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Abstract. We show that parabolic Kazhdan-Lusztig polynomials of type A compute the
decomposition numbers in certain Harish-Chandra series of unipotent characters of finite
groups of Lie types B, C and D over a field of non-defining characteristic ℓ. Here, ℓ is
a “unitary prime” – the case that remains open in general. The bipartitions labeling the
characters in these series are small with respect to d, the order of q mod ℓ, although they
occur in blocks of arbitrarily high defect. Our main technical tool is the categorical action
of an affine Lie algebra on the category of unipotent representations, which identifies the

branching graph for Harish-Chandra induction with the ŝld-crystal on a sum of level 2 Fock
spaces. Further key combinatorics has been adapted from Brundan and Stroppel’s work
on Khovanov arc algebras to obtain the closed formula for the decomposition numbers in a
d-small Harish-Chandra series.

Introduction

For a finite group G, decomposition numbers encode how ordinary irreducible representations
behave after reduction modulo a prime number ℓ. In this paper, we study the case where G
is one the finite classical groups SO2n+1(q), Sp2n(q), O

±
2n(q) and ℓ is prime to q (non-defining

characteristic).

Computing the whole decomposition matrix can be done blockwise, and using the Jordan
decomposition one can often restrict to the unipotent blocks, which are the ones containing
unipotent characters (see [1, Thm. 11.8]). However, even for those blocks, computing the
decomposition numbers explicitly seems out of reach. Still, for finite general linear groups, they
can be related to Kazhdan–Lusztig polynomials, at least when ℓ is large enough with respect
to n. Our main result gives a similar interpretation for classical groups, see Corollary 4.2, but
in a much more restrictive case.

Let d be the multiplicative order of q in F
×
ℓ . When d is odd (the linear prime case), the

representation theory of unipotent blocks of classical groups is governed by that of finite general
linear groups. When d is even (the unitary prime case), much less is known. For example, the
decomposition numbers for unipotent blocks of Sp2n(q) in the unitary case have been determined
up to n = 4 only, and quite recently: in 1998 for n = 2 [23], in 2014 for n = 3 [19] and in 2022
for n = 4 [10]. The standard strategy for computing these numbers is the following:

(1) Compute the projective cover of cuspidal representations ;
(2) Decompose the module obtained by Harish-Chandra induction of that projective cover.

We will work under two assumptions which will allow to solve these two problems: first, we
will restrict our ordinary irreducible characters to a given Harish-Chandra series. Second, we
will impose a smallness condition with respect to d on the Lusztig symbols in the series. The
exact condition is given in Section 3.1. In this setting, cuspidal representations, when they
occur, are always the “smallest” within the series with respect to the partial order on symbols.
Thus problem (1) is no problem thanks to the unitriangular shape of the decomposition matrix.
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Everything then hinges on problem (2) – and it turns out to be tractable for these series.
Note that we end up working with blocks of any defect, even though in our situation the
decomposition numbers turn out to be either 0 or 1.

Let us be more precise on the behaviour of (2). Using the ŝld-action constructed in [13], one
can break the Harish-Chandra induction functor into pieces, and obtain an i-induction functor
Fi for each i ∈ Z/dZ. If PS is the projective cover of a simple module S of highest weight (for the
action of sl2 corresponding to some i ∈ Z/dZ), then Fn

i (PS) is very close to being the projective
cover of Fn

i (S). The difference involves only characters which are in the image of Fn+1
i , see

Proposition 1.3 for an exact statement. With our assumption on the Harish-Chandra series,
all these extra characters lie in another series, hence do not contribute to the decomposition
numbers we are interested in.

The explicit computation of the decomposition numbers now boils down to knowing exactly
how to compute the i-induction on unipotent characters and simple modules in characteristic ℓ.
Under our assumptions, one can attach to each irreducible character/module an up-down dia-
gram and a cup diagram as in [5, 4] and obtain an elementary description of the action of Fi

on these combinatorial data as in [6]. See Section 3, which takes its cue from the analogous
situation for Hecke algebras at d = ∞ [6, 4]. This combinatorial set-up positions us to prove our
main theorem, Theorem 4.1, in an inductive way using Proposition 1.3. The latter exploits the
small highest weight of the simple sl2-modules in which such characters are found with respect
to the categorical action on the category of representations. We observe that we get the exact
same formula as in [4, 5], thus relating the decomposition numbers within the Harish-Chandra
series to the parabolic Kazhdan–Lusztig polynomials for a maximal parabolic in type A.

1. Categorical sl2-action

In this section we prove a formula relating the character of the projective cover of a simple
module S and the character of the projective cover of its highest weight support. Only part of
the character can be controlled, but this will be sufficient to show in Section 4 how to compute
decomposition numbers from the case of cuspidal simple modules.

1.1. Recollection on categorical actions. We recall here some of the features of sl2-actions
on categories as defined in [7, 24].

Let Λ be a ring with unit and V be a Λ-linear abelian category. A categorical datum on V
is given by a pair of biadjoint exact endofunctors E and F of V , together with two natural
transformations X ∈ End(E) and T ∈ End(E2) satisfying the relations given in [24, 3.3.3] in
the case of sl2. Equivalently, we require that X and T induce an action of the affine nil-Hecke
algebra of Sn on the functor En for all n ≥ 0. Using that structure one can define the divided
power functors E(n) and F (n) which are still exact and biadjoint. They satisfy

En ≃
(
E(n)

)⊕n!
and Fn ≃

(
F (n)

)⊕n!
.

Assume now that Λ is a field and that V has finite length. An sl2-categorical action on V is
given by a categorical datum (E,F,X, T ) and a decomposition

V =
⊕

ω∈Z

Vω
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of V into abelian categories (which we will call weight categories). Furthermore, the functors
E and F should shift the weights by 2 and −2 respectively

Vω

E
,,

kk

F

Vω+2

such that in the Grothendieck group K0(Vω), the commutator [E][F ] − [F ][E] acts by multi-
plication by ω. In particular the class e = [E] and f = [F ] of the functors in the complexified
Grothendieck group V = C ⊗Z K0(V) induce an action of sl2 for which the weight space of
weight ω is exactly Vω = C ⊗Z K0(Vω). Note that we will always assume that this action is
integrable, so that e and f are locally nilpotent.

For such a notion of sl2-action on a category, the divided power functors satisfy the following
identity on weight spaces of weight ω ≥ 0, see [24, Lem. 4.8]

(1.1) E(n)F (n)∣∣Vω

≃ 1
⊕(ωn)
Vω

⊕
(
FE∣∣Vω

)⊕( ω

n−1) ⊕
(
F (2)E(2)∣∣Vω

)⊕( ω

n−2) ⊕ · · · ⊕ F (n)E(n)∣∣Vω

.

We now assume that End(S) ≃ Λ for all simple objects S ∈ IrrV . In that case it is proven in
[7, Prop. 5.20] that E(S), if non-zero, has simple socle and head and that they are isomorphic.
Successive applications of E give a highest weight semi-simple object. We will use the further
following properties, which are also proved in [7, Prop. 5.20].

Lemma 1.2. Let S ∈ IrrVω and n ≥ 0 be such that En+1(S) = 0 and En(S) 6= 0.

(1) E(n)(S) is simple.

(2) The socle and head of F (n)E(n)(S) are isomorphic to S.

(3) The simple module S occurs in F (n)E(n)(S) with multiplicity
(
ω+2n

n

)
as a composition

factor.

1.2. Decomposition numbers. Let O be a complete discrete valuation ring, with residue field
k of positive characteristic and fraction field K of characteristic zero. Let {Gr}r∈N be a family
of finite groups. We consider the category

ΛG =
⊕

r≥0

ΛGr−mod

which is the sum of the categories of finitely generated representations of Gr over Λ, where Λ

is any ring among K,O, k. If k and K are large enough for all the finite groups encountered, the
following conditions will be satisfied:

• For Λ = K, k, the category ΛG has finite length and End(S) = Λ for all S ∈ IrrkG.
• Every S ∈ IrrkG has a projective cover PS in kG, unique up to isomorphism.

• Every projective module P in kG lifts uniquely to a projective module P̃ in OG.
• KG is semisimple.

If S ∈ IrrkG and ∆ ∈ IrrKG, the decomposition number of S in ∆ is the multiplicity of ∆ as a

direct summand (equivalently, a composition factor) of K ⊗O P̃S . We denote it by

[PS : ∆]

in a way which will look familiar to the reader interested in highest weight categories.

Now, let V be a direct summand of OG. We assume that (E,F,X, T ) is a categorical datum
on V inducing an sl2-categorical action on kV . This is to ensure that the divided powers E(n)

and F (n) defined in the previous section can be lifted to exact and biadjoint endofunctors of V ,
even though V itself does not have an action of sl2 since its Grothendieck group might be too
big. The image of these functors by extension of scalars will be still denoted by E(n) and F (n).



4 OLIVIER DUDAS AND EMILY NORTON

Proposition 1.3. In the previous setting, let S ∈ IrrkV and n ≥ 0 be such that En+1(S) = 0
and En(S) 6= 0. Then

[PS : ∆] = [PE(n)S : E(n)∆]

for all irreducible characters ∆ ∈ IrrKV such that En+1∆ = 0.

Proof. Let ω be the weight of the simple module T = E(n)S. Note that ω ≥ 0 since the class of
T is a highest weight vector. Since S is the head of F (n)E(n)S by Lemma 1.2(2) we have that
F (n)PT contains PS as a direct summand. We write

(1.4) F (n)PE(n)S = PS ⊕Q

for some projective module Q. We want to have some control on the character of Q, so for that
we compute the image of (1.4) by E(n). Using (1.1) we have

E(n)PS ⊕ E(n)Q = E(n)F (n)PT = P
⊕(ωn)
T ⊕ FEP

⊕( ω

n−1)
T ⊕ · · · ⊕ F (n)E(n)PT .

Now we claim that E(n)PS contains
(
ω
n

)
copies of PT . Indeed, the weight of S equals ω − 2n

and we have

Hom(E(n)PS , T ) = Hom(E(n)PS , E
(n)S) ≃ Hom(PS , F

(n)E(n)S)

which has dimension
(
ω
n

)
by Lemma 1.2.(3). This proves that E(n)Q is a direct summand of a

sum of modules of the form F (k)E(k)(PT ) where k ≥ 1. By the lifting property of projective
modules, the same holds over O.

Now, let ∆ be an irreducible character of KV such that [Q : ∆] 6= 0. In other words, ∆

is isomorphic to a submodule of K ⊗O Q̃, and since E(n) is exact, E(n)∆ is isomorphic to a

submodule of K ⊗O E(n)Q̃. Furthermore, it must be non-zero since by definition Q̃ is a direct

summand of F (n)P̃T , putting ∆ in the image of F (n). Now by the previous paragraph, there
is k ≥ 1 such that [F (k)E(k)(PT ) : E

(n)∆] 6= 0, which forces E(k)E(n)∆, and therefore En+k∆
to be non-zero. We showed that En+1∆ = 0 implies [Q : ∆] = 0, which gives the result by
(1.4). �

Remark 1.5. The same result (with analogous proof) would hold for highest weight categories
and standard objects ∆.

2. Unipotent representations of finite classical groups

By a finite classical group Gn(q) we will always mean one of the following groups:

Group SO2n+1(q) Sp2n(q) O+
2n(q) O−

2n(q)

Type Bn Cn Dn
2Dn

where q > 1 is a power of some odd prime. The convention for small values of n is that SO1(q) =
Sp0(q) = O±

0 (q) = 1 is the trivial group, O+
2 (q) = GL1(q) ⋊ Z/2 and O−

2 (q) = GU1(q) ⋊ Z/2
are 1-dimensional tori (of respective orders q − 1 and q + 1) extended by Z/2.

We will work with modular representations, therefore with different coefficient rings for our
representations. As in Section 1.2 we fix a complete discrete valuation ring O with residue field
k and fraction field K. We assume that K has characteristic zero, k has characteristic ℓ > 0
and that they are both large enough for all the finite groups encountered. In particular, every
irreducible representation over K or k will be absolutely irreducible. We will always work under
the assumption that ℓ is odd and does not divide q. The multiplicative order d of q in k× will
be assumed to be even, so that we work in the unitary prime case.
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Note that some of the results contained in this section for the groups O±
2n(q) have not been

published yet. Still, we have decided to include these groups since the combinatorics is not much
different from the groups of type B/C, and since there are work in progress by Li–Shan–Zhang
[21] and Cia-Luvecce [8] which will contain all the results we need here.

2.1. Combinatorics. We recall here the combinatorics that is used to classify the unipotent
characters and unipotent blocks of finite classical groups in the unitary prime case.

2.1.1. Partitions and symbols. Let m be a non-negative integer. A partition λ of m is a non-
increasing sequence of non-negative integers λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) which add up to m,
the size |λ| of λ. A bipartition λ = λ1.λ2 of m is a pair of partitions (λ1, λ2) such that
|λ1|+ |λ2| = m. A charged bipartition |λ, s〉 is the data of a bipartition and a pair of integers
s = (s1, s2) ∈ Z2, called the charge.

To a charged bipartition |λ, s〉 one can attach a charged symbol Θ(λ, s) corresponding to
the pair of charged β-sets coming from the two partitions. More precisely, we have Θ(λ, s) =
(X1, X2) where

Xk = {sk + λj − j + 1 | j ≥ 1}.

A symbol will be represented by the corresponding 2-abacus, with the first row X1 on the
bottom. The defect of a charged symbol Θ = Θ(λ, s) is def(Θ) = s2 − s1.

Example 2.1. The charged symbol of charge (−4, 3) and bipartition 13.221 will be represented
as follows

row 2

row 1

6543210-1-2-3-4-5-6-7

2.1.2. Adding and removing boxes. The unipotent characters will be parametrized by such sym-
bols. In order to explain how the induction and restriction of unipotent representations behave
on symbols, we will need the notion of addable/removable boxes. Recall that d is a fixed even
integer. Let i ∈ Z/d and Θ = (X1, X2) be a charged symbol. An addable i-box of Θ in the row
k ∈ {1, 2} is an integer x such that

• x ≡ i + (k − 1)d2 mod d;
• x ∈ Xk and x+ 1 /∈ Xk.

Adding the i-box x in the symbol Θ consists in replacing x by x+ 1 in Xk. A removable i-box

of Θ in the row k ∈ {1, 2} is an integer x such that

• x ≡ i + (k − 1)d2 mod d;
• x /∈ Xk and x+ 1 ∈ Xk.

Removing the i-box x in the symbol Θ consists in replacing x+ 1 by x in Xk.

There is a notion of good addable/removable i-box, see for example [20, Section 3], [15,
Theorem 2.8]. Given i, there is at most one good addable/removable i-box in a charged symbol,

and it can be used to describe the Kashiwara operators f̃i and ẽi on charged symbols (or charged
bipartitions in other contexts).

Remark 2.2. The reader might be surprised by the occurrence of d/2 in the definition of
addable/removable boxes. This comes from the fact that the charges of our symbols will come
from parameters (qs1 ,−qs2) in the Hecke algebra. Using the fact that −1 = qd/2, one should
rather work with symbols of charge (s1, s2 + d/2), but that will remove the symmetry from
the combinatorics of d/2-co-hooks and d/2-co-cores. We have chosen to work with the original
symbol parametrizing a characteristic 0 unipotent character, while shifting the notion of i-boxes
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to account for its behavior in quantum characteristic d. This way we are consistent with the
usual description of unipotent ℓ-blocks. The discrepancy also appears in Section 2.6 where the
charge on bipartitions and symbols differs by (0, d/2).

Adding and removing boxes does not change the charge. Removing all the possible boxes
yields a symbol containing in each row only consecutive integers. Such a symbol corresponds to
the empty bipartition, and the charge equals (max(X1),max(X2)) where (X1, X2) is the β-set
of the empty bipartition.

Example 2.3. Let us consider the symbol drawn in Example 2.1. Assume d = 8. Then there
are two addable 1-boxes, the one in the top row being a good addable 1-box.

row 2

row 1

6543210-1-2-3-4-5-6-7

2.1.3. Co-hooks and co-cores. Let e ≥ 1 be a positive integer. Given a charged symbol Θ =
(X1, X2), a e-co-hook in row k is a pair (x, x− e) where x ∈ Xk and x− e /∈ Xk+1 (here k + 1
must be understood modulo 2). Removing the e-co-hook to Θ amounts to removing x from Xk

and adding x − e to Xk+1 and swapping X1 and X2. If Θ has charge (s1, s2) then removing
a e-co-hook yields a symbol of charge (s2 ± 1, s1 ∓ 1). A charged symbol with no e-co-hook is
called a e-co-core.

Example 2.4. Let us again consider the symbol drawn in Example 2.1. There are four 4-co-
hooks, all being in the top row.

row 2

row 1

6543210-1-2-3-4-5-6-7

2.2. Harish-Chandra series of unipotent characters. We follow [16] for the groups of
type B/C and [27] for the groups of type D. We start by describing the cuspidal irreducible
unipotent characters of Gn(q).

• SO2n+1(q) and Sp2n(q) have a cuspidal unipotent character if and only if n = t2 + t for
some t ∈ N. In that case it is unique, and we denote it by ∆t.

• O+
2n(q) has a cuspidal unipotent character if and only if n = t2 for some t ∈ 2N. If

t = 0, there is a unique one, denoted by ∆0. If t 6= 0, there are exactly two, which we
denote by ∆t and ∆−t.

• O−
2n(q) has a cuspidal unipotent character if and only if n = t2 for some t ∈ 2N+ 1. In

that case there are exactly two, which we denote again by ∆t and ∆−t.

Note that t2+ t is unchanged by the transformation t 7→ −t−1, so writing ∆t with t ∈ Z makes
sense in all cases, with the convention that ∆t = ∆−1−t for groups of type B/C.

Let n,m, t ≥ 0 be such that Gn(q) has a cuspidal unipotent character ∆t. Then the unipotent
characters of Gn+m(q) above ∆t are parametrized by bipartitions of m.

2.3. Classification of unipotent characters. In order to have a global treatment of all the
Harish-Chandra series, we define, for each t ∈ Z, the following charge

σt =





(t,−1− t) if t is even and Gn is of type B/C,
(−1− t, t) if t is odd and Gn is of type B/C,
(t,−t) if t is even and Gn is of type D,
(−t, t) if t is odd and Gn is of type 2D.
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Then unipotent characters are classified by charged symbols of charged σt, see Section 2.1 for
the definition or properties of symbols. In a series above ∆t, the symbols will have defect 2t+1,
−2t− 1, 2t, −2t depending on the type of groups and the parity of t.

Given a charged symbol Θ with charge σt (t ∈ Z), we will denote by ∆Θ the corresponding
unipotent character. Note that there are no unique such parametrization, but the one we will
choose comes from a categorical action and it will satisfy the properties given in the following
sections.

2.4. Unipotent blocks. Recall that the multiplicative order of q in k
×, denoted by d, is

assumed to be even. A unipotent ℓ-block is an ℓ-block containing at least one unipotent char-
acter. The partition of unipotent characters into ℓ-blocks can be read off from the labelling of
unipotent characters by symbols. By [16, 25], one can chose the parametrization such that two
unipotent characters are in the same ℓ-block if and only if the corresponding symbols have the
same d/2-cocore.

2.5. Classification of unipotent simple modules over k. Under the assumptions on q and
ℓ, the decomposition matrix of the unipotent blocks of classical groups have a unitriangular
shape. This is proven for finite classical groups coming from connected reductive algebraic
groups in [3], and the case of O±

2n(q) follows for example from [14, Thm. 3.1]. In particular,
the parametrization of unipotent characters by charged symbols yields a parametrization of the
irreducible unipotent representations over k as well. Given a charged symbol Θ with charge σt

(t ∈ Z), we will denote by SΘ the corresponding simple representation.

2.6. Categorical action. Let Gn(q) be a finite classical group. We denote by OGn(q)−umod

the category of finitely generated unipotent representations of Gn(q) over O. It is the direct
summand of OGn(q)−mod corresponding to the sum of all unipotent blocks. The type of finite
classical group being fixed, we denote by V the category

V :=
⊕

n≥0

OGn(q)−umod.

Recall that we work in the unitary prime case, where d, the multiplicative order of q in
k×, is even. In that case, there is, for every i ∈ Z/d, a categorical datum on V inducing an
sl2-categorical action on kV . We will denote by Ei and Fi the corresponding functors (over
any ring of coefficient between K, O and k). These functors are defined using Harish-Chandra
induction and restriction functors, see [12, 13] for more details for their construction.

These various sl2-categorical actions come from an ŝld-categorical action. We shall not use
that fact since we will be working with each action separately. However, it is important to
know that one can chose the parametrisation of unipotent characters in such a way that one
can actually compute the action of eachEi, Fi on irreducible unipotent characters and unipotent
Brauer characters. More precisely, if we define

(2.5) st = σt + (0, d/2)

then there exists an isomorphism of ŝld-modules

(2.6)
C ⊗Z K0(kV)

∼
−→

⊕

t

F(st)

[
∆Θ(λ,σt)

]
7−→ |λ, st〉

where F(st) is the level 2 Fock space of charge st, and
[
∆
]
denotes the class of any ℓ-reduction

of the character ∆. Note that depending on the type of the classical group Gn, the integer t
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will run over the non-negative integers only (for type B/C), over all the even integers (for type
D) or over all the odd integers (for type 2D).

Note that the action of ŝld on the Fock space F(st) depends only on the charge up to shifts
by (0, d) and (d, 0).

However, st ∈ Z
2 is chosen so that the map

SΘ(λ,σt) 7−→ |λ, st〉

induces an isomorphism between the crystals (which are sensitive to the charge, not only the
residue class of the components of the charge). This is proven for type B/C in [11, Thm. 1.7],
and the same proof should work for type D and 2D once we have a good parametrization.

2.7. Explicit formulas. The categorification results contained in the previous section were
proven to get an explicit description of the Harish-Chandra induction and restriction functors
on the unipotent representations in both characteristic zero and ℓ. Given a charged symbol Θ
with charge σt, we have

(2.7) Ei

(
∆Θ

)
=

⊕

j≡i mod d
ΘrΨ=j

∆Ψ

so that Ei removes all the possible removable i-boxes from the charged symbol Θ.
(2.8)

socEi

(
SΘ

)
= hdEi

(
SΘ

)
=

{
0 Θ has no good removable i-box,
SΨ if Ψ is obtained from Θ by removing the good i-box.

Similar formulas are obtained for the action of Fi by adjunction.

3. The diagrammatics of d-small symbols

In this section, we adapt the combinatorics in [4, 5, 6] to an appropriate class of symbols
labeling unipotent characters of types B, C, D and 2D. This will position us to prove the
formula for decomposition numbers in Theorem 4.1 using Proposition 1.3.

3.1. d-small symbols. Given a symbol Θ, we work with its graphical representation as two
rows of beads and spaces, and so we will often refer colloquially to the elements β ∈ Θ as beads
and to the elements of (Z,Z) \Θ as spaces.

Definition 3.1. Let Θ = (X1, X2) be a symbol. For each i = 1, 2, define the interval Ji =
[ci, di] ⊂ Z by

di = max{β ∈ Z | β ∈ Xi}

and
ci = max{z ∈ Z | β ∈ Xi for all β < z}.

Fix d ∈ 2N. We say Θ is d-small if there exist intervals I1 := [a1, b1], I2 := [a2, b2] ⊂ Z satisfying
the following conditions:

• bi − ai =
d
2 − 1 for i = 1, 2,

• Ji ⊆ Ii for i = 1, 2,
• b2 ≡ b1 +

d
2 mod d.

Given a d-small symbol Θ, we define the right region to be the region of Θ containing beads
in the larger interval of integers Ij , and the left region to be the region of Θ containing beads in
the smaller subset of integers Ij+1 (taking the subscript mod 2). We define the middle region to
region of the symbol between the left and right regions. We note that the length of the middle
region is always a multiple of d. The middle region contains only beads in the row containing
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the beads of the right region, and only spaces in the row containing the spaces of the left region.
The left region always contains only beads in one row (the same row as the beads of the middle
region) while the right region always contains only spaces in the opposite row. By abuse of
language, we will often refer to the intervals Ij and Ij+1 of Z as the right and left regions, and
the interval of integers between them as the middle region.

Example 3.2. The following symbol is d-small for d = 12:

row 2

row 1

6543210-1-2-3-4-5-6-7

The left region must be chosen to be [−6,−1] and the right region to be [0, 5], and we have
marked these regions with the vertical lines in the abacus diagram. The middle region is empty
in this example.

Example 3.3. We take d = 10 and consider the following symbol. We see that it is d-small,
with right region [5, 9] and left region [−10,−6]. The middle region has length d in this case.

row 2

row 1

94-1-6-11

Example 3.4. Consider the following symbol.

row 2

row 1

109876543210-1-2-3-4-5-6-7-8-9-10

Take d = 16. Then this symbol is d-small with four different possible choices for the left and
right regions. They are:

(1) left region = [−9,−2], right region = [−1, 6],
(2) left region = [−8,−1], right region = [0, 7],
(3) left region = [−7, 0], right region = [1, 8],
(4) left region = [−6, 1], right region = [2, 9].

Remark 3.5. Recall that if Θ = Θ(λ,σ) is the symbol attached to the charged bipartition
|λ,σ〉, then |λ, (σ1, σ2 +

d
2 )〉 =: |λ, s〉 is the charged bipartition for the Fock space as in (2.6).

Then Θ is d-small if and only if the set of residues of the charged contents of boxes in |λ, s〉 is
contained in a closed interval of length d

2 − 1 modulo d.

3.2. Diagrams.

Definition 3.6. Fix d ∈ 2N. Let Θ be a d-small symbol. Write the right region as
Ij = m + [1, d

2 ] ⊂ Z for some m ∈ Z. Let kd be the length of the middle region, k ∈ N.
To Θ we associate an up-down diagram w∧∨(Θ) = w1w2 · · ·w d

2
consisting of a word of length

d
2 in the alphabet {∧,∨, ◦,×}. Each βi = m + i ∈ Ij determines the i’th letter wi of w∧∨(Θ)
according to the rule:

• if βi ∈ Θ and βi − kd− d
2 occurs in both rows of Θ, then wi = ×,

• if βi ∈ Θ and βi − kd− d
2 occurs only once in Θ, then wi = ∧,

• if βi /∈ Θ and βi − kd− d
2 occurs in both rows of Θ, then wi = ∨,
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• if βi /∈ Θ and β − kd− d
2 occurs only once in Θ, then wi = ◦.

Thus, the up-down diagram of Θ records what happens in the left and right regions of Θ, in
the opposite rows where a mix of beads and spaces is possible. Putting the right region on top
of the left region, the rules corresponds to the following possibilities:

(3.7)

× ∧ ∨ ◦

Left region

Right region

Definition 3.8. Given a d-small symbol Θ, we further associate to it a cup diagram c∧∨(Θ).
It is uniquely determined from w∧∨(Θ) and consists of non-crossing counterclockwise arcs and
rays attached to the ∨’s and ∧’s of w∧∨(Θ) by the following recursive procedure. Start with
a pair ∨ · · · ∧ which are either adjacent (i.e. wiwi+1 = ∨∧ for some i), or have only × and ◦
symbols between them. Connect the ∨ to the ∧ with a curved arc (a “cup”). Considering the
∨ and ∧ symbols as directional, the cup is counterclockwise-oriented as its left endpoint is ∨
and its right endpoint is ∧. Next, continue to connect with cups any ∨ · · · ∧ pairs which are
adjacent, or have only × and ◦ symbols and previously constructed cups between them. When
no more counterclockwise cups can be constructed by this rule, attach vertical rays below the
remaining ∧ and ∨ symbols.

Example 3.9. We continue with Example 3.2. We have w∧∨(Θ) = ∧ ∨ × ∨ ∧ ∧ and the
associated cup diagram c∧∨(Θ) is:

c∧∨(Θ) = ∧ ∨ × ∨ ∧ ∧

Example 3.10. Let d = 28 and consider the following d-small symbol:

1514131211109876543210-1-2-3-4-5-6-7-8-9-10-11-12-13-14

Putting the right region on top of the left region we have

hence according to (3.7) we get the following up-down diagram:

w∧∨(Θ) = ∧ ∧ ∨ ∨ ◦ ∧ ∨ ∧ ∧ × ∨ ∨ ∧ ◦

and
c∧∨(Θ) = ∧ ∧ ∨ ∨ ◦ ∧ ∨ ∧ ∧ × ∨ ∨ ∧ ◦

We remark that the rays will not play any role in computing decomposition numbers; what
is important for our purposes are the cups in c∧∨(Θ). Likewise the × and ◦ symbols play a
placeholder role. In the situation of Example 3.4 where there is more than one choice for the
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left and right regions, different choices are reflected in w∧∨(Θ) by replacing a prefix of ×’s with
a suffix of the same number of ◦’s or vice versa.

3.3. The cocore of a d-small symbol.

Lemma 3.11. Let Θ be a d-small symbol and let Θ◦ be its cocore. Then Θ◦ is a d-small symbol,

its middle region has length 0, and w∧∨(Θ
◦) is obtained from w∧∨(Θ) by replacing all ∧ by ∨.

Proof. We will induct on k where kd is the length of the middle region of the d-small symbol Θ.
Suppose k = 0, so the middle region has length 0. Given an occurrence of ∧ in w∧∨(Θ), there
is a bead in the corresponding position of the right region and a space d

2 to its left and in the
opposite row. Thus each ∧ yields a removable cohook, and conversely, any removable cohooks
are given in this way by the ∧’s in w∧∨(Θ). Removing such a cohook moves the bead in question
from the right region to the left region. Do this for each ∧ in w∧∨(Θ), then flip the resulting
symbol upside-down if the number of ∧’s in w∧∨(Θ) is odd. No more cohooks can be removed
from the resulting symbol, so we have found the cocore Θ◦ of Θ. It is clear that Θ◦ has the
desired description.

Next, suppose by induction that if Ψ is a d-small symbol whose middle region has length
kd then Ψ◦ has the desired description. Let Θ be a d-small symbol whose middle region has
length (k + 1)d. Partition the middle region into equal segments of length d

2 . For the leftmost

such segment of length d
2 (adjacent to the left region), move the i’th bead d

2 to the left and to
the opposite row if there’s a space in the i’th position there, thus, if ∧ or ◦ is the i’th letter of
w∧∨(Θ). For all other beads in the middle and right regions, they all belong to the same row.
The opposite row has only empty spaces in the middle and right regions. We move these beads
d
2 to the left and to the opposite row. Finally, flip the symbol upside down if the total number
of beads moved was odd. Call this symbol Ψ. We have removed some number of cohooks from
Θ to obtain Ψ, so Ψ has the same cocore as Θ. We observe that Ψ has the same pattern of
beads and spaces in its left and right regions as Θ. Thus w∧∨(Ψ) = w∧∨(Θ). However, the
middle region of Ψ has length kd. Applying induction, Θ◦ has the desired description. �

A d-small symbol Θ is determined by the length of its middle region together with w∧∨(Θ),
up to flipping the symbol upside-down. In type B, that is when the defect of the symbol is
odd, by convention the flip of the symbol upside-down labels the same unipotent character.
Thus when Θ is the symbol of a type B unipotent character, the preceding lemma completely
characterizes the cocore of Θ. In the case of type D or 2D unipotent characters, that is when the
defect of the symbol is even, the lemma characterizes the cocore up to flipping it upside-down
(these label two different unipotent characters in that case).

Example 3.12. Take d = 12 and the following d-small symbol Θ:

row 2
row 1

1260-6-12

We have w∧∨(Θ) = ◦ × ∧ ◦ ∨ ∧ . Then w∧∨(Θ
◦) = ◦ × ∨ ◦ ∨∨ and Θ◦ is:

row 2
row 1

Lemma 3.13. Let Θ be a d-small symbol. The set of symbols

{Θ′ | Θ and Θ′ belong to the same block and have the same charge }
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consists of those d-small symbols with the same charge whose up-down diagrams w∧∨(Θ
′) are

given by all possible permutations of the ∧’s and ∨’s in w∧∨(Θ).

Proof. We use the description of blocks in terms of weight subspaces for the ŝld-action given by
[13, Lem. 6.10]. By [13, (2.4)] the weight of a charged bipartition |λ, s〉 for this action is given
by

Λs1 + Λs2 −
∑

i∈Z/d

ni(λ, s)αi −∆(s, d)δ

where {Λi}i∈Z/d (resp. {αi}i∈Z/d) are the fundamental weights (resp. the simple roots), δ is
the imaginary root, ni(λ, s) is the number of boxes of content i of the charged bipartition |λ, s〉
and ∆(s, d) is an integer defined in [13, (2.3)]. In particular, if |λ, s〉 and |µ, s〉 have the same
weight then ni(λ, s) = ni(µ, s) for all i ∈ Z/d. In particular, if Θ(λ, s) is d-small then so is
Θ(µ, s) by Remark 3.5.

Let Θ′ be a symbol with the same charge as Θ and belonging to the same block. By the above
argument, Θ′ is d-small. By Lemma 3.11, the up-down diagrams w∧∨(Θ) and w∧∨(Θ

′) agree
up to changing some ∧’s into ∨’s and vice versa. Since they have the same charge, the number
of ∧’s (hence the number of ∨’s) in their diagrams must be equal. Consequently w∧∨(Θ) and
w∧∨(Θ

′) differ only by a permutation of ∧’s and ∨’s.

Conversely, swapping one ∧ with one ∨ can be obtained as a succession of removing 2k + 1
co-hooks starting from the right region followed by a succession of adding 2k + 1 co-hooks
starting from the left region, where k is such that kd is the size of the middle region. �

Example 3.14. Take d = 10 and consider the following d-small symbol Θ:

row 2
row 1

4-1-6

We have w∧∨(Θ) = ∧×∧∨∧. There are four permutations of the set of ∧’s and ∨’s in w∧∨(Θ):

{∨ × ∧ ∧ ∧, ∧ × ∨ ∧ ∧, ∧ × ∧ ∨ ∧, ∧ × ∧ ∧ ∨}.

By permuting the beads in the left and right regions of the symbol Θ to match these permu-
tations of its up-down diagram, we obtain all the symbols in the same series and block. For
instance, ∨ × ∧ ∧ ∧ gives the symbol

row 2
row 1

4-1-6

3.4. Action of the crystal operators on d-small symbols. In this section, we explain how
the action of the crystal operators ẽi on symbols translates to w∧∨(Θ) for a d-small symbol Θ.

To describe the action of crystal operators using w∧∨(Θ), we consider i ∈ Z/dZ where i
labels the residue mod d of a position in the right region if the right region lies in row 1 of Θ.
Otherwise, the left region lies in row 1 of Θ, and then we let i label the residue mod d of a
position in the left region. Match up the letters w1, . . . , w d

2
in w∧∨(Θ) from left to right with

the residues of the appropriate region. In Example 3.12, we’d have:

1 2 3 4 5 6

◦ × ∧ ◦ ∨ ∧
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We then consider the two adjacent letters wj , wj+1 ∈ {∧,∨, ◦,×} in w∧∨(Θ) corresponding to
the residues i, i+ 1:

(3.15)
i i+ 1
wj wj+1

Continuing our example and taking i = 5, we’d consider:

5 6

∨ ∧

Then the effect of ẽi on w∧∨(λ) is given by acting locally on these two letters as described
in the next lemma.

Lemma 3.16. Let Θ be a d-small symbol and let w∧∨(Θ) be its up-down diagram. Label the

letters of w∧∨(Θ) with the residues of the appropriate region as described above. The action of

the crystal operators ẽi and f̃i on Θ is computed locally in w∧∨(Θ) on wjwj+1 as follows:

(3.17) ⋆×
ẽi

**
jj

f̃i

×⋆ ◦⋆
ẽi

))
ii

f̃i

⋆◦ ◦×
ẽi

**
jj

f̃i

∨∧
ẽi

**
jj

f̃i

×◦

for ⋆ ∈ {∧,∨}. The action on ∧∨ is zero.

Proof. Suppose the Kashiwara i-word of Θ is non-empty for some i. Then it consists of at most
two letters from the alphabet {+,−}, with at most one contributed by an addable or removable
box in the left region and at most one contributed by an addable or removable box in the right
region of Θ. We need to check that if the i-word has two letters, then the letter contributed by
the right region is larger than the letter contributed by the left region.

Suppose that the right region occurs in row 2. Recall that |λ, st〉 = |λ,σt + (0, d2 )〉. Then

any addable or removable i-box in λ2 has charged content at least d greater than any addable
or removable i-box of λ1. Thus when comparing addable and removable i-boxes of λ, the one
in λ2 is larger than the one in λ1. Next, suppose that the right region occurs in row 1. If the
middle region has length at least d, then as in the previous case, an addable or removable i-box
of λ1 will have charged content at least d greater than an addable or removable i-box of λ2, so
will be larger. Otherwise, the right region is d

2 to the right of the left region. Then in |λ, st〉,
the addable/removable i-boxes of λ1 and λ2 have the same charged content. In this situation,
the box in λ1 is consider larger. So again, the letter contributed to the i-word from the right
region is larger. �

The lemma implies that the class in the Grothendieck group of a simple module corresponding
to a d-small symbol lies in a representation of sl2 of dimension at most 3. The action on
the standard modules is the same as for simple modules unless we are in the 3-dimensional
representation of sl2, where we have

(3.18) ei
[
∆◦×

]
=

[
∆∨∧

]
+
[
∆∧∨

]
= fi

[
∆×◦

]

in the Grothendieck group. Here the subscripts correspond to the changes in the ∧∨-diagram
of the corresponding symbol.

Example 3.19. Continuing with Example 3.12, the lemma tells us that

ẽ5 (◦ × ∧ ◦ ∨∧) = ◦ × ∧ ◦ ×◦

and thus ẽ5 acts on Θ by moving the rightmost bead in the symbol one position to the left.
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3.5. Highest weights for the ŝld-action. For every charge σ = (σ1, σ2) ∈ Z2, the symbol
|∅.∅,σ〉 labels a cuspidal unipotent character of the appropriate group (depending on the charge
of the symbol) in characteristic 0, see §2.3. When reduced module ℓ, it remains cuspidal [9].

We now explain the classification of modular cuspidals labeled by non-empty d-small symbols.
The bipartition of such a symbol is a rectangle concentrated in one component, with a condition
on the charged content of the removable box of the rectangle. In the case that Θ is a d-small
symbol, it follows from [13, 22] and the rule for computing the Heisenberg or sl∞ crystal [17, 18]

that SΘ is cuspidal if and only if [SΘ] is a highest weight vector for ŝld, that is, if and only
if EiSΘ = 0 for all i ∈ Z/d. However, we will not need the condition that SΘ is cuspidal,
but only the condition of its being annihilated by every Ei. The description of such Θ follows
immediately from Lemma 3.16.

Corollary 3.20. Let Θ be a d-small symbol. We have ẽiΘ = 0 for all i ∈ Z/d if and only if in

w∧∨(λ), all ×’s precede all ∧’s which precede all ∨’s which precede all ◦’s.

Remark 3.21. Let Θ be a d-small symbol on which ẽi acts by 0 for all i ∈ Z/d. Set w =
#{∧’s in w∧∨(λ)} and h = #{∨’s in w∧∨(λ)}. Set λ = (wh). Then Θ = Θ(λ,σ) where λ = λ.∅
if the left region is in row 1 and λ = ∅.λ if the left region is in row 2. The charge σ = (σ1, σ2)
is given by:

(1) σ1 + w − h+ kd = σ2 +
d
2 for some k ∈ N \ {0} if λ = (wh).∅,

(2) σ1 = σ2 +
d
2 + w − h+ kd for some k ∈ N if λ = ∅.(wh).

Example 3.22. We take d = 22 and consider the following d-small symbol:

Θ =
row 2
row 1

110-11

Then w∧∨(Θ) = × ∧ ∧ ∧ ∨ ∨ ∨ ∨ ∨ ◦ ◦. By Corollary 3.20, ẽiΘ = 0 and therefore EiSΘ = 0 for
all i ∈ Z. In partition notation, λ = ∅.(35) and the unipotent character labeled by Θ belongs
to the B42+4-series.

4. Decomposition numbers in a d-small Harish-Chandra series of a block

Our main theorem is a closed combinatorial formula for the entries of the square submatrix
of the decomposition matrix cut out by a d-small Harish-Chandra series within a block.

Theorem 4.1. Suppose Θ and Ψ are symbols of the same charge, and that Θ is d-small. Then

[PΘ : ∆Ψ] =





1 if w∧∨(Ψ) is obtained from w∧∨(Θ) by reversing the orientation

on a subset of the cups of c∧∨(Θ),

0 otherwise.

Proof. We can assume without loss of generality that Θ and Ψ are in the same block, otherwise
the decomposition number is zero. Consequently, Ψ is also d-small by Lemma 3.13. If SΘ

is annihilated by Ei for every i ∈ Z/d, then w∧∨(Θ) has no cup by Corollary 3.20 ; on the
other hand, we claim that any charged symbol Ψ in the same block and with the same charge
as Θ will satisfy Ψ � Θ for the order defined in [11, §1.1.3]. Indeed, by Corollary 3.20,
w∧∨(Θ) = × · · ·×∧ · · ·∧∨ · · ·∨◦ · · · ◦. Since w∧∨(Ψ) is a non-trivial permutation of the ∧’s and
∨’s of w∧∨(Θ), some ∧ in w∧∨(Ψ) is to the right of every ∧ in w∧∨(Θ). Writing Θ = (X1, X2)
and Ψ = (Y1, Y2), it follows that max(Y1, Y2) > max(X1, X2) , so Ψ � Θ. Therefore by
unitriangularity [PΘ : ∆Ψ] = 0 unless Ψ = Θ.
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Now assume that SΘ is not annihilated by every Ei. Then there exists i ∈ Z/d and n ∈ {1, 2}
such that En

i SΘ 6= 0 andEn+1
i SΘ = 0. By Proposition 1.3 and the remark following Lemma 3.16

we have

[PΘ : ∆Ψ] = [Pẽn
i
Θ : E

(n)
i ∆Ψ].

Write Θ′ = ẽni Θ. By Lemma 3.16, Θ′ is again d-small. By the rules in (3.17), the only
possible configurations in positions i, i + 1 in w∧∨(Θ

′) are ⋆◦ with ⋆ ∈ {×,∧,∨} and ×⋆ with
⋆ ∈ {◦,∧,∨}. In particular the configurations ∧∨ and ∨∧ cannot occur.

Assume by induction on the rank of the group that the theorem holds for PΘ′ . The mul-
tiplicity [PΘ : ∆Ψ] is non-zero if and only if there exists a charged symbol Ψ′ such that ∆Ψ′

occurs in E
(n)
i ∆Ψ and such that w∧∨(Ψ

′) is obtained from w∧∨(Θ
′) by reversing the orientation

on a subset of cups of c∧∨(Θ
′). The constraints on w∧∨(Θ

′) given in the previous paragraph

force E
(n)
i ∆Ψ = ∆Ψ′ by (3.18), so that [PΘ : ∆Ψ] = 1.

In the configuration ×◦ for Ψ′ (and hence Θ′), suppose we are in the case n = 1. We

must have the configuration ∨∧ for Θ, as Θ = f̃iẽiΘ = f̃iΘ
′. That is, in w∧∨(Θ) we have

wjwj+1 = ∨∧, where wj corresponds to residue i as in (3.15). Hence in c∧∨(Θ) there is a
cup connecting wj and wj+1. However, in w∧∨(Θ

′) we have w′
jw

′
j+1 = ×◦ so there is no cup

connecting w′
j and w′

j+1 in c∧∨(Θ
′). Since all other letters in w∧∨(Θ) and w∧∨(Θ

′) are the
same, the cup diagram c∧∨(Θ) is thus obtained from the cup diagram c∧∨(Θ

′) by inserting a
cup at positions i and i + 1. On the other hand, by (3.18) there are two possibilities for Ψ in
positions i and i + 1, namely ∨∧ and ∧∨. It follows that w∧∨(Ψ) is obtained from w∧∨(Θ) by
reversing the orientation on a subset of cups of c∧∨(Θ).

For all the other configurations, Ψ is uniquely determined from Ψ′. We conclude that in
all the cases, we have that w∧∨(Ψ) is obtained from w∧∨(Θ) by reversing the orientation on a
subset of cups of c∧∨(Θ). �

In the setting of Theorem 4.1, let h be the number of ∧’s and w be the number of ∨’s in the
up-down diagrams of d-small symbols in the same block. The rule for computing the decom-
position numbers presented in Theorem 4.1 is the same as Brundan-Stroppel’s rule computing
the multiplicities of Verma modules in projective modules in the highest weight category of
finite-dimensional representations of the Khovanov arc algebra Kw

h [5]. Stroppel showed that
the latter module category is equivalent to the category of perverse sheaves on the Grassman-
nian Gr(h, h + w) of h-planes in Ch+w, which in turn is equivalent to the principal block of
the parabolic category Op for the parabolic p with Levi glh × glw in glh+w [26]. This identifies
the decomposition numbers in question with the value of parabolic Kazhdan-Lusztig polyno-
mials evaluated at 1. In [2], another way of obtaining this rule uses an oriented version of the
Temperley-Lieb algebra.

We deduce that the decomposition numbers can be computed from Kazhdan–Lusztig poly-
nomials.

Corollary 4.2. The entries of the square submatrix of the decomposition matrix given by the

formula of Theorem 4.1 are given by parabolic Kazhdan-Lusztig polynomials of type

(W,P ) = (Sh+w, Sh × Sw) evaluated at 1.
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