
BOUNDING HARISH-CHANDRA SERIES

OLIVIER DUDAS AND GUNTER MALLE

Abstract. We use the progenerator constructed in [8] to give a necessary condition
for a simple module of a finite reductive group to be cuspidal, or more generally to
obtain information on which Harish-Chandra series it can lie in. As a first application
we show the irreducibility of the smallest unipotent character in any Harish-Chandra
series. Secondly, we determine a unitriangular approximation to part of the unipotent
decomposition matrix of finite orthogonal groups and prove a gap result on certain Brauer
character degrees.

1. Introduction

Let G be a connected reductive linear algebraic group defined over a finite field Fq,
with corresponding Frobenius endomorphism F . The unipotent characters of the finite
reductive group GF were classified by Lusztig in [22]. One feature of this classification is
that cuspidal unipotent characters belong to a unique family, whose numerical invariant—
Lusztig’s a-function—gets bigger as the rank of G increases.

For representations in positive characteristic ℓ ∤ q, many more cuspidal representations
can occur and they need not all lie in the same family. The purpose of this paper is to
show that nevertheless the statement about the a-function still holds. In other words,
we show that unipotent representations with small a-value must lie in a Harish-Chandra
series corresponding to a small Levi subgroup of G (see Theorem 2.2). The proof uses the
progenerator constructed in [8] which ensures that cuspidal unipotent modules appear in
the head of generalised Gelfand–Graev representations attached to cuspidal classes. Our
result then follows from the computation of lower bounds for the numerical invariants at-
tached to theses classes (see Proposition 3.1). As a consequence we deduce in Theorem 4.3
that the unipotent characters with smallest a-value in any ordinary Harish-Chandra se-
ries remain irreducible under ℓ-modular reduction. This generalises our result for unitary
groups from [6].
In Sections 5 and 6 we apply these considerations to Harish-Chandra series of unipotent

representations of the finite spin groups Spin(±)
n (q) for a-value at most 3 respectively 4

and determine approximations of the corresponding partial decomposition matrices, see
Theorems 5.4, 5.5 and 6.3. From the partial triangularity of these decomposition matrices
we then derive a gap result for the corresponding unipotent Brauer character degrees, see
Corollaries 5.8 and 6.5.
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2. Bounding Harish-Chandra series

Let G be a connected reductive group defined over Fq, with corresponding Frobenius
endomorphism F . Throughout this section we assume that p, the characteristic of Fq,
is good for G. We let ℓ be a prime different from p and (K,O, k) denote a splitting
ℓ-modular system for G = GF . The irreducible representations of kG are partitioned into
Harish-Chandra series, but this partition is not known in general. In this section we give
a necessary condition for a unipotent module to lie in a given series, see Theorem 2.2. It
involves a numerical invariant coming from Lusztig’s a-function.

2.1. Unipotent support. Given ρ ∈ Irr(G) and C an F -stable unipotent class of G, we
denote by AV(C, ρ) = |CF |−1

∑
g∈CF ρ(g) the average value of ρ on CF . We say that C is

a unipotent support of ρ if C has maximal dimension for the property that AV(C, ρ) 6= 0.
Geck [11, Thm. 1.4] has shown that whenever p is good for G every irreducible character
ρ of G has a unique unipotent support, which we will denote by Cρ. By Lusztig [23, §11]
(see Taylor [29, §14] for the extension to any good characteristic), unipotent supports of
unipotent characters are special classes (see below). They can be computed as follows:
any family F in the Weyl group ofG contains a unique special representation, which is the
image under the Springer correspondence of the trivial local system on a special unipotent
class CF . Then CF is the common unipotent support of all the unipotent characters in F .

2.2. Duality. In [27, III.1] Spaltenstein studied an order-reversing map d on the set
of unipotent classes of G partially ordered by inclusion of closures. When p is good,
the image of d consists of the so-called special unipotent classes, and d restricts to an
involution on this subset of classes.

The effect of d on unipotent supports of unipotent characters (which are special classes)
can be computed as follows. Let ρ be a unipotent character of G and let ρ∗ be its Alvis–
Curtis dual (see [5, §8]). If F is the family of Irr(W ) attached to ρ, then F ⊗ sgn is
the family attached to ρ∗. Let φ be the unique special character in F . Via the Springer
correspondence, it corresponds to the trivial local system on Cρ. Then by [2, §3], the
character φ⊗ sgn corresponds to some local system on d(Cρ). Moreover, φ⊗ sgn is special
and therefore that local system is trivial except when F is one of the exceptional families
in type E7 and E8 (see for example [4, §11.3 and §12.7]). Consequently, for any unipotent
character ρ of G we have

(1) d(Cρ) = Cρ∗

This property does not hold in general for other series of characters.

2.3. Wave front set. Given a unipotent element u ∈ G, we denote by ΓGu , or simply Γu,
the generalised Gelfand–Graev representation associated with u. It is an OG-lattice. The
construction is given for example in [20, §3.1.2] (with some extra assumption on p) or in
[29, §5]. The first elementary properties that can be deduced are

• if ℓ 6= p, then Γu is a projective OG-module;
• if u and u′ are conjugate under G then Γu ∼= Γu′.

The character of KΓu is the generalised Gelfand–Graev character associated with u. We
denote it by γGu , or simply γu. It depends only on the G-conjugacy class of u. When u is
a regular unipotent element then γu is a usual Gelfand–Graev character as in [5, §14].
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The following theorem by Lusztig [23, Thm. 11.2] and Achar–Aubert [1, Thm. 9.1] (see
Taylor [29] for the extension to good characteristic) gives a condition on the unipotent
support of a character to occur in a generalised Gelfand-Graev character.

Theorem 2.1 (Lusztig, Achar–Aubert, Taylor). Let ρ ∈ Irr(G) and ρ∗ ∈ Irr(G) its
Alvis-Curtis dual. Then

(a) there exists u ∈ CF
ρ∗ such that 〈γu; ρ〉 6= 0;

(b) if C is an F -stable unipotent conjugacy class of G such that 〈γu; ρ〉 6= 0 for some
u ∈ CF then C ⊂ Cρ∗.

Here C denotes the Zariski closure of a conjugacy class C.

2.4. Lusztig’s a-function. Let ρ ∈ Irr(G). By [22, 4.26.3], there exist nonnegative
integers nρ, Nρ, aρ with nρ ≥ 1 and Nρ ≡ ±1 (mod q) such that

dim ρ =
1

nρ
qaρNρ.

Moreover, by [22, 13.1.1], the integer aρ is equal to the dimension of the Springer fibre at
any element of the unipotent support Cρ of ρ. More precisely, for any u ∈ Cρ we have

(2) aρ =
1

2
(dimCG(u)− rk(G)).

Let χ ∈ ZIrr(G). We define aχ to be the minimum over the a-values of the irreducible
unipotent constituents of χ (and ∞ if there is none). If ϕ ∈ IBr(G) is unipotent we define
aϕ to be the a-value of its projective cover. By extension we set aS = aϕ if S is a simple
kG-module with Brauer character ϕ.

2.5. Harish-Chandra series and a-value. It results from Lusztig’s classification of
unipotent characters that there is at most one family of Irr(G) containing a cuspidal
unipotent character. In addition, the unipotent support attached to such a family is self-
dual with respect to d and has a large a-value compared to the rank of the group. We give
a generalisation of this second statement to positive characteristic using the progenerator
constructed in [8].
For this, recall from [15] that an F -stable unipotent class C of G is said to be cuspidal if

there exists no proper 1-split Levi subgroup L of G and u ∈ C ∩LF such that the natural
map CL(u)/CL(u)

◦ → CG(u)/CG(u)
◦ is an isomorphism. For C an F -stable cuspidal

unipotent class of G and d(C) the dual class we set (see (2))

ad(C) :=
1

2
(dimCG(u)− rk(G)) where u ∈ d(C).

Theorem 2.2. Let G be connected reductive. Let S be a simple kGF -module lying in
the Harish-Chandra series above a cuspidal pair (LF , X) of GF . Then there exists an
F -stable unipotent class C of L which is cuspidal for Lad and such that ad(C) ≤ aS.

Proof. By [8, Thm. 2.3], there exists an F -stable unipotent class C of L which is cuspidal
for Lad and u ∈ CF such that the generalised Gelfand–Graev module ΓLu maps onto X .
Let PX be the projective cover of X . Since ΓLu is projective, it must contain PX as a direct

summand. In particular, any irreducible unipotent constituent χ of a lift P̃X to O of PX
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is also a constituent of γLu . For such a character χ we have C ⊆ Cχ∗ by Theorem 2.1.

By applying Spaltenstein’s duality d, we deduce from (1) that d(C) ⊇ d(Cχ∗) = Cχ.

Consequently ad(C) ≤ aχ for every unipotent constituent χ of P̃X , therefore ad(C) ≤ aX .

It remains to see that aX ≤ aS. This follows from the fact that PS is a direct summand of
RG
L (PX) and that Harish-Chandra induction can not decrease the a-value (see for example

[22, Cor. 8.7]). �

In Sections 5 and 6 we will apply Theorem 2.2 to determine the Harish-Chandra series
of unipotent characters with small a-value in the finite orthogonal groups. For this, it will
be useful to derive lower bounds for ad(C).

3. Cuspidal classes: minimality and induction

3.1. Cuspidal classes and a-value. Cuspidal unipotent classes for simple groups of
adjoint type in good characteristic were classified by Geck and the second author [15,
Prop. 3.6]. From the classification we can see that they are all special classes of rather
large dimension (compared to the rank of the group). We give here, for every classical
type, the minimal dimension of the Springer fibre over the dual of any cuspidal unipotent
class in good characteristic.

Proposition 3.1. Assume that p is good for G and Z(G) is connected. Then there is
a unique F -stable cuspidal class Cmin which is contained in the closure of every F -stable
cuspidal class of G. Furthermore, the values of amin := ad(Cmin) for simple classical types
are given as follows:

(a) for type Am: amin =
1
2
m(m+ 1);

(b) for type 2Am, where m+ 1 =
(
s+1
2

)
+ d with 0 ≤ d ≤ s:

amin =
1

6
s(s2 − 1) +

1

2
d(2s+ 1− d);

(c) for type Bm, where m = s(s+ 1) + d with 0 ≤ d ≤ 2s+ 1:

amin =
1

6
s(s+ 1)(4s− 1) +

{
d(2s+ 1− d) if d ≤ s,

d(4s+ 2− d)− s(2s+ 1) if s ≤ d;

(d) for type Cm, where m = s(s+ 1) + d with 0 ≤ d ≤ 2s+ 1:

amin =
1

6
s(s+ 1)(4s− 1) +

{
d(2s+ 2− d) if d ≤ s+ 1,

d(4s+ 3− d)− (s+ 1)(2s+ 1) if s+ 1 ≤ d;

(e) for types Dm and 2Dm, where m = s2 + d with 0 ≤ d ≤ 2s:

amin =
1

6
s(s− 1)(4s+ 1) +

{
d(2s+ 1− d) if d ≤ s,

d(4s− d)− s(2s− 1) if s ≤ d.

Proof. Arguing as in [15, §3.4] we may and will assume that G is simple of adjoint type.
For exceptional types there always is a cuspidal family, and then our claim is in [15,
Thm. 3.3]. For type Am the regular class C is the only cuspidal class by [15, Prop. 3.6].
Its dual class is the trivial class, for which ad(C) =

1
2
(dimPGLm+1 −m) = m(m+ 1)/2.
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For the other classical types, to any conjugacy class C corresponds a partition λ coming
from the elementary divisors of any element in C in the natural matrix representation of
a classical group isogenous to G. If C is cuspidal, then depending on the type of GF , the
partition λ satisfies the following properties (see [15, Prop. 3.6]):

• type 2Am: λ is a partition of m+ 1 into distinct parts;
• type Bm: λ is a partition of 2m+ 1 into odd parts, each occurring at most twice;
• type Cm: λ is a partition of 2m into even parts, each occurring at most twice.
• type Dm and 2Dm: λ is a partition of 2m into odd parts, each occurring at most
twice, and λ 6= (m,m) in type Dm.

(It was claimed erroneously in loc. cit. that for type Dm, m odd, classes with label (m,m)
are cuspidal, but in fact they do lie in a Levi subgroup of type Am−1.)
First consider type 2Am. We claim that the class Cmin labelled by the partition λ =

(s+ 1, . . . , s− d+ 2, s− d, . . . , 1) is contained in the closure of all other cuspidal classes.
So let λ be a partition with all parts distinct and first assume that λi ≥ λi+1 + 2 and
λj ≥ λj+1 + 2 for some i < j. Then the partition λ′ with

λ′i = λi − 1, λ′j+1 = λj+1 + 1,

and λ′l = λl for all other indices l, is smaller in the dominance order, hence labels a cuspidal
class which is smaller in the partial order of unipotent classes. Similarly, if λi ≥ λi+1 + 3
then λ′ with

λ′i = λi − 1, λ′i+1 = λi+1 + 1,

again labels a smaller cuspidal class. Application of these two operations eventually leads
to the label of Cmin, so our claim follows.
In type Cm, we claim that the cuspidal class Cmin such that ri ∈ {0, 2} for all i, and

in that range there is at most one i with ri = ri+1 = 2, is containd in the closure of all
other cuspidal classes. Here, λ∗ = (1r1, 2r2, . . . , hrh) denotes the conjugate partition of λ
written in exponential notation. Indeed, if C has a label with ri ≥ 4 for some i, then the
partition µ with µ∗ such that

r′i−1 = ri−1 + 2, r′i = ri − 4, r′i+1 = ri+1 + 2,

labels a smaller cuspidal class. Similarly, if ri = ri+1 = 2 and rj = rj+1 = 2 for some
i < j, then the partition µ with

r′i−1 = ri−1 + 2, r′i = ri − 2, r′j+1 = rj+1 − 2, r′j+2 = rj+2 + 2,

labels a smaller class.
In type Bm, respectively Dm and 2Dm, let Cmin denote the cuspidal class such that

removing the biggest part h = 2s + 1 (resp. h = 2s) of λ∗ we obtain the label of the
minimal cuspidal class in type Cm−h. Then as before it is easy to see that Cmin lies in the
closure of all cuspidal classes. This completes the proof of the first assertion.
To determine ad(Cmin) note that in all types but Dm and 2Dm, the dual of the special

class corresponding to λ is the special class corresponding to the conjugate λ∗ of λ (see
[4, §12.7 and §13.4]). Then the claimed expression for ad(Cmin) follows from the centraliser
orders given in [4, §13.1]: in type 2Am

dimCG(u) =
∑

i≥1

(ri + ri+1 + · · · )2 − 1
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for u ∈ d(C) labelled by λ∗ = (1r1, 2r2, . . . , hrh), in type Cm by

dimCG(u) =
1

2

(∑

i≥1

(ri + ri+1 + · · · )2 +
∑

i≡1(2)

ri
)
,

and in type Bm by

dimCG(u) =
1

2

(∑

i≥1

(ri + ri+1 + · · · )2 −
∑

i≡1(2)

ri
)
.

In types Dm,
2Dm there is no elementary operation to deduce the effect of Lusztig–

Spaltenstein duality on unipotent classes. However one can use (1) to compute ad(C) from
the a-value of the Alvis–Curtis dual ρ∗ of the unique special unipotent character with
unipotent support C. Let

S =

(
a1 . . . a2s−1

a2 . . . a2s

)

be the symbol of an irreducible character of W (Dm). It is special if and only if a1 ≤ a2 ≤
. . . ≤ a2s. By [25, (5.15)], for example (noting that the last “−” sign in that formula
should be a “+”), the A-value of the corresponding unipotent principal series character
ρS is given by

A(S) =
∑

i<j

max{ai, aj} −
s−1∑

i=1

(
2i

2

)
− 2

2s∑

i=1

(
ai + 1

2

)
+m2,

and the a-value of the Alvis–Curtis dual ρS∗ = DG(ρS) of ρS is

a(S∗) = m(m− 1)− A(S).

Now let λ be a partition of 2m labelling a cuspidal unipotent class C for Dm. By the
description of cuspidal unipotent classes, λ has an even number of non-zero parts, say
λ = (λ1 ≥ λ2 ≥ · · · ≥ λ2l > 0). The Springer correspondent of C is obtained as follows,
see [16, §2D]: it is labelled by a symbol S as above with entries ai = (λ2l+1−i−1)/2+ ⌊ i

2
⌋,

1 ≤ i ≤ 2l. The symbol Smin of the character ρmin corresponding to the class Cmin is then
given by

(
0 . . . 2(s− 1)

1 . . . 2(s− d)− 1 2(s− d+ 1) . . . 2s

)
for 0 ≤ d ≤ s, resp.

(
0 . . . 2(2s− d− 1) 2(2s− d) + 1 . . . 2s− 1

2 . . . 2s

)
for s ≤ d ≤ 2s.

(Here, dots signify that the entries in between are meant to increase in steps of 2. In
particular, all ai − ai−2 = 2 except at one single position.) Application of the above
formula for a(S∗

min) yields the assertion. �

Remark 3.2. Theorem 2.2 and Proposition 3.1 show that unipotent Brauer characters with
“small” a-value must lie in “small” Harish-Chandra series, that is, in Harish-Chandra
series corresponding to Levi subgroups of small semisimple rank. In particular, cuspidal
modules have a large a-value compared to the rank of the group.
More precisely, by Proposition 3.1 the a-values of cuspidal unipotent classes in classical

groups grow roughly like cm
3

2 with the rank m, where c =
√
2
3

for type 2Am and c = 2
3
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for types Bm, Cm, Dm and 2Dm. This is the same order of magnitude as the a-value of
a cuspidal unipotent character. Since the latter is a fixed point of Alvis–Curtis duality,
this shows that cuspidal unipotent Brauer characters only occur “in the lower half” of the
decomposition matrix of a group of classical type.

In Table 1 we give the minimal a-value for classical groups of rank at most 10.

m 1 2 3 4 5 6 7 8 9 10
Am 1 3 6 10 15 21 28 36 45 55
2Am − 1 3 4 4 7 9 10 10 14
Bm − 1 3 6 7 7 11 13 18 21
Cm − 1 4 5 7 7 12 15 16 20

Dm,
2Dm − − − 3 7 9 12 13 13 19

Table 1. ad(Cmin) in classical types

3.2. Induction of cuspidal classes. Let us recall the construction of induced unipotent
classes by Lusztig–Spaltenstein [24]. Let P = LU be a parabolic subgroup of G with
Levi complement L. Given any unipotent class C of L, the variety CU is irreducible and

consists of unipotent elements only. Therefore there exists a unique unipotent class C̃ of

G such that C̃ ∩CU is dense in CU. The class C̃ is called the induction of C from L to
G. It is shown in [24] that it depends only on (C,L) and not on P. As in [24] we will
denote it by IndG

L
(C).

Proposition 3.3. Assume that p is good for G and Z(G) is connected. Let L be a 1-split
Levi subgroup of G. If C is an F -stable cuspidal unipotent class of L then IndG

L
(C) is an

F -stable cuspidal unipotent class of G.

Proof. By standard reductions, we can assume that G is simple of adjoint type (see for
example [15, §3.4]). Also, by transitivity of the induction of unipotent classes, we can
assume without loss of generality that L is a maximal proper 1-split Levi subgroup of G.
Assume that L has an untwisted type Ar-factor. Its only cuspidal unipotent class is the
regular class, which is obtained by induction of the trivial class of a maximal torus. By
transitivity of induction we may thus replace this factor by a maximal torus, and then
replace that Levi subgroup by any other maximal 1-split Levi subgroup of G containing
it. In particular, our claim holds for groups of untwisted type A.
Thus, if G is simple of classical type Xm (where m is the rank), then we may assume

that L is a group of type Xm−δ, where δ = 2 if Xm = 2Am and δ = 1 otherwise. Let λ be
a partition labelling a cuspidal unipotent class C of L. It satisfies the properties listed in
the beginning of the proof of Proposition 3.1, depending on the type of L. Under these
conditions, if follows from [27, §7.3] that the partition labelling IndG

L
(C) is (λ1+2, λ2, . . .),

and so the corresponding class is also cuspidal.
If G is simple of exceptional type, then by our previous reduction we are in one of the

cases listed in Table 2. The induction of classes is then easily determined using for example
the Chevie [26] command UnipotentClasses and the fact that induction of classes is just
j-induction of the corresponding Springer representations, see [28, 4.1]. �
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B3 7 512 321
C3 6 42
F4 F4 F4(a1) F4(a2)

D5 91 73 5312

E6 E6 E6(a1) E6(a3)

2A5 6 51 42 321
2D4 71 53 3212
2E6 E6 E6(a1) D5 E6(a3) D5(a1)

D6 11.1 93 75 7312 5212 5321
E6 E6 E6(a1) E6(a3) D4(a1)
E7 E7 E7(a1) E7(a2) E7(a3) E6(a1) E7(a4) E7(a5)

D7 13.1 11.3 95 9312 7512 7321 5231
E7 E7 E7(a1) E7(a2) E7(a3) E6(a1) E7(a4) E7(a5) A4 + A1

E8 E8 E8(a1) E8(a2) E8(a3) E8(a4) E8(b4) E8(a5) E8(b5) E6(a1) + A1

Table 2. Some induced cuspidal classes

4. Irreducibility of the smallest character in a Harish-Chandra series

We extend our irreducibility result in [8, Thm. A].

Lemma 4.1. Assume that G is simple of adjoint type. Let L ≤ G be a 1-split Levi
subgroup with a cuspidal unipotent character λ. Then aλ ≤ ad(C) for all F -stable cuspidal
unipotent classes C of G, with equality occurring if and only if L = G.

Proof. For classical types, see Proposition 3.1. For exceptional types, the minimal ad(C)

and the possible aλ are easily listed using [15, Prop. 3.6] and the tables in [4, §13]; they
are given in Table 3. �

Remark 4.2. For an alternative proof of the lemma based on Proposition 3.3 consider

the (cuspidal) unipotent support Cλ of λ and the induced class C̃λ = IndG

L
(Cλ). Then

aλ = ad(Cλ) = aCλ
= aC̃λ

by [24, Thm. 1.3]. Moreover, by Proposition 3.3, the class

C̃λ is cuspidal. Therefore the minimal cuspidal class Cmin from Proposition 3.1 lies in
the closure of C̃λ, and hence aλ ≤ aCmin

= ad(Cmin) with equality only when Cmin = C̃λ.
In that case the unipotent support of λ is self-dual, therefore the character λ is its own
Alvis-Curtis dual and L = G.

The following extends our result [6, Prop. 4.3] for unitary groups (which was shown
using the known unitriangularity of the decomposition matrix) to all reductive groups;
here instead we use the irreducibility of cuspidal unipotent characters from [8, Thm. A]:

Theorem 4.3. Assume that p is good for G. Let ℓ 6= p be a prime which is good for
G and not dividing |Z(G)F/Z◦(G)F |. Let ρ be a unipotent character of G which has
minimal a-value in its (ordinary) Harish-Chandra series. Then the ℓ-modular reduction
of ρ is irreducible.
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Cmin ad(Cmin) possible aλ
G2 G2(a1) 1 0, 1
F4 F4(a3) 4 0, 1, 4

E6,
2E6 D4(a1) 7 0, 3, 4, 7

E7 A4 + A1 11 0, 3, 7, 11
E8 E8(a7) 16 0, 3, 7, 11, 16

Table 3. Minimal ad(C) in exceptional types

Proof. As in the proof of [8, Thm. A] we can assume that G is simple of adjoint type.
Let L ≤ G be a 1-split Levi subgroup and λ ∈ Irr(L) a cuspidal unipotent character

such that ρ lies in the Harish-Chandra series of (L, λ). Since G is adjoint, the centre of L
is connected and by [8, Thm. A] there exists a unique PIM of L containing λ. In addition,
it satisfies 〈λ, Pλ〉 = 1 and aPλ

= aλ.
Recall that the characters in the Harish-Chandra series of (L, λ) are in bijection with

the irreducible representations of the Hecke algebra corresponding to the cuspidal pair.
Under this bijection, the character ρ of minimal a-value corresponds to the representation
that specialises to the trivial character at q = 1. Furthermore, the degree of ρ equals
the product of λ(1) with the Poincaré polynomial of the Hecke algebra. In particular,
aλ = aρ. In addition, 〈ρ, RG

L (Pλ)〉 = 1 by the Howlett–Lehrer comparison theorem.
Let Pρ denote the (projective) indecomposable summand of RG

L (Pλ) containing ρ (once).
Then aρ ≥ aPρ

≥ aPλ
. Since aPλ

= aλ = aρ we deduce that aPρ
= aρ.

We claim that ρ does not occur in any other PIM of G. For this, assume that ρ is
a constituent of RG

M(P ) for some 1-split Levi subgroup M ≤ G and some PIM P of
M . Then P has to have some constituent ψ ∈ Irr(M) from the (L, λ)-series, whence
aλ ≤ aψ ≤ aρ = aλ. So we have that aψ = aλ and ψ is the character of M with minimal
a-value in the (L, λ)-series. If M is proper, then by induction there is exactly one PIM
Pψ of M containing ψ which is a direct summand of RM

L (Pλ); as Pρ occurs exactly once
in RG

L (Pλ), we see that the summand of RG
M (P ) = RG

M(Pψ) containing ρ is just Pρ.
To conclude, finally assume that M = G, so P is a cuspidal PIM of G. But then by [8,

Prop. 2.2] it occurs as a summand of a GGGR ΓC for some F -stable cuspidal unipotent
class C of G. According to Lemma 4.1 we have that aΓC

≥ aλ, with equality only when
L = G. Thus, γC can contain ρ only when L = G, and so ρ = λ is cuspidal. But then
our claim is just [8, Thm. A]. �

5. Small Harish-Chandra series in even-dimensional orthogonal groups

We start by considering the two families of even-dimensional orthogonal groups. As
Theorem 2.2 only holds in good characteristic, we shall restrict ourselves to the case where
q is odd. As before, ℓ will denote a prime not dividing q.

5.1. Small cuspidal Brauer characters. We first determine the cuspidal unipotent
Brauer characters with small a-value. For a connected reductive group G we set Gad :=
G/Z(G).

Lemma 5.1. Let G be connected reductive and assume that
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(1) Gad is simple of type Am(q) (m ≥ 1), Dm(q) (q odd, m ≥ 4) or 2Dm(q) (q odd,
m ≥ 2);

(2) ℓ does not divide 2q|Z(G)/Z◦(G)|; and
(3) if ℓ = 3|(q + 1) then Gad 6∼= 2D3(q).

Then any cuspidal unipotent Brauer character ϕ ∈ IBr(G) with aϕ ≤ 3 occurs in Table 4.

Table 4. Some cuspidal unipotent Brauer characters in types Am, Dm and 2Dm

Gad ϕ aϕ condition on ℓ
A1(q) 12 1 ℓ|(q + 1)
A2(q) 13 3 ℓ|(q2 + q + 1)
2D2(q) −.1 2 ℓ|(q2 + 1)
2D3(q) −.2 3 ℓ|(q + 1)
D4(q) D4 3 always

The Brauer characters are labelled, via the triangularity of the decomposition

matrix, by the Harish-Chandra labels of the ordinary unipotent characters.

Proof. Let ϕ ∈ IBr(G) be as in the statement. By Theorem 2.2, there exists a cuspidal
unipotent class C of Gad with ad(C) ≤ 3. By Proposition 3.1, Gad must then be of one of
the types

A1(q), A2(q),
2D3(q) ∼= A1(q

2), 2D3(q) ∼=
2A3(q),

2D4(q) or D4(q).

Under our assumptions on ℓ for all listed groups the unipotent characters form a basic
set for the union of unipotent ℓ-blocks of both G and Gad [12, 10], and the decomposition
matrix with respect to these is uni-triangular (see [19, 6, 17]). Moreover, from the explicit
knowledge of these decomposition matrices, it follows that ϕ must be as in Table 4. �

5.2. Small Harish-Chandra series. We can now determine those unipotent Harish-
Chandra series that may contain Brauer characters of small a-value.

Lemma 5.2. Assume Gad is simple of type Am(q) and ℓ > 2.

(a) If m ≥ 2 and ℓ|(q+1) then aϕ ≥ 3 for all unipotent Brauer characters ϕ ∈ IBr(G)
in the (A1, 1

2)-Harish-Chandra series.
(b) If m ≥ 3, and ℓ|(q2 + q + 1), then aϕ ≥ 6 for all unipotent Brauer characters

ϕ ∈ IBr(G) in the (A2, 1
3)-Harish-Chandra series.

(c) If m ≥ 4 and ℓ|(q+1) then aϕ ≥ 4 for all unipotent Brauer characters ϕ ∈ IBr(G)
in the (A2

1, 1
2 ⊗ 12)-Harish-Chandra series.

Proof. It follows from the known unipotent decomposition matrices (see [19, App. 1]), or
from the known distribution into modular Harish-Chandra series, that aϕ = 3 for m = 2
in (a), aϕ = 6 for m = 3 in (b), and aϕ ≥ 4 for m = 4 in (c) respectively. Since Harish-
Chandra induction does not diminish the a-value (see for example [22, Cor. 8.7]), the
claim also holds for all larger m. �

Proposition 5.3. Assume that n ≥ 4 and ℓ 6 | 6q. Then all unipotent Brauer characters
of Spin±

2n(q), q odd, with aϕ ≤ 3 lie in one of the Harish-Chandra series given in Table 5.
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(L, λ) conditions
Dn(q) (∅, 1), (D4, D4) always

(A1, 1
2), (D2,−.2) ℓ|(q + 1)

(A2
1, 1

2 ⊗ 12), (D2A1,−.2⊗ 12) ℓ|(q + 1), n = 4
2Dn(q) (∅, 1) always

(A1, 1
2), (2D3,−.2) ℓ|(q + 1)
(2D2,−.1) ℓ|(q2 + 1)

(A2
1, 1

2 ⊗ 12) ℓ|(q + 1), n = 5
(A2, 1

3) ℓ|(q2 + q + 1), n = 4

Table 5. Unipotent Harish-Chandra series in (2)Dn(q) with small a-value

Proof. First assume that G = Spin+
2n(q). Let ϕ ∈ IBr(G) be an ℓ-modular unipotent

Brauer character of a-value at most 3. It lies in the Harish-Chandra series associated to
a cuspidal pair (L, λ), with λ ∈ IBr(L). Note that for Levi subgroups L of G we have
that Z(L)/Z◦(L) is a 2-group, so that under our assumptions on ℓ the unipotent Harish-
Chandra series and unipotent cuspidal characters of L are as in its adjoint quotient. But
the latter is a direct product of simple groups of adjoint type. Thus, since the a-value is
additive over outer tensor products of characters we may apply Lemma 5.1. By the shape
of parabolic subgroups of a Weyl group of type Dn, L is of one of the types

Am1 (q) (m ≤ 3), D2(q), D2(q)A1(q), A2(q), or D4(q),

λ is a cuspidal unipotent Brauer character of L as in Table 4, and ℓ is as given there. We
consider these Harish-Chandra series (L, λ) in turn.
Assume that ℓ|(q2 + q + 1), so L is of type A2(q). For n ≥ 4 the group G contains a

Levi subgroup of type A3, and so by Lemma 5.2(b) the (A2, 1
3)-series of G only contains

Brauer characters of a-value at least 6.
It remains to consider the case that ℓ|(q + 1). By Lemma 5.2 neither the A2

1-series nor
the D2A1-series can contribute if n ≥ 5, since these Levi subgroups are contained in a
Levi subgroup of G of type A4, resp. of type D2A2. Similarly, A3

1 (which occurs for n ≥ 6)
is contained in a Levi subgroup of type A3A1 and so the a-values in that series are at
least 4.
Now let G = Spin−

2n(q) and ϕ as in the statement. So by Theorem 2.2, ϕ lies in a
Harish-Chandra series (L, λ) with aλ ≤ 3. Thus, by Lemma 5.1, L is of one of the types

Am1 (q) (m ≤ 3), 2D2(q), A2(q), or
2D3(q),

and λ ∈ IBr(L) is a cuspidal Brauer character of L as in Table 4. We consider the
contributions by these Harish-Chandra series in turn. For ℓ|(q2+ q+1) the known Brauer
trees show that for n = 4 there is one Brauer character in the (A2, 1

3)-series with a-value 3
, but for n = 5 (and hence for all larger n) all a-values are at least 6 .
Now consider the case when ℓ|(q+1). Since 2D6 contains a Levi subgroup of type A4 if

n ≥ 6 we see by Lemma 5.2 that the Harish-Chandra series of type A2
1 cannot contain ϕ

in that case. Similarly A3
1 lies in a Levi subgroup of type A3A1 and so the A3

1-series does
not contain ϕ. �
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5.3. A triangular subpart of the decomposition matrix. We give an approximation
to the ℓ-modular decomposition matrix of Spin±

2n(q) for certain unipotent Brauer charac-
ters of a-value at most 3. For simplicity, in view of Table 5 we only consider primes ℓ not
dividing q + 1. Recall that unipotent characters of Spin+

2n(q) are labelled by symbols of
rank n and defect congruent to 0 modulo 4 (see [4, §13.8]).

Theorem 5.4. Let G = Spin+
2n(q) with q odd and n ≥ 5, and ℓ > 5 a prime not dividing

q(q + 1). Then the first eight rows of the decomposition matrix of the unipotent ℓ-blocks
of G are approximated from above by Table 6, where k = n− 5 and

(a, b, c, d, e) =






(1, 0, 0, 0, 0) when ℓ|(q2 + q + 1),

(0, 1, 0, 0, 0) when ℓ|(q2 + 1),

(0, 0, 1, 0, 0) when ℓ|(q4 + q3 + q2 + q + 1),

(0, 0, 0, 1, 0) when ℓ|(q2 − q + 1),

(0, 0, 0, 0, 1) when ℓ|(q4 + 1),

(0, 0, 0, 0, 0) otherwise.

ρ aρ(
n
0

)
0 1(

n−1
1

)
1 e+k 1(1,n

0,1

)
2 c+k . 1(

3
2

)
2 b+d+ke+

(
k
2

)
b+k . 1(0,1,2,n−1

−
)

3 . . . . 1(0,n−1
1,2

)
3 ke+

(
k
2

)
e+k . . . 1(1,n−1

0,2

)
3 k(c+e+k−1) b+k d+k b . . 1(2,n−1

0,1

)
3 b+kc+

(
k
2

)
. a+k . . . . 1

HC-series ps ps ps ps D4 ps ps ps

Table 6. Approximate decomposition matrices for Spin+
2n(q), n ≥ 5

Proof. Let ϕ ∈ IBr(G) be an ℓ-modular constituent of one of the eight unipotent characters
ρ1, . . . , ρ8 listed in Table 6 (in that order). Then by Brauer reciprocity, ρi is a constituent
of the projective cover of ϕ. The degree formula [4, §13.8] shows that aρi ≤ 3 for all
i. Thus, by Proposition 5.3, ϕ lies in one of the Harish-Chandra series (L, λ) given in
Table 5. We consider these in turn.
The Hecke algebra for the principal series is the Iwahori–Hecke algebra H(Dn; q) of

type Dn, whose ℓ-decomposition matrix is known to be uni-triangular with respect to a
canonical basic set given by FLOTW bipartitions, see [14, Thm. 5.8.19]. All of the ρi apart
from ρ5 are contained in this basic set, for all relevant primes ℓ. Thus the corresponding
part of the decomposition matrix is indeed lower triangular. The given upper bounds
on the entries in this part of the decomposition matrix are obtained by Harish-Chandra
inducing the PIMs from Spin+

8 (q). For this group we can consider each cyclotomic factor in
turn. The Sylow ℓ-subgroups for primes ℓ > 3 dividing q2+q+1, q4+q3+q2+q+1, q2−q+1
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or q4 + 1 are cyclic, and the Brauer trees of unipotent blocks are easily determined. The
unipotent decomposition matrix for primes 3 < ℓ|(q−1) is the identity matrix by a result
of Puig, see [3, Thm. 23.12]. Finally, for (q2+1)ℓ > 5 the unipotent decomposition matrix
of Spin+

8 (q) was determined in [7, Thm. 3.3].
Next consider the Harish-Chandra series of the ordinary cuspidal unipotent character

λ of a Levi subgroup L of type D4. Then RG
L (λ) only contains unipotent characters in

the ordinary Harish-Chandra series of type D4, hence among ρ1, . . . , ρ8 only ρ5, just once.
So there is exactly one PIM in this series involving one of the ρi, namely the projective
cover of ρ5. �

We now consider the similar question for the non-split orthogonal groups Spin−
2n(q).

Recall that its unipotent characters are labelled by symbols of rank n and defect congruent
to 2 modulo 4. Since all considered characters lie in the principal series, they can also
be indexed by irreducible characters of the Weyl group of type Bn−1, hence by suitable
bipartitions of n− 1, which we will do here.

Theorem 5.5. Let G = Spin−
2n(q) with q odd and n ≥ 5, and ℓ > 5 a prime not dividing

q(q + 1). Then the first eight rows of the decomposition matrix of the unipotent ℓ-blocks
of G are approximated from above by Table 7, where k = n− 5 and

(a, b, c, d, e) =





(1, 0, 0, 0, 0) when ℓ|(q2 + q + 1),

(0, 1, 0, 0, 0) when ℓ|(q2 + 1),

(0, 0, 1, 0, 0) when ℓ|(q2 − q + 1),

(0, 0, 0, 1, 0) when ℓ|(q4 + 1),

(0, 0, 0, 0, 1) when ℓ|(q4 − q3 + q2 − q + 1),

(0, 0, 0, 0, 0) otherwise.

The eight corresponding PIMs all lie in the principal series, except that for ℓ|(q2 + 1) the
eighth (and the seventh when n = 4) is in the 2D2-series.

ρ aρ
(n− 1;−) 0 1
(n− 2, 1;−) 1 b+k 1
(n− 2; 1) 2 e+k . 1

(n− 3, 2;−) 2 a+kb+
(
k
2

)
k . 1

(n− 3, 12;−) 3 kb+
(
k
2

)
b+k . . 1

(n− 3, 1; 1) 3 k(b+e+k−1) d+k a+k b . 1

(n− 3; 2) 3 d+ke+
(
k
2

)
. c+k . . . 1

(−;n− 1) 3 b . . . . . . 1

Table 7. Approximate decomposition matrices for Spin−
2n(q), n ≥ 5

Proof. This is completely analogous to the proof of Theorem 5.4. The eight unipotent
characters ρ1, . . . , ρ8 displayed in Table 7 all have a-value at most 3. Thus, arguing as in
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the proof of Theorem 5.4 and using Table 5 we see that any ℓ-modular constituent ϕ of
the ρi either lies in the principal series, or ℓ|(q2 + 1) and ϕ lies in the 2D2-series.
For n = 4 the Sylow ℓ-subgroups of G are cyclic for all relevant primes ℓ, and the claim

follows from the known Brauer trees. So now assume that n ≥ 5. By [14, Thm. 5.8.13]
the Iwahori-Hecke algebra H(Bn−1; q

2; q) for the principal series has a canonical basic set
indexed by suitable Uglov bipartitions. For n ≥ 5 the bipartitions indexing ρ1, . . . , ρ7, as
well as ρ8 when ℓ 6 |(q

2+1), are Uglov, so these characters lie in the basic set. Hence, there
are at most eight PIMs in the principal series (resp. seven when ℓ | (q2+1)) involving one
of the ρi; since the unipotent characters form a basic set for the unipotent blocks by [12],
it must be exactly eight (resp. seven).
Finally, assume that ℓ|(q2 +1) and consider the series of the cuspidal Brauer character

(−; 1) of a Levi subgroup of type 2D2. It follows from the known Brauer trees that there
are two PIMs of 2D4(q) in the 2D2 Harish-Chandra series, with unipotent parts (−; 3) and
(1; 2) respectively. Harish-Chandra induction to 2D5(q) shows that there is exactly one
PIM in this series containing one of the ρi, namely ρ8 with label (−; 4) (see [7, Thm. 7.1]).
The Harish-Chandra induction of (−; 4) from 2D5(q) to 2Dn(q) only contains ρ8 among
our ρi, so there is at most one PIM in this series that contributes to the first eight rows
of the decomposition matrix. �

Remark 5.6. To complete the determination of the part of the decomposition matrix
displayed in Table 7 it would be enough to compute the corresponding part of the decom-
position matrix of the Hecke algebra H(Bn−1; q

2; q). When ℓ is large, this can be done
using canonical basis elements of Fock spaces (see [14, §6.4]).

5.4. Unipotent Brauer characters of low degree. As a consequence we can deter-
mine those irreducible Brauer characters of low degree which occur as constituents of
ρ1, . . . , ρ8. For this we need the ℓ-modular decomposition of the smallest three unipotent
characters ρ1 = 1G, ρ2 and ρ3; here, for an integer m, we set

κℓ,m :=

{
1 if ℓ|m,
0 otherwise.

Proposition 5.7 (Liebeck). Let G = Spin±
2n(q), n ≥ 3 and let ℓ be a prime not dividing

q(q + 1). The ℓ-modular decomposition of ρ2, ρ3 is given by

1 1
ρ2 a 1
ρ3 b . 1

where a = κℓ,qn−1±1, b = κℓ,qn∓1.

Proof. First note that if ℓ ∤ qn−1 ± 1 (resp. ℓ ∤ qn ∓ 1) then ρ3 (resp. ρ2) does not lie in
the principal block (see [9, §13]).
The unipotent characters ρ2, ρ3 are the two non-trivial constituents of the Harish-

Chandra induction of the trivial character from a Levi subgroup of type Spin±
2n−2(q).

This induced character is the permutation character of the rank 3 permutation module of
G on singular 1-spaces. The claim thus follows from Liebeck [21, Thm. 2.1 and pp.14/15].
Indeed, in the case (1) of [21, p. 10] there are obviously just three ℓ-modular composition
factors of that permutation module, so all ρi remain irreducible. In the case (2) there are
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four composition factors, and those in head and socle clearly are trivial, so one of the ρi
is reducible. Which one that is follows from the block distribution. �

Note that the zeroes in the decomposition matrix in Proposition 5.7 also follow from
Tables 6 and 7, and the multiplicity of the trivial character in the ℓ-modular reductions
of ρ2 and ρ3 could also easily be computed from the corresponding Hecke algebras.

Corollary 5.8. Under the hypotheses of Theorem 5.4 resp. 5.5 assume that ϕ ∈ IBr(G)
is a constituent of one of the unipotent characters ρi, 1 ≤ i ≤ 8, in Table 6 resp. 7. If

ϕ(1) <

{
q4n−10 for G = Spin+

2n(q), resp.

q4n−10 − q9 for G = Spin−
2n(q),

then i ≤ 3. In particular, ϕ is as described in Proposition 5.7.

Proof. Let ϕj, 1 ≤ j ≤ 8, denote the Brauer character of the head (and socle) of the PIM
given by column j of the approximate decomposition matrices in Table 6, respectively 7.
By the proven partial triangularity, any constituent ϕ of one of the ρi is among the ϕj,
1 ≤ j ≤ 8.
Now for each i, 4 ≤ i ≤ 8, a lower bound for ϕi(1) can be computed as follows: we

certainly have ϕj(1) ≤ ρj(1) for 1 ≤ j ≤ i − 1. Then from the ith row of the given
approximation of the decomposition matrix with that vector of upper bounds we obtain a
lower bound for ϕi(1). This is a polynomial in q (depending on n) of degree at least 4n−10,
and subtracting the bound B in the statement we obtain a polynomial of positive degree
and positive highest coefficient. It is now a routine calculation to see that this difference
is positive for all relevant i, q, n, so ϕi(1) ≥ B for i ≥ 4. �

6. Small Harish-Chandra series in odd-dimensional orthogonal groups

We now consider the odd-dimensional spin groups Spin2n+1(q). Again we assume that
q is odd in order to be able to apply the results from Section 2.

6.1. Small Harish-Chandra series. Again we first determine cuspidal modules with
small a-value.

Lemma 6.1. Assume that Gad is simple of type Bm(q) (q odd, m ≥ 2), and let ℓ be a
prime not dividing 2q. If ϕ ∈ IBr(G) is a cuspidal unipotent Brauer character with aϕ ≤ 4
then ϕ occurs in Table 8.

Gad ϕ aϕ condition
B2(q) B2 1 always

−.12 4 ℓ|(q + 1)(q2 + 1)
B3(q) 13.− 4 ℓ|(q + 1)

B2 : 1
2 4 ℓ|(q + 1)(q2 − q + 1)

Table 8. Cuspidal unipotent Brauer characters in type Bm
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Proof. Let ϕ ∈ IBr(G) be as in the statement. By Theorem 2.2, the projective cover of
ϕ is a direct summand of ΓGC for a cuspidal unipotent class C of Gad with ad(C) ≤ 4. By
Proposition 3.1 this implies m ∈ {2, 3}. For these groups the unipotent characters form
a basic set for the union of unipotent ℓ-blocks of G [10], and the decomposition matrix
with respect to these is uni-triangular (see [18]). From the explicit knowledge of these
decomposition matrices, it follows that ϕ must be as in Table 8. �

Proposition 6.2. Assume that n ≥ 2 and ℓ 6 | q(q + 1). Then the unipotent Brauer char-
acters of Spin2n+1(q), q odd, with aϕ ≤ 4 lie in a Harish-Chandra series as given in
Table 9.

(L, λ) conditions
(∅, 1), (B2, B2) always

(B2,−.1
2) ℓ|(q2 + 1)

(A2, 1
3) ℓ|(q2 + q + 1), n = 3

(B2A2, B2 ⊗ 13) ℓ|(q2 + q + 1), n = 5
(B3, B2 : 1

2) ℓ|(q2 − q + 1), n = 3

Table 9. Unipotent Harish-Chandra series in Bn(q) with small a-value

Proof. Let ϕ ∈ IBr(G) be an ℓ-modular unipotent Brauer character with aϕ ≤ 4. So ϕ
lies in the Harish-Chandra series associated to a cuspidal pair (L, λ) with aλ ≤ 4. By
Theorem 2.2 and Lemmas 5.1 and 6.1, L is either a torus or of one of the types

A2(q), B2(q), B2(q)A2(q), or B3(q),

with λ the corresponding outer tensor product of the cuspidal Brauer characters given
in Tables 4 and 8. (Note that Levi subgroups L of G have |Z(L)/Z◦(L)| ≤ 2 and so
one can invoke both Lemma 5.1 and Lemma 6.1) We deal with the various series in turn.
First note that a Levi subgroup of G of type A2 is contained in one of type A3 when
n ≥ 4, and so by Lemma 5.2(b) the A2-series (for ℓ|(q

2+ q+1)) can only contribute when
n = 3. Similarly, the B2A2-series of λ = B2 ⊗ 13 can only contribute when n = 5. From
the known Brauer trees it follows that for n = 4 all ℓ-modular Brauer characters in the
(B3, B2 : 1

2)-series for ℓ|(q2 − q + 1) have a-value at least 6. �

For primes ℓ|(q + 1) there are many further modular HC-series with a-value at most 4;
we will discuss those elsewhere.

6.2. A triangular subpart of the decomposition matrix. We give an approxima-
tion to the ℓ-modular decomposition matrix of Spin2n+1(q) for certain unipotent Brauer
characters of a-value at most 4. Again we only consider primes ℓ not dividing q + 1. The
induction basis is given by the cases n = 3 computed in [18] and the case n = 4 treated
below. Recall that unipotent characters of Spin2n+1(q) are labelled by symbols of rank n
and odd defect (see [4, §13.8]).
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Theorem 6.3. Let G = Spin2n+1(q) with q odd and n ≥ 4, and ℓ > 5 a prime not dividing
q(q+1). Then the first fourteen rows of the decomposition matrix of the unipotent ℓ-blocks
of G are approximated from above by Table 10, where k = n− 4 and

(a, b, c, d) =





(1, 0, 0, 0) when ℓ|(q2 + q + 1),

(0, 1, 0, 0) when ℓ|(q2 + 1),

(0, 0, 1, 0) when ℓ|(q2 − q + 1),

(0, 0, 0, 1) when ℓ|(q4 + 1),

(0, 0, 0, 0) otherwise.

The Harish-Chandra series are indicated in the last line; here the twelfth PIM is in the
principal series unless ℓ|(q2 + 1).

ρ aρ(
n
−
)

0 1(
0,1,n
−

)
1 . 1(0,1

n

)
1 . . 1(

1,n
0

)
1 b+k . . 1(0,n

1

)
1 d+k . . . 1(0,2,n−1

−
)

2 . k . . . 1( 0,2
n−1

)
2 b . b+k . . . 1(2,n−1

0

)
2 a+kb+

(
k
2

)
. . k . . . 1(0,n−1

2

)
2 c+kd+

(
k
2

)
. . . b+k . . . 1(1,n−1

1

)
3 k(b+d+k−1) . . c+k a+k . . . . 1(

0,1,2,n
1

)
4 . d+k . . . b . . . . 1(0,1,2

1,n

)
4 . . b+k . . . b . . . . 1(1,2,n

0,1

)
4 kb+

(
k
2

)
. . b+k . . . . . . . . 1(

0,1,n
1,2

)
4 kd+

(
k
2

)
. . . d+k . . . . . . . . 1

HC-series ps B2 ps ps ps B2 ps ps ps ps B2 ps/.12 ps ps

Table 10. Approximate decomposition matrices for Spin2n+1(q), n ≥ 4

Proof. Let first consider the case n = 4. For primes ℓ > 3 dividing one of q2 + q +
1, q2 − q + 1 or q4 + 1, the Sylow ℓ-subgroups of G = Spin9(q) are cyclic, and the Brauer
trees of unipotent blocks are easily determined. In particular the decomposition matrix is
triangular in those cases. The unipotent decomposition matrix for primes 3 < ℓ|(q− 1) is
the identity matrix by [3, Thm. 23.12]. Finally, for ℓ|(q2+1) projective characters ofG with
the indicated decomposition into ordinary characters can be obtained by Harish-Chandra
inducing PIMs from a Levi subgroup of type Spin7(q), for which Sylow ℓ-subgroups are
cyclic. Harish-Chandra restriction then shows that all of the non-zero entries ”b” under
the diagonal have to be positive. This construction also gives the claim about the modular
Harish-Chandra series. (See also [6, Thm. 8.2] for an analogous argument for Sp8(q).)
Now assume n ≥ 5. All character ρ1, . . . , ρ14 occurring in the table have a-value at

most 4. So as before, their ℓ-modular constituents must lie in one of the Harish-Chandra
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series listed in Table 9. From the known Brauer trees it follows that for n = 5 none of our
characters lies in the (B2A2, B2⊗13)-series when ℓ|(q2+q+1), so this will not contribute.
Harish-Chandra inducing the corresponding columns of the approximate unipotent de-
composition matrix from a Levi subgroup of semisimple type Spin2n−1(q) to G gives the
columns stated in Table 10, with the induction basis given by the case n = 4 treated
before. We just obtain one column with a character in the (B2, .1

2)-series, which contains
exactly one of the ρi, so there is at most one PIM in that series in the range of our table.
As in the case n = 4 we find three projectives containing one of the ρi above the cuspidal
unipotent character of B2.
All characters marked ”ps” lie in the canonical basic set given by FLOTW bipartitions

of the Hecke algebra H(Bn; q; q), whose ℓ-decomposition matrix is uni-triangular, see
[14, Thm. 5.8.5]. Similarly, according to [14, Thm. 5.8.2] the relative Hecke algebra
H(Bn−2; q

3; q) of the cuspidal unipotent character of B2(q) in G has a canonical basic set
given by FLOTW bipartitions and all characters marked ”B2” lie in that basic set. As the
ordinary cuspidal unipotent character of B2 is irreducible modulo all primes and reduction
stable, the decomposition matrix of that Hecke algebra embeds into the decomposition
matrix of G by Dipper’s theorem, so the corresponding part of our decomposition matrix
is indeed lower triangular. �

6.3. Unipotent Brauer characters of low degree. We now describe the decomposi-
tion of the first five unipotent characters from Theorem 6.3.

Proposition 6.4. Let G = Spin2n+1(q), n ≥ 2. Assume that ℓ is prime to 2q(q + 1).
Then the ℓ-modular decomposition matrix of ρ1 = 1G, . . . , ρ5 from Table 10 is given as
follows:

1 1
ρ2 . 1
ρ3 . . 1
ρ4 a . . 1
ρ5 b . . . 1

where a = κℓ,qn−1 and b = 1− a if ℓ|(q2n − 1)/(q − 1), and a = b = 0 otherwise.

Proof. The claim holds when n = 3 by [18]. For n ≥ 4, all the zeroes in the table are
correct by Table 10, so we only need to discuss the last two entries in the first column.
The entries a, b are determined as follows: The unipotent characters ρ4, ρ5 are con-

stituents of the rank 3 permutation module of G on singular 1-spaces, and thus the claim
for ℓ 6 |(q2n−1)/(q−1) follows from [21, Thm. 2.1]. Moreover, else we have that a+ b = 1.
If ℓ|(qn − 1) then ρ5 does not lie in the principal block (see [9, §12]), so that certainly
b = 0, and hence a = 1. On the other hand, if ℓ 6 |(qn− 1), but ℓ|(q2n − 1)/(q− 1), then ρ4
does not lie in the principal block, whence a = 0, b = 1. �

We obtain the following analogue of Corollary 5.8:

Corollary 6.5. Under the hypotheses of Theorem 6.3 assume that ϕ ∈ IBr(G) is an ℓ-
modular constituent of one of the unipotent characters ρi, 1 ≤ i ≤ 14, in Table 10. If
ϕ(1) < 1

2
q4n−6 − q3n−3 then i ≤ 5. In particular, ϕ is as described in Proposition 6.4.
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