
Lectures on modular Deligne–Lusztig theory

Olivier Dudas

Abstract. These notes are based on a series of lectures given by the author at the Centre
Bernoulli (EPFL) in July 2016. They aim at illustrating the importance of the mod-ℓ
cohomology of Deligne–Lusztig varieties in the modular representation theory of finite
reductive groups.

Introduction

In order to construct and study the complex representations of finite reductive
groups G(q) (such as GLn(q), Sp2n(q),. . . ) Deligne and Lusztig introduced in
1976 a family of algebraic varieties acted on by G(q) [20]. The subsequent work
of Lusztig on the cohomology of these Deligne–Lusztig varieties led to a complete
classification of the irreducible characters of finite reductive groups [58].

The purpose of these lectures is to present a generalization of the theory of
Deligne–Lusztig to the modular setting, that is, for representations over fields of
positive characteristic. This originated in the work of Broué [11] and Bonnafé–
Rouquier [5].

In the ordinary case (in characteristic zero), the representation theory is con-
trolled by the simple objects, which are in turn determined by a numerical da-
tum, their characters. The situation is far more complicated for representations
in positive characteristic; several classes of indecomposable objects are of partic-
ular interest, and more information is needed to understand the representations,
namely:

• information of numerical nature: characters of projective modules, multiplic-
ities of simple modules in a given ordinary character, all of which are encoded
in the so-called decomposition matrix;

• information of homological nature: extensions between simple modules, Loewy
series of projective modules, projective resolutions of simple objects.

The alternating sum of the cohomology groups of Deligne-Lusztig varieties pro-
duces a virtual character – an element of the Grothendieck group of the category
of representations. In the modular framework, this object does not contain enough
information, and one should consider each individual cohomology group, or rather
the cohomology complex of the variety. This object now lives in the derived cate-
gory of representations, and it encodes many aspects of the modular representation
theory of the group. One crucial incarnation of this phenomenon is the geometric
version of Broué’s abelian defect group conjecture, which predicts that the coho-
mology complex of a suitably chosen Deligne–Lusztig variety induces a derived
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equivalence between the principal block of a finite reductive group and its Brauer
correspondent. Not so many cases of this conjecture are known to hold but a lot of
numerical evidence and many partial results have been obtained in that direction.

The first part of these lectures aims at introducing the mod-ℓ cohomology of
Deligne–Lusztig varieties using the modern language of derived and homotopy
categories. Unlike most of the textbooks on étale and ℓ-adic cohomology, we avoid
the definition and focus on the properties of the cohomology complexes of varieties
acted on by a finite group (such as perfectness), with particular attention on how
one can compute such complexes (using decompositions, quotients or fixed points).
In the second part we present several recent results obtained using this approach.
They include the computation of decomposition numbers in §4 (a joint work with G.
Malle) and the determination of Brauer trees in §5 (a joint work with D. Craven and
R. Rouquier). This illustrates how powerful the geometric methods are for solving
representation theoretic problems for finite reductive groups. There is a converse to
that statement, and we explain in a final chapter how to use representation theory
to show that the cohomology of a particular Deligne–Lusztig variety is torsion-free.

Acknowledgement: The author thanks Marc Cabanes, Gerhard Hiß and Gunter
Malle for many valuable comments on an earlier version of these lecture notes.
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1. Introduction to derived categories

Throughout this chapter, A will denote a ring with unit. The category of left A-
modules (resp. finitely generated left A-modules) will be denoted by A-Mod (resp.
A-mod).

The purpose of this first chapter is to introduce two categories, the homotopy
category Ho(A-Mod) and the derived category D(A-Mod). Here is a non-exhaustive
list of reasons why we are going to work in this framework, instead of working with
A-modules or complexes of A-modules:

• to get rid of (split) exact sequences;

• to have uniqueness of projective or injective resolutions;

• to have a good notion of duality (e.g. over Z);

• to work with non-exact functors.

Several steps are needed to understand the construction of the homotopy and
derived categories of A-modules:

A-Mod C(A-Mod)︸ ︷︷ ︸
complexes of
A-modules

 Ho(A-Mod) D(A-Mod)

getting rid of split
exact sequences

inverting
quasi-isomorphisms
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Note however that this chapter is not intended to provide a detailed account on
this construction. For further reading on the subject we recommend for example
the excellent textbooks by Gelfand–Manin [47] and Neeman [60].

1.1. Complexes of A-modules. A complex of A-modules is a sequence

C• = (· · · −→ Cn
dn−→ Cn+1

dn+1
−→ Cn+2 −→ · · · )

where, for each n ∈ Z, Cn is a left A-module and dn : Cn −→ Cn+1 is a morphism
of A-modules (the differential) satisfying dn+1 ◦ dn = 0.

A morphism between two complexes f = (C•, d) −→ (D•, ∂) is given by a
family of morphisms of A-modules fn : Cn −→ Dn making the following diagram
commute

· · · // Cn
dn //

fn

��

Cn+1

dn+1 //

fn+1

��

Cn+2
//

fn+2

��

· · ·

· · · // Dn
∂n // Dn+1

∂n+1 // Dn+2
// · · ·

Here is an example of a morphism between two complexes of Z-modules (we will
see later that it is a quasi-isomorphism)

· · · // 0 //

��

Z
m //

��

Z //

����

0 //

��

· · ·

· · · // 0 // 0 // Z/mZ // 0 // · · ·

The category of complexes of A-modules will be denoted C(A-Mod). It is an
abelian category. This can be seen by considering the ring A[X ]/X2 =: A(d) ≃
A⊕Ad with d2 = 0 and d commuting with A. Then the functor

C(A-Mod)
∼
−→ A(d)-Mod

C• 7−→
⊕

n∈Z

Cn with d|Cn
= dn

is an equivalence of categories. The abelian structure on C(A-Mod) is obtained via
the equivalence from the abelian structure of A(d)-Mod. As a consequence, we can
consider kernels and cokernels of morphisms between complexes, as well as exact
sequences of complexes.

We say that a complex C• is bounded above (resp. bounded below, resp. bounded)
if Cn = 0 for n ≫ 0 (resp. n ≪ 0, resp. |n| ≫ 0). The corresponding full sub-
category of C(A-Mod) will be denoted by C−(A-Mod) (resp. C+(A-Mod), resp.
Cb(A-Mod)).

Given k ∈ Z and C• a complex of A-modules, we define the k-th shift of C•,
denoted by C•[k], to be the complex with terms (C•[k])n = Cn+k and differential
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dC•[k] = (−1)kdC• . If M is an A-module, the notation M [k] stands for the complex
with zero terms outside the degree −k and M in the degree −k. The functor

A-Mod −→ C(A-Mod)

M 7−→ M [0]

is fully faithful. In other words, A-Mod can be identified with complexes with zero
terms outside the degree 0.

Since dn ◦dn−1 = 0, Im dn−1 is a submodule of Ker dn. The quotient H
n(C•) =

Ker dn/Im dn−1 is an A-module, called the degree n cohomology group of C•. We
write

H•(C•) :=
⊕

n∈Z

Hn(C•) = Ker d/Im d.

We say that a complex C• is exact or acyclic if Hn(C•) = 0 for all n ∈ Z. The
compatibility of maps between complexes and the respective differentials ensures
that any morphism of complexes f = (C•, d) −→ (D•, ∂) induces a family of
morphisms of A-modules Hn(f) : Hn(C•) −→ Hn(D•).

From now on, we will omit the subscript • in the notation of complexes, as well
as the reference to the differentials for morphisms of complexes.

Proposition 1.1. Let 0 −→ C
ι
−→ C′

π
−→ C′′ −→ 0 be a short exact sequence of

complexes of A-modules. Then there are boundary maps δn : Hn(C′′) −→ Hn+1(C)
for all n ∈ Z yielding a long exact sequence of A-modules

· · · −→ Hn(C)
Hn(ι)
−→ Hn(C′)

Hn(π)
−→ Hn(C′′)

δn−→ Hn+1(C) −→ · · ·

Sketch of proof. Let c′′ ∈ Ker d′′n, which we write c′′ = πn(c
′) for some c′ ∈ C′n.

Since π is a morphism of complexes, πn+1(d
′
n(c
′)) = d′′n(πn(c

′)) = 0, hence d′n(c
′) ∈

Kerπn+1 = Im ιn+1. Now write d′n(c
′) = ιn+1(c) and set δn(c

′′) := c.

Exercise 1.2. Check that δn is well-defined, and that it induces the long exact
sequence stated in the proposition.

In terms of A(d)-modules, the proposition shows the existence of a morphism
of A(d)-modules δ : H•(C′′) −→ H•(C)[1] which fits in a triangle

H•(C′′)

[1]

δ}}④④
④④
④④
④④

H•(C) // H•(C′)

aa❉❉❉❉❉❉❉❉

1.2. The homotopy category. A morphism f : (C, d) −→ (D, ∂) between com-
plexes of A-modules is said to be null-homotopic if it is of the form f = s◦d+∂ ◦s
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for some map s : C −→ D[−1] (not necessarily a morphism of complexes). We
illustrate this with the following diagram:

· · · // Cn
dn //

+

��~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥

Cn+1

dn+1 //

+

��

sn

||②②
②②
②②
②②
②②

Cn+2
//

+

��

sn+1

{{✇✇
✇✇
✇✇
✇✇
✇✇

· · ·

sn+2

||③③
③③
③③
③③
③③
③

· · · // Dn
∂n // Dn+1

∂n+1 // Dn+2
// · · ·

Each vertical map fn : Cn −→ Dn satisfies fn = sn ◦ dn + ∂n−1 ◦ sn−1 (this is
represented by the symbol “+” in the previous diagram).

Given two morphisms of complexes f, f ′ : C −→ D we write f ∼ f ′ if f − f ′ is
null-homotopic. This is an equivalence relation, compatible with the sum and the
composition of morphisms. A complex C is null-homotopic if the identity map 1C
is null-homotopic (i.e. 1C ∼ 0). We say that f is a homotopy equivalence if there
exists a morphism g : D −→ C such that f ◦ g ∼ 1D and g ◦ f ∼ 1C .

Definition 1.3. The homotopy category of A-modules , denoted by Ho(A-Mod), is
the category with

• objects: complexes of A-modules (same as C(A-Mod)),

• morphisms: HomHo(A-Mod)(C,D) := HomC(A-Mod)(C,D)/ ∼.

It is an additive category (but non-abelian in general). The isomorphisms in
the homotopy category are exactly the classes of the homotopy equivalences.

Exercise 1.4. Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence of A-
modules, and C be the complex associated to this sequence, with L in degree 0.
Show that C is null-homotopic if and only if the exact sequence splits.

A complex of the form (· · · −→ 0 −→ M
f
−→ M −→ 0 −→ · · · ) is null-

homotopic if and only if f is an isomorphism. More generally, a complex C is
null-homotopic if and only if it decomposes as a direct sum of complexes of the
form

(· · · −→ 0 −→M
∼
−→M −→ 0 −→ · · · ).

See also Exercise 1.4. When working in the homotopy category we will often
consider reduced complexes where all the null-homotopic direct summands are
removed. This is well-defined whenever we consider bounded complexes of finitely
generated A-modules (since Cb(A-mod) is a Krull-Schmidt category).

When f is null-homotopic, the corresponding morphism on cohomology groups
is zero. As a consequence, if f ∼ g then H•(f) = H•(g). Also, if f is a homotopy
equivalence then H•(f) is an isomorphism. In particular, if C ≃ D in Ho(A-Mod)
then H•(C) ≃ H•(D).

We mentioned earlier that projective and injective resolutions are unique in
the homotopy and derived categories. Recall that a projective resolution P of an
A-module M is a complex of projective A-modules

· · · −→ P−n −→ P−n+1 −→ · · · −→ P−1 −→ P0 −→ 0 −→ · · ·
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such that H•(P ) ≃ M [0]. In other words, there is a surjective map P0 ։ M =
H0(P ) which fits in the following long exact sequence

· · · −→ P−n −→ P−n+1 −→ · · · −→ P−1 −→ P0 ։M −→ 0 −→ · · · .

The idea of projective resolutions is to replace M by a complex with the same
cohomology (M in degree 0) but whose terms are ‘nicer’.

Proposition 1.5. If P and Q are two projective resolutions of M then P ≃ Q in
Ho(A-Mod).

Sketch of proof. We only show how to construct the morphisms f : P −→ Q and
g : Q −→ P which will be mutually inverse in the homotopy category.

Let us denote by d (resp. ∂) the differential of the complex P (resp. Q) and by
d0 : P0 ։M (resp. ∂0 : Q0 ։M) the respective projections. Since ∂0 is surjective
and P0 is projective, the map d0 : P0 −→ M factors through Q0 ։ M . In other
words, there exists f0 : P0 −→ Q0 such that d0 = ∂0 ◦ f0.

Since ∂0f0d−1 = d0d−1 = 0, we have Im (f0d−1) ⊂ Ker ∂0 = Im ∂−1. Therefore
f0d−1 can be seen as a map from P−1 to Im ∂−1. Since P−1 is projective, it should
factor through the surjective map ∂−1 : Q−1 ։ Im ∂−1. In other words, there exists
f−1 : P−1 −→ Q−1 such that ∂−1f−1 = f0d−1. By iterating this construction, we
obtain, for all n < 0, maps fn : Pn −→ Qn such that ∂nfn = fn+1dn. This means
that f = (fn)n∈Z : P −→ Q is a morphism of complexes. The construction of g is
similar.

Exercise 1.6. Show that g ◦ f ∼ 1P and f ◦ g ∼ 1Q.

More generaly, if C is a complex of A-modules, a projective resolution P of
C is a bounded above complex of projective modules together with a morphism
s : P −→ C such that Hn(s) is an isomorphism for all n ∈ Z (a quasi-isomorphism,
see §1.3). We shall see in Proposition 1.15 that P is uniquely determined by C up
to homotopy equivalence, which generalizes the previous proposition.

Exercise 1.7. Spell out the case where C = M [0] has only one non-zero term, say
M in degree 0.

Definition 1.8. The mapping cone of a morphism of complexes f : (C, d) −→
(D, ∂) is the complex Cone(f) = C[1]⊕D with differential

dCone(f) =

[
d[1] 0
f [1] ∂

]
.

If f = 0, the mapping cone is just the direct sum of C[1] andD in the category of
complexes. However, if f is non-zero, it encodes more information. For example,
if C = M [0] and D = N [0] are complexes concentrated in degree 0, then f is
induced by a morphism of A-modules f0 : M −→ N . In this case the complex
Cone(f) has only two non-zero terms (in degree −1 and 0) and its cohomology is
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H−1(Cone(f)) = Ker f and H0(Cone(f)) = CoKer f . We deduce the existence of
a long exact sequence of A-modules

0 −→ H−1(Cone(f))︸ ︷︷ ︸
Ker f

−→M
f
−→ N −→ H0(Cone(f))︸ ︷︷ ︸

CoKer f

−→ 0.

This generalizes to morphisms of complexes as follows.

Proposition 1.9. Any morphism of complexes f : C −→ D induces a long exact
sequence

· · · −→ Hn(C) −→ Hn(D) −→ Hn(Cone(f)) −→ Hn+1(C) −→ · · ·

The maps Hn(D) −→ Hn(Cone(f)) and Hn(Cone(f)) −→ Hn+1(C) are in-
duced by the natural morphisms of complexes ι : D −→ Cone(f) and π : Cone(f) −→
C[1]. Note that π ◦ ι = 0. The maps f ◦ π and ι ◦ f are non-zero in general, and
only null-homotopic. This ensures that we have a triangle

Cone(f)
[1]

π
��✁✁
✁✁
✁✁
✁

C
f // D

ι

^^❂❂❂❂❂❂❂

in the homotopy category Ho(A-Mod).

Exercise 1.10. Show that f ◦ π and ι ◦ f are null-homotopic.

More generally, a triangle in Ho(A-Mod) is C
f
−→ D

g
−→ E

h
−→ C[1] such that

g ◦ f , h ◦ g and f [1] ◦ h are null-homotopic. We represent it as C−→D−→E or
as a triangular diagram

E

[1]

��☞☞
☞☞
☞☞

C // D

YY✷✷✷✷✷✷

A morphism of triangles between C−→D−→E and C′−→D′−→E′ is the data
of morphisms of complexes u : C −→ C′, v : D −→ D′ and w : E −→ E′ making
the following diagram commute

C
f //

u

��

D
g //

v

��

E
h //

w

��

C[1]

u[1]

��
C′

f ′

// D′
g′

// E′
h′

// C′[1]

A triangle is distinguished if it is isomorphic to a triangle C
f
−→ D−→Cone(f) 

for some morphism of complexes f : C −→ D. In particular, by Proposition 1.9 any
distinguished triangle C−→D−→E yields a long exact sequence in cohomology

· · · −→ Hn(C) −→ Hn(D) −→ Hn(E) −→ Hn+1(C) −→ · · ·
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The category Ho(A-Mod) together with the shift functor [1] (called suspension
functor) and the collection of distinguished triangles is a triangulated category
(see for example [60, Chap. 1] for the list of axioms of triangulated categories).

Morphisms in the homotopy category can be expressed in terms of the coho-
mology of the total Hom complex. Given C and D two complexes of A-modules,
the total Hom complex, denoted by Hom•A(C,D), is defined by

Homn
A(C,D) =

∏

j−i=n

HomA(Ci, Dj)

with the differential given by

δ(fi,j) = ∂j ◦ fi,j − (−1)j−ifi,j ◦ di−1

for every fi,j ∈ HomA(Ci, Dj). One can readily check that Ker δn consists of
the morphisms of complexes from C to D[n] whereas Im δn−1 is the subgroup of
null-homotopic morphisms. Consequently,

Hn(Hom•A(C,D)) = HomHo(A-Mod)(C,D[n]). (1.1)

1.3. The derived category of A-Mod. A morphism of complexes f : C −→ D
is a quasi-isomorphism if the maps Hn(f) : Hn(C) −→ Hn(D) induced on the
cohomology groups are isomorphisms for all n ∈ Z. By Proposition 1.9 this is
equivalent to the complex Cone(f) being acyclic.

The derived category is obtained from the homotopy category by formally in-
verting the quasi-isomorphisms (equivalently, by taking the quotient by the acyclic
complexes). This is analogous to the construction of the fraction field of a domain.
More precisely, given two pairs of morphisms in Ho(A-Mod), say (s, f) and (t, g)
with s and t being quasi-isomorphisms, we write (s, f) ≡ (t, g) if there exists a
commutative diagram in Ho(A-Mod)

X
s

zz✈✈✈
✈✈
✈✈ f

$$■
■■

■■
■■

C Z
roo

a

OO

b��

h // D

Y
t

dd❍❍❍❍❍❍❍ g

::✉✉✉✉✉✉✉

with r a quasi-isomorphism. This represents the relation “fs−1 = fa(sa)−1 =
gb(tb)−1 = gt−1”.

Definition 1.11. The derived category of A-modules , denoted by D(A-Mod), is
the category with

• objects: complexes of A-modules (same as C(A-Mod) and Ho(A-Mod)),

• morphisms:

HomD(A-Mod)(C,D) :=





Xs
ww♦♦♦

♦ f
''❖❖

❖❖

C D

∣∣∣∣∣∣∣∣

X a complex of A-modules
f ∈ HomHo(A-Mod)(X,D)
s ∈ HomHo(A-Mod)(X,C)
s a quasi-isomorphism





/ ≡ .
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The natural functor Ho(A-Mod) −→ D(A-Mod) (sending a morphism f to the
class of (1, f)) sends quasi-isomophisms to isomorphisms. It is universal for this
property. A distinguished triangle in D(A-Mod) will be by definition the image
of a distinguished triangle in Ho(A-Mod). This endows the derived category with
a structure of triangulated category. We can think of distinguished triangles in
D(A-Mod) as analogues of short exact sequences of complexes.

Proposition 1.12.

(i) The functor H• is well-defined on D(A-Mod).

(ii) Any short exact sequence of complexes 0 −→ C −→ D −→ E −→ 0 in
C(A-Mod) yields a distinguished triangle C −→ D −→ E  in D(A-Mod).

(iii) The functor A-Mod −→ D(A-Mod) sending a module M to the complex M [0]
is fully faithful.

Note however that in general H•(C) ≃ H•(D) does not imply C ≃ D in

D(A-Mod). For example 0 −→ C
0
−→ C −→ 0 and 0 −→ C[x]/x2 x

−→ C[x]/x2 −→
0 are not isomorphic in D(C[x]/x2-mod).

1.4. Morphisms in D(A-Mod). By definition, morphisms in the derived cat-
egory are equivalence classes of pairs of morphisms in the homotopy category

C
s
←−X

f
−→D, representing “f ◦ s−1”. We explain here how replacing C and D

by projective or injective resolutions helps finding nice representatives for these
morphisms.

We will denote by A-Proj the full subcategory of A-Mod whose objects are the
projective A-modules. The corresponding categories C(A-Proj) and Ho(A-Proj)
correspond to the full subcategories of C(A-Mod) and Ho(A-Mod) respectively,
whose objets are complexes of projective A-modules. Similarly, A-Inj will refer to
the additive category of injective A-modules, and C(A-Inj) (resp. Ho(A-Inj)) to the
corresponding category of complexes (resp. the homotopy category).

Lemma 1.13. Let P ∈ C−(A-Proj) be a bounded above complex of projective
A-modules, and X,Y be two complexes of A-modules.

(i) If X is an acyclic complex, any morphism P −→ X is null-homotopic.

(ii) Any quasi-isomorphism Y −→ P splits in Ho(A-Mod).

Proof. Let X be an acyclic complex and f : P −→ X be a morphism. We can
assume without loss of generality that Pi = 0 for i > 0. We construct a homotopy
h : P −→ X [−1] as follows:

· · · // P−2

��

// P−1
d−1 //

f−1

��

h−1

||②②
②②
②②
②②
②②

P0
//

f0

��

h0

}}④④
④④
④④
④④
④④

0

��

// · · ·

· · · // X−2 // X−1
∂−1 // X0

∂0 // X1
// · · ·
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Since f is a morphism of complexes, then ∂0f0 = 0 hence Im ∂−1 = Ker ∂0 ⊃ Im f0.
Therefore since P0 is projective there exists h0 : P0 −→ X−1 such that f0 = ∂−1h0.

Similarly, using the fact that ∂−1(f−1 − h0d−1) = ∂−1f−1 − ∂−1h0d−1 =
∂−1f−1 − f0d−1 = 0, there exists h−1 : P−1 −→ X−2 such that f−1 − h0d−1 =
∂−2h−1. We iterate this construction to get (i).

For (ii) we consider the distinguished triangle Y
s
−→P −→ Cone(s)  . By

(i) the morphism P −→ Cone(s) is null-homotopic, yielding a map h : P −→
Cone(s)[−1] = P [−1] ⊕ Y . If t : P −→ Y denotes the second projection of this
map then one can show that t is a morphism of complexes and st ∼ 1P .

Exercise 1.14. Check that t is a morphism of complexes satisfying st ∼ 1P .

Proposition 1.15. Given P ∈ C−(A-Proj) and C ∈ C(A-Mod) there is a natural
isomorphism of Z-modules

HomHo(A-Mod)(P,C)
∼
−→ HomD(A-Mod)(P,C)

f 7−→ (1, f)

Proof. For the injectivity of the map, let f, g ∈ HomHo(A-Mod)(P,C) be such that
(1, f) ≡ (1, g). This means that there is a commutative diagram

P

✈✈
✈✈
✈✈
✈

✈✈
✈✈
✈✈
✈ f

$$❍
❍❍

❍❍
❍❍

P Z
soo

OO

��

h // C

P

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍ g

::✈✈✈✈✈✈✈

with s a quasi-isomorphism. By Lemma 1.13, there exists t : P −→ Z such that
st ∼ 1P . From fs = h = gs we get f = fst = gst = g in Ho(A-Mod).

The surjectivity is another application of Lemma 1.13. Indeed, any pair of

morphisms P
s
←−X

f
−→C can be completed to a commutative diagram

X
s

zz✈✈✈
✈✈
✈✈ f

$$❍
❍❍

❍❍
❍❍

P P
stoo

t

OO

ft // C

with t satisfying st ∼ 1P .

For ? ∈ {b,+,−} we will denote by Ho? and D? the essential images of the
categories of bounded/bounded below/bounded above complexes of A-modules.
The following theorem follows from Proposition 1.15 and the existence of projective
(or injective) resolutions. The proof is left as an exercise.

Theorem 1.16. The functor Ho(A-Mod) −→ D(A-Mod) induces equivalences

Ho−(A-Proj)
∼
−→D−(A-Mod)

and Ho
+(A-Inj)

∼
−→D+(A-Mod).
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Remark 1.17. More generally, if one works with another abelian category A in-
stead of A-Mod, then the first isomorphism in Theorem 1.16 (resp. the second
isomorphism) remains true if A has enough projective objects (resp. enough injec-
tive objects). In these notes we shall often use that A-mod, the category of finitely
generated A-modules has enough projectives. This guarantees the existence of
projective resolutions of bounded above complexes.

1.5. Derived functors. Let B be another ring with unit. Given an additive
functor F : A-Mod −→ B-Mod we can form the triangulated functors

LF : D−(A-Mod) ≃ Ho
−(A-Proj)

F
−→Ho

−(B-Mod) −→ D−(B-Mod)

RF : D+(A-Mod) ≃ Ho+(A-Inj)
F
−→Ho+(B-Mod) −→ D+(B-Mod)

where the first equivalences are quasi-inverses of the ones given in Theorem 1.16.

When F is right exact and M ∈ A-Mod, LF (M) is a complex whose terms in
positive degrees are zero and which satisfies H0(LF (M)) ≃ F (M). In that case we
refer to LF as the left derived functor of F . Similarly, when F is left exact, RF is
the right derived functor and it satisfies H0(RF (M)) ≃ F (M) for every A-module
M . Historically, only the lower (resp. higher) cohomology groups of LF (M) (resp.
RF (M)) were considered, not the complex itself. They yield additive functors
between the module categories which we will denote by LnF := H−n ◦ LF and
RnF = Hn ◦ LF . Note that if F is exact then LF ≃ RF ≃ F .

Example 1.18. (a) Given an A-module M , the functor HomA(M,−) is an additive,
covariant, left exact functor from A-Mod to Z-Mod. It yields a right derived functor

RHomA(M,−) : D+(A-Mod) −→ D+(Z-Mod).

Given another A-module N , the group of degree n extensions between M and N
is by definition ExtnA(M,N) := RnHomA(M,N). Therefore we have

ExtnA(M,N) = Hn
(
RHomA(M,N)

)

= Hn
(
Hom•A(M, I)

)
for I an injective resolution of N

= HomHo(A-Mod)(M, I[n]) by (1.1)

= HomD(A-Mod)(M,N [n]) by Proposition 1.15

(recall that I ≃ N in D(A-Mod)). Note that more generally, the definition
of RHomA(M,−) makes sense whenever M is a bounded above complex of A-
modules.

(b) Given a right A-module M , the functor M ⊗A− : A-Mod −→ Z-Mod is a right
exact functor (not exact if M is not flat). The corresponding left derived functor
is denoted by

M
L
⊗A− : D−(A-Mod) −→ D−(Z-Mod).

It is defined by M
L
⊗AN := M ⊗A P where P is any projective resolution of N .

This left derived functor yields the torsion groups TorAn (M,N) = H−n(M ⊗A P )
for any non-negative integer n.
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1.6. Truncation and applications. Given a complex of A-modules C, one can
consider the following truncations of C:

τ≥n(C) = · · · // 0 // 0 // CoKer dn−1 // Cn+1
// Cn+2

// · · ·

τ̃≥n(C) = · · · // 0 // Im dn−1 // Cn
// Cn+1

// Cn+2
// · · ·

τ≤n(C) = · · · // Cn−2
// Cn−1

// Kerdn // 0 // 0 // · · ·

τ̃≤n(C) = · · · // Cn−2
// Cn−1

// Cn
// Im dn // 0 // · · ·

We also set τ<n = τ≤n−1 (resp. τ>n = τ≥n+1) and define analogously τ̃<n and τ̃>n.
The truncated complexes are constructed so that they have the same cohomology
up to (or starting from) a given degree. For example,

Hk(τ≥n(C)) = Hk(τ̃≥n(C)) =

{
Hk(C) if k ≥ n,
0 otherwise.

The following proposition summarizes the relations and properties of truncation
operations.

Proposition 1.19. Let C be a complex of A-modules.

(i) The natural map τ≤n(C) −→ τ̃≤n(C) is a quasi-isomorphism.

(ii) There are short exact sequences of complexes

0 −→ τ̃<n(C) −→ τ≤n(C) −→ Hn(C)[−n] −→ 0

0 −→ τ≤n(C) −→ C −→ τ̃>n(C) −→ 0

(iii) The truncation operations are functorial. They preserve the class of acyclic
complexes, null-homotopic complexes, null-homotopic morphisms and quasi-
isomorphisms.

Note that similar statements are obtained by reversing the arrows and swapping
τ≤n and τ̃≤n with τ≥n and τ̃≥n respectively.

We deduce that the truncation functors induce functors at the level of the
homotopy and derived categories. The short exact sequences in (ii) together with
the quasi-isomorphism in (i) yield distinguished triangles in D(A-Mod)

τ<n(C) −→ τ≤n(C) −→ Hn(C)[−n] 

τ≤n(C) −→ C −→ τ>n(C) 0
(1.2)

Consequently, a complex C whose cohomology vanishes outside the degrees n, n+
1, . . . ,m is quasi-isomorphic to its truncation τ≥mτ≤n(C), hence to a bounded
complex whose terms are zero outside the degrees n, n+ 1, . . . ,m. In particular a
complex with a unique non-zero cohomology group is quasi-isomorphic to a module
shifted in that degree. Another consequence is that the category Db(A-Mod) is the
full subcategory of D(A-Mod) with objects satisfying Hi(C) = 0 for |i| ≫ 0.
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Another example that will often appear in these notes is the case of a complex
C with only two non-zero cohomology groups, say H0(C) and Hn(C). Then C fits
into a distinguished triangle

H0(C)[0]︸ ︷︷ ︸
≃τ≤0(C)

−→ C −→ Hn(C)[−n]︸ ︷︷ ︸
≃τ>0(C)

 

which means that C is quasi-isomorphic to the cone of the map Hn(C)[−n] −→
H0(C)[1]. This implies that C is determined by H0(C), Hn(C) and by an ele-
ment of Extn+1

A (Hn(C), H0(C)) = HomD(A-Mod)(H
n(C), H0(C)[n + 1]) (see Ex-

ample 1.18).

1.7. Examples of derived categories. When A is a semisimple algebra, every
injective or surjective map between modules splits. Consequently one can easily
show that every complex of A-modules is quasi-isomorphic to the complex formed
by its cohomology groups (with zero differential). In other words, the functor
C 7−→ H•(C) induces an equivalence between D(A-Mod) and the category of Z-
graded modules. This is in particular the case for the derived category of k-vector
spaces D(k-Mod) when k is a field, or more generally for the derived category of
kG-modules D(kG-Mod) when G is a finite group whose order is invertible in k.

A ring A is said to be hereditary if ExtnA(−,−) = 0 for all n ≥ 2. In that case,
every bounded complex is again quasi-isomorphic to its cohomology, but not in a
canonical way, and the functor C 7−→ H•(C) is not faithful in general. This is for
example the case for the bounded derived category of abelian groups Db(Z-Mod).
Another example is the bounded derived category of ZℓG-modules Db(ZℓG-Mod)
when G is a finite group whose order is prime to ℓ.

Exercise 1.20. When A is hereditary, show using (1.2) and Example 1.18.a that
every bounded complex is quasi-isomorphic to its cohomology.

1.8. The stable category A-stab. Let k be a field. Throughout this section
we will assume that A is a finite dimensional k-algebra. In particular every finite
dimensional A-module M has a projective cover, which we will denote by PM (A
is said to be semiperfect). We shall also assume that A is symmetric (i.e. A is
isomorphic to its dual A∗ = Homk(A, k) as an (A,A)-bimodule). In that case A-
modules are projective if and only if they are injective (see for example [2, §1.6]).
Consequently any finite dimensional A-module admits an injective resolution. A
typical example of such an algebra in these lectures is the group algebra kG of a
finite group G.

Definition 1.21. The stable category of finitely generated A-modules , denoted by
A-stab, is the category with

• objects: finitely generated A-modules (same as A-mod),

• morphisms: HomA(M,N) := HomA(M,N)/≈ where f ≈ g if and only if
f − g factors through a projective module.
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In particular, in the stable category any projective module is isomorphic to zero.
There is a canonical additive (in fact k-linear) functor A-mod −→ A-stab, mak-
ing A-stab into an additive (k-linear) category. This category has an additional
triangulated structure, as we will see below.

Given a finite dimensional A-module M , we define the Heller operator Ω by

ΩM = Ker (PM ։M).

We then define inductively Ωn(M) = Ω(Ωn−1(M)) for n ≥ 1 with the convention
that Ω0(M) is the minimal submodule of M such that M/Ω0(M) is projective.

Exercise 1.22. Check that Ωn(M) is well defined up to isomorphism. Show that
Ω is functorial in A-stab (but not in A-mod).

Similarly, we set Ω−1M = Coker (M →֒ IM ) where IM is an injective hull of
M . One can readily check that (Ω−1M)∗ ≃ ΩM∗ as right A-modules and more
generally that (Ω−nM)∗ ≃ ΩnM∗ for all n ∈ Z.

Proposition 1.23. Let M and N be finitely generated A-modules.

(i) M ≃ N in A-stab if and only if there exist finitely generated projective mod-
ules P and Q such that M ⊕ P ≃ N ⊕Q in A-mod.

(ii) If M and N are indecomposable non-projective modules with M or N being
simple, then HomA(M,N)

∼
−→HomA(M,N).

(iii) If n > 0 then

HomA(Ω
nM,N) ≃ HomA(M,Ω−nN) ≃ ExtnA(M,N).

Proof. (i) If M ≃ N in A-stab then there exists morphisms M
f
−→N

g
−→M and

projective modules R and T such that gf − 1M and fg− 1N factor through R and
T respectively. Write gf − 1M = Ψ ◦ Φ with Φ : M −→ R and Ψ : R −→ M and
consider the following morphisms

M

(f,Φ)

%%
N ⊕R

g−Ψ

dd

which satisfy (g − Ψ) ◦ (f,Φ) = 1M . This shows that M is a direct summand
of N ⊕ R. Similarly, N is a direct summand of M ⊕ T and we can invoke the
Krull-Schmidt Theorem to conclude.

For (ii) it is enough to see that no injective (resp. surjective) morphism can
factor through a projective (hence injective) module if both M and N have no
non-trivial projective summands.

For (iii) we start with a minimal projective resolution of M coming from the
sequence

· · · −→ PΩnM −→ · · · −→ PΩM −→ PM ։M.
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By definition (see Example 1.18), the degree n extension group ExtnA(M,N) is the
quotient of the subgroup of maps f in HomA(PΩnM , N) such that Ωn+1M ⊂ Ker f
by the maps which factor through PΩnM −→ PΩn−1M . In particular we have a
well defined surjective map

ExtnA(M,N) −→ HomA(Ω
nM,N)

f 7−→ f : PΩnM/Ωn+1M︸ ︷︷ ︸
ΩnM

−→ N

Now if f = 0 there exists a projective (hence injective) module P such that f
factors through ΩnM −→ P −→ N . Since P is injective and ΩnM is a submodule
of PΩn−1M , the map ΩnM −→ P can be extended to a map PΩn−1M −→ P in the
following commutative diagram

ΩnM
f //

� _

��

((◗
◗◗ N

P

99t
t

PΩn−1M

77♥♥♥

Therefore f factors through PΩn−1M and hence it is zero in ExtnA(M,N). The case
of Ω−nN is similar.

Consequently, any short exact sequence 0 −→ U −→ V −→W −→ 0 in A-mod

yields a sequence U −→ V −→ W −→ Ω−1U in A-stab. This, in turn, endows
A-stab with a structure of triangulated category, with suspension functor (or shift)
Ω−1, such that the images of short exact sequences of A-mod are distinguished
triangles in A-stab.

The triangulated structure appears in a more natural way from the bounded
derived category of A-mod. We say that a complex of A-modules C is perfect if it
is quasi-isomorphic to a bounded complex of finitely generated projective modules.
We denote by A-perf the full subcategory of Db(A-mod) of perfect complexes (it is
a thick subcategory, i.e. stable under direct summands and cones).

Theorem 1.24 (Rickard [61]). The natural functor A-mod −→ Db(A-mod) in-
duces an equivalence of triangulated categories

A-stab
∼
−→Db(A-mod)/A-perf.

inverting maps whose cone
is a perfect complex

Remark 1.25. Using a minimal projective resolution of M [−n] which we truncate
in degrees above zero, we obtain a complex

C = (· · · 0 −→ PΩn−1M −→ · · · −→ PΩM −→ PM ։M −→ 0 · · · )
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Then C ≃ ΩnM [0] in Db(A-mod). On the other hand, since all the terms of
C are projective modules except the term in degree n we have C ≃ M [−n] in
Db(A-mod)/A-perf. This shows that

M [−n] ≃ ΩnM in Db(A-mod)/A-perf

and proves the compatibility of the suspension functors (Ω−1 and [1]) under the
equivalence given by Rickard’s theorem.

2. Varieties and cohomology

The aim of this chapter is to introduce the geometric tools that we will need to
construct the representations of finite reductive groups. They will be obtained
from linear invariants (cohomology groups or cohomology complexes) of algebraic
varieties acted on by finite groups:

Algebraic variety X
+ action of
a finite group G

cohomology
−−−−−−−−−−→

Family of vector spaces Hi(X)
or complex of vector spaces RΓ(X)
+ linear action of G.

For example, if X is a finite set acted on by G, then we can form the permutation
module ΛX over any ring Λ.

Although this construction makes sense for any abstract finite group G, it will
be particularly suited for finite reductive groups, since in that case the algebraic
variety X will be constructed from the underlying algebraic group (see §3 for the
definition of Deligne–Lusztig varieties).

Since we will be interested in modular representations (with coefficients in fields
of positive characteristic) the language of derived categories and derived functors
introduced in the previous chapter will be particularly suited for our purpose:

A-modules M , N  

P a projective
resolution of N

 

{
P ⊗A N
Hom•A(P,N)

 

{
TorAi (M,N)

ExtiA(M,N)

F a sheaf on X  

P a flabby
resolution of F

 Γ(P)  Hi(X,F)

derived
setting

standard
setting

The definition of étale or ℓ-adic cohomology would go far beyond the scope of
these notes. For the reader interested in the topic we recommend reading Deligne’s
notes [19], or the excellent textbook by Milne [59]. For a more representation-
theoretic perspective, most of the properties listed in this chapter are also addressed
in [15, Appendix A3] and in [3, Appendix A].
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2.1. Definition and first properties. Let X be a quasi-projective variety over
Fp and G be a finite group acting on X. We fix a prime number ℓ 6= p and an
ℓ-modular system (K,O, k) such that K is a finite extension of Qℓ. Finally, we
denote by Λ any ring among K, O and k. We will be interested in representations
of G over Λ.

The theory of étale cohomology of sheaves on X produces two complexes of
OG-modules RΓ(X,O) and RΓc(X,O), unique up to quasi-isomorphism, called
the cohomology complex of X and the cohomology complex with compact support
of X. By extension of scalars, we also have complexes

RΓ(X,Λ) := RΓ(X,O)
L
⊗OΛ and RΓc(X,Λ) := RΓc(X,O)

L
⊗OΛ.

When Λ = K (resp. Λ = k) we will refer to these complexes as the ℓ-adic coho-
mology complexes (resp. the mod-ℓ cohomology complexes). The groups

Hi(X,Λ) := Hi
(
RΓ(X,Λ)

)
and Hi

c(X,Λ) := Hi
(
RΓc(X,Λ)

)

are the cohomology groups (or cohomology groups with compact support) with
coefficients in Λ.

The cohomology is functorial: if f : Y −→ X is a G-equivariant morphism of
algebraic varieties then it induces a morphism in D(ΛG-Mod)

f∗ : RΓ(X,Λ) −→ RΓ(Y,Λ)

between the cohomology complexes of X and Y. If in addition f is proper (e.g. f
is a finite morphism), the same holds for the cohomology complexes with compact
support.

The cohomology complexes are “small”: the ΛG-modulesHi(X,Λ) andHi
c(X,Λ)

are finitely generated over Λ. Moreover, they vanish for i < 0 and i > 2 dimX.
Consequently, RΓ(X,Λ) and RΓc(X,Λ) are quasi-isomorphic to complexes of (Λ-
free, see Remark below) finitely generated ΛG-modules with terms in degrees
0, 1, . . . , 2 dimX.

Remark 2.1. The Λ-modules Hi(X,O) are not free in general, but H0(X,O) is.
If C is a Λ-free resolution of a given representative of RΓ(X,Λ), then C is quasi-
isomorphic to τ≥0(τ≤2 dimX(C)) and the terms of the latter complex are Λ-free
since H0(X,Λ) is (see also Proposition 6.5).

The following theorem, due to Rickard [62] (see also [64]), gives the most sat-
isfactory representative for the cohomology complex of X from a representation-
theoretic perspective.

Theorem 2.2 (Rickard [62]). RΓ(X,Λ) and RΓc(X,Λ) are quasi-isomorphic to
bounded complexes whose terms are direct summands of finite sums of permutation
modules ΛG/StabG(x) for x ∈ X.

Idea of proof. Given a sheaf F on X, we can construct the complex RΓ(X,F)
from the global sections of the Godement resolution. This resolution involves Λ-
modules of the form

∏
x∈X Fx on which G acts naturally by permuting the stalks.
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This suggests that RΓ(X,Λ) has a representative in the category generated by the
permutation modules ΛG/StabG(x) and we can invoke the finiteness property of
the cohomology groups to conclude.

For Λ = O or k, we denote by ΛG-perm the category of finitely generated ℓ-
permutation ΛG-modules. This is the smallest full subcategory of ΛG-mod closed
under direct summands and containing the permutation modules. As a conse-
quence of Theorem 2.2, there exist bounded complexes R̃Γ(X,O) and R̃Γc(X,O)
in Hob(OG-perm) of finitely generated ℓ-permutation modules which are quasi-
isomorphic to RΓ(X,O) and RΓc(X,O) respectively. The following particular case
will be intensively used in these notes.

Corollary 2.3. Assume that for all x ∈ X the order of the group StabG(x) is
invertible in Λ. Then RΓ(X,Λ) and RΓc(X,Λ) are perfect complexes.

For affine varieties, the vanishing property of cohomology groups can be refined.
If X is an affine variety of pure dimension (i.e. all the irreducible components have
the same dimension) then

• Hi(X,Λ) = 0 if i > dimX;

• Hi
c(X,Λ) = 0 if i < dimX.

Consequently, RΓ(X,Λ) (resp. RΓc(X,Λ)) has a representative with terms in de-
grees 0, . . . , dimX (resp. dimX, . . . , 2 dimX).

We conclude this section by the relation between the compact and non-compact
versions of the cohomology complexes. There is a natural map RΓc(X,Λ) −→
RΓ(X,Λ) which is an isomorphism when X is a projective variety (compare with the
case of affine varieties above). In addition, the cohomology complexes of smooth
varieties are mutually dual.

Theorem 2.4 (Poincaré-Verdier [19]). Assume that X is smooth of pure dimen-
sion d. Then

RΓ(X,Λ)[2d] ≃ RHomΛ(RΓc(X,Λ),Λ)

not necessary to right derive if one works
with a representative of RΓc(X,Λ)
with Λ-free terms

in Db(ΛG-mod).

2.2. Tools for computing RΓc(X,Λ). Unless otherwise stated, all the isomor-
phisms considered in this section are in the category Db(ΛG-mod) for Λ a ring
among K, O and k.

Theorem 2.5 (Künneth formula). The cohomology of a product of varieties is
given by

RΓc(X× Y,Λ) ≃ RΓc(X,Λ)
L
⊗RΓc(Y,Λ).

Theorem 2.6 (Open-closed situation). Let U ⊂ X be an open G-stable subvariety
of X, and Z = Xr U be the closed complement. There is a distinguished triangle

RΓc(U,Λ) −→ RΓc(X,Λ) −→ RΓc(Z,Λ) 
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in Db(ΛG-mod). If in addition U is closed, then this triangle splits and RΓc(X,Λ) ≃
RΓc(U,Λ)⊕RΓc(Z,Λ).

Taking the cohomology of this distinguished triangle yields a long exact se-
quence of cohomology groups

· · · −→ Hi
c(U) −→ Hi

c(X) −→ Hi
c(Z) −→ Hi+1

c (U) −→ · · ·

Theorem 2.7. The cohomology of the affine space of dimension n is given by

RΓc(An,Λ) ≃ Λ[−2n].

These three results are enough to compute the cohomology of a large class of
varieties. We give below the examples of projective spaces and tori.

Example 2.8. (a) Write P1 = A1⊔{pt}. Theorems 2.6 and 2.7 yield a distinguished
triangle

RΓc(A1,Λ) −→RΓc(P1,Λ) −→ RΓc({pt},Λ) 

Λ[−2] −→RΓc(P1,Λ) −→ Λ[0] −→ Λ[−1]

zero map since
Ext−1

ΛG
(Λ,Λ) = 0

This shows that RΓc(P1,Λ) ≃ Λ[0]⊕ Λ[−2].

More generally, RΓc(Pn,Λ) ≃ Λ[0]⊕Λ[−2]⊕ · · · ⊕Λ[−2n]. This method works
for any variety paved by affine spaces, e.g. the flag varieties.

(b) Let Gm be the one-dimensional torus Gm = A1r{0} acted on by multiplication
by the group µn of n-th roots of unity in Fp. Again, we have a distinguished triangle

RΓc(Gm,Λ) −→RΓc(A1,Λ) −→ RΓc({pt},Λ) 

RΓc(Gm,Λ) −→Λ[−2] −→ Λ[0] 

element of Ext2
Λµn

(Λ,Λ) ≃ H2(µn,Λ)

The long exact sequence in cohomology gives H•c (Gm,Λ) ≃ Λ[−1]⊕ Λ[−2] but we
need more information to compute the cohomology complex.

Since µn acts freely, the complex RΓc(Gm,O) is perfect by Corollary 2.3.

Therefore it is quasi-isomorphic to 0 −→ P
d
−→Q −→ 0 with P and Q being

two finitely-generated projective modules in degrees 1 and 2 respectively (Gm is
an irreducible affine variety of dimension 1). From the previous computation we
deduce that Kerd ≃ CoKer d ≃ O. Consequently, the trivial module k is in the
head of Q and the projective cover Pk of k (as an Oµn-module) is a direct summand
of Q. In other words, RΓc(Gm,O) has a representative of the form

0 −→ P
d
−→Q′ ⊕ Pk −→ 0

with Q′ ⊂ Im d. This implies that the composition P
d
−→Q′ ⊕ Pk −→ Q′ is

surjective. Since Q′ is projective, it must split and we can write P ≃ P ′⊕Q′ such
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that the restriction of d to Q′ is the identity. This shows that the previous complex
is homotopy equivalent to

0 −→ P ′
d|P ′

−→Pk −→ 0.

To determine P ′ we can either use the kernel of d or the fact that in the Grothendieck
group [RΓc(Gm,O)] = [Pk]−[P ′] =

∑
(−1)i[Hi

c(Gm,O)] = 0 which forces P ′ ≃ Pk.
Finally,

RΓc(Gm,O) ≃ (· · · 0 −→ Pk −→ Pk −→ 0 · · · ).

Using Theorem 2.5 we can also compute the cohomology of a higher dimensional

torus by RΓc((Gm)r,O) ≃ RΓc(Gm,O)
L
⊗r.

Exercise 2.9. Let ζ be a primitive n-th root of 1. Show that

RΓc(Gm,Λ) ≃ (· · · 0 −→ Λµn
ζ−1
−→Λµn −→ 0 · · · ).

2.3. Group action. Recall that G is a finite group acting on the quasi-projective
variety X. In this section we discuss the relation between the cohomology com-
plexes of X, G\X and XG. Further details can be found in [62], [64] or [15, A3.15].

Theorem 2.10. Assume that for all x ∈ X, the order of the group StabG(x) is
invertible in Λ (in particular RΓc(X,Λ) is perfect). Then

RΓc(G\X,Λ) ≃ Λ
L
⊗ΛG RΓc(X,Λ)

in Db(Λ-mod).

Sketch of proof. Let π∗Λ be the push-forward of the constant sheaf Λ along the
quotient map π : X −→ G\X. Since π is finite we have π∗ = π! and therefore

RΓc(X,Λ) ≃ RΓc(G\X, π∗Λ).

Taking the coinvariants we get, using the projection formula (see for example [59,
VI.8.14])

Λ
L
⊗ΛG RΓc(X,Λ) ≃ Λ

L
⊗ΛG RΓc(G\X, π∗Λ) ≃ RΓc(G\X,Λ

L
⊗ΛG π∗Λ).

It remains to check that the natural map Λ
L
⊗ΛG π∗Λ −→ Λ is an isomorphim of

sheaves. The stalk of π∗Λ at a point x is the permutation module ΛG/StabG(x),
which is projective by assumption on the order of StabG(x). Therefore the fact
that the previous map is an isomorphism can be checked on the stalks with the
usual tensor product.

When Λ is a field and ℓ ∤ |G| then ΛG is a semisimple algebra and complexes
of ΛG-modules are quasi-isomorphic to their cohomology (see §1.7). Furthermore,



22 Olivier Dudas

invariants and coinvariants are isomorphic as Λ-modules in that case and the pre-
vious theorem shows that

Hi
c(G\X,Λ) ≃ Hi

c(X,Λ)
G ≃ Λ⊗ΛG Hi

c(X,Λ).

Assume until the end of this section that Λ is either O or k. Given P ⊂ G an
ℓ-subgroup of G and V an ℓ-permutation module, we denote by BrP (V ) the image
of the invariants V P in the coinvariants k ⊗ΛP V . It induces an additive functor
on the homotopy category of ℓ-permutation modules, which we will still denote
by BrP . We refer to [68, §27] for basic results on ℓ-permutation modules and the
Brauer functor.

Theorem 2.11 (Rickard). The inclusion XP →֒ X induces an isomorphism

BrP
(
R̃Γc(X,Λ)︸ ︷︷ ︸

) ∼
−→ RΓc(X

P , k)

in Db(kNG(P )-mod)
representative in Hob(ΛG-perm) (see §2.1)

Sketch of proof. Assume for simplicity that P is a Sylow subgroup of G and that
P ≃ Z/ℓZ. We consider the closed subvariety of X defined by

Xℓ = {x ∈ X such that ℓ | |StabG(x)|}.

Then Xℓ ≃ G ×NG(P ) X
P , and hence RΓc(Xℓ,Λ) ≃ IndGNG(P )RΓc(X

P ,Λ) by The-
orems 2.5 and 2.10. Now by Corollary 2.3, the cohomology complex of X r Xℓ is
perfect therefore its image by the Brauer functor is zero. Using the distinguished
triangle in Theorem 2.6 we deduce that BrPRΓc(X,Λ) ≃ BrPRΓc(Xℓ,Λ) which in
turn is isomorphic to RΓc(X

P , k).

One can generalize this argument to any ℓ-subgroup P of G by considering a
filtration of X by subvarieties with respect to the size of the ℓ-part of the stabilizer
of points.

2.4. Trace formula. Assume now that the quasi-projective variety X is defined
over Fq, and denote by F : X −→ X the corresponding Frobenius endomorphism
so that in particular X(Fq) = XF . The Frobenius induces a quasi-isomorphism on
the complexes RΓ(X,Λ) and RΓc(X,Λ). All the quasi-isomorphisms and triangles
listed in §2.2 are compatible with F . The corresponding action on the ℓ-adic
cohomology groups can be computed partially from the number of Fq-points of X
as follows.

Theorem 2.12 (Lefschetz trace formula [19]).

#X(Fq) =
∑

i∈Z

(−1)iTr
(
F,Hi

c(X,K)
)
.
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From this theorem we can for example derive a formula for the Euler charac-
teristic of X, given by

∑

i∈Z

(−1)i dimHi
c(X,K) = − lim

t→∞

∞∑

n=1

#X(Fqn)t
n. (2.1)

Exercise 2.13. Show the latter formula (hint: use the eigenvalues of F (and Fn)
on Hi

c(X) and Theorem 2.12 for Fn).

Example 2.14. (a) For the affine space of dimension n, we have H•c (An,K) ≃
K[−2n] and #An(Fq) = qn. Therefore F acts on the cohomology of An by multi-
plication by qn (the same actually holds for H•c (An,Λ)).

To take the action of F into account, we will write RΓc(An,Λ) ≃ Λ[−2n](n),
and (n) will be referred to as a Tate twist. With this notation, the F -equivariant
form of Poincaré-Verdier duality (see Theorem 2.4) is

RΓ(X,Λ)[2d](−d) ≃ RHomΛ(RΓc(X,Λ),Λ)

for X a smooth variety of pure dimension d.

(b) H•c (P1,Λ) ≃ Λ[0]⊕ Λ[−2](1) and #P1(Fq) = 1 + q.

(c) H•c (Gm,Λ) ≃ Λ[−1]⊕ Λ[−2](1) and #Gm(Fq) = −1 + q.

Formula (2.1) can be extended to the case of a group action. Assume that the
action of G on X is F -equivariant. Then the virtual character of the representation
of G afforded by the ℓ-adic cohomology groups is

∑
(−1)iTr

(
g,Hi

c(X,K)
)
= − lim

t→∞

∞∑

n=1

#XgFn

tn. (2.2)

Since this value is both an algebraic integer (left-hand side) and a rational number
independent of ℓ, this shows in particular that it is an integer independent of ℓ.
Note however that the individual cohomology groups could depend on ℓ, but it was
proved recently that this is not the case for Deligne–Lusztig varieties (see [65]).

3. Deligne–Lusztig varieties and their cohomology

This chapter presents the construction by Deligne–Lusztig of algebraic varieties
acted on by finite reductive groups [20]. We discuss several properties of the
cohomology complexes of these varieties which we will use to deduce representation-
theoretic results for finite reductive groups in the following chapters.

Starting from this chapter, G will denote a connected reductive algebraic group
defined over Fp, and F : G −→ G a Frobenius endomorphism defining an Fq-
structure on G. The group of fixed points G(Fq) := GF is a finite reductive group.
Given a closed F -stable subgroup H of G, the corresponding finite group will be
denoted by H := H(Fq) = HF . We refer to Meinolf Geck’s lecture notes [44] for
more on these finite groups (see also the textbooks [16, 21]).
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The first section of this chapter serves as a motivation for the introduction of
Deligne–Lusztig varieties as a generalization of Harish-Chandra induction. It is
intentionally very sketchy and will not be used in the rest of these notes.

3.1. Generalizing Harish-Chandra induction. The Harish-Chandra (or para-
bolic) induction and restriction functors provide an inductive approach to the
construction of representations of finite reductive groups. Let P be an F -stable
parabolic subgroup of G. It has a Levi decomposition P = L ⋉ V where L is
an F -stable Levi complement and V is the unipotent radical of P. The finite set
(G/V)F = G/V is endowed with a left action of G by left multiplication, and a
right action of L by right multiplication (since L normalizes V ). We can therefore
consider the adjoint pair of exact functors

RG
L⊂P = ΛG/V ⊗ΛL − and ∗RG

L⊂P = HomΛG(ΛG/V,−)

between the categories ΛL-mod and ΛG-mod. Dipper–Du [24] and Howlett–Lehrer
[54] showed that these functors depend only on L and not on P , up to isomorphism.
Therefore they will be simply denoted by RG

L and ∗RG
L .

There are two issues when working with these functors. The first one is that
not every representation occurs in a representation induced from a proper Levi
subgroup (unlike the usual induction). The second problem is that an F -stable
Levi subgroup L of G in not necessarily a Levi complement of an F -stable parabolic
subgroup. Even though L exists, the finite set G/V might not. However, the
variety G/V does and one can consider the following subvariety

YV := {gV ∈ G/V | g−1F (g) ∈ V · F (V)}

called the parabolic Deligne–Lusztig variety associated with V. As in the case of
the set G/V , it has a left action of G by left multiplication, and a right action
of L by right multiplication. Consequently, the cohomology complex RΓc(YV,Λ)
is a bounded complex of (G,L)-bimodules and we can consider the triangulated
functors

RG

L⊂P = RΓc(YV,Λ)
L
⊗ΛL − and ∗RG

L⊂P = RHomΛG(RΓc(YV,Λ),−)

between the derived categories Db(ΛL-mod) and Db(ΛG-mod). They are called
Deligne–Lusztig induction and restriction functors. When F (V) = V (i.e. when
P is F -stable) then YV is just the finite set (G/V)F ≃ G/V and these functors
coincide with the Harish-Chandra induction and restriction functors.

In these notes we will focus on the case where L is a torus. In that case L
is G-conjugate to a quasi-split torus T and V is determined by an element ẇ in
NG(T). The corresponding variety will be denoted by Y(ẇ) and studied in the
next sections. This case corresponds to the original definition of Deligne–Lusztig
[20] which was later generalized to the parabolic case in [55].
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3.2. Bruhat decomposition. We fix a pair (T,B) where T is a maximal torus
of G contained in a Borel subgroup B. We assume that both T and B are F -stable
(such pairs always exist and form a single G-conjugacy class). Such a torus is said
to be quasi-split. In that case F acts on the Weyl group W = NG(T)/T of G.

Given w ∈W we define

• ℓ(w) = dimBwB − dimB = dimBwB/B, the length of w with respect to B,

• S = {w ∈ W | ℓ(w) = 1} the set of simple reflections of W with respect to B.

Theorem 3.1 (Bruhat decomposition [21, §1]).

(i) S generates W and (W,S) is a Coxeter system.

(ii) G decomposes as the disjoint union of Bruhat cells

G =
⊔

w∈W

BwB.

(iii) BsBwB =

{
BswB if ℓ(sw) > ℓ(w)
BwB ⊔ BswB otherwise.

(iv) The Schubert cell BwB/B is isomorphic to Aℓ(w) (the affine space of dimen-
sion ℓ(w)).

Note that ℓ(w) coincides with the length corresponding to the Coxeter system
(W,S). Indeed, dim(BsBwB) ≤ dim(BsB×BBwB) = ℓ(s)+ℓ(w)+dimB, therefore
the inequality ℓ(sw) > ℓ(w) forces ℓ(sw) = ℓ(w) + 1 by (iii). More generally ℓ(w)
is the smallest integer r such that w = s1s2 · · · sr with si ∈ S.

The closure BwB in G of a Bruhat cell is a closed subvariety of G stable by
left and right multiplication by B. Therefore by (ii) it must be a finite union of
Bruhat cells. We consider a partial order on W , called the Bruhat order, defined
by v ≤ w if BvB ⊂ BwB (or equivalently BvB ⊂ BwB). Then by (ii) we have

BwB =
⊔

v≤w

BvB.

The singularities of these varieties are of considerable interest for the study of
representations of semisimple Lie algebras and reductive groups, not only for finite
reductive groups.

Example 3.2. (a) For the trivial element of W we have B1B = B, which is a closed
subvariety of G. Therefore 1 is the unique minimal element for the Bruhat order.

(b) The variety G is irreducible, therefore there exists a unique w0 ∈W such that
Bw0B = G. The element w0 is the unique element of maximal length in W , and
its length equals the dimension of the flag variety G/B, which is the number of
positive roots of W . The element w0 is also the unique maximal element for the
Bruhat order.

Example 3.3. For G = GL2(Fp) we have G = B ⊔ BsB, hence

BsB = Gr B =

{(
∗ ∗
λ ∗

)
| λ 6= 0

}
.
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3.3. Deligne–Lusztig varieties. Let U = Ru(B) be the unipotent radical of the
Borel subgroup B. We fix a set {ẇ}w∈W of representatives of W in NG(T). The
Deligne–Lusztig varieties associated to w are

YG(ẇ) = Y(ẇ) = {gU ∈ G/U | g−1F (g) ∈ UẇU},

XG(w) = X(w) = {gB ∈ G/B | g−1F (g) ∈ BwB}.

The finite group G = GF acts by left multiplication on both X(w) and Y(ẇ).
Furthermore, TẇF acts by right multiplication on Y(ẇ). Indeed, if g−1F (g) ∈ UẇU
then using that T normalizes U we have, for every t ∈ T

(gt)−1F (gt) = t−1g−1F (g)F (t) ∈ Ut−1ẇF (t)U.

Now t ∈ TẇF if and only if ẇF t = t which we can rewrite as t−1ẇF (t) = ẇ.

Using properties of Schubert cells, one can prove that both X(w) and Y(ẇ)
are smooth quasi-projective varieties of pure dimension ℓ(w). Furthermore, the
canonical projection π : G/U −→ G/B induces a G-equivariant isomorphism

Y(ẇ)/TẇF ∼
−→X(w). (3.1)

As in the previous chapter we can consider the cohomology complexes attached
to these varieties. The complex RΓc(Y(ẇ),Λ) is a bounded complex of finitely
generated (G,TẇF )-bimodules, and RΓc(X(w),Λ) is a bounded complex of finitely
generated G-modules. Since TẇF acts freely on Y(ẇ), we deduce from Theorem
2.10 and (3.1) that

RΓc(X(w),Λ) ≃ RΓc(Y(ẇ),Λ)
L
⊗ΛTẇF Λ. (3.2)

Example 3.4. If ẇ = w = 1 then Y(1) = {gU | g−1F (g) ∈ U} = (G/U)F . The
latter is just a finite set isomorphic to G/U . Similarly, X(1) ≃ G/B and therefore
the cohomology complexes of Y(1) and X(1) are given by a single permutation
module in degree 0, namely

RΓc(Y(1),Λ) ≃ ΛG/U [0] and RΓc(X(1),Λ) ≃ ΛG/B[0].

Example 3.5. Let G = SL2(Fp) and F be the standard Frobenius of G, raising
the entries of a 2 × 2 matrix to the qth power, so that G = SL2(q). The usual
subgroups of G can be chosen as follows:

T =

{(
λ 0
0 λ−1

)}
⊂ B =

{(
λ ∗
0 λ−1

)}
, U =

{(
1 ∗
0 1

)}
, ṡ =

(
0 −1
1 0

)

Then the varieties G/U and G/B are given explicitly by

A2 r {(0, 0)}
∼
−→ G/U

(x, y) 7−→

(
x ∗
y ∗

)
U

and
P1

∼
−→ G/B

[x : y] 7−→

(
x ∗
y ∗

)
B
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and the cosets UṡU and BsB by

UṡU =

{(
∗ ∗
1 ∗

)}
∩G and BṡB =

{(
∗ ∗
λ ∗

)
| λ 6= 0

}
∩G.

Finally, the element g−1F (g) is given by

(
x ∗
y ∗

)−1
F

(
x ∗
y ∗

)
=

(
∗ ∗
−y x

)(
xq ∗
yq ∗

)
=

(
∗ ∗

xyq − yxq ∗

)
.

We deduce the following explicit descriptions of the varieties Y(ṡ) and X(s).

Y(ṡ) ≃ {(x, y) ∈ A2 | xy
q − yxq = 1},

X(s) ≃ {[x : y] ∈ P1 | xy
q − yxq 6= 0} = P1 r P1(Fq).

The variety Y(ṡ) is the famous Drinfeld curve, discovered and studied by Drinfeld
in [27].

Since char(K) = 0, the algebraKG is semisimple and the complexRΓc(Y(ẇ),K)
is quasi-isomorphic to its cohomology

⊕
Hi

c(Y(ẇ),K)[−i] as a complex of (G,TẇF )-
bimodules. Given an irreducible character θ of TẇF , we can consider the θ-isotypic
part of each individual cohomology groupHi

c(Y(ẇ),K)θ := HomTẇF (θ,Hi
c(Y(ẇ),K)).

Since the actions of G and TẇF commute, Hi
c(Y(ẇ),K)θ is a G-module. Given

g ∈ G we set

Rw(θ)(g) =
∑

i∈Z

(−1)iTr
(
g,Hi

c(Y(ẇ),K)θ
)
.

The function Rw(θ) is the character of the virtual module
∑

(−1)iHi
c(Y(ẇ),K)θ

(or equivalently of the complex RΓc(Y(ẇ),K)θ). It is called a Deligne–Lusztig
character . A particular interesting case is when θ = 1. We have

Rw := Rw(1) =
∑

i∈Z

(−1)i[Hi
c(X(w),K)] = [RΓc(X(w),K)]

since in that case the isotypic component of Hi
c(Y(ẇ),K) corresponding to the

trivial representation of TẇF is the invariant part under TẇF which by (3.2) is
isomorphic to Hi

c(X(w),K).

3.4. Properties of RΓc(Y(ẇ),Λ) and RΓc(X(w),Λ). In the examples 3.4
and 3.5 the varieties Y(ẇ) and X(w) are affine. This was proven in general by
Deligne and Lusztig [20] when q ≥ h (the Coxeter number of W ) and it is con-
jectured to hold unconditionaly (see for example [7] for further examples). In any
case, the consequences on the vanishing of the cohomology groups (see §2.1) hold.

Theorem 3.6 (Lusztig [57]). Hi
c(Y(ẇ),Λ) = Hi

c(X(w),Λ) = 0 for i < ℓ(w).

Consequently, the complexes RΓc(Y(ẇ),Λ) and RΓc(X(w),Λ) can be repre-
sented by complexes with (Λ-free) terms in degrees ℓ(w), ℓ(w) + 1, . . . , 2ℓ(w). In
addition, one can compute the stabilizer of any point in Y(ẇ) under the action of
G and invoke Corollary 2.3 to show the following additional properties.
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Proposition 3.7. The complex ResG×T
ẇF

G RΓc(Y(ẇ),Λ) is perfect. Furthermore,
if the order of TẇF is invertible in Λ then RΓc(X(w),Λ) is perfect as well.

More generally, one can show that if Q in an ℓ-subgroup of G×TẇF such that
Y(ẇ)Q 6= ∅, then Q is necessarily conjugate to a diagonal subgroup of G × TẇF

(with the identification TwF ≃ (gT)F ⊂ G with g−1F (g) a representative of w in
NG(T)).

Example 3.8. Let G = SL2(Fp) and ẇ = ṡ =

(
0 −1
1 0

)
so that

TṡF ≃

{(
λ 0
0 λ−1

)∣∣∣∣λ
q+1 = 1

}
≃ µq+1(Fp).

If (x, y) ∈ Y(ṡ) (see Example 3.5) then g · (x, y) · diag(λ, λ−1) = (x, y) if and only
if (x, y) is an eigenvector of g with eigenvalue λ−1. In particular, either ±g is
unipotent (with eigenvalues ±1) or g is conjugate to diag(λ, λ−1).

If |TẇF | is invertible in Λ then there is no non-trivial ℓ-subgroup G×TẇF such
that Y(ẇ)Q 6= ∅. In particular RΓc(Y(ẇ),Λ) is perfect as a complex of bimodules
in that case. Otherwise we have the following result (see [1, §9] for basic results
on vertices and sources).

Proposition 3.9. Let C be a representative of RΓc(Y(ẇ), k) as a complex of
ℓ-permutation modules with no null-homotopic direct summand. Then the vertices
of the terms of C are contained in ∆TẇF .

Proof. Let P be an ℓ-subgroup of G which is not conjugate to a subgroup of
∆TẇF . Then Y(ẇ)P = ∅ and therefore by Theorem 2.11 we have BrP (C) ≃
RΓc(Y(ẇ)

P , k) ≃ 0.

Now assume that there is an indecomposable direct summand M in Ci such
that BrP (M) 6= 0. Without loss of generality we can assume that P is maximal for
this property. Then for any other direct summand N of the terms of C, BrP (N)
is either zero or projective by maximality. Consequently BrP (C) is an acyclic
complex with projective terms. Take M to be in the largest degree i of C so that
BrP (Cj) = 0 for j > i and BrP (Ci−1) ։ BrP (M). Then Ci−1 −→ M is a split
surjection (by [4, Lem. A.1]), which contradicts the minimality of C.

3.5. Applications. The following result will be intensively used in the rest of
these notes. It was first proved by Lusztig in the case where Λ = K [57] and then
extended by Bonnafé–Rouquier to the modular setting.

Theorem 3.10 (Bonnafé–Rouquier [5]). Let M be a simple ΛG-module and w ∈
W be minimal for the Bruhat order such that RHomΛG

(
RΓc(Y(ẇ),Λ),M

)
6=

0. Then there exists a representative 0 −→ P0 −→ · · · −→ Pℓ(w) −→ 0 of
RΓc(Y(ẇ),Λ) such that

• each Pi is a finitely generated projective ΛG-module (in degree ℓ(w) + i),
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• PM is a direct summand of Pi for i = 0 only (middle degree).

In other words, the terms of that complex satisfy HomΛG(Pi,M) 6= 0 ⇐⇒ i = 0.

Sketch of proof. The key property shown by Bonnafé–Rouquier is that the cone of
the natural map RΓc(Y(ẇ),Λ) −→ RΓ(Y(ẇ),Λ) lies in the thick subcategory of
Db(ΛG-mod) generated by the complexes RΓc(Y(v̇),Λ) for v < w. In particular,
the minimality of w shows that this map induces an isomorphism

RHomΛG(RΓ(Y(ẇ),Λ),M)
∼
−→ RHomΛG(RΓc(Y(ẇ),Λ),M).

terms in degrees
0, 1, . . . , ℓ(w)

terms in degrees
ℓ(w), . . . , 2ℓ(w)

Consequently, the cohomology of RHomΛG(RΓc(Y(ẇ),Λ),M) vanishes outside the
degree ℓ(w). In other words, HomHob(ΛG-mod)(RΓc(Y(ẇ),Λ),M [−i]) = 0 for i 6=
ℓ(w).

Now let C = 0 −→ P0 −→ · · · −→ Pℓ(w) −→ 0 be a representative of
RΓc(Y(ẇ),Λ) with projective terms and with no null-homotopic direct summand.
Let i be maximal for the property that PM is a direct summand of Pi, and
assume that i > 0. If the composition Pi−1 −→ Pi ։ M is zero, then the
map Pi −→ M induces a morphism between the complexes RΓc(Y(ẇ),Λ) and
M [−i− ℓ(w)]. Therefore it must be null-homotopic by the above argument, which
is impossible since PM is not a direct summand of Pi+1. Therefore the compo-
sition Pi−1 −→ Pi ։ M must be non-zero, hence surjective, which shows that
PM

∼
−→PM is a (null-homotopic) direct summand of C. By assumption of C, this

is again impossible.

Corollary 3.11 (Bonnafé–Rouquier [5]). The triangulated category of perfect com-
plexes ΛG-perf is generated by the cohomology complexes RΓc(Y(ẇ),Λ) for w ∈ W .

Proof. We show by induction on the length of w that for every simple ΛG-module
M , if RHomΛG(RΓc(Y(ẇ),Λ),M) 6= 0 then PM lies in the thick subcategory of
ΛG-perf generated by the complexes RΓc(Y(v̇),Λ) for v ≤ w. This is true for
w = 1 since RΓc(Y(1),Λ) ≃ ΛG/U [0] (by definition a thick subcategory is stable
under direct summands).

Let w ∈ W , and consider a representative C of RΓc(Y(ẇ),Λ) as a bounded
complex of projective modules with no null-homotopic direct summand. It follows
from Theorem 3.10 that the indecomposable direct summands of Ci for i > ℓ(w)
already appear in the cohomology complexes RΓc(Y(v̇),Λ) for v < w. By in-
duction Ci lies in the thick subcategory of ΛG-perf generated by the complexes
RΓc(Y(v̇),Λ) for v < w. But the term in middle degree can be written as

Cℓ(w) = Cone
(
(Cℓ(w)+1 −→ · · · −→ C2ℓ(w)) −→ RΓc(Y(ẇ),Λ)[ℓ(w) + 1]

)

which proves that Cℓ(w) lies in the category generated by RΓc(Y(v̇),Λ) for v ≤ w.
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To conclude, it remains to show that any projective indecomposable module
appears as a direct summand of a minimal representative of RΓc(Y(ẇ),Λ) for some
w ∈ W . It is enough to show it at the level of characters. This follows from the
fact that the regular representation of G is uniform, which means that it is a linear
combination of Deligne–Lusztig characters Rw(θ).

One can invoke Corollary 3.11 to see that a morphism f of bounded complexes

of ΛG-modules is a quasi-isomorphism if and only if Cone(f)
L
⊗ΛG RΓc(Y(ẇ),Λ) =

0 for all w ∈ W . This was a key step in Bonnafé–Rouquier’s proof of the Jordan
decomposition as a Morita equivalence (see [5]).

The analogue of Corollary 3.11 for general bounded complexes (whose terms
can have non-trivial vertices) was proved recently by Bonnafé–Dat–Rouquier in
[4]. This again was proven essential to show that the Jordan decomposition is

a splendid Rickard equivalence. Recall that R̃Γc(Y(ẇ), k) denotes the (unique
up to homotopy equivalence) representative of RΓc(Y(ẇ), k) as a complex of ℓ-
permutation modules (see §2.1).

We say that the prime number ℓ is very good for G if ℓ is good for every simple
component of G and ℓ ∤ m+ 1 for every component of G of type Am. A sufficient
condition for ℓ to be very good is ℓ > h where h is the Coxeter number of G.

Theorem 3.12 (Bonnafé–Dat–Rouquier [4]). Assume that ℓ is very good. Let X

be the set of complexes R̃Γc(Y(ẇ), k) ⊗kQ θ where Q runs over the ℓ-subgroups of
TẇF , θ ∈ IrrkQ and w ∈W . Then

(i) The thick subcategory of Hob(kG-mod) generated by X coincide with Hob(B),
where B is the additive category generated by the indecomposable modules
with one-dimensional sources and abelian vertices.

(ii) The image of X in Db(kG-mod) generates Db(kG-mod) as a triangulated
category closed under direct summands.

4. Decomposition numbers from Deligne–Lusztig characters

Recall that (K,O, k) denotes an ℓ-modular system with K being a finite extension
of Qℓ. We will furthermore assume from this chapter on that K and k are big
enough for all the groups considered (all the group algebras over K and k will
split).

The purpose of this chapter is to explain how one can compute ℓ-decomposition
numbers for finite reductive groups using the Deligne–Lusztig characters Rw(θ)
introduced in the previous chapter. We start by recalling elementary results on
decomposition matrices (see for example [66, §14]) before explaining the case of
finite reductive groups.
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4.1. Grothendieck groups and dualities. LetA be an abelian (resp. additive)
category. The Grothendieck group of A, denoted by K0(A) (or sometimes [A]) is
the abelian group generated by the isomorphism classes of objects of A subject
to the relations [M ] = [L] + [N ] for every short exact sequence (resp. split short
exact sequence) 0 −→ L −→ M −→ N −→ 0. Note that any abelian category is
additive. When there is a risk of confusion, the Grothendieck group of A as an
additive category will be referred to as the split Grothendieck group. If A is an
abelian category in which every object has finite composition length, then K0(A)
can be identified with the free abelian group with basis IrrA. Similarly, the split
Grothendieck group of a Krull-Schmidt category is the free abelian group generated
by the isomorphism classes of the indecomposable objects.

Let T be a triangulated category. The Grothendieck group K0(T ) of T is the
abelian group generated by the isomorphism classes of objects of T subject to the
relations [M ] = [L] + [N ] for every distinguished triangle L −→M −→ N  .

Given an abelian category A, the fully faithful functor A −→ Db(A) induces
an isomorphism K0(A)

∼
−→K0(D

b(A)). Under this identification, the class of a
bounded complex C is

[C] =
∑

i∈Z

(−1)i[Ci] =
∑

i∈Z

(−1)i[Hi(C)].

Similarly, for any additive category A the functor A −→ Hob(A) induces an iso-
morphism between the corresponding split Grothendieck groups.

The Grothendieck groups we will be interested in in this chapter are:

Z-basis given by simple modules
• K0(KG-mod)

• K0(kG-mod)

• K0(kG-proj) ← basis given by projective indecomposable modules (PIMs)

Since exact sequences split in KG-mod and kG-proj then for M , N in KG-mod

(resp. kG-proj) [M ] = [N ] if and only if M ≃ N . This is not true in general in
kG-mod since kG-modules can have non-trivial extensions when ℓ divides the order
of |G| (which is the interesting case from our point of view).

In addition, there are perfect pairings

〈−;−〉K : K0(KG-mod)×K0(KG-mod) −→ Z

〈−;−〉k : K0(kG-proj)×K0(kG-mod) −→ Z

defined by 〈[P ]; [M ]〉Λ = dimΛ HomΛG(P,M) when P and M are actual modules
and Λ is the field K or k. Then IrrKG is a self-dual basis for the pairing 〈−;−〉K ,
whereas a dual basis of IrrkG for 〈−;−〉k is given by the classes of projective
indecomposable modules.
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4.2. Lifting projective modules. We say that a kG-module M lifts to char-
acteristic zero if there exists an OG-lattice M̃ (an OG-module which is free as

an O-module) such that kM̃ ≃ M as kG-modules. Not every kG-module can be
lifted to characteristic zero in general, unless ℓ ∤ |G| in which case kG is semisimple.
This holds nevertheless for projective modules. Indeed, given a finitely generated
projective kG-module P , we can consider the projective cover Pm of P as an
O/ℓmO-module. Then kPm ≃ P and the OG-module P̃ := lim

←−
Pm is an OG-

module lifting P . In addition, it is projective and it is − up to isomorphism − the
unique projective OG-module lifting P . Note that if M is a simple kG-module,
then P̃M , together with the composition P̃M ։ PM ։ M is a projective cover of
M , viewed as a simple OG-module.

Given P ∈ kG-proj and its lift P̃ to characteristic zero, we can form the KG-
module KP̃ . Its character (or rather its image in the Grothendieck group) will be
denoted e([P ]). This defines a group homomorphism

e : K0(kG-proj) −→ K0(KG-mod).

4.3. Decomposing ordinary characters. Let M be a KG-module. One can
choose an O-free O-submodule M̃ such that KM̃ ≃ M . By saturating by the
action of G one can assume that M̃ is stable by G, so that M̃ is an OG-lattice
such that KM̃ ≃ M . Then one can form the kG-module kM̃ and consider its
image in K0(kG-mod), which we will denote by d([M ]).

Proposition 4.1.

(i) d is well-defined and extends to a group homomorphism

d : K0(KG-mod) −→ K0(kG-mod)

called the decomposition map.

(ii) (Brauer reciprocity) d is the transpose of e for the pairings defined in §4.1.
In other words

〈−; d(−)〉k = 〈e(−);−〉K .

Proof. It is enough to prove (ii). Let M be a KG-module and P be a projective

kG-module. We constructed OG-lattices M̃ and P̃ such that KM̃ ≃ M and
kP̃ ≃ P . Then

〈[P ]; d([M ])〉k = dimk HomkG(P, kM̃) = rkOHomOG(P̃ , M̃)

= dimK HomKG(KP̃ ,KM̃) = 〈e([P ]); [M ]〉K .

The decomposition matrix D (or Dℓ) is the matrix with entries

dχ,S = 〈[PS ]; d(χ)〉k = 〈e([PS ]);χ〉K
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for χ ∈ IrrKG and S ∈ IrrkG. With this notation we have

d(χ) =
∑

S∈IrrkG

dχ,S [S] and e([PS ]) =
∑

χ∈IrrKG

dχ,Sχ.

Example 4.2. (a) If ℓ ∤ |G| then every simple kG-module is projective, and lifts
to an irreducible ordinary character. Consequently D is the identity matrix up to
reordering.

(b) If G is an ℓ-group, then the only irreducible kG-module is the trivial repre-
sentation. Since the decomposition map preserves the dimension, we deduce that
d(χ) = (dimχ)[k] for every irreducible ordinary character χ of K. The decompo-
sition matrix in that case is a column encoding the dimensions of the irreducible
KG-modules.

Dually, the projective cover of the trivial representation is the regular repre-
sentation Pk = kG, which lifts to characteristic zero as OG, and whose character
is [KG] =

∑
(dimχ)χ. This is an example of Brauer reciprocity as stated in

Proposition 4.1.ii.

(c) Let us consider the particular case of G = S3 and ℓ = 3. There are three
irreducible representations over K: the trivial representation K, the sign ε and
the reflection representation, of dimension 2. The latter has an integral version
given by M = {(x1, x2, x3) ∈ O3 | x1 + x2 + x3 = 0}. The representations K
and ε yield two non-isomorphic representations over k by ℓ-reduction, the trivial
representation k and the sign modulo 3, which we still denote by ε. There is a
short exact sequence

0 −→ k −→ kM
x 7−→ (x, x, x)

−→ ε −→ 0

which shows that [kM ] = [k] + [ε]. We deduce that the decomposition matrix in
that case is

D =




1 ·
· 1
1 1


 ·

Consequently, the two PIMs have characters [K] + [KM ] and [ε] + [KM ].

4.4. Basic sets of characters. We mentioned in a previous section that not
every kG-modules can be lifted to characteristic zero. This is however true at the
level of the Grothendieck groups: the class of any kG-module is the ℓ-reduction of
a virtual character.

Theorem 4.3. The decomposition map d : K0(KG-mod) −→ K0(kG-mod) is
surjective.

By Proposition 4.1, the map e is the transpose of d, hence it is injective. There-
fore if P and Q are two projective kG-modules then P ≃ Q if and only if their
lifts P̃ and Q̃ have the same character. In other words, a projective module is
determined by its character over K.
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Since d is surjective, it is natural to search for a set B of ordinary irreducible
characters such that d(B) is a Z-basis of K0(kG-mod). Such a set is called a basic
set (see [45]). If it exists, then the decomposition matrix has the following shape:

D =

[
DB
∗

]
with DB ∈ GLn(Z).

In that case, a projective kG-module is determined by the projection of its char-
acter on B.

Now assume that G = GF is a finite reductive group. By definition, the
unipotent characters are the irreducible constituents of the virtual characters

Rw =
∑

i∈Z

(−1)i[Hi
c(X(w),K)] = [RΓc(X(w),K)]

for w ∈ W . The unipotent blocks are the ℓ-blocks containing at least one unipotent
character, and the irreducible characters in the union of unipotent blocks are the
constituents of

Rw(θ) =
∑

i∈Z

(−1)i[Hi
c(Y(ẇ),K)θ] = [RHomG

(
θ,RΓc(Y(w),K)

)
]

for w ∈ W and θ ∈ IrrℓT
ẇF an irreducible ℓ-character of TẇF .

Exercise 4.4. Given θ ∈ IrrℓT
ẇF , show that d(Rw(θ)) = Rw(d(θ)) = d(Rw) in

K0(kG-mod).

Recall that ℓ is said to be very good for G if ℓ is good for every simple component
of G and ℓ ∤ m + 1 for every component of G of type Am. A sufficient condition
for ℓ to be very good is ℓ > h where h is the Coxeter number of G.

Theorem 4.5 (Geck–Hiss, Geck [45, 43]). Assume that ℓ is very good. Then the
unipotent characters form a basic set for the union Eℓ(G, 1) of unipotent blocks.

More generally, under the same assumption on ℓ, given s ∈ G∗ a semisimple
ℓ-element, the Lusztig series E(G, s) (see for example [21, Def. 13.16]) is a basic
set for the union of blocks Eℓ(G, s) :=

⋃
E(G, st) where t runs over the set of

semisimple ℓ-elements of CG∗(s). This was first proved for finite general linear and
unitary groups by Fong–Srinivasan [36] and then generalized to any finite reductive
group by Geck–Hiss and Geck [45, 43].

4.5. Decomposition numbers and Deligne–Lusztig characters. This sec-
tion is the core of this chapter and contains recent results on ℓ-decomposition
numbers for unipotent blocks when ℓ is not too small (see for example [29, 32]).
We start by listing the different tools and assumptions we are going to use to
determine these numbers.

(HC) The Harish-Chandra restriction/induction of a projective ΛG-module re-
mains projective (this follows easily from the biadjointness and the exactness of
the functors).
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(Uni) When ℓ is very good, the restriction of the decomposition matrix to the
set of unipotent characters (a basic set by Theorem 4.5), ordered by increasing
a-function, has unitriangular shape. This is only conjectural (see [46, Conj. 3.4]).

(Hecke) The decomposition matrix of the Hecke algebra EndOG(OG/B) (corre-
sponding to the unipotent principal series) embeds in the decomposition matrix of
the finite group G (see [15, Thm. 5.28]).

(Reg) If θ ∈ IrrℓT
ẇF is an ordinary irreducible ℓ-character of TẇF in general

position (i.e. (−1)ℓ(w)Rw(θ) is irreducible) then
〈
e([P ]); (−1)ℓ(w)Rw

〉
K
≥ 0

for every projective kG-module P . This gives a non-trivial information since
(−1)ℓ(w)Rw is only a virtual unipotent character, even though (−1)ℓ(w)Rw(θ) is
irreducible.

Proof. Using the fact that d(Rw(θ)) = d(Rw) when θ ∈ IrrℓT
ẇF (see Exercise 4.4)

and Brauer reciprocity we have
〈
e([P ]);Rw

〉
K

=
〈
[P ]; d(Rw)

〉
k

=
〈
[P ]; d(Rw(θ))

〉
k

=
〈
e([P ]);Rw(θ)

〉
K
.

Since (−1)ℓ(w)Rw(θ) is assumed to be irreducible, the sign of this scalar product
coincides with (−1)ℓ(w).

Recall from Proposition 3.7 that the complex RΓc(Y(ẇ), k) is perfect as a
complex of kG-modules. Let Pw = [RΓc(Y(ẇ), k)] denote its class in K0(kG-proj).
Then

e(Pw) = [RΓc(Y(ẇ),K)] =
∑

i∈Z

(−1)i[Hi
c(Y(ẇ),K)] = Rw + non-unip. chars.

(4.1)
The following property is a character-theoretic consequence of Bonnafé–Rouquier’s
theorem 3.10. It is particularly suited for determining decomposition numbers on
cuspidal kG-modules, as we will see in the examples of the next section.

(DL) Given a simple kG-module S, let w ∈W be minimal (for the Bruhat order)
such that 〈Pw, [S]〉 6= 0 (i.e. [PS ] occurs in Pw). Then 〈(−1)

ℓ(w)Pw, [S]〉 > 0.

Proof. Let S be a simple kG-module and w ∈W be such that 〈(−1)ℓ(w)Pw, [S]〉 <
0. Take C = 0 −→ P0 −→ · · · −→ Pℓ(w) −→ 0 to be a representative of
RΓc(Y(ẇ), k) with each Pi projective in degree i+ℓ(w), and with no null-homotopic
direct summand. By assumption, there exists i > 0 such that PS is a direct sum-
mand of Pi. Taking i to be maximal, we deduce that

0 6=HomHob(kG-mod)(C, S[−i− ℓ(w)])

=HomDb(kG-mod)(RΓc(Y(ẇ), k), S[−i− ℓ(w)])

=Hi+ℓ(w)
(
RHomkG(RΓc(Y(ẇ), k), S)

)
.
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By Theorem 3.10 if v ≤ w is a minimal element (w.r.t. the Bruhat order)
for the property that the complex RHomkG(RΓc(Y(v̇), k), S) is non-zero then
RΓc(Y(v̇), k) has a representative such that PS occurs only in middle degree.
Therefore
〈(−1)ℓ(v)Pv; [S]〉 > 0 and w cannot be minimal for the property 〈Pw, [S]〉 6= 0.

Property (DL) means that if we write (−1)ℓ(w)Pw on the basis of characters
of PIMs, then the PIMs which do not occur in Pv for v < w have a non-negative
coefficient in this decomposition.

4.6. Examples in small rank. We discuss here three examples of small-rank
finite reductive groups where the previous tools allow a complete determination
of the (unipotent part of the) decomposition matrix. Here the assumption (Uni)
was shown to hold by Dipper [23] for finite linear groups, by Geck [40] for finite
unitary groups and by White [69] for Sp4(q).

(a) We start with G = SL2(q). Its order is |G| = q(q − 1)(q + 1). Assume that
ℓ is an odd prime number with ℓ ∤ q and ℓ | q2 − 1. Then the principal block
contains the two unipotent characters 1 and St, together with some non-unipotent
characters. Using (Uni) and (Hecke) we have

D =




1 ·
α 1
∗ ∗
...

...


 with α =

{
0 if ℓ ∤ q + 1
1 otherwise.

Here the value of α can be obtained by (Hecke). Indeed, if ℓ ∤ q + 1 then
EndkG(kG/B) is semisimple and kG/B = k ⊕M with M a simple kG-module.
Therefore α = 0 in this case. Now if ℓ | q + 1 then RG

T (k) = kG/B is a PIM with
character 1 + St, hence α = 1.

(b) Let G = Sp4(q), whose order is q
4(q2−1)(q4−1) = q4(q−1)2(q+1)2(q2+1). We

will denote by s and t the simple reflections in W corresponding to the short and
long simple root respectively. Assume in this example that ℓ is odd and ℓ | q + 1.
Then the characters in the principal block are

{1, St, ρ1, ρ2︸ ︷︷ ︸ , θ10, non-unipotent}

in the principal series cuspidal

There is another unipotent character, denoted by χ, which under the assump-
tions on ℓ is of defect zero and this forms a block by itself. We have R1 = RG

T (K) =
1 + St + ρ1 + ρ2 + 2χ, giving all the unipotent characters lying in the principal
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series. The first approximation of the decomposition matrix is given by (Uni)

D =




1 · · · ·
∗ 1 · · ·
∗ ∗ 1 · ·
∗ ∗ ∗ 1 ·
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗
...

...
...

...
...




1
ρ1
ρ2
θ10
St

A (Hecke) argument shows that RG
T (k) = kG/B is indecomposable. Since it is

projective, it gives the first column of the decomposition matrix.

The second and third column can be obtained by (HC). First, let L = GL2(q) ⊂
Sp4(q) and P be the PIM of GL2(q) such that e([P ]) = StGL2(q)+ non-unipotent
characters (see Example (a)). Let b ∈ OG be the block idempotent corresponding
to the principal block. Then RG

L (P ) is projective and its character, cut by the
block, is given by

e(bRG
L ([P ])) = bRG

L (e([P ])) = bRG
L (StGL2(q)) + bRG

L (non-unipotent)

= ρ1 + St + non-unipotent.

Similarly with the Levi subgroup L′ = SL2(q)× F×q ⊂ Sp4(q) we get

e(bRG
L′([P ])) = bRG

L′(e([P ])) = ρ2 + St + non-unipotent.

Consequently the unipotent part of the decomposition matrix is

Dunip =




1 · · · ·
1 1 · · ·
1 · 1 · ·
· · · 1 ·
1 α1 α2 β 1




with α1, α2 ≤ 1.

We use (Reg) to determine the exact value of α1 and α2. Since |Tw0F | =
(q + 1)2 there exists a non-trivial ℓ-character θ ∈ IrrKTw0F . Furthermore, if
(q + 1)ℓ > 3 then one can choose θ to be lying outside the reflection hyperplanes
(in the reflection representation of W on the group of characters of T). In that case
it is in general position, and (Reg) yields 〈e([Q]);Rw0〉 ≥ 0 for every projective
kG-module Q. Now Rw0 = 1 + St − ρ1 − ρ2 − 2θ10, so if we apply this to the
projective indecomposable modules Q2, Q3 and Q4 corresponding to the second,
third and fourth columns of the decomposition matrix we get

〈e([Q2]);Rw0〉 = 〈ρ1 + α1St; 1 + St− ρ1 − ρ2 − 2θ10〉 = −1 + α1

〈e([Q3]);Rw0〉 = 〈ρ2 + α2St; 1 + St− ρ1 − ρ2 − 2θ10〉 = −1 + α2

〈e([Q4]);Rw0〉 = 〈θ10 + βSt; 1 + St− ρ1 − ρ2 − 2θ10〉 = −2 + β
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which gives α1, α2 ≥ 1 (and hence α1 = α2 = 1) and β ≥ 2.

The final ingredient is (DL). To use it we decompose each virtual projective
module Pw = [RΓc(Y(ẇ), k)] on the basis of PIMs. To this end, recall from (4.1)
that e(Pw) = Rw + non-unipotent characters. We have

e(bP1) = 1 + St + ρ1 + ρ2 + non-unip. = e([Q1])

e(bPs) = 1− St + ρ1 − ρ2 + non-unip.

= 1 + St + ρ1 + ρ2 − 2(ρ2 + St) + non-unip.

= e([Q1]− 2[Q3])

e(bPt) = 1− St− ρ1 + ρ2 + non-unip.

= 1 + St + ρ1 + ρ2 − 2(ρ1 + St) + non-unip.

= e([Q1]− 2[Q2])

e(bPst) = 1 + St + θ10 + non-unip.

= (1 + St + ρ1 + ρ2)− (ρ1 + St)− (ρ2 + St) + (θ10 + 2St) + non-unip.

= e([Q1]− [Q2]− [Q3]) + θ10 + 2St + non-unip.

Since ℓ(st) = 2 we deduce from (DL) that θ10 + 2St + non-unip. must be a non-
negative combination of e([Q4]) and e([Q5]), since Q4 and Q5 do not appear in the
decomposition of Pw for w < st. Writing

θ10 + 2St + non-unip. = e
(
[Q4] + (2 − β)[Q5]

)

we deduce that β ≤ 2, which forces β = 2. We conclude that the unipotent part
of the ℓ-decomposition matrix (when ℓ is odd and (q + 1)ℓ > 3) is given by

Dunip =




1 · · · ·
1 1 · · ·
1 · 1 · ·
· · · 1 ·
1 1 1 2 1



.

Exercise 4.6. We follow the notation of [16, §13] for unipotent characters. Com-
plete the determination of the ℓ-decomposition matrix of G = G2(q) when ℓ | q+1
and ℓ > 5, which is given by

Dunip =




1 · · · · ·
1 1 · · · ·
1 · 1 · · ·
· · · 1 · ·
· · · · 1 ·
1 1 1 α β 1




1
φ′′1,3
φ′1,3
G2[1]
G2[−1]
St

with α, β ≥ 2 (see [50]). To this end, use (DL) with the following values of the
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Deligne–Lusztig characters, cut by the principal block b,

w bRw

1 1 + φ′1,3 + φ′′1,3 + St
s, tst 1− φ′1,3 + φ′′1,3 − St
t, sts 1 + φ′1,3 − φ′′1,3 − St
st, ts 1 +G2[−1] + St
stst 1 +G2[1] + St

Here s and t denote the simple reflections in the Weyl group of type G2 corre-
sponding to the short and long simple root respectively.

(c) Let G = SU5(q) =“SL5(−q)”. Its order is given by

largest defect

|G| = q10((−q)5 − 1)((−q)4 − 1)((−q)3 − 1)((−q2)− 1)

= q10(q − 1)3 (q + 1)4︸ ︷︷ ︸ (q
2 + 1)(q2 − q + 1)(q4 + 1).

We will work again in the case where ℓ | q + 1. In addition we will assume
that ℓ > 5 to ensure the existence of ℓ-characters in regular position. As in the
case of linear groups, the unipotent characters of SUn(q) are parametrized by
partitions of n. Here, they are 1 = ρ(5), ρ(41), ρ(32), ρ(312), ρ(221), ρ(213), ρ(15) = St
and are all contained in the principal ℓ-block. By (Uni) the unipotent part of the
decomposition matrix has the following shape

Dunip =




1 · · · · · ·
∗ 1 · · · · ·
∗ ∗ 1 · · · ·
∗ ∗ ∗ 1 · · ·
∗ ∗ ∗ ∗ 1 · ·
∗ ∗ ∗ ∗ ∗ 1 ·
∗ ∗ ∗ ∗ ∗ ∗ 1




5
41
32
312

221
213

15

By (Hecke) the projective kG-module RG
T (k) decomposes as a direct sum of two

PIMs. The corresponding decomposition of characters is R1 = (ρ(5) + ρ(312) +
ρ(221)) + (ρ(32) + ρ(312) + ρ(15)) which gives the first and third columns of the
decomposition matrix.

As in the previous examples, other columns can be determined by Harish-
Chandra induction of projective modules of various Levi subgroups. The Levi
subgroup L ⊂ GU3(q)×F×q2 of type 2A2 has two interesting PIMs P ′ and P ′′ with
respective characters

e([P ′]) = ρ(21) + 2ρ(13) + non-unip.

e([P ′′]) = ρ(13) + non-unip.
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yielding by (HC) two projective kG-modules RG
L (P

′) and RG
L (P

′′) with characters

e(RG
L ([P

′])) = ρ(41) + ρ(212) + 2(ρ(312) + ρ(221) + ρ(15)) + non-unip.

e(RG
L ([P

′′])) = ρ(312) + ρ(221) + ρ(15) + non-unip.

Note that these projective modules might not be indecomposable.

If ℓ > 5 there exists an ℓ-character θ of Tw0F in general position and (Reg)
applies. In other words, 〈e([P ]);Rw0〉 ≥ 0 for every projective kG-module P . With

Rw0 = ρ(5) + 4ρ(41) + 5ρ(32) − 6ρ(312) + 5ρ(221) − 4ρ(212) + ρ(15)

we have 〈e(RG
L ([P

′]));Rw0〉 = 〈e(R
G
L ([P

′′]));Rw0〉 = 0. Therefore 〈e([P ]);Rw0〉 = 0
for every direct summand P of RG

L (P
′) and RG

L (P
′′). From this we deduce that

• RG
L (P

′′) is indecomposable,

• RG
L (P

′) ≃ Q ⊕ RG
L (P

′′)⊕m with m = 0, 1, 2 and Q indecomposable. But
m 6= 0 is impossible (the PIM RG

L (P
′′) cannot lie in the Harish-Chandra

series of both (L, P ′) and (L, P ′′)).

This gives the second and fourth column of the decomposition matrix. As in
the previous example, application of (Reg) to the fifth and sixth column of the
decomposition matrix gives lower bounds for the decomposition numbers andDunip

has the following shape

Dunip =




1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
1 2 1 1 · · ·
1 2 · 1 1 · ·
· 1 · · α 1 ·
· 2 1 1 β γ 1




with γ ≥ 4 and 5− 4α+ β ≥ 0.

The two missing columns correspond to projective covers of cuspidal simple
kG-modules. They can be obtained using (DL) from the decomposition of each
Pw on the basis of PIMs. The minimal representatives of the F -conjugacy classes of
W ≃ S5 are ordered as follows under the Bruhat order: 1 ≤ s1, s2 ≤ s1s2, s2s3s3 ≤
s1s2s3s2 ≤ w0. Let Qi, i = 1, . . . , 7, be the PIMs ordered as the columns of the
decomposition matrix. Then

e(P1) = e([Q1] + [Q3]) (already computed)

e(Ps1) = ρ(5) − ρ(32) + ρ(221) − ρ(15) + non-unip.

= e([Q1]− [Q3])

e(Ps2) = ρ(5) − ρ(41) + ρ(32 − ρ(221) − ρ(213) − ρ(15) + non-unip.

= e([Q1]− [Q2] + [Q3]).
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Note that in the virtual module Ps2 , the module Q2 appears with negative multi-
plicity. This is consistent with (DL) which ensures that since it does not occur in
P1, it must occur with a multiplicity whose sign is given by (−1)ℓ(s2).

e(Ps1s2) = ρ(5) − ρ(41) − ρ(221) + ρ(213) + ρ(15) + non-unip.

= e
(
[Q1]− [Q3] + [Q5] + (2− α)[Q6] + (3− β − γ(2− α))[Q7]

)
.

Since ℓ(s1s2) = 2, we must have α ≤ 2 and 3 − β ≥ γ(2 − α) ≥ 4(2 − α). But
recall that 5 − 4α+ β ≥ 0 which we can rewrite as 4(2 − α) ≥ 3 − β. This forces
β = 4α − 5, hence α = 2 (otherwise β would be negative) and therefore β = 3.
Consequently Ps1s2 = [Q1]− [Q3] + [Q5] and Q4, Q5, Q7 have yet to occur.

e(Ps2s3s2) = ρ(5) + 2ρ(41) + ρ(32) − ρ(221) + 2ρ(213) − ρ(15) + non-unip.

= e([Q1] + 2[Q2] + [Q3]− 6[Q4])

ℓ(s2s3s2) = 3

e(Ps1s2s3s2) = ρ(5) + ρ(41) − ρ(32) − ρ(221) − ρ(213) + ρ(15) + non-unip.

= e([Q1] + [Q2]− [Q3]− 2[Q4]− 2[Q5] + 2[Q6] + (8− 2γ)[Q7])

which, since ℓ(s1s2s3s2) is even forces 8− 2γ ≥ 0 and therefore γ = 4. We obtain
finally

Dunip =




1 · · · · · ·
· 1 · · · · ·
· · 1 · · · ·
1 2 1 1 · · ·
1 2 · 1 1 · ·
· 1 · · 2 1 ·
· 2 1 1 3 4 1




.

4.7. Example in GUn(q). The methods described in §4.6 and used in the exam-
ple of SU5(q) in the previous section have shown powerful to determine completely
the decomposition matrices for small-rank groups, up to the 42×42 decomposition
matrix of SU10(q) (see for example [29, 32, 33]). We give here a general example of
a decomposition number that can be computed using Deligne–Lusztig characters.
For the sake of simplicity we have chosen again the case of a group of type 2A,
although the proof can be adapted to other classical groups.

Theorem 4.7 (Dudas–Malle [32]). Assume that G = GUn(q), ℓ | q+1 and ℓ > n.
Then d(1n),(21n−2) = n− 1.

Proof. Let θ be an irreducible ℓ-character of Tw0F in general position (such a
character exists since ℓ > n). Then (−1)ℓ(w0)Rw0(θ) is an irreducible character,
and hence

(−1)ℓ(w0)d(Rw0(θ)) = (−1)ℓ(w0)d(Rw0) =
∑

S∈IrrkG

mS [S]
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with each mS ≥ 0. Among the simple kG-modules S such that mS 6= 0, choose S0

with smallest possible w ∈ W such that 〈Pw; [S0]〉 6= 0. In other words, if v < w
then mS〈Pv; [S]〉 = 0 for every simple kG-module S.

If S is any simple kG-module such that mS 6= 0, then by minimality of w and
(DL) we have (−1)ℓ(w)〈Pw; [S]〉 > 0. In particular, (−1)ℓ(w)mS〈Pw; [S]〉 ≥ 0 for
every simple kG-module S. Let us write

(−1)ℓ(ww0)〈e(Pw);Rw0〉 = (−1)ℓ(ww0)〈Pw; d(Rw0)〉 =
∑

S∈IrrkG

(−1)ℓ(w)mS〈Pw ; [S]〉.

By the orthogonality relation of Deligne–Lusztig characters, this sum is zero unless
w = w0. Since all the terms are non-negative, and one term is positive (for S = S0)
we deduce that w = w0. In other words, if [PS ] occurs in some Pv for v 6= w0 then
mS = 0. Now

rkZ〈Pv, v 6= w0〉 =#{F -conjugacy classes of W} − 1

=#{unipotent characters of G} − 1

=#{unipotent PIMs of G} − 1 (by Theorem 4.5)

Therefore the Z-submodule of K0(kG-proj) spanned by the virtual projective mod-
ules Pv for v 6= w0 has codimension 1. We deduce that there is at most one
simple kG-module S such that mS 6= 0. It must be S = S0 = S(1n) since
e([PS(1n)

]) = ρ(1n) + non-unipotent characters and

〈[PS(1n)
]; d(Rw0)〉 = 〈e([PS(1n)

]);Rw0〉 = 〈St;Rw0〉 = (−1)ℓ(w0) 6= 0.

This proves that d(Rw0 ) = (−1)ℓ(w0)[S(1n)].

Now (Uni) shows that the character of the projective cover of S(21n−2) is of the
form e([PS(21n−2)

]) = ρ(21n−2) + αρ(1n) + non-unipotent characters. Using the fact

that it is orthogonal to Rw0 we get

0 = 〈[PS(21n−2)
]; d(Rw0)〉 = 〈e([PS(21n−2)

]);Rw0〉 = 〈ρ(21n−2);Rw0〉+ (−1)ℓ(w0)α

which shows that

d(1n),(21n−2) := α = (−1)ℓ(w0)+1〈ρ(21n−2);Rw0〉 = n− 1.

Indeed, the scalar product 〈ρλ;Rw〉 is, up to a sign, equal to the value on ww0 of
the irreducible character of Sn corresponding to the partition λ. So here, it equals
the dimension of the representation of Sn corresponding to (21n−2) which is n− 1
by the hook length formula.

4.8. Observations and conjectures. The following conjectures were made by
Geck in [39] and Geck–Hiss in [46].

Conjecture 4.8 (Geck–Hiss). Assume that ℓ 6= p and that ℓ is large with respect
to |W |.
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(i) The decomposition matrix has a unitriangular shape.

(ii) If ρ is unipotent and cuspidal then d(ρ) is irreducible i.e. d(ρ) = [S] for some
simple kG-module S.

(iii) The unipotent part of the decomposition matrix is independent of q (it depends
only on the order of q in F×ℓ ).

The conjecture was first proven for groups of type A by Dipper [23], for groups
of type 2A by Geck [40] and for classical groups when ℓ is linear by Gruber–
Hiss [49] (building on previous work of Dipper–James [25, 26]). In addition, all the
decomposition matrices computed so far for small rank group satisfy the conjecture.
In a recent work [34], Malle and the author proved part (ii) of the conjecture under
the extra assumption that p is good.

The difficulty in proving this conjecture lies in producing nice projective mod-
ules. In the case where the conjecture is known to hold, generalized Gelfand–Graev
modules were used. Malle and the author proposed a different strategy in [31], us-
ing again the cohomology of Deligne–Lusztig varieties.

Conjecture 4.9 (Dudas–Malle). For all w ∈W there is a sign εw = ±1 such that

Qw = εwDG([IH
•(X(w), k(TwF )ℓ)])

Alvis–Curtis duality intersection cohomology

is the character of a (non-virtual) projective module.

The Qw’s are actually virtual projective modules whose character can be explic-
itly computed using Kazhdan–Lusztig polynomials. They satisfy a unitriangularity
property (as we expect for the PIMs) and the multiplicities on unipotent characters
do not depend on q.

Example 4.10. For w = w0 the variety X(w0) is dense in G/B and hence X(w0) =
G/B. It is a smooth projective variety paved by affine spaces BwB/B, therefore

[IH•(X(w),K)] = [H•(G/B,K)] = |W | · 1G.

Consequently, e(Qw0) = ±|W | · StG± non-unipotent characters. There is indeed a
PIM whose character is StG+non-unip., hence Qw0 is the character of a projective
module as claimed in Conjecture 4.9.

5. Brauer trees of unipotent blocks

This chapter is devoted to the study of unipotent blocks of finite reductive groups
with cyclic defect groups. In that case the structure of the block is encoded in a
planar embedded tree, the Brauer tree. We explain how to use the cohomology
complexes of Deligne–Lusztig varieties to get information on the characters of PIMs
(which gives the tree as a graph) and extensions between simple modules (which
gives the planar embedding). This is based on a recent work of Craven, Rouquier
and the author [17].



44 Olivier Dudas

5.1. Brauer trees. Throughout this chapter, G is any finite group and b is an
ℓ-block of OG with cyclic (and non-trivial) defect groups. We denote by D a defect
of b. The results on the structure of b originate in a work of Brauer [9] subsequently
completed by Dade [18] and Green [48]. For a self-contained treatment of blocks
with cyclic defect groups we recommend [63] and [1, §V].

We denote by IrrKb the set of irreducible ordinary characters of G lying in
b. There is a set ExcKb ⊂ IrrKb called the set of exceptional characters of b
such that if we define χexc :=

∑
χ∈ExcKb χ then the character of any projective

indecomposable kG-module P in kb is given by

e([P ]) = χ+ χ′

with χ 6= χ′ and χ, χ′ ∈ {χexc} ⊔ (IrrKb r ExcKb). In other words, a simple kb-
module occurs in the ℓ-reduction of either two distinct non-exceptional characters,
or in one non-exceptional character and in every exceptional character.

We define the Brauer graph Γb of b as the graph with vertices labeled by
{χexc} ⊔ (IrrKbr ExcKb) and edges χ−−− χ′ for every PIM P such that e([P ]) =
χ+χ′. The edges of the Brauer graph are therefore labeled by PIMs or equivalently
by simple kb-modules (via their projective cover). The knowledge of the Brauer
graph, together with the multiplicity m = 〈χexc;χexc〉 of the exceptional vertex, is
equivalent to the knowledge of the decomposition matrix.

Example 5.1. (a) Let G = Z/ℓZ be the cyclic group of order ℓ. There is only one
PIM P = kG which is the projective cover of the trivial module. One can write
its character as

e([P ]) = 1G +
∑

non-trivial characters = 1G + χexc.

The convention here is to define the exceptional characters as the non-trivial char-
acters of G. This gives the Brauer graph given in Figure 1.

1Gχexc

Figure 1. Brauer graph of Z/ℓZ

(b) Let us now consider the case of G = Z/ℓrZ ⋊ E where E is an ℓ′-subgroup of
Autℓ′(Z/ℓ

rZ) ≃ Z/(ℓ − 1)Z. In particular the order e of |E| divides ℓ − 1. As in
the previous example OG is indecomposable and hence it forms a single block.

Every simple kG-module S has a trivial action of the ℓ-group Z/ℓrZ, and
therefore it must be of the form S = InfGE(Res

G
ES). In addition, since E is an

ℓ′-group, the restriction ResGES is semisimple hence simple. We deduce that the
simple kG-modules are in bijection with the irreducible representations of E (over
k or K). More precisely, if we fix a generator x of E and ζ a primitive e-th root of
unity in O×, one can consider the simple kE-modules k

ζ
i to be the one-dimensional

representation of E on which x acts by ζ
i
, where ζ denotes the class of ζ in k. They
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lift to characteristic zero to one-dimensional OG-modules Oζi and KG-modules

Kζi on which x acts by ζi. Let Ti := InfGE kζi . Then:

• The kG-modules Ti = InfGE k
ζ
i for i = 0, 1, . . . , e − 1 form a set of represen-

tatives of IrrkG.

• Ti lifts to characteristic zero as T̃i = InfGE Oζi . We denote by θi the character

of KT̃i ≃ InfGE Kζi .

• The projective cover of Ti is Pi := IndGE k
ζ
i , which lifts to characteristic zero

as P̃i = IndGE Oζi . It has character

e([Pi]) = [IndGE Kζi ] = [InfGE Kζi ] + θexc = θi + θexc

where θexc denotes the sum of the irreducible characters of G which are non-
trivial on Z/ℓrZ. These are the exceptional characters of G.

We deduce that the Brauer graph is a star-shaped tree as shown in Figure 2.

θ0

θ1

θe−1

θ2

θe−2

θ3

Figure 2. Brauer graph of Z/ℓrZ ⋊ Z/eZ with e | ℓ− 1

(c) Let G = Sℓ and b be the principal ℓ-block (with defect a Sylow subgroup Z/ℓZ
of Sℓ). The irreducible ordinary characters of G are labeled by partitions of ℓ.
The characters in b correspond to partitions which are ℓ-hooks

IrrKb = {1G = χ(ℓ), χ(ℓ−1,1), χ(ℓ−2,12), . . . , χ(1ℓ) = ε}.

Here ε denotes the sign character. The subgroupSℓ−1 of G is an ℓ′-group, therefore
every irreducible character is the character of a projective module. Consequently,
the same holds for the induction of any representation from Sℓ−1 to Sℓ. Using
the branching rules for induction we have

projective character not in b

IndSℓ

Sℓ−1
= +

︸ ︷︷ ︸

+
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This shows that the Brauer graph Γb is a line as shown in Figure 3. Note that here
any vertex can be chosen to be the exceptional vertex.

(ℓ) (ℓ− 1, 1) (ℓ − 2, 12) (2, 1ℓ−2) (1ℓ)

Figure 3. Brauer graph of the principal ℓ-block of Sℓ

Theorem 5.2 ([1, §23]). The Brauer graph is a tree, called the Brauer tree of b.

A planar embedding of Γb is defined by an ordering of the set of edges incident
to any given vertex. Planar embedded trees will be drawn according to the anti-
clockwise order around a vertex.

Theorem 5.3 (Structure of PIMs [1, §22]). Let Γb be the Brauer tree of b.

(i) There exists a unique ordering around each vertex of Γb such that if S and
T are two simple kb-modules labeling edges incident to a given vertex then T
follows immediately S if and only if Ext1kG(S, T ) 6= 0.

(ii) Given a simple kb-module S labeling an edge between non-exceptional vertices
as follows

S

S1

Sa

S2

S3

S′1

S′b

S′2

S′3

the Loewy structure of PS is given by

PS =

S
S1 S′1
S2 S′2
...

...

Sa S′b
S

Together with this planar embedding, the Brauer tree Γb will be referred to
as the planar embedded Brauer tree of b. This tree encodes the structure of the
block b. Indeed, if b′ is a block of G′ with cyclic defect groups, then kb and kb′

are Morita equivalent if and only if the planar embedded Brauer trees of b and b′

coincide, and the multiplicity of the exceptional vertices are equal.
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Remark 5.4. Note that the structure of PS can also be described in the case where
the edge of S is connected to the exceptional node. In that case one needs to repeat
the composition series S1/ · · · /Sa/S a number of times equal to the multiplicity
m = 〈χexc;χexc〉 of the exceptional vertex. In other words, one needs to turn
around the exceptional vertex m times and consider that all the other vertices
have multiplicity one.

The proof of the structure theorem consists in constructing a stable equiva-
lence between the block b of OG and its Brauer correspondent c in NG(D). This
equivalence is built from the Green correspondence between b and its Brauer cor-
respondent in NG(Z/ℓZ) (with Z/ℓZ the unique subgroup of order ℓ of D) and
a Morita equivalence between the latter block and its Brauer correspondent in
NG(D) (which is c). For a block with normal defect group (as in the case of c),
the Brauer tree is a star, as shown in Example 5.1.b, and the structure theorem is
easily proved. For more details see for example [63] or [1, §V].

The structure theorem for the PIMs has the following consequence, which we
will use in the following section. Let χ be an irreducible ordinary character of Kb
which labels a leaf of Γb (a vertex with only one incident edge). The ℓ-reduction
of χ is the simple kG-module S which labels the unique edge incident to that
leaf. This is the particular case of Theorem 5.3 where a = 0. Then ΩS is a
uniserial module with composition factors S′1/ · · · /S

′
b/S. Moreover, it lifts to an

ordinary character labeling the unique vertex adjacent to the leaf, say χ′, so that
e([PS ]) = χ + χ′. Similarly, Ω2S is a uniserial module which lifts to an ordinary
character χ′′ such that e([PS′

1
]) = χ′ + χ′′. The edge labeled by S′1 is the edge

which comes directly after S in the cyclic ordering around χ′. If we iterate this
process, we see that ΩiS can be obtained by following the edges in a walk around
the tree. More precisely, we obtain a sequence of ordinary characters χi and simple
kb-modules Ti such that:

• ΩiS is a uniserial module with head Ti and socle Ti−1.

• ΩiS lifts to an OG-lattice with character χi (which is either χexc or irre-
ducible, and hence labels a vertex).

• e([PTi
]) = χi + χi+1.

• Ti+1 labels the edge coming directly after Ti in the cyclic ordering around
the vertex labeled by χi+1.

If e denotes the number of isomorphism classes of simple kb-modules, then Ω2eS ≃
S. Each simple kG-module appears exactly twice in the sequence T0, T1, . . . , T2e−1,
called the Green walk around Γb [48].

Example 5.5. We consider the planar embedded tree as shown in Figure 4. Then for
example Ω3S ≃ S2 lifts to a lattice with character ρ3 whereas Ω8S is uniserial with
composition series S4/S1/S2/S3, and it lifts to a lattice with character ρ2. The
sequence T0, T1, . . . , T9 is S, S1, S2, S2, S3, S3, S4, S4, S1, S, whereas the sequence
χ0, . . . , χ9 is χ, ρ1, ρ2, ρ3, ρ2, χexc, ρ2, ρ4, ρ2, ρ1.
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S3

S2

ρ3

S4

ρ4

S1

ρ2
S

ρ1 χ01

23

4

5

6 7

8 9

Figure 4. Walking around the Brauer tree

5.2. The case of unipotent blocks. We now focus on the case of finite reductive
groups. As before, G is a connected reductive group over Fp together with a
Frobenius endomorphism F : G −→ G defining an Fq-structure. Throughout this
section and until the end of this chapter we will assume for simplicity that (G, F )
is split (i.e. F acts trivially on the Weyl group).

We denote by d the order of q modulo ℓ, or equivalently the order of the class
of q in k. The integer d is minimal for the property that ℓ | Φd(q), where Φd is
the d-th cyclotomic polynomial. Recall that when ℓ is very good, the unipotent
ℓ-blocks are “generic” and parametrized by d-cuspidal pairs.

{
Unipotent ℓ-blocks

with defect D

}
←→

{
d-cuspidal pairs (L, ρ)
with D ≃ (Z(L)◦)Fℓ

}/
G

b(L, ρ) ←−p (L, ρ)

(5.1)

When D is cyclic, the non-exceptional characters in b(L, ρ) are the unipotent char-
acters in b(L, ρ), which are the irreducible constituents of the virtual character

RG

L (ρ) =
∑

i∈Z

(−1)i[Hi
c(YV,K)ρ]

where V = Ru(P) for some parabolic subgroup P with Levi complement L. The
variety YV is the parabolic Deligne–Lusztig variety attached to V (see §3.1). Recall
that when L is a maximal torus of type w and P is conjugate to the Borel subgroup
B by ẇ then YV ≃ Y(ẇ). In that case the non-exceptional characters in the block
are the constituents of the Deligne–Lusztig character Rw.

We first list the algebraic methods which can be used to determine the Brauer
trees of unipotent blocks of G with cyclic defect groups. The first three arguments
are not specific to finite reductive groups, whereas the last one relies on results by
Geck [42].

(Parity) If χ−−− χ′ then χ(1) ≡ −χ′(1) modulo ℓ (the dimension of a projective
module is divisible by ℓ).
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(Real stem) If b is stable by complex conjugation, the real characters form a
single connected line containing the exceptional node called the real stem of Γb.
The complex conjugation induces a symmetry of Γb with respect to that line.

(Degree) The dimension of a non-exceptional character χ equals the sum of the
dimensions of the simple modules labeling the edges incident to χ in Γb.

(Hecke) The Brauer trees of the blocks of the Hecke algebra associated to a given
Harish-Chandra series in b (as defined by Geck in [42]) are subtrees of Γb. Each of
these subtrees is a line, with dimension (or rather a-function) increasing towards
the exceptional vertex.

Example 5.6. Let G be a finite reductive group of type G2. We denote by s and
t the two simple reflections of its Weyl group W . The degrees of W are 2 and 6,
therefore the order of the finite group G is

|G2(q)| = q6(q6 − 1)(q2 − 1)

= q6(q − 1)2(q + 1)2(q2 + q + 1)(q2 − q + 1).

In this decomposition the exponents of the cyclotomic polynomials Φ3(q) = q2 +
q+1 and Φ6(q) = q2− q+1 are equal to 1. Therefore when ℓ > 3 (when ℓ is good)
and ℓ divides one of these polynomials, the Sylow ℓ-subgroups of G are cyclic and
the principal block has cyclic defect groups.

Assume that ℓ > 3 and ℓ | Φ6(q) = q2 − q + 1, in which case q has order 6
modulo ℓ (the Coxeter number). A torus of type w = st is a Φ6-Sylow subgroup
since |TwF | = q2 − q + 1. The trivial character of this torus is 6-cuspidal, and the
corresponding block via (5.1) is the principal block, whose characters are

IrrKb(Tw, 1) =

{
constituents of
Rw = Rw(1)

}⊔{
constituents of Rw(θ)

for θ ∈ IrrℓT
wF and θ 6= 1

}

=
{

1, St, φ2,1︸ ︷︷ ︸
principal series

, G2[−1], G2[θ], G2[θ
2]︸ ︷︷ ︸

cuspidal characters

}⊔
ExcKb

since Rw = 1+St−φ2,1+G2[−1]+G2[θ]+G2[θ
2]. As in §4.6, we use the notation

of [16, §13] for the unipotent characters. In particular θ is a primitive third root of
1 in O×. The only non-real unipotent characters are G2[θ] and G2[θ

2], therefore
by (Degree) or (Parity) the real stem is

G2[−1]
+

St
+

φ2,1

−
1
+

Brauer tree of the Hecke algebra

By (Parity) the complex conjugate characters G2[θ] and G2[θ
2] must be connected

to either the vertex labeled by φ2,1 or the exceptional vertex. But φ2,1(1) −
G2[θ](1) − G2[θ

2](1) < 0 if q > 2. Now q = 2 would force ℓ = 3, which is a
prime number that we excluded. Therefore (Degree) forces Γb to be as in Figure 5.
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G2[−1] St φ2,1 1

G2[θ
2]

G2[θ]

Figure 5. Brauer tree of the principal Φ6-block of G2(q)

Exercise 5.7. If ℓ | q2 + q + 1 = Φ3(q) then |TwF | = q2 + q + 1, and TwF is a
Φ3-Sylow subgroup for w = stst = (st)2. Then the non-exceptional characters of
the principal block, with their parity, are

IrrKbr ExcKb = {1,St, φ2,2, G2[1],G2[θ], G2[θ
2]}.

+ + − + − −

Here the only non-real characters are again the complex conjugate charactersG2[θ]
and G2[θ

2]. Show that in that case the Brauer tree is given as in Figure 6.

G2[1] St φ2,2 1

G2[θ
2]

G2[θ]

Figure 6. Brauer tree of the principal Φ3-block of G2(q)

Theorem 5.8. The Brauer trees of unipotent blocks are known for

(i) G of classical type A, B, C and D (Fong–Srinivasan [37, 38]).

(ii) G of exceptional type except E7 and E8.

Note that for groups of small rank, the determination of the trees follows from
the determination of all the ℓ-decomposition matrices for various ℓ, which were
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more specifically solved by Burkhart [14] for 2B2, Shamash [67] for G2, Geck [41]
for 3D4, Hiss [51] for

2G2 and
2F4, and Wings [70] for F4. The determination of the

other trees were obtained by Hiss–Lübeck [52] for F4 and 2E6, and Hiss–Lübeck–
Malle [53] for E6. In addition to the algebraic arguments used in the example of
G2(q), it is often necessary to use partial information on the character table of the
group to determine the tree (in order to decompose tensor products of characters).

The problem for larger exceptional groups such as E7 and E8 comes from the
increasing number of cuspidal kG-modules. As in the case of decomposition matri-
ces (see Chapter 4), these representations resist to algebraic methods which rely on
Harish-Chandra induction and restriction, such as (Hecke). The idea developped
in [17] by Craven–Rouquier and the author is to use the cohomology complexes
of Deligne–Lusztig varieties to produce perfect complexes satisfying the following
proposition.

Proposition 5.9. Let C be a perfect complex of kG-modules. Assume that there
exist integers a < b such that Hi(C) = 0 for i 6= a, b. Then

Ha(C) ≃ Ωb−a+1Hb(C) in kG-stab.

Consequently, the kG-modules Ha(C) and Ωb−a+1Hb(C) differ only by their pro-
jective summands.

Proof. Using the remark following (1.2) we get the following distinguished triangle
in Db(kG-mod)

Ha(C)[−a] −→ C −→ Hb(C)[−b] 

which we can also write as

C −→ Hb(C)[−b] −→ Ha(C)[−a+ 1] 

Its image in Db(kG-mod)/kG-perf is also a distinguished triangle, and C ≃ 0 in that
category since it is perfect. Using Theorem 1.24 to identify Db(kG-mod)/kG-perf
with kG-stab (and the shift [1] with Ω−1) we obtain the following distinguished
triangle in kG-stab

0 −→ ΩbHb(C) −→ Ωa−1Ha(C) 

which yields ΩbHb(C)
∼
−→Ωa−1Ha(C) in kG-stab.

Given λ ∈ O×, we can consider the complex C = bRΓc(X(w), k)λ obtained

from the cohomology complex of X(w) by cutting by the generalized λ-eigenspace
of F , and by the block b. In other words, the complex C is isomorphic to a direct
summand of RΓc(X(w), k) such that Hi(C) = bHi

c(X(w), k)λ. The requirements
to use Proposition 5.9 are

(1) C must be perfect. This follows from Proposition 3.7 if we assume ℓ ∤ |TwF |.

(2) The condition on the vanishing of Hi(C) should already hold over K by the
universal coefficient formula (see §6.3). This supposes a vanishing of many
of the groups Hi

c(X(w),K)µ for every eigenvalue µ congruent to λ modulo ℓ.
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(3) The vanishing over k should follow from the vanishing over K and the prop-
erty that each cohomology group Hi

c(X(w),O) is O-free.

In the few examples where Hi
c(X(w),O) has been explicitly computed, it is torsion-

free whenever ℓ ∤ |TwF | (in other words (3) follows from (1)). The reader will find
an example of this property in the following chapter, for varieties associated with
Coxeter elements.

Example 5.10. LetG be a finite reductive group of type E7. We denote by s1, . . . , s7
the simple reflections in W . If q has order 14 modulo ℓ, in which case ℓ divides
Φ14(q) then the principal ℓ-block has cyclic defect groups. It corresponds to the
cuspidal pair (Tw, 1) where w is a element of W of order 14 (such an element
can be taken to have length 9). The fourteen non-exceptional characters in the
block are given by the irreducible constituents of the Deligne–Lusztig character
Rw. They consist of eight unipotent characters in the principal series (including 1
and St), four unipotent characters in the D4-series and the two cuspidal unipotent
characters of E7, namely the complex conjugate characters E7[i] and E7[−i]. The
real stem of the Brauer tree is formed by the real characters (all except E7[±i])
with increasing dimension towards the exceptional vertex by (Hecke), see Figure 7.

St 1

D4-series principal series

Figure 7. Real stem of Brauer tree of the principal Φ14-block of E7(q)

The missing characters in the tree are the complex conjugate characters E7[±i].
Unlike the case ofG2(q) in Example 5.6, a combination of the (Degree) and (Parity)
arguments is not enough to determine to which vertex they are attached. To remove
the ambiguity, we consider the Deligne–Lusztig variety X(c) associated to a Coxeter
element c = s1s2 · · · s7 and the corresponding cohomology complex. Here we will
consider the generalized eigenspaces of F corresponding to the eigenvalues 1 and
−1. Over K, the cohomology of X(c), cut by the block, is

bH•c (X(c),K) =
(
St⊕E7[i]⊕E7[−i]

)
[−7]⊕ 1[−14]

with eigenvalues of F in K = 1 iq7/2 −iq7/2 q7

and eigenvalues of F in k = 1 −1 1 −1

with the convention that i ≡ q7/2 modulo ℓ (here i2 = −1 in K). We obtain

bH•c (X(c),K)1+ℓO ≃
(
St⊕ E7[−i]

)
[−7],

bH•c (X(c),K)−1+ℓO ≃ E7[i][−7]⊕ 1[−14].

If we assume thatH•c (X(c),O) is torsion-free, then the universal coefficient theorem
shows that bRΓc(X(c), k)1 has only one non-zero cohomology group. By using the
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truncation functors of Proposition 1.19 it follows that it is quasi-isomorphic to a
single projective kG-module in degree 7, which lifts to a lattice with character
St ⊕ E7[−i]. This shows that the vertex labeled by E7[−i] is connected to the
vertex labeled by St and gives the Brauer tree of b. Even better, using Proposition
5.9 with the complex bRΓc(X(c),K)−1 which has only two non-zero cohomology
groups yields

H7
c (X(c), k)−1 ≃ Ω14−7+1H14

c (X(c), k)−1 ≃ Ω8k

in the stable category kG-stab. This proves that Ω8O is an OG-lattice with charac-
ter H7

c (X(c),K)−1 = E7[i] and the planar embedded Brauer tree shown in Figure
8 is obtained from the Green walk.

St

L S6 S5 S4 S3 S2 S1

1

k

E7[−i]

E7[i]

Figure 8. Brauer tree of the principal Φ14-block of E7(q)

Exercise 5.11. Show that the perfect complex RΓc(X(c), k)−1 is homotopy equiv-
alent to

0 −→

E7[i]
L

E7[−i]
S6

E7[i]

−→

S6

E7[i]
L S5

E7[−i]
S6

−→
S5

S6 S4

S5

−→
S4

S5 S3

S4

−→ · · · −→
k
S1

k

−→ 0.

This method has proven very powerful in the case of exceptional groups of
type E7(q) and E8(q), removing also some ambiguity in the planar embedding for
the Ree groups 2F4(q). Luckily, only small-dimensional Deligne–Lusztig varieties
were needed to complete the determination of the trees, which made checking the
vanishing of the cohomology possible.

Theorem 5.12 (Craven–Dudas–Rouquier [17]). All the planar embedded Brauer
trees of unipotent blocks of finite reductive groups are explicitly known in terms of
Lusztig’s parametrization of unipotent characters.

6. The Coxeter variety

The last chapter of these notes is devoted to the study of Deligne–Lusztig varieties
associated to a special class of Weyl group elements, called the Coxeter elements.
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These varieties were first studied by Lusztig [56]. Computing their ℓ-adic coho-
mology turned out to be a key ingredient in Lusztig’s subsequent work on the
classification of ordinary irreducible characters of finite reductive groups. We ex-
plain in this chapter how to extend Lusztig’s result to the modular setting, building
on work of Bonnafé–Rouquier [6] and the author [28, 30].

Throughout this chapter we will assume for simplicity that (G, F ) is split (i.e.
F acts trivially on the Weyl group). All the main results of this chapter can be
generalized to the case where a power of F acts trivially (which includes the case
of the Ree and Suzuki groups).

6.1. Geometry of the Coxeter variety. Let T be a split maximal torus of G,
contained in an F -stable Borel subgroup B of G. Recall that the simple reflections
s1, . . . , sr of the Weyl group W = NG(T)/T are exactly the elements s ∈ W such
that BsB/B has dimension 1.

A Coxeter element c of W is a product c = s1 · · · sr of all the simple reflections,
in any order. Coxeter elements are conjugate under W . The order of any Coxeter
element is the Coxeter number ofW , denoted by h. A Coxeter variety is a Deligne–
Lusztig variety X(c) or Y(ċ) attached to a Coxeter element. Since Coxeter elements
are the elements of minimal length in their conjugacy class, they are actually
conjugate by a sequence of cyclic shifts. Consequently, the cohomology of a Coxeter
variety does not depend on the choice of a Coxeter element. For that reason we
shall denote these varieties simply by X or Y. For more details on Coxeter elements
see [8, §V.6] and for Coxeter varieties see [56].

Example 6.1. Let G = GLn(Fp). The permutation c = (1, 2)(2, 3) · · · (n − 1, n) =
(1, 2, 3, . . . , n) is a Coxeter element of Sn. It has length n − 1 and order h = n.
For the general linear group the flag variety G/B can be identified with the set
of flags of vectors spaces V• = ({0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = F

n

p ) such that
dim

Fp
Vi = i. With this description, the Deligne–Lusztig variety associated to an

element w ∈ Sn is

X(w) ≃ {V• ∈ G/B | V• and F (V•) are in relative position w}.

Recall that two flags V• and V ′• are said to be in relative position w if there exist
e1, . . . , en ∈ F

n

p such that e1, . . . , ei is a basis of Vi and ew(1), . . . , ew(i) is a basis of
V ′i for each i = 0, . . . , n. With w = c = (1, 2, . . . , n) we deduce that V• ∈ X if and
only if e1, . . . , ei is a basis of Vi and e2, . . . , ei+1 is a basis of F (Vi). This can be
written Vi+1 = V1 ⊕ F (Vi), which yields in turn

Vi+1 = V1 ⊕ F (V1)⊕ · · · ⊕ F i(V1).
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This gives an explicit description of the Coxeter variety in the case of GLn(Fp) as

X ≃ {V1 ∈ P(F
n

p ) | F
n

p = V1 ⊕ F (V1)⊕ · · · ⊕ Fn−1(V1)}

≃
{
[x1 : x2 : · · · : xn] ∈ Pn−1

∣∣∣ x1 xq
1 · · · xqn−1

1

x2 xq
2 · · · xqn−1

2
...

...
...

xn xq
n · · · xqn−1

n

6= 0
}
.

If v ∈ W is such that v < c, then it is obtained from c by removing some simple
reflections. Therefore it is a product of simple reflections lying in a proper subset
I of S, and as such it is a Coxeter element of the parabolic subgroup WI of W .
We shall write v = cI . Consequently,

X(c) =
⊔

v≤c

X(v) =
⊔

I⊂S

X(cI). (6.1)

Let PI = BWIB (resp. LI) be the standard parabolic subgroup of G (resp. stan-
dard Levi subgroup of G) associated to I. Its unipotent radical will be denoted
by UI . We will write XI = XLI

(cI) for the Coxeter variety of LI . We have
X(cI) ≃ G/UI ×LI

XI and therefore

RΓc(X(cI),Λ) ≃ RG
LI

(
RΓc(XI ,Λ)

)
. (6.2)

(Recall that Λ is any ring among K, O and k).

There are two key properties of the Coxeter variety that are needed to compute
its cohomology (and to show that it is torsion-free). The first one is given by
(6.1). The second is a result of Lusztig [56] giving the quotient of X by unipotent
subgroups in terms of Coxeter varieties of Levi subgroups.

Proposition 6.2. Let I ⊂ S. There is a (non-equivariant) isomorphism of vari-
eties

UI\X ≃ XI × (Gm)r−|I|

which induces an LI × 〈F 〉-equivariant isomorphism of ℓ-adic cohomology groups

∗RG
LI

(
H•c (X,K)

)
≃ H•c (XI ,K)⊗K H•c (Gm,K)⊗r−|I|.

In particular, with I being the empty set we deduce that U∅\X ≃ (Gm)r. One
can actually refine Lusztig’s result as follows (see [30, Lem. 4.2]): if J = S r I is
the complement of I in S then

(UI ∩ UJ)\X ≃ XI × XJ . (6.3)

Again, this isomorphism is not equivariant for the action of PI or PJ in general.
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6.2. Cohomology over K. Using a combination of (6.1), Proposition 6.2 and
computations of #XFn

for n = 1, . . . , h (in order to use the Lefschetz trace formula,
see Theorem 2.12) Lusztig gave in [56] a complete description of the cohomology
of X over K, with the action of G and F .

Theorem 6.3 (Lusztig).

(i) A cuspidal character ρ ∈ IrrG occuring in the cohomology of X occurs in the
middle degree Hr

c (X,K) only.

(ii) The eigenspaces of F on H•c (X,K) give h mutually non-isomorphic irre-
ducible representations of G.

(iii) The eigenvalues of F on H•c (X,K), restricted to a given Harish-Chandra
series, are of the form

i r r + 1 · · · 2(r −mζ)

Hi
c(X,K) ζqmζ ζqmζ+1 · · · ζqr−mζ

for some root of unity ζ ∈ O× and some mζ ∈
1
2Z≥0. No constituent of

Hi
c(X,K) for i > 2(r −mζ) lies in that Harish-Chandra series.

Sketch of proof. If v < c then v = cI for some proper subset I of S and from
(6.2) we get H•c (X(v),K) ≃ RG

LI

(
H•c (XI ,K)

)
. Therefore H•c (X(v),K) contains no

cuspidal character. By Theorem 3.10, it follows that ρ cannot be a constituent
of Hi

c(X,K) for i 6= ℓ(w) = r, which proves (i). In addition, one can show using
the purity of X that F has eigenvalue ζqr/2 with |ζ| = 1 on the ρ-isotypic part of
Hr

c (X,K). Furthermore, it is a general property of the cohomology of Deligne–
Lusztig varieties that ζ is actually a root of unity.

Let ρ be a cuspidal character of LI for some I ⊂ S and set m = |I|. The
eigenvalue of F on the ρ-isotypic part of Hm

c (XI ,K) is of the form ζqm/2 for some
root of unity ζ ∈ O×. If χ is an irreducible character of G lying in the Harish-
Chandra series of (LI , ρ) then

∗RG
LI
(χ) is a non-zero multiple of ρ. In particular,

the eigenvalues of F on the Harish-Chandra series of (LI , ρ) correspond to the
eigenvalues of F on the ρ-isotypic part of ∗RG

LI

(
H•c (X,K)

)
, which by Proposition

6.2 and (i) are ζqm/2 times the eigenvalues of F on the cohomology of (Gm)r−m.
Assertion (iii) follows.

The proof of (ii) requires to compute the endomorphism algebra of H•c (X),
which would go beyond the scope of these notes.

Example 6.4. (a) Let G = GLn(Fp). Recall that the unipotent characters of
G are parametrized by partitions of n. We will represent them by their Young
diagram. Then the cohomology of the Coxeter variety (given in Example 6.1) with
the eigenvalues of F is

i n− 1 n n+ 1 · · · 2n− 3 2n− 2

Hi
c(X) (1) (q) (q2) · · · (qn−2) (qn−1)
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(b) Let G a group of type F4. Using the notation in [16, §13] for the unipotent
characters of G (in particular θ is a primitive third root of 1 and i a primitive
fourth root of 1), the cohomology of X is given by

i 4 5 6 7 8

Hi
c(X) St (1) φ4,13 (q) φ′′6,6 (q

2) φ4,1 (q
3) 1 (q4)

B2,ε (−q) B2,r (−q2) B2,1 (−q3)

F4[±i] (±iq2)

F4[θ] (θq
2)

F4[θ
2] (θ2q2)

cuspidal characters

series above B2

6.3. Cohomology over k. Since k is not flat over O, the mod-ℓ cohomology
of a variety is not the ℓ-reduction of the cohomology over O, but there is still an
explicit relation, called the universal coefficient theorem, given by the following
exact sequence (see for example [2, §2.7])

0 −→ k ⊗O Hi
c(X,O) −→ Hi

c(X, k) −→ TorO1 (H
i+1
c (X,O), k) −→ 0.

We will use it in the following particular case, for which we can give a direct proof.

Proposition 6.5. The middle cohomology group Hr
c (X,O) of the Coxeter variety

X is torsion-free.

Proof. We consider an O-free resolution of RΓc(X,O) which we truncate using τ̃≥r
(see §1.6 for the definition of the truncation). This yields quasi-isomorphisms

RΓc(X,O) ≃ (0 −→ Cr−1
d
−→Cr

d′

−→· · · )

RΓc(X, k) ≃ k
L
⊗O RΓc(X,O) ≃ (0 −→ kCr−1

d
−→ kCr

d
′

−→· · · )

where each Ci is O-free. Furthermore, since Hr−1
c (X, k) = 0 the map d is injective

(note that d is injective by definition). On the other hand, since Cr and therefore
Ker d′ is O-free the exact sequence 0 −→ Cr−1 −→ Ker d′ −→ Hr

c (X,O) −→ 0
tensored with k yields an exact sequence

0 −→ TorO1 (H
r
c (X,O), k) −→ kCr−1

d
−→ kKerd′ −→ kHr

c (X,O) −→ 0

which forces TorO1 (H
r
c (X,O), k) = 0.

Theorem 6.6. Assume that ℓ ∤ |G|. Then H•c (X,O) is torsion-free.

Proof. We proceed by induction on the semisimple rank of G. If G is a torus, then
X is a point and the result holds. Otherwise, if S is non-empty, one can consider a
proper subset I of S. Using the isomorphism of varieties UI\X ≃ XI × (Gm)r−|I|

given in Proposition 6.2 we get an isomorphism of O-modules

∗RG
LI

(
H•c (X,O)

)
≃ H•c (XI ,O) ⊗O H•c (Gm,O)⊗r−|I|.
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Note that we do not assume this isomorphism to be LI -equivariant. By induction,
the cohomology of XI (a Coxeter variety for the Levi subgroup LI) is torsion-
free. This shows that the torsion part of H•c (X,O) is killed under Harish-Chandra
restriction, and hence it is cuspidal.

By the universal coefficient formula, a cuspidal OG-submodule of Hi
c(X,O)

yields a subquotient of Hi
c(X, k). Let m be the largest degree of H•c (X, k) which

has a cuspidal subquotient M (or equivalently since kG is semisimple, a direct
summand). If m > r then Theorem 3.10 forces the kG-module M to occur in the
cohomology of a Deligne–Lusztig variety X(v) for v < w. But this is impossible by
(6.2). This, together with Proposition 6.5, shows that the cohomology of X is free
over O.

Question. Does the result hold for other Deligne–Lusztig varieties X(w)? If so,
can we replace the condition ℓ ∤ |G| by ℓ ∤ |TẇF |?

From now on we assume that ℓ divides Φh(q), the h-th cyclotomic polynomial
evaluated at q. We will also assume that ℓ ∤ h so that h is actually the order of q
modulo ℓ. We first observe from the explicit values of the eigenvalues of F given
in [56, Table 7.3] that:

(i) The classes in k of the h eigenvalues of F on H•c (X,K) are exactly the h-th
roots of unity in k.

Under the assumption on ℓ, all the proper standard Levi subgroups of G are ℓ′-
groups. Consequently, the proof of Theorem 6.6 shows that

(ii) The torsion-part of Hi
c(X,O) is a cuspidal OG-module.

Following Theorem 6.3.iii, let λζ = ζqmζ (resp. µζ = ζ−1qr−mζ ) be the eigenvalue
of F on H•c (X,K) within the Harish-Chandra series corresponding to ζ (resp. to
ζ−1) with the smallest (resp. largest) modulus. By Theorems 6.3 and 6.6 for XI ,
together with (i) we deduce the following property:

(iii) Let I be a proper subset of S. Then the generalized eigenspaces of F on the
cohomology of XI for the eigenvalues µζ and λζ satisfy H•c (XI , k)µζ

= 0 and

Hi
c(XI , k)λζ

= 0 for i 6= |I|.

Using this observation, we get, for i > r

Hi
c(X, k)λζ

≃ Hi
c(X, k)λζ

≃
(
H2r−i

c (X, k)µζ

)∗
≃

(
H2r−i

c (X, k)µζ

)∗

by (iii), (6.1) and (6.2) by Poincaré duality

by (iii), (6.1) and (6.2)

which is zero since 2r − i < r. This proves that

RΓc(X, k)λζ
≃ Hr

c (X, k)λζ
[−r] in Db(kG-mod). (6.4)

In addition, the universal coefficient formula shows that Hr
c (X, k)λζ

is the mod-ℓ

reduction of the KG-module Hr
c (X,K)λζ

. This information can be used in combi-
nation with the following result, which holds for a more general class of Deligne–
Lusztig varieties.
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Theorem 6.7 (Dudas–Rouquier [35]). Let m ∈ Z and q be the class of q in k.
Then

RΓc(X, k)qm ≃ Ω2mk

in kG-stab.

Idea of proof. One can compute explicitly the closed subvariety Xℓ of X consisting
of the points x ∈ X such that ℓ divides the order of StabG(x). Then the cohomology
complexes of Xℓ and X are isomorphic in kG-stab.

Choose m ∈ Z such that λζ ≡ qm modulo ℓ. Then Theorem 6.7 and (6.4)
show that Hr

c (X, k)λζ
≃ Ω2m−rk up to projective summands. This proves that

Ω2m−rk lifts to an OG-lattice with character Hr
c (X,K)λζ

, yielding information on
the Green walk around the Brauer tree of the principal ℓ-block when ℓ | Φh(q).

Example 6.8. Let G be a group of type F4, so that h = 12. Assume that q has
order 12 modulo ℓ. We choose θ (resp. i) to be congruent to q4 (resp. q3) modulo
ℓ. The various data attached to the representations occurring in the cohomology
group of X in middle degree are listed in the following table.

ζ 1 −1 i −i θ θ2

λζ 1 −q iq2 −iq2 θq2 θ2q2

qm q0 q7 q5 q11 q6 q10

2m− r −4 10 6 18 8 16
Hr

c (X)λ St B2,ε F4[i] F4[−i] F4[θ] F4[θ
2]

We get therefore [Ω−4O] = St, [Ω10O] = B2,ε, [Ω
6O] = F4[i], [Ω

8O] = F4[θ] and
the planar embedded Brauer tree is given in Figure 9.

StG φ4,13 φ′′6,6 φ4,1 1GB2,1 B2,r B2,ε

F4[i]

F4[−i]

F4[θ]

F4[θ
2]

Figure 9. Brauer tree of the principal Φ12-block of F4(q)

Knowing only the characters of the PIMs (in other words, the Brauer tree
without the planar embedding) we can finally show that the cohomology of X over
O is torsion-free when ℓ | Φh(q).

Theorem 6.9. Assume ℓ | Φh(q) and ℓ ∤ h, so that q has order h modulo ℓ. Then
H•c (X,O) is torsion-free.
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Idea of proof. Since the torsion part of the cohomology of X over O is cuspidal
(see (ii) above), it is enough to show that for every simple cuspidal kG-module
M , the complex RHomkG(PM , RΓc(X, k)) has zero cohomology outside the middle
degree r = ℓ(c). Indeed, by the universal coefficient formula this shows that the
torsion-part of RΓc(X,O) is in degree r only, and we can invoke Proposition 6.5
to conclude.

The computation of RHomkG(PM , RΓc(X, k)) is achieved by using the explicit
character of PM as follows. The shape of the tree, as conjectured in [53] and proved
in [35] ensures that M labels an edge incident to the exceptional vertex. In other
words, we have e([PM ]) = χexc + χ.

We distinguish two cases: assume first that χ is cuspidal, then PM does not
occur in any of the cohomology complexes RΓc(X(v), k) for v < c since otherwise
χ would occur in H•c (X(v),K) (recall that H•c (X(v),O) is torsion-free). Conse-
quently, the map RΓc(X, k) −→ RΓ(X, k) induces an isomorphism

RHomkG(PM , RΓc(X, k))
∼
−→RHomkG(PM , RΓ(X, k))

which proves that the cohomology of this complex vanishes in degrees higher than
dimX = r and lower than dimX.

Assume now that χ lies in a Harish-Chandra series above a proper Levi sub-
group LI of G. Writing S = I ⊔ J , one shows that PM is a direct summand of
R = IndGU Inf

U
U/UI∩UJ

(Q) for some (projective) kU/(UI∩UJ)-module Q. Now, with

Q̃ (resp. R̃) being a lattice lifting Q (resp. R), we obtain the following isomorphism
using adjunction and (6.3)

RHomOG(R̃, RΓc(X,O)) ≃ RHomOU/UI∩UJ
(Q̃, RΓc(X,O)

UI∩UJ )

≃ RHomOU/UI∩UJ
(Q̃, RΓc(XI ,O)⊗RΓc(XJ ,O)).

The cohomology of this complex is torsion-free by Theorem 6.6. Therefore the
same holds for RHomkG(P̃M , RΓc(X,O)). Now its cohomology over K vanishes
outside of the degree r since χ occurs in the cohomology of X in middle degree
only, and by the universal coefficient theorem the same holds over k.

6.4. Applications. Broué’s abelian defect group conjecture [10] predicts the ex-
istence of a derived equivalence between a block of a finite group with abelian
defect and its Brauer correspondent. In the case of finite reductive groups, defect
groups of unipotent blocks are generic. When ℓ is large enough and d is the order of
q modulo ℓ, they correspond to the ℓ-part of Φd-tori in G, and their centralizers are
d-Levi subgroups (see §5.2). Broué suggested in [10] that in this case the derived
equivalence should be induced by the cohomology complex of a Deligne–Lusztig
variety associated with such a d-Levi subgroup. This was proven by Bonnafé–
Rouquier and the author in the case when d = h is the Coxeter number.

Theorem 6.10 (Bonnafé–Rouquier [6], Dudas [28]). Assume that q has order h
modulo ℓ. The action of TċF on RΓc(Y,O) can be extended to an action of NGċF (T)
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such that the functor

RΓc(Y,O)
L
⊗ON

GċF (T)− : Db(ONGċF (T)-mod) −→ Db(OG-mod)

induces a derived equivalence between the principal blocks of NGċF (T) and G.

The extension of the action of TċF to NGċF (T) is essentially given by twisting
the action of the Frobenius endomorphism, since here NGċF (T)/TċF is a cyclic
group generated by the image of F . For more general blocks, it is expected that
the braid operators constructed in [13, 22] should provide the extension of the
action of the finite torus (see [12]).

Once we extended the action, the key point is to prove that RΓc(Y,O) is a
tilting complex, that is that

REndOG(RΓc(Y,O)) ≃ ONGċF (T)[0].

Rouquier proved in [64] that it is enough to show the vanishing of the cohomology
groups of that complex over k, that is to show that

RHomkG(RΓc(Y, k), RΓc(Y, k)[n]) ≃ 0 if n 6= 0. (6.5)

The solution to this problem given in [7] and [28, 30] relies on showing first that the
cohomology groups H•c (Y,O) are torsion-free and then to use the cohomology over
K (computed by Lusztig) to determineH•c (Y, k) and find an explicit representative
for RΓc(Y, k).

Proposition 6.11. Let χλ be the unipotent character corresponding to the general-
ized λ-eigenspace of F on Hnλ

c (X,K) for some nλ ≥ r. With the following notation
for the subtree of the Brauer tree of the principal ℓ-block of kG corresponding to
the Harish-Chandra series of χλ

Sr Sr+1 Snλ

χλ

the complex RΓc(Y, k)λ is isomorphic to

0 −→ PSr
−→ PSr−1 −→ · · · −→ PSnλ

−→ 0.

Sketch of proof. Lusztig’s result on the quotient of X (Proposition 6.2) can be
generalized to Y as follows. Let us decompose the torus TċF as TċF = (TċF )ℓ ×
(TċF )ℓ′ as a product of an ℓ-group and an ℓ′-group. We define Yℓ ≃ Y/(TċF )ℓ′ . It
is an intermediate quotient between Y and X ≃ Y/TċF whose cohomology contains
only the principal ℓ-block of TċF . Then one shows that for every proper subset I
of S there is an isomorphism of O-modules

∗RG
LI

(
H•c (Yℓ,O)

)
≃ H•c (XI ,O)⊗O H•c (Gm,O)⊗r−|I|.

In particular, the torsion part of the cohomology of Yℓ is cuspidal. As in the
case of X, it is enough to show that cuspidal modules occur in the middle degree
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only. This was proven for X along the way to Theorem 6.9. The same property
holds for Y since RΓc(Yℓ, k) ≃ RΓc(X, k(T

ċF )ℓ) is built from successive extensions
of RΓc(X, k) in the same way that k(TċF )ℓ is built from extensions of the trivial
representation.

By definition, the cohomology groups Hi
c(Yℓ,K) are the sum of the cohomol-

ogy groups Hi
c(Y,K)θ where θ runs over the irreducible ℓ-characters of TċF . When

θ = 1, Hi
c(Y,K)θ = Hi

c(X,K) which we know explicitly. When θ is non-trivial, the
assumption on ℓ forces θ to be in general position and Hi

c(Y,K)θ = 0 except when
i = r = ℓ(c) in which case it equals the exceptional character ±Rw(θ). Conse-
quently, a given eigenspace of F on Hi

c(Yℓ,K) is non-zero in at most two degrees,
one corresponding to the eigenspace on Hi

c(X,K), and the other being the middle
degree. Since RΓc(Yℓ,O) is a direct summand of the perfect complex RΓc(Y,O)
(recall that it corresponds to the principal block of TċF ) then RΓc(Yℓ,O) is also
perfect and therefore [RΓc(Yℓ,K)] is the character of a virtual projective module.
This forces each generalized λ-eigenspace of F to be of the following form

H•c (Yℓ,K)λ = χexc[−r]⊕ χλ[−nλ] (6.6)

where nλ is the unique degree of the cohomology of X on which F acts by λ and
χλ is the corresponding unipotent character (we assume here that λ is one of the
eigenvalues listed in Theorem 6.3.iii).

From the shape of the Brauer tree we observe that nλ− r+1 is exactly the dis-
tance between the node labeling χexc and the node labeling χλ. On the other hand,
since the cohomology of Yℓ is torsion-free we deduce from (6.6) and Proposition
5.9 that

Hr
c (Yℓ, k)λ ≃ Ωnλ−r+1Hnλ

c (Yℓ, k)λ (6.7)

in the stable category. Both cohomology groups lift to OG-lattices with charac-
ters χexc and χλ, therefore they have no projective summands and the previous
isomorphism holds in kG-mod.

Recall from the remark following (1.2) that we have a distinguished triangle in
Db(kG-mod)

Hr
c (Yℓ, k)λ[−r] −→ RΓc(Yℓ, k)λ −→ Hnλ

c (Yℓ, k)λ[−nλ] 

which is determined by a map Hnλ
c (Yℓ, k)λ[−nλ] −→ Hr

c (Yℓ, k)λ[−r + 1], which

is in turn determined by an element of Extnλ−r+1
kG (Hnλ

c (Yℓ, k)λ, H
r
c (Yℓ, k)λ). By

Proposition 1.23 and the isomorphism (6.7), this group of extensions is isomorphic
to EndkG(H

nλ
c (Yℓ, k)λ) and hence it is one-dimensional. Therefore up to isomor-

phism there is a unique non-zero map Hnλ
c (Yℓ, k)λ[−nλ] −→ Hr

c (Yℓ, k)λ[−r + 1],
and the mapping cone of this map can be obtained from a truncated projective
resolution of Hnλ

c (Yℓ, k)λ, which is exactly the complex given in the theorem.

Now this representative is exactly the one given by Rickard in [61] to construct
a tilting complex for Brauer trees algebras. In particular, it satisfies (6.5) and
Theorem 6.10 follows.
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