1, β2, β3 and β4 such that

Ψ[.2n−3]B6
=
[
.2n−3

]
B6

+ β1
[
212n−2.

]
+ β2

[
.212n−2

]
+ β3

[
12n.

]
+ β4

[
.12n

]
.

We now consider the induction with respect to the sequence i = (−1,−2, 0,−1, 1, 0). We find

(2.12) f̃iΛ = fiΛ =

(
2 1 0 −1 . . . . . . . . . . . .

−1 . . . −̂n−1 −̂n−2 . . .

)

using Remark 2.6. For the four remaining principal series characters we obtain the following:

[Λ′] Λ′ fiΛ
′

[
212n−2.

] (
2 0 . . . −̂2n+2

−1 . . .

) (
2 1 0 −1 −3 . . . −̂2n−1

−1 . . . . . . . . .

)

[
.212n−2

] (
0 . . . . . . . . .

1 −1 . . . −̂2n+1

) (
2 1 0 −3 . . .

1 −1 . . . −̂2n+1

)

[
12n.

] (
1 . . . −̂2n+1
−1 . . .

) (
2 1 0 −2 . . . −̂2n−2

−1 . . . . . . . . .

)

[
.12n

] (
0 . . . . . .

0 . . . −̂2n

) (
2 1 0 −3 . . . . . .

0 . . . . . . −̂2n

)

Note that for the computations we can use that fi and fj commute whenever i ≇ j ± 1
modulo 2n so that fi = (f−1f0f1)(f−2f−1f0). The induction of the symbols corresponding
to the unipotent characters

[
.212n−2

]
and

[
.12n

]
are not strictly dominated by the symbol fiΛ

computed in (2.12). The other symbols satisfy the conditions of Lemma 2.5 which shows that
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β2 = β4 = 0. It remains to show that β1 = 0. For that purpose we use again Lemma 2.5 for Λ
and i = (−n+ 2, . . . ,−2,−1, 0). The induced symbols are given in the following table.

[Λ′] Λ′ fiΛ
′

[
.2n−3

]
B6

(
2 . . . . . . . . . . . .

−1 . . . −̂n+2 −̂n+1

) (
2 . . . . . . . . . . . . . . .

−1 . . . −̂n+2 . . . −̂2n+2

)

[
212n−2.

] (
2 0 . . . −̂2n+2

−1 . . .

) (
2 . . . −̂n+2 . . . −̂2n+2
−1 . . . . . . . . .

)

[
12n.

] (
1 . . . −̂2n+1
−1 . . .

) (
1 . . . −̂3n+2
−1 . . .

)

The induced symbols corresponding to the characters
[
.2n−3

]
B6

and
[
212n−2.

]
lie in the same

family. In addition, if Λ′ is the symbol attached to
[
12n.

]
then ei∗fiΛ

′ = Λ′. Finally, one can

check that f̃iΛ = fiΛ using §1.3.4 and invoke Lemma 2.5 to conclude that β1 = 0 (note that

Remark 2.6 does not apply to the last step of the computation of f̃iΛ). For the remainder of
the proof we will write β := β3.

Step 2. Assume now that Φ2n(q)ℓ > 4n. Then Ψ[2n−1.]B2
=
[
2n−1.

]
B2

+2
[
.12n] by Theorem 2.8.

In addition, it was observed in the proof of that theorem that the Deligne–Lusztig character
associated to a Coxeter element c decomposes as

Rc = U1 − U2 − U3 − U4 +Ψ[2n−1.]B2
.

This shows that apart from Ψ[2n−1.]B2
, none of the PIMs corresponding to cuspidal modules

appear in Rc. In order to decompose the next Deligne–Lusztig characters we shall use the
following identities, whose proofs are identical to those for Lemma 2.9.

Lemma 2.13. Let L be a 1-split Levi of G of type B2n−1. We have

U5 := bRG
L

([
2n−1.

])
=
[
2n.
]
+
[
(2n−1)1.

]
,

U6 := bRG
L

([
1n−1.n−2

]
B2

+
[
1n−2.n−1

]
B2

)
= 2
[
1n−1.n−1

]
B2

+
[
21n−2.n−2

]
B2

+
[
1n−2.(n−1)1

]
B2
,

U7 := bRG
L

([
(2n−2)1.

])
=
[
(2n−1)1.

]
+
[
(2n−2)12.

]
,

U8 := bRG
L

( n∑

j=1

(−1)j+n
[
1j.(n+1−j)1n−2

])
= (−1)n+1

[
1.(n+1)1n−2.

]
+
[
1n+1.1n−1

]
,

U9 := bRG
L

([
1n−3.(n−1)1

]
B2

+
[
1n−2.(n−2)1

]
B2

+
[
21n−2.n−3

]
B2
− 2
[
1n−2.n−1

]
B2
−
[
1n−1.n−2

]
B2

)
,

=
[
1n−3.(n−1)2

]
B2

+
[
21n−3.(n−2)1

]
B2

+
[
221n−3.n−3

]
B2
− 3
[
1n−1.n−1

]
B2
,

U10 := bRG
L

( n−4∑

r=0

(−1)r+n
[
n−r−4.2r1n−r−3

]
B6

)
= (−1)n

[
n−3.1n−3

]
B6

+
[
.2n−3

]
B6
.

Since we want to use the result in [8] to get information on the PIMs with cuspidal head, it is
enough to consider the Deligne–Lusztig characters Rw for elements w ∈ W2n whose conjugacy
class does not meet any proper parabolic subgroup. Such classes are called cuspidal (or elliptic)
and are described in [23, Prop. 3.4.6]. With the notation in [23, §3.4.2], minimal length elements
of the first 3 cuspidal classes, ordered by length, are given by c = w−

(2n), vn = s1s2c = w−
(1,2n−1),

and wn := s1s2s3s2c = w(2,2n−2). Let us first consider the Deligne–Lusztig character associated
to vn. From the decomposition of Rvn given in Lemma A.15 and the characters defined in
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Lemma 2.9 and 2.13 we have

bRvn = 2(U1 − U2 − U3 − U4)− U5 −DG(U5) + (−1)nU6 + 2
[
2n−1.

]
B2

+ 4
[
.12n]

= 2(U1 − U2 − U3 − U4)− U5 −DG(U5) + (−1)nU6 + 2Ψ[2n−1.]B2
.

Again, apart from Ψ[2n−1.]B2
, none of the PIMs corresponding to cuspidal modules appear in

Rvn . We move on to the element wn := s1s2s3s2c. Using Lemma A.17 and Lemma 2.9 we can
decompose Rwn

as

bRwn
=3U1 − 3U2 − U3 − 4U4 − 2U5 + U7 + U8 +DG(U1)− 2DG(U5) +DG(U7)

+ (−1)n−1U9 − U10 +
[
.2n−3

]
B6

+ 3
[
2n−1.

]
B2

+ 2
[
12n.

]
+ 3
[
.12n

]

=3U1 − 3U2 − U3 − 4U4 − 2U5 + U7 + U8 +DG(U1)− 2DG(U5) +DG(U7)

+ (−1)n−1U9 − U10 +Ψ[.2n−3]B6
+ 3Ψ[2n−1.]B2

+ (2− β)Ψ[12n.].

Here we have also used Proposition 2.7 and Theorem 2.8 which give the decomposition of
Ψ[2n−1.]B2

and Ψ[12n.]. It follows from [8, Prop. 1.5] that 2− β ≥ 0 hence β ≤ 2.

Step 3. The argument is entirely similar to that given in the proof of Theorem 2.8 with the
exception that one uses the multiplicities

〈
Rw;

[
.2n−3

]
B6

〉
G
= −2 and

〈
Rw;

[
12n.

]〉
G
= 1.

This shows that β ≥ 2, hence β = 2. �

Appendix: Computation of Deligne–Lusztig characters

We fix an integer n. As in §1.2.2 we denote by W2n the Weyl group of type B2n with gen-
erators s1, . . . , s2n. We explain here how to compute the Deligne–Lusztig characters associated
with the elements

vn := (s1s2)(s1s2s3 · · · s2n−1s2n)

and wn := (s1s2s3s2)(s1s2s3 · · · s2n−1s2n)

of respective lengths 2n+ 2 and 2n+ 4.

A.1. The Deligne–Lusztig character associated to vn. Using the notation in [23, §3.4.2],
the element decomposes as vn = w−

(1,2n−1) = s1b
−
1,2n−1 = b−0,1b

−
1,2n−1 and one can compute the

values of irreducible characters of W2n at the element vn using the Murnaghan–Nakayama rule.
More precisely, if λ is a bipartition of 2n and χλ is the corresponding irreducible character of
W2n then by [23, Thm. 10.3.1] we have

(A.14) χλ(vn) =
∑

γ

(−1)h(γ)χλrγ(s1)

where γ runs over all the (2n−1)-hooks of λ, and h(γ) equals the leg length of γ plus 1 if γ is
in the second component. From the description of the principal Φ2n-block B given in §2.1 one
can determine the bipartitions λ which have a (2n−1)-hook and whose family has a non-trivial
intersection with IrrB. They are listed in Table 1, together with the value of h(γ), the (2n−1)-
core λrγ, the value of χλrγ(s1s2) and that of χλ(wn) using (A.14). Note that the second half of

the table can be obtained from the first using the relation χλ∗(vn) = (−1)l(vn)χλ(vn) = χλ(vn),
where l(w) is the Coxeter length of w ∈W2n.

The families corresponding to the bipartitions 2n. and .12n contain only one unipotent char-
acter each, the trivial and the Steinberg character respectively. The other families have 4
elements and are listed in Table 2. By convention the special character is the first one in each
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λ h(γ) λr γ χλrγ(s1) χλ(vn)
2n. 0

1. 1

1
n21n−2. n− 1 (−1)n−1

12n. 2n− 2 1
1.(n+1)1n−2 n− 2 + 1 (−1)n−1

1.12n−1 2n− 2 + 1 −1
.12n 2n− 2 + 1

.1 −1

1
.n21n−2 n− 1 + 1 (−1)n−1

.2n 0 + 1 1
(n−1)1n.1 n (−1)n−1

2n−1.1 0 −1

Table 1. Bipartitions λ with a (2n−1)-hook whose family intersects the prin-
cipal Φ2n-block

λ F

n21n−2.
[
n.21n−2

]
,
[
n21n−2.

]
,
[
1.(n+1)1n−2

]
,
[
1n−2.(n−1)1

]
B2

12n.
[
1.12n−1

]
,
[
12n.

]
,
[
.212n−2

]
, [.12n−2

]
B2

1.(n+1)1n−2
[
n.21n−2

]
,
[
n21n−2.

]
,
[
1.(n+1)1n−2

]
,
[
1n−2.(n−1)1

]
B2

1.12n−1
[
1.12n−1

]
,
[
12n.

]
,
[
.212n−2

]
, [.12n−2

]
B2

.n21n−2
[
(n−1)1.1n

]
,
[
.n21n−2

]
,
[
(n−1)1n.1

]
,
[
21n−2.n−2

]
B2

.2n
[
2n−1.1

]
,
[
.2n
]
, [(2n−1)1.

]
,
[
2n−2.

]
B2

(n−1)1n.1
[
(n−1)1.1n

]
,
[
.n21n−2

]
,
[
(n−1)1n.1

]
,
[
21n−2.n−2

]
B2

2n−1.1
[
2n−1.1

]
,
[
.2n
]
, [(2n−1)1.

]
,
[
2n−2.

]
B2

Table 2. Families F with 4 elements occurring in bRvn

list. The corresponding almost characters can be computed from [30, §4]. They are given in
Table 3.

Using the data in these tables, together with the formula Rw =
∑

λ χλ(w)Rχλ
, we obtain

the explicit decomposition of Rvn on the block.

Lemma A.15. The decomposition of the Deligne–Lusztig character Rvn of G2n associated to
vn = s1s2s1s2 · · · s2n on the principal Φ2n-block is given by

bRvn =
[
2n.
]
+
[
.12n

]
−
[
(2n−1)1.

]
−
[
.212n−2

]
+ (−1)n

([
1n−2.(n−1)1

]
B2

+
[
21n−2.n−2

]
B2

)
.

A.2. The Deligne–Lusztig character associated to wn. Using again the notation in [23,
§3.4.2], we can write wn as wn = w−

(2,2n−2) = b−0,2b
−
2,2n−2 = s1s2b

−
2,2n−2. Let λ be a bipartition

of 2n. By [23, Thm. 10.3.1] we have

(A.16) χλ(wn) =
∑

γ

(−1)h(γ)χλrγ(s1s2)

where γ runs over all the (2n−2)-hooks of λ, and h(γ) equals the leg length of γ plus 1 if γ is in
the second component. We list in Table 4 those bipartitions λ which have a (2n−2)-hook γ, the
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λ bRχλ

n21n−2. −
1

2

([
1.(n+1)1n−2

]
+
[
1n−2.(n−1)1

]
B2

)

12n.
1

2

([
12n.

]
−
[
.212n−2

])

1.(n+1)1n−2
1

2

([
1.(n+1)1n−2

]
−
[
1n−2.(n−1)1

]
B2

)

1.12n−1
1

2

([
12n.

]
+
[
.212n−2

])

.n21n−2 −
1

2

([
(n−1)1n.1

]
+
[
21n−2.n−2

]
B2

)

.2n
1

2

([
.2n
]
−
[
(2n−1)1.

])

(n−1)1n.1
1

2

([
(n−1)1n.1

]
−
[
21n−2.n−2

]
B2

)

2n−1.1
1

2

([
(2n−1)1.

]
−
[
.2n
])

Table 3. Some almost characters occurring in bRvn

λ h(γ) λ r γ χλrγ(s1s2) χλ(wn)
2n. 0

2. 1

1
i312n−i−3. 2n− i− 2 (−1)i

212n−2. 2n− 3 −1
2.j12n−2−j 2n− 2− j + 1 (−1)j−1

12n. 2n− 3

12. −1

1
k2212n−k−4. 2n− i− 2 (−1)i−1

(2n−1)1. 0 −1
12.l12n−2−l 2n− 2− j + 1 (−1)j

Table 4. Bipartitions λ with (2n−2)-core equal to 2. or 12.

value of h(γ), the (2n−2)-core λr γ, the value of χλrγ(s1s2) and that of χλ(wn) using (A.16).
We do not list the ones with (2n−2)-core 1.1 since the corresponding character of B2 vanishes
on the element s1s2. In addition, since χλ∗(wn) = (−1)ℓ(wn)χλ(wn) = χλ(wn) it is enough to
deal with the cores 2. and 12..

For each bipartition λ in Table 4 one can easily compute the family associated to each of
these bipartitions and check using §2.1 that only those with i = l = n, j = 1 or n + 1 and
k = n− 1 correspond to families which have a non-trivial intersection with the principal Φ2n-
block B. The family associated to the bipartition 2n. has size one and contains only the trivial
character. We give in Table 5 the families with 4 elements, starting with the special character
in the family.

The two remaining bipartitions (n−1)221n−3. and 12.n1n−2 correspond to unipotent characters
lying in a family with 16 elements. Using [30, §4] one can deduce from Table 5 the almost
character corresponding to each bipartition. These are listed in Table 6. For the family with



DECOMPOSITION NUMBERS FOR THE PRINCIPAL Φ2n-BLOCK OF Sp4n(q) AND SO4n+1(q) 27

λ F

n31n−3.
[
n.31n−3

]
,
[
n31n−3.

]
,
[
2.(n+1)1n−3

]
,
[
1n−3.(n−1)2

]
B2

212n−2.
[
2.12n−2

]
, [.312n−3

]
,
[
212n−2.

]
,
[
12n−3.1

]
B2

2.(n+1)1n−3
[
n.31n−3

]
,
[
n31n−3.

]
,
[
2.(n+1)1n−3

]
,
[
1n−3.(n−1)2

]
B2

2.12n−2
[
2.12n−2

]
, [.312n−3

]
,
[
212n−2.

]
,
[
12n−3.1

]
B2

12n.
[
1.12n−1

]
,
[
12n.

]
,
[
.212n−2

]
, [12n−2.

]
B2

(2n−1)1.
[
2n−1.1

]
,
[
.2n
]
, [(2n−1)1.

]
,
[
.2n−2

]
B2

Table 5. Families F with 4 elements occurring in bRwn
(up to Alvis-Curtis duality)

λ bRχλ

n31n−3. −
1

2

([
2.(n+1)1n−3

]
+
[
1n−3.(n−1)2

]
B2

)

212n−2.
1

2

([
212n−2.

]
−
[
.312n−3

])

2.(n+1)1n−3
1

2

([
2.(n+1)1n−3

]
−
[
1n−3.(n−1)2

]
B2

)

2.12n−2
1

2

([
212n−2.

]
+
[
.312n−3

])

12n.
1

2

([
12n.

]
−
[
.212n−2

])

(2n−1)1.
1

2

([
(2n−1)1.

]
−
[
.2n
])

Table 6. Some almost characters occurring in bRwn

16 elements we get

bRχ(n−1)221n−3.
= −

1

4

([
12.n1n−2

]
+
[
(n−1)1n−1.2

]
+
[
21n−3.(n−2)1

]
B2

+
[
n−3.1n−3

]
B6

)
,

bRχ
12.n1n−2

=
1

4

([
12.n1n−2

]
+
[
(n−1)1n−1.2

]
−
[
21n−3.(n−2)1

]
B2
−
[
n−3.1n−3

]
B6

)
.

Putting this all together we obtain the decomposition of Rwn
on the block.

Lemma A.17. The decomposition of the Deligne–Lusztig character Rwn
of G2n associated to

wn = s1s2s3s2s1s2 · · · s2n on the principal Φ2n-block is given by

bRwn
=
[
2n.
]
−
[
(2n−1)1.

]
+
[
(2n−2)12.

]
+
[
12n.

]
+
[
.12n

]
−
[
.212n−2

]
+
[
.312n−3

]
+
[
.2n
]

+ (−1)n−1
([

1n−3.(n−1)2
]
B2

+
[
221n−3.n−3

]
B2

+
[
21n−3.(n−2)1

]
B2

+
[
n−3.1n−3

]
B6

)
.
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[3] C. Bonnafé, J-F. Dat and R. Rouquier, Derived categories and Deligne–Lusztig varieties II. Ann. of

Math. (2) 185 (2017), no. 2, 609–670.



28 OLIVIER DUDAS AND EMILY NORTON

[4] O. Brunat, O. Dudas, J. Taylor, Unitriangular shape of decomposition matrices of unipotent blocks.
Ann. of Math. (2) 192 (2020), 583–663.

[5] J. Chuang, W. Turner, Cubist algebras. Adv. Math. 217 (2008), 1614–1670.
[6] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields. Ann. of Math. (2) 103

(1976), 103–161.
[7] F. Digne, J. Michel, Representations of Finite Groups of Lie Type. London Math. Soc. Student Texts

21. Cambridge University Press, 1991.
[8] O. Dudas, A note on decomposition numbers for groups of Lie type of small rank. J. Algebra 388 (2013),

364–373.
[9] O. Dudas, G. Malle, Decomposition matrices for low rank unitary groups. Proc. London Math. Soc. 110

(2015), 1517–1557.
[10] O. Dudas, G. Malle, Decomposition matrices for exceptional groups at d = 4. J. Pure Appl. Algebra

220 (2016), 1096–1121.
[11] O. Dudas, G. Malle, Decomposition matrices for groups of Lie type in non-defining characteristic.

Preprint arXiv:2001.06395, 2020.
[12] O. Dudas, M. Varagnolo, E. Vasserot, Categorical actions on unipotent representations of finite unitary

groups. Publ. Math. Inst. Hautes Études Sci. 129 (2019), 129–197.
[13] O. Dudas, M. Varagnolo, E. Vasserot, Categorical actions on unipotent representations of finite clas-

sical groups. In Categorification and Higher Representation Theory, 41–104, Contemp. Math. 683, Amer.
Math. Soc., Providence, RI, 2017.

[14] C. Dunkl, S. Griffeth , Generalized Jack polynomials and the representation theory of rational Chered-
nik algebras. Sel. Math. 16 (2010), 791–818.

[15] M. Fayers, Weight two blocks of Iwahori-Hecke algebras of type B. J. Algebra 303 (2006), 154–201.
[16] W. Feit, On large Zsigmondy primes, Proc. Amer. Math. Soc. 102 (1988), 29–36.

[17] O. Foda, B. Leclerc, M. Okado, J.-Y. Thibon, T. Welsh, Branching functions of A
(1)
n−1 and Jantzen–

Seitz problem for Ariki–Koike algebras. Adv. Math. 141 (1999), 322–365.
[18] P. Fong, B. Srinivasan, Generalized Harish-Chandra theory for unipotent characters of finite classical

groups. J. Algebra 104 (1986), 301–309.
[19] P. Fong, B. Srinivasan, The blocks of finite classical groups. J. reine angew. Math. 396 (1989), 122–191.
[20] P. Fong, B. Srinivasan, Brauer trees in classical groups. J. Algebra 131 (1990), 179–225.
[21] M. Geck, Basic sets of Brauer characters of finite groups of Lie type II. J. London Math. Soc. 47 (1993),

255–268.
[22] M. Geck, G. Hiss, Basic sets of Brauer characters of finite groups of Lie type. J. reine angew. Math. 418

(1991), 173–188.
[23] M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Math-

ematical Society Monographs 21. The Clarendon Press, Oxford University Press, New York, 2000.
[24] T. Gerber, Triple crystal action in Fock spaces. Adv. Math. 329 (2018), 916–954.
[25] S. Griffeth, E. Norton, Character formulas and Bernstein-Gelfand-Gelfand resolutions for Cherednik

algebra modules. Proc. London Math. Soc. 113 (2016), 868–906.
[26] J. Gruber, G. Hiss, Decomposition numbers of finite classical groups for linear primes. J. reine angew.

Math. 485 (1997), 55–91.
[27] F. Himstedt, F. Noeske, Decomposition numbers of SO7(q) and Sp6(q). J. Algebra 413 (2014), 15–40.

[28] M. Jimbo, K. C. Misra, T. Miwa, M. Okado, Combinatorics of representations of Uq(ŝl(n)) at q = 0.
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