
RATIONALITY OF EXTENDED UNIPOTENT CHARACTERS

OLIVIER DUDAS AND GUNTER MALLE

Abstract. We determine the rationality properties of unipotent characters of finite re-
ductive groups arising as fixed points of disconnected reductive groups under a Frobenius
map.

1. Introduction

The work of George Lusztig has shown the singular importance of unipotent characters
in the representation theory of finite reductive groups and hence of finite simple groups
of Lie type. Recent research has focussed on rationality properties of characters of almost
simple groups, and this naturally leads to the problem of understanding fields of values,
and fields of realisation, of extensions of unipotent characters to groups of Lie type ex-
tended by graph or graph-field automorphisms. The latter can be viewed as groups of
rational points of suitable disconnected algebraic groups. While the rationality properties
of unipotent characters themselves have long been known, due to the work of Lusztig [13]
and Geck [5] (see e.g. [8, Cor. 4.5.6]), their extensions to disconnected groups have so far
not been studied systematically; Digne–Michel [4, Thm II.3.3] considered characters in
the principal series and [14, Prop. 2] deals with SU3(q).

The field of values of a unipotent character ρ is generated by its Frobenius eigenvalue
(see [8, Prop. 4.5.5]). Here, we show that this Frobenius eigenvalue also governs the field
of values of extensions of ρ. Our first result concerns cuspidal characters:

Theorem 1. Let G be a simple algebraic group with a Frobenius map F and a commuting
non-trivial graph automorphism σ. Then any cuspidal unipotent character ρ of G = GF

has an extension ρ̂ to G〈σ〉 with Q(ρ̂) = Q(ρ), unless G = 2An−1(q) with n =
(
t
2

)
≡ 2, 3

(mod 4) for some t ≥ 2, in which case Q(ρ̂) = Q(
√
−q).

In particular, Q(ρ̂) is generated by a δth root of the Frobenius eigenvalue of ρ, where
δ ≥ 1 is minimal such that F δ acts trivially on the Weyl group of G.

Using earlier results on Frobenius–Schur indicators exhibits the following connection:

Corollary 2. In the situation of Theorem 1, ρ has a rational extension to G〈σ〉 if and
only if ρ has Frobenius–Schur indicator +1.

For arbitrary unipotent characters, we obtain:
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Theorem 3. Let G be a simple algebraic group with a Frobenius map F and a commuting
non-trivial graph automorphism σ. Then any σ-invariant rational unipotent character ρ
of G = GF has a rational extension to G〈σ〉, unless one of:

(1) G = An−1(q), q is not a square and ρ is labelled by a partition λ = (λ1 ≥ . . . ≥ λr) of
n with ∑

i

(
λi
2

)
−
∑
i

(
λ′i
2

)
+

(
n

2

)
≡ 1 (mod 2),

where λ′ = (λ′1 ≥ . . . ≥ λ′s) is the partition conjugate to λ;
(2) G = E6(q), q is not a square and ρ is one of φ64,4 or φ64,13; or
(3) ρ lies in the Harish-Chandra series of a cuspidal unipotent character of a group of

type 2An−1(q) labelled by a 2-core of size n ≡ 2, 3 (mod 4).

In cases (1) and (2), the extensions have character field Q(
√
q), in the third Q(

√
−q).

The case of cuspidal characters is settled in Section 2, in Section 3 we reduce the general
case to the former, thus proving Theorem 3. In Section 4 we discuss extensions by an
exceptional graph automorphism for types B2, G2 and F4.

2. Cuspidal unipotent characters

We consider the following setup. Let G be a connected reductive linear algebraic group
with a Frobenius endomorphism F : G→ G defining an Fq-structure, and set G := GF ,
the finite group of F -fixed points. We further assume that G has a graph automorphism σ

commuting with F . We set Ĝ = G〈σ〉 the semidirect product of G with σ, and Ĝ := ĜF

the corresponding extension of G with σ.

2.1. Deligne–Lusztig varieties and unipotent characters. Let B be the flag variety
of G, that is, the variety of Borel subgroups of G. The actions of F and σ on G induce
commuting endomorphisms of B. The group G acts by simultaneous conjugation on B×B
and the orbits are parametrized by the elements of the Weyl group W of G. Given w ∈ W ,
we denote by O(w) the corresponding orbit and we define the Deligne–Lusztig variety as
in [12, 3.3] by

Xw = {B ∈ B | (B, F (B)) ∈ O(w)}.
The action of G on B×B restricts to an action of the finite group G on Xw. Furthermore,
F (resp. σ) induces a finite morphism (resp. an isomorphism) between Xw and XF (w)

(resp. Xσ(w)). Consequently, if δ is the smallest integer such that F δ acts trivially on W ,
then any Deligne–Lusztig variety has an action of F δ commuting with G.

For ` a prime not dividing q we denote by Rw the corresponding Deligne–Lusztig char-
acter of G, given by

Rw(g) =
∑
i∈Z

(−1)i Tr
(
g | H i

c(Xw,Q`)
)

for g ∈ G.

This generalised character of G does not depend on ` (see e.g. [12, 1.2]). The complex-
valued characters which appear as constituents of the various Rw are called the unipotent
characters of G; we denote them Uch(G). By a result of Lusztig [12, 3.9], for any unipotent
character ρ of G, F δ acts by the same eigenvalue of Frobenius ωρ on any ρ-isotypic
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component H i
c(Xw,Q`)ρ of any `-adic cohomology group of any Xw, up to multiplication

by integral powers of qδ.

2.2. Reduction to simple groups. Here we follow the arguments in [8, Rem. 4.2.1]
building upon [8, 1.5.9–1.5.13]. The centre Z(G) is characteristic in G, so σ induces
a graph automorphism on (G/Z(G))F . As unipotent characters have Z(G)F in their
kernel, for the purpose of studying rationality of extensions of unipotent characters we
may therefore assume G is semisimple. Let Gsc and Gad be simply connected respec-
tively adjoint groups of the same type as G. Then these possess corresponding graph
automorphisms again denoted σ. Furthermore, there are natural F - and σ-equivariant
epimorphisms Gsc → G→ Gad such that the images of the respective F -fixed points con-
tain the derived subgroup of the F -fixed points of the target. Now unipotent characters
have the centre in their kernel and restrict irreducibly to the derived subgroup. Since σ
stabilises the centre and the derived subgroup, the rationality properties of extensions of
unipotent characters of GF agree with those of any group isogenous to it. By passing
to a group of adjoint type we see that we may hence assume for our purposes that G is
simple (of a chosen isogeny type), which we do from now on.

In particular, we can always assume that δ ∈ {1, 2, 3} and F = σr in its action on W ,
for some r ∈ {1, 2, 3} with one of r or δ being equal to 1.

2.3. Eigenvalues of F and character extensions. We keep the above setting. We first
look at the extensions over local fields given by the `-adic cohomology of the Deligne–
Lusztig varities.

Proposition 2.1. Let d be the order of σ (recall that d ∈ {2, 3}). Let ρ ∈ Uch(G) be
rational valued and σ-invariant. Assume that there is w ∈ W such that

(1) the 〈F 〉-orbit of w has length δ and is σ-stable; and
(2) the multiplicity of ρ in Rw is not divisible by d.

Then for every extension ρ̂ of ρ to G〈σ〉, the field of values Q`(ρ̂) is contained in the

splitting field of xd − ωd/δρ over Q`. Furthermore, there is at least one extension ρ̂ which
is Q`-valued if and only if there is a δth root of ωρ in Q`.

Remark 2.2. Since the Frobenius eigenvalue ωρ is uniquely determined up to integral
powers of qδ, the conclusion of Proposition 2.1 is well-defined.

Proof. We consider the subvariety

X = Xw tXF (w) t · · · tXF δ−1(w)

of B. By (1) it has an action of both F and σ and for all i we have

H i
c(X)ρ ∼= H i

c(Xw)ρ ⊕H i
c(XF (w))ρ ⊕ · · · ⊕H i

c(XF δ−1(w))ρ

as Q`G-modules with F permuting cyclically the δ summands. By (2) there is some i
for which the multiplicity of ρ in H i

c(Xw)ρ is not divisible by d. Thus there also is a
generalised eigenspace H i

c(Xw)ρ,µ of F δ on H i
c(Xw)ρ with the same property. Here, as

cited above, the eigenvalue µ differs from ωρ by an integral power of qδ. First assume

δ = 1. Then H := H i
c(Xw)ρ,µ is a Q`Ĝ-module in which not all extensions of ρ can occur

with the same multiplicity. Since d ∈ {2, 3}, at least one of the extensions must then be
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distinguished by its multiplicity and thus have values in Q`. The others are obtained by

tensoring with linear characters of Ĝ/G, which have values in the splitting field of xd− 1,
so of xd − ωdρ.

Now assume δ = d. Then F has characteristic polynomial (xd − µ)m in its action on
⊕δ−1j=0H

i
c(XF j(w))ρ,µ, with m = dimH i

c(Xw)ρ,µ and m/ρ(1) not divisible by d. Let K be the

splitting field of xd−µ over Q`. Then Gal(K/Q`) permutes the generalised F -eigenspaces
as it permutes the eigenvalues, that is, as it acts on the roots of xd − µ. If K contains a
zero of xd − µ, there is a Q`-rational eigenspace and we can argue as before.

If Q` does not contain a zero of xδ − ωρ, then K/Q` is an extension of degree δ (recall
that δ ≤ 3) and the δ different generalised eigenspaces of F are Galois conjugate over Q`.
Thus, the same holds for the δ different extensions of ρ. �

We now lift the rationality properties to Q.

Lemma 2.3. Let ρ be a rational valued unipotent character of G. Assume that for every

` 6= p, ρ has an extension ρ̂` to Ĝ which takes values in Q`. Then ρ has an extension to Ĝ
which takes values in Q.

Proof. We argue by contradiction. Assume all extensions of ρ are defined over a proper
extension K of Q, generated by a root of f ∈ Q[x], say. Since the sum of the extensions
has values in Q and δ ∈ {2, 3} this means that K (and hence f) has degree δ over Q.
Note that K/Q is abelian. Thus by Dirichlet there are infinitely many primes ` such that
f is also irreducible over Q`, that is, its roots generate an extension of degree δ. Hence ρ
does not have any Q`-rational extension, contradicting our assumption. �

2.4. Extensions of cuspidal unipotent characters. We keep the above setting. For
the classification and properties of unipotent characters we refer the reader to [8, §§4.3–
4.5]. Recall that cuspidal unipotent characters have values in Q(ωρ).

Proposition 2.4. Let G be simple of type Dn or E6, σ a graph automorphism of G and
F a commuting Frobenius map with δ = 1. Then any cuspidal unipotent character ρ of

G = GF has an extension to Ĝ = G〈σ〉 defined over Q(ρ).

Proof. We consider the various cases according to Lusztig’s classification of cuspidal unipo-
tent characters. By [8, Thm 4.5.11] they are all σ-invariant. If G is of type Dn with
n = (2t)2 for some t ≥ 1 and o(σ) = 2, then the class of W labelled by the bi-partition
(−; 4t−1, 4t−3, . . . , 1) contains σ-stable elements (since the centraliser in W of σ, of type
Bn−1, contains the class labelled (−; 4t − 1, 4t − 3, . . . , 3)), and by [13, Prop. 2.14], the
unique cuspidal unipotent character ρ occurs exactly once in the corresponding Deligne–
Lusztig character. Thus Proposition 2.1 applies to show that ρ has rational extensions.
If G is of type D4 with o(σ) = 3, then there exists a σ-stable element w ∈ W in the class
labelled by the bi-partition (−; 31), and using Chevie [15] the unique cuspidal unipotent
character ρ of G appears with multiplicity 1 in Rw. Thus Proposition 2.1 applies again.

Finally, for G of type E6, there are two cuspidal characters E6[θ], E6[θ
2] with Frobenius

eigenvalue a primitive third root of unity θ, respectively θ2. Let w ∈ W be in class E6.
Then w can be chosen σ-stable. Again using [15], both E6[θ] and E6[θ

2] occur in Rw with
multiplicity 1. Let H be a cohomology group of Xw containing ρ with odd multiplicity,
for ` a prime with ` ≡ 1 (mod 3), so

√
−3 ∈ Q`. Since σ fixes w, it acts on H and so
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Hρ contains the two extensions ρ1, ρ2 of ρ to Ĝ with different multiplicities. Thus, they
must be Q`-rational. Since this is true for all ` ≡ 1 (mod 3), the character field of ρi is
contained in Q(θ) = Q(ρ), hence equal to Q(θ). �

Proposition 2.5. Let G = An−1(−q) = 2An−1(q) where n =
(
t+1
2

)
with t ≥ 1, and let ρ

be the cuspidal unipotent character of G. Let σ be the graph-field automorphism of G of

order 2. Then the two extensions of ρ to Ĝ = G〈σ〉 are rational-valued if
(
n
2

)
is even, and

are algebraically conjugate over Q(
√
−q) if

(
n
2

)
is odd.

Proof. The cuspidal unipotent character of 2An−1(q) is labelled by the staircase partition
λ = (t, t − 1, . . . , 1) (see e.g. [8, Prop. 4.3.6]). The Frobenius eigenvalue of ρ is ωρ =

(−q)(
n
2) (up to multiplication by powers of q2) by [12, Rem. (a) after Thm 3.34] and [8,

Prop. 4.3.7]). An application of the Murnaghan–Nakayama rule shows that the irreducible
character of Sn labelled by λ takes value ±1 on elements w ∈ W = Sn of cycle type
(2t − 1, 2t − 5, . . .). Since the multiplicities of unipotent characters in Deligne–Lusztig
characters in type An−1 are given by the character table of W (see [8, Cor. 2.4.19]), this
means that ρ has multiplicity ±1 in the Deligne–Lusztig character Rw. Also, no conjugate
of w is centralised by σ, hence neither by F . Thus the assumptions of Proposition 2.1 are
satisfied and the conclusion follows. �

Remark 2.6. Alternatively, by the arguments given for the principal series case in the
proof of Theorem 3 below, the conclusion of Proposition 2.5 would follow if the full
endomorphism algebra of the cohomology of Xw0 , where w0 ∈ W is the longest element,
is indeed the Iwahori–Hecke algebra of type An−1 at parameter −q as speculated in [12,
3.10(b)] (see also the general conjectures in [1, 1B]).

Proposition 2.7. Let G be simple of type Dn or E6, σ a graph automorphism of G and
F a commuting Frobenius map with δ = o(σ). Then any cuspidal unipotent character ρ

of G = GF has an extension to Ĝ = G〈σ〉 with field of values Q(ρ).

Proof. First assume that G = 2Dn(q) where n = (2t + 1)2 with t ≥ 1, and let ρ be the
cuspidal unipotent character of G. Let w ∈ W be in the class labelled by (−; 4t+ 1, 4t−
1, . . . , 1). An application of Asai’s formula [8, Thm 4.6.9] shows that ρ appears with
multiplicity ±1 in Rw (see also [13, 2.19]). By [7, Thm 4.11] the Frobenius eigenvalue of ρ
is ωρ = 1, up to multiplication by integral powers of q2, so an application of Proposition 2.1
allows us to conclude.

Now assume G = 3D4(q), with σ the graph-field automorphism of G of order 3. If ρ
is the cuspidal unipotent character 3D4[−1] of G then (using Chevie[15]), ρ occurs with
multiplicity 1 in Xw for w of type F4. The class of w is not F -stable, so Proposition 2.1
applies. In this case the eigenvalue of F 3 for ρ equals ωρ = −1 (up to integral powers
of q3) by [11, (7.3)]. Next, let ρ be the cuspidal unipotent character 3D4[1], with Frobenius
eigenvalue ωρ = 1, by [7, Rem. 4.9]. It occurs with multiplicity 1 in Xw for w of type
F4(a1), which can be chosen not σ-invariant. Again Proposition 2.1 applies.

Finally, let G = 2E6(q). The cuspidal unipotent character ρ = 2E6[1] with ωρ = 1 (by [7,
Rem. 4.9]) appears with multiplicity 1 in the Deligne–Lusztig character Rw for w in class
3A2. Choosing w not σ-stable, we conclude as in the previous case. Let now ρ be one
of the cuspidal unipotent characters 2E6[θ],

2E6[θ
2] of G with ωρ = θ, θ2 respectively [11,
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(7.4)(e)]. For these the claim follows precisely as for the non-rational cuspidal characters
of E6(q) in the proof of Proposition 2.4. �

We are now ready to show our first main result:

Proof of Theorem 1. This follows from Propositions 2.4, 2.5 and 2.7 as those cover all
relevant cases. �

Proof of Corollary 2. If ρ is not real-valued the assertion holds trivially. We now discuss
the real-valued cuspidal unipotent characters. All of them are rational by [8, Cor. 4.5.6].
The Frobenius–Schur indicators of all these characters of untwisted groups are +1 by
Lusztig [13, Thm 0.2], and by Proposition 2.4 they possess rational extensions.

By Ohmori [16] the cuspidal unipotent character ρ of the unitary group G = SUn(q)
with n = t(t + 1)/2 has Frobenius–Schur indicator (−1)bn/2c. Now bn/2c is the Fq-rank
of G, which in turn is congruent modulo 2 to the exponent i in the Frobenius eigenvalue
ωρ = (−q)i of ρ by [12, Rem. (a) after Thm 3.34]. The claim in this case thus follows
from Proposition 2.5, observing that bn/2c and

(
n
2

)
have the same parity.

For the orthogonal group G = SO−2n(q) where n = (2t + 1)2, the Frobenius–Schur
indicator of the cuspidal unipotent character equals +1 by [13, 1.13], the Frobenius–
Schur indicator of the cuspidal unipotent character 2E6[1] of 2E6(q) is +1 by [5, 6.2], and
similarly the indicators of the two cuspidal unipotent characters of 3D4(q) are also +1 by
[11, (7.6)] and [5, 6.2]. So for the latter groups we may conclude by Proposition 2.7. �

3. Harish-Chandra theory

We now consider arbitrary unipotent characters.

Proof of Theorem 3. Let ρ ∈ Uch(G) be σ-invariant, so it has an extension ρ̂ to Ĝ = G〈σ〉.
First assume ρ lies in the principal series, so it occurs as constituent in the permuta-

tion module Q`[G/B], whence ρ̂ occurs in M := Q`[Ĝ/B]. Now as a Q`Ĝ × EndĜ(M)-
bimodule, M decomposes as the direct sum of irreducible submodules Mφ indexed by

φ ∈ Irr(EndĜ(M)) affording χφ ⊗ φ for some χφ ∈ Irr(Ĝ) in the principal series. Clearly,
any Galois automorphism of Q` permutes the Mφ as it permutes the characters φ, and
hence it permutes the χφ in the same way. So the rationality statement for ρ̂ follows from
the corresponding one for the extended Hecke algebra in [4, Thm II.3.3]. (See also the
proof of [5, Prop. 5.5].)

Now assume we are not in that case. Let L ≤ G be a (split) Levi subgroup and λ
a cuspidal unipotent character of L such that ρ lies in the Harish-Chandra series of λ,
so 〈ρ,RG

L (λ)〉 6= 0. Thus, ρ corresponds to a character φ of the relative Weyl group
W ′ := WG(L, λ) (see [8, Thm 3.2.5]). It is known that this relative Weyl group is of type
A2, Bn, G2 or F4 in the cases we consider and that L can also be chosen to be σ-stable
(see e.g. [8, Tab. 4.8]). Moreover, as λ is the unique cuspidal unipotent character of L, it
is also σ-stable. Furthermore, σ acts trivially on W ′ except possibly if W ′ has type A2.
By [9, Thm 3.3 and (3.6)] any such φ is of parabolic type, that is, there is a parabolic
subgroup W ′

J of W ′ such that 〈1W ′W ′J
, φ〉 = 1. Note that we may assume W ′

J is proper

in W ′ if W ′ 6= 1. This is clear if φ 6= 1W ′ , and φ = 1W ′ occurs with multiplicity 1 in the
permutation character on any parabolic subgroup. Let M ≥ L be the Levi subgroup of G
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corresponding to W ′
J and χ be the unipotent character of M in the Harish-Chandra series

(L, λ) corresponding to 1W ′J . Then by the comparison theorem [8, Thm 3.2.7] this means

that 〈RG
M(χ), ρ〉 = 1.

First assume σ has order 2 and let ρ1, ρ2 be the two extensions of ρ to Ĝ. We claim that

ρ1 has the same rationality property as some extension λ1 of λ to L̂ = L〈σ〉. If W ′ = 1
then L = G and the claim is obvious. If W ′ 6= 1 then W ′

J < W ′ as argued above. Exclude
for the moment the case that W ′ has type A2. Then σ stabilises (W ′

J , χ), so χ has two

extensions χ1, χ2 to M̂ = M〈σ〉. Then

〈RĜ
M̂

(χ1 + χ2), ρ1〉 = 〈RĜ
M̂

(IndM̂Mχ), ρ1〉 = 〈IndĜGR
G
M(χ), ρ1〉 = 〈RG

M(χ), ρ〉 = 1

and thus (after possibly interchanging ρ1 and ρ2) 〈RĜ
M̂

(χ1), ρ1〉 = 1 and 〈RĜ
M̂

(χ1), ρ2〉 = 0.
Consequently ρ1 has the same rationality properties as χ1, which by induction has the
same rationality properties as λ1, showing our claim. Now, the rationality properties of
extensions of the cuspidal unipotent character λ were discussed in Section 2, which gives
the desired conclusion.

Now assume that W ′ has type A2. Then by [8, Tab. 4.8] we have G = E6(q) and λ
is the cuspidal unipotent character of L of type D4. Of the three characters ρ of G in
this Harish-Chandra series, two have multiplicity one in RG

L (λ) and thus by our previous

argument, possess rational extensions to Ĝ. The Deligne–Lusztig character Rw for w in
the class E6 (with characteristic polynomial Φ3Φ12) contains the third character D4,r with
multiplicity −1. Since the class E6 contains elements centralised by σ, Proposition 2.1

shows that D4,r has a rational extension to Ĝ.
If σ has order 3, then necessarily G has type D4 or 3D4. Here, only the cuspidal

characters do not lie in the principal series, and for those, the claim was shown above. �

Example 3.1. Let ρ be any of the two unipotent characters of G = 2E6(q) in the Harish-

Chandra series of type 2A5. Then the extensions of ρ to Ĝ have character field Q(
√
−q),

by Proposition 2.5 in conjunction with Theorem 3. These are Ennola-dual to the principal
series characters φ64,4 and φ64,13 of E6(q), thus we see that the occurring irrationalities in
Theorem 3 do obey the Ennola principle.

We can also understand completely the groups of type D4 extended by its full group of
grah-automorphisms:

Corollary 3.2. Let G = D4(q) and Γ ∼= S3 its full group of graph automorphisms. Then

all Γ-invariant unipotent characters of G have a rational extension to Ĝ = G.Γ.

Proof. Let ρ ∈ Uch(G) be Γ-invariant. Let σ ∈ Γ have order 3. By Proposition 2.4, ρ has
one rational extension ρ1 to G〈σ〉 and two algebraically conjugate ones. Thus ρ1 must be

Γ-invariant as well and further extends to two characters ρ̂1, ρ̂2 of Ĝ. The restrictions of
these to G〈τ〉, where τ ∈ Γ has order 2, are the two extensions of ρ to G〈τ〉, so rational
again by Proposition 2.4. But then ρ̂1, ρ̂2 must also be rational valued. �

4. Exceptional graph automorphisms

The groups B2(2
2f+1), G2(3

2f+1), F4(2
2f+1) with f ≥ 0 possess exceptional outer graph

automorphisms of order 2 not induced by an automorphism of the ambient algebraic
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group (in particular one can not use the results in Section 2). In the smaller two cases,
the rationality properties of extended unipotent characters were determined by Brunat
[2, 3]. More precisely we have the following:

Proposition 4.1 (Brunat). (a) For G = B2(2
2f+1) all four invariant unipotent charac-

ters have rational extensions to the extension of G by the exceptional graph automor-
phisms.

(b) For G = G2(3
2f+1), eight unipotent characters are invariant under the exceptional

graph automorphism. Of these, the characters labelled φ1,0, φ2,1, φ1,6 and G2[−1] have

rational extensions, φ2,2 has an extension with character field Q(
√

3), while G2[1], G2[θ]
and G2[θ

2] have extensions with character field Q(
√
−3).

Proof. The first statement follows by inspection of [2, Tab. 6], the second from [3, Tab. 11].
For the characters in the principal series this also already follows from [6, Tab. IV], using
the arguments in the proof of Theorem 3. (Note that the entries in the first rows of both
tables in loc. cit. should correctly read ul(w), as confirmed by the authors.) �

Proposition 4.2. For G = F4(2
2f+1) with the exceptional graph automorphism σ of

order 2, 21 unipotent characters are σ-invariant. Of these, the principal series characters

φ1,0, φ4,1, φ9,2, φ12,4, φ6,6′ , φ6,6′′ , φ4,8, φ9,10, φ4,13, φ1,24

and the four characters B2,1, B2,ε, F
I
4 [1], F II

4 [1] possess rational extensions to Ĝ = G〈σ〉.
The character φ16,5 has extensions with character field Q(

√
2), the cuspidal characters

F4[±i] have extensions with character field Q(i), and F4[−1] has extensions with character
field Q(

√
−2).

Proof. Let G be of type F4 with a Steinberg endomorphism F0 such that G = GF for
F = F 2

0 . We may assume that F0 induces σ on G. For the characters in the principal
series the claim follows from the character table of the extended Hecke algebra in [6,
Tab. VI]. For the characters B2,1, B2,ε we can argue as in the proof of Theorem 3 since
they are parametrised by linear characters of the relative Weyl group, of type B2 (see [8,
Tab. 4.8]), which thus have multiplicity 1 in its regular character.

Now let w ∈ W be a σ-invariant element, and µ be an eigenvalue of F on H = H i
c(Xw)

for some i. Let λ =
√
µ be a root of µ. Then the action of G on H̃ := (H ⊗Q` Q`(λ))µ

extends to an action of Ĝ where σ acts as λ−1F0 and the traces of all gσ, for g ∈ G, lie
in λQ`. Thus, any Galois automorphism sending λ to−λ will interchange the multiplicities
in H̃ of the two extensions of any irreducible character ρ of G. In particular, if ρ has odd
multiplicity in H, then its two extensions are only defined over Q`(λ).

Now the eigenvalues of F can be computed by evaluating [4, III, Prop. 1.2 with Thm 1.3]
with Chevie [15]. Specifically, if w ∈ W is a σ-invariant regular element of order 8, then
F4[−1] occurs with odd multiplicity in some H i

c(Xw) and with an eigenvalue of F equal

to −q3 .Since q is an odd power of 2 we have Q`(
√
−q3) = Q`(

√
−2) and the previous

argument shows that F4[−1] has an extension in H̃ with character field Q(
√
−2).

For the two characters ρ = F4[±i], we use the same element w. In that case the
eigenvalues of F are ±iq3. As before, this means that both characters possess extensions

to Ĝ with values in Q(
√

2i). Now note that
√

2i = ±(1 + i) lies in Q(i), the character
field of ρ.
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Finally, the two cuspidal characters F I
4 [1], F II

4 [1] appear with odd mulitplicity in the
q6-eigenspace of F on H i

c(Xw) for w a σ-stable element in class D4(a1). We can now argue
as before to see that these characters possess rational extensions. �

Remark 4.3. We expect (from Ennola duality and the known character table of F4(2).2),
but have not been able to prove, that the unipotent character B2,r possesses rational
extensions, and the cuspidal characters ρ = F4[θ], F4[θ

2] have extensions with character
field Q(ρ).

Remark 4.4. A way to see that the cuspidal unipotent character F4[−1] of G = F4(q)

has non-real extensions to Ĝ is as follows: Let ` > 2 be a prime dividing q4 + 1 and P a

Sylow `-subgroup of G. Then P has larger automiser in Ĝ than in G. Thus the Brauer

tree of the principal `-block of Ĝ is obtained by unfolding the Brauer tree of the principal
`-block of G around the exceptional vertex. Since F4[−1] and the trivial character lie on
opposite sides of the exceptional vertex by [10, Thm 2.1(3)] and the trivial character has

real extensions to Ĝ, the extensions of F4[−1] cannot lie on the real stem of the Brauer

tree of the principal `-block of Ĝ and thus can’t be real-valued. This does, however, not
exhibit the precise character field.

The argument also applies to the cuspidal unipotent characters of 2A2(q) and 2A5(q),
and to G2[1] of G2(q) (with suitable `).

References
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