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Let G be a connected reductive algebraic group and F be a Frobenius endomor-
phism defining an Fq-structure on G. The group of fixed points GF = G(Fq) is
a finite reductive group. Examples of such groups are the classical groups GLn(q),
SLn(q), Sp2n(q) and the exceptional groups of Lie type, such as E8(q).

The first approach for studying the representation theory of finite reductive
groups is a variant of the classical induction/restriction for representations of ab-
stract groups. Given an F -stable Levi subgroup L which is the Levi complement
of an F -stable parabolic subgroup P = LU of G one can define a pair of adjoint
functors, called Harish-Chandra induction/restriction functors as follows.

RG

L
: OLF -mod −→ OGF -mod

N 7−→ O[GF /UF ]⊗OLF N

∗RG

L
: OGF -mod −→ OLF -mod

M 7−→ MU
F

.

A key tool for working with these functors is the so-called Mackey formula which
gives the following isomorphism of functors

∗RG

M ◦ RG

L ≃
∑

RL

L∩xM ◦ ∗R
x
M

L∩xM ◦ adx

where x runs over a set of representives in LF \GF /MF of elements such that
L ∩ xM contains a maximal torus of G. This can be used for example to prove
that RG

L
and ∗RG

L
do not depend on P (but only on L).

Deligne and Lusztig have generalised this construction to the case where P is no
longer assumed to be F -stable [6]. The permutation moduleO[GF /UF ] is replaced
by the cohomology of a quasi-projective variety YG(U) (with coefficients in a finite
extension of Qℓ, Zℓ or Fℓ). The price to pay is that the new functors RG

L⊂P
and

∗RG

L⊂P
are no longer defined on the module category but on its bounded derived

category. Furthermore, the naive Mackey formula does not hold for these derived
functors, even though it holds for the morphisms induced on the Grothendieck
groups [6, 1, 2].

The purpose of this note is to explain how to solve this problem in the specific
case where L is any F -stable Levi subgroup and M is a Levi complement of an
F -stable parabolic subgroup Q = MV. In that situation, the composition of
induction/restriction is given by the cohomology of a quotient of the Deligne-
Lusztig variety

∗RG

M
◦ RG

L⊂P
≃ RΓc(V

F \YG(U))⊗LF −

and having a Mackey formula amounts to expressing the cohomology of this quo-
tient in terms of ”smaller” Deligne-Lusztig varieties. This provides an inductive
method for computing the cohomology of Deligne-Lusztig varieties. We will detail
the example of GLn(q) for which the representation theory is well-known.
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1. Unipotent ℓ-blocks of GLn(q)

Recall that the unipotent characters of GLn(q) are parametrised by partitions
of n. The trivial character 1 = χ(n) corresponds to the partition (n) whereas
the Steinberg character St = χ(1,...,1) corresponds to the conjugate partition
(1, 1, . . . , 1).

Most of the properties of the unipotent characters (dimensions, restriction/in-
duction. . . ) can be read off from the associated partition. The Nakayama conjec-
tures give the partition of the unipotent characters into ℓ-blocks.

Theorem 1.1 (Brauer-Robinson). Let ℓ be a prime number. Assume ℓ and q are
coprime and let d be the order of q modulo ℓ. Then χλ and χλ′ are in the same
ℓ-block if and only if λ and λ′ have the same d-core.

Examples.

(i) If λ is a d-core, then χλ is the character of a projective module over Zℓ.

(ii) Assume n = 3. Then {1, St, χ(2,1)} is a single 3-block whereas the partition
of unipotent characters into 2-blocks is {1, St}, {χ(2,1)}.

(iii) Assume n = d. Then the unipotent character in the principal block corre-
spond to n-hooks (n− i, 1i).

2. Deligne-Lusztig varieties associated with blocks

Let d ∈ {1, . . . , n}. There exists a Deligne-Lusztig variety Xn,d of dimension
2n− d− 1 whose cohomology affords a ”minimal” d-induction [3]. More precisely,
if µ ⊢ n − d, we can from the local system Fµ associated to the representation
χµ of GLn−d(q) and the consituents of the virtual character

∑
(−1)iHi

c(Xn,d,Fµ)
are exactly the unipotent characters χλ where λ is obtained from µ by adding a
d-hook. In particular, if µ is a d-core, the cohomology of Xn,d with coefficients in
Fµ gives the unipotent characters in the ℓ-block associated to µ.

Although there are general methods for computing the alternating sum of the
cohomology (such as Lefschetz trace formula), it is a difficult problem to determine
each individual cohomology group. When µ is trivial, the cohomology of Xn,d has
only been determined when d = n [10], d = n − 1 [7] and n = 2 [8]. Craven has
formulated in [5] a conjecture giving the degree in the cohomology where a given
unipotent character should appear. Using a good quotient of Xn,d one can prove
the following.

Theorem 2.1 (2011 [9]). Craven’s formula holds for Xn,d when µ is trivial. Fur-
thermore, Craven’s formula holds for any unipotent local system if it holds for
d = 1.

The case d = 1 corresponds to the Deligne-Lusztig variety X(π) associated
with the central element π = w0

2 of the Braid group. A precise conjecture for
the cohomology of this variety was already formulated in [4].

2



3. Quotients of Xn,d

In this section we assume that M = GLn−1(Fq) is the standard Levi subgroup
of G. The Harish-Chandra restriction ∗RG

M
of a unipotent character χλ is given by

the usual branching rule for representations of the symmetric group. In particular,
if λ is obtained from µ by adding a d-hook, then the restricting χλ amounts to

• restricting µ to obtain a character χλ′ which occurs in the cohomology of
Xn−1,d with coefficients in the restriction of Fµ;

• restricting the d-hook (in general in two different ways) to obtain a char-
acter χλ′′ which occurs in the cohomology of Xn−1,d−1 with coefficients in
Fµ.

To understand geometrically why two copies of χλ′′ should occur we use Lusztig’s
result on the case d = n. He showed in [10] that the quotient VF \Xn,n is iso-

morphic to F
×

q × Xn−1,n−1. The cohomology of F
×

q is given by two copies of the
coefficient ring in two consecutive degrees. Note that this part does not contribute
to the alterning sum as the two terms cancel out.

Theorem 3.1 (2011 [9]). Assume d ≥ 2. There is a decomposition of the quotient
VF \Xn,d = U ∪ Z into a disjoint union of LF -subvarieties such that

• Z is a closed subvariety whose cohomology is given by

Hi
c(Z,Fµ|Z) ≃ Hi−2

c (Xn−1,d,FResµ)(1)

• U is an open subvariety whose cohomology is given by

Hi
c(U,Fµ|U ) ≃ Hi−2

c (Xn−1,d−1,Fµ)(1)⊕Hi−1
c (Xn−1,d−1,Fµ)

From this decomposition we obtain a long exact sequence relating the cohomol-
ogy of VF \Xn,d to the cohomology of Xn−1,d and Xn−1,d−1. Together with the
action of the Frobenius this determines completely the cohomology of Xn,d.

The minimal cases correspond to d = n and d = 1. Lusztig solved the first one
in [10]. For the second one, we can only prove that Craven’s formula hold when µ
is the trivial partition. The other cases are work in progress.

4. An example

Assume that Craven’s formula hold for the cohomology of X5,3 and X5,4 with
coefficients in the trivial local system. We give here the cohomology with compact
support; the black boxes in Young diagrams correspond to the partition µ we
started with, that is (2) for X5,3 and (1) for X5,4. The white boxes represent the
d-hook that we have added.
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Using Theorem 3.1 we write the long exact sequence in cohomology and deduce
the cohomology of X6,5. The groups of degree 10 and 11 are obviously zero, the
group of degree 14 is also easily obtained, and the group of degree 7 follows from
equivariance of the boundary map H7

c(Z) 7−→ H8
c(U). For the remaining ones, we

need to use the action of F together with the fact that the cohomology of VF \X6,5

should be the restriction of unipotent characters of GL6(q).

7 −→ ⊕ = Res
��

−→ −→

8 ⊕ −→ ⊕ = Res
��

−→ −→

9 −→ = Res �� −→ −→

10 0 −→ 0 −→ 0 −→

11 0 −→ 0 −→ 0 −→

12 0 −→ 0 −→ −→

13 −→ 0 −→ 0 −→

14 −→ = Res �� −→ 0 −→
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