
A TWISTED INVARIANT PALEY-WIENER THEOREM
FOR REAL REDUCTIVE GROUPS

PATRICK DELORME and PAUL MEZO

Abstract
Let G+ be the group of real points of a possibly disconnected linear reductive algebraic
group defined over R which is generated by the real points of a connected component
G′. Let K be a maximal compact subgroup of the group of real points of the identity
component of this algebraic group. We characterize the space of maps π �→ tr(π(f )),
where π is an irreducible tempered representation of G+ and f varies over the space
of smooth, compactly supported functions on G′ which are left and right K-finite. This
work is motivated by applications to the twisted Arthur-Selberg trace formula.
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1. Introduction
Let G+ be the group of real points of a possibly disconnected linear reductive algebraic
group G+ defined over R, and let G be the group of real points of the identity com-
ponent of G+. We assume that G+ is generated by one of its connected components,
whose set of real points G′ is assumed to be nonempty. Then, G′ generates G+. Let
K+ be a maximal compact subgroup of G+, and let K be the maximal compact
subgroup K+ ∩G of G. The intersection G′ ∩K+ is nonempty. We may therefore fix
σ ∈ G′ ∩ K+ so that G′ = Gσ . In fact, we may choose σ so that it fixes a minimal
parabolic subgroup Pm = MmAmNm.

The present article has four principal goals.
(A) It seeks to classify the irreducible tempered representations π of G which

are σ -stable (i.e., equivalent to their σ -conjugates πσ ). This is equivalent
to classifying the irreducible representations of G+ whose restrictions to G

are irreducible and tempered. The set of equivalence classes of irreducible
tempered σ -stable representations are denoted by Ĝσ

temp

(B) It seeks to classify (using goal (A)) the irreducible admissible representations
of G which are σ -stable.

(C) It seeks to construct a canonical operator Sπ that intertwines πσ with π for
every irreducible tempered σ -stable representation π . We denote by 	σ

π the
distribution on G defined by

	σ
π (f ) = tr

(
π(f )Sπ

)
, f ∈ C∞

c (G).

(D) It seeks to characterize the functions F : Ĝσ
temp → C which are σ -twisted

invariant Fourier transforms of some left and right K-finite elements f ∈
C∞

c (G), that is, functions of the form

π �→ 	σ
π (f ), π ∈ Ĝσ

temp.

This characterization is required for the general proof of the invariant trace
formula as given in [A2, page 505].
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Let us briefly recall previous works in the case where G+ is connected (i.e., when
G = G+). Goal (A) was achieved by Knapp and Zuckerman [KZ] using limits of
discrete series (see also [S] for the case when G is disconnected as a Lie group)
and by Vogan [V] using minimal K-types. Goal (B) is known as the Langlands
classification (see [L]). When G = G+, goal (C) is trivial. Goal (D) is the work of
Clozel and Delorme [CD1], [CD2]. These two articles used the work of Knapp and
Zuckerman and the work of Vogan. The result of Delorme in [Dl] on Harish-Chandra
homomorphisms and transitional spaces is also a crucial ingredient, as is Arthur’s
Paley-Wiener theorem, [A1, Theorems III.4.1, III.4.2].

Turning to the case of G �= G+, goals (A) – (D) were solved in [D2] for complex
groups G and σ equal to complex conjugation relative to a quasi-split inner form.
The solution relied mainly on a very nice classification for goal (A) and a restriction
theorem from [CD2, proposition A.1], which is generalized in the present work.

Later, Mezo [M1] treated the case of G = GL(n, R) and some automorphisms
in the case of G = SL(n, R), exhibiting some new phenomena. More recently, Mezo
[M2] treated the case of general G w hen σ is an involution. The proof assumed that
all R-groups are trivial but included an approach to the general case. This work is the
starting point of the present article.

We point out that Bouaziz [B, Section 7] has proved an invariant Paley-Wiener
theorem and that Renard [R, Section 17] has proved a twisted invariant Paley-Wiener
theorem for functions that are not K-finite; neither of the results may be deduced from
the other. To apply the Paley-Wiener theorem to the Arthur-Selberg trace formula (see
[A2], [A3]), K-finite functions are needed. This is our main motivation in studying
K-finite functions.

Our solutions to goals (A) – (D) unfold as follows. We obtain the classification of
goal (A) (see Theorem 1) by combining the classifications of Vogan [V] and Knapp and
Zuckerman [KZ] with the characterization of σ -stable representations given in [M2,
Section 7]. The latter characterization uses automorphisms of G which are attached
to generalized principal series representations. The solution of goal (B) follows from
goal (A) and the Langlands classification (see [M2, Proposition 3.1]).

Any generalized principal series representation of goal (A) depends on a con-
tinuous parameter. The canonical intertwining operators of goal (C) (see Lemma 6)
are conjugates of operators that are independent of these continuous parameters (see
Lemma 5). The operators of conjugation are normalized intertwining operators as in
[KS, Part 1]. This independence from the continuous parameters plays a key role in the
growth estimates of the twisted invariant Fourier transforms of compactly supported
functions on G (see Lemma 8).

A slight change in perspective carries us from twisted invariant Fourier transforms
to twisted characters (see (5.2)). The relations between the twisted characters arising
from goals (A) and (C) are studied systematically in Proposition 2. These relations are
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sufficient for us to formulate our twisted invariant Paley-Wiener theorem (see Theo-
rem 3). The proof of our theorem generalizes [CD2, démonstration du théorème 1]
to the twisted context. This generalization presents several obstacles. One must corre-
late the properties of the R-groups with those of the automorphisms attached to the gen-
eralized principal series of goal (A). One must also generalize a restriction theorem for
polynomials invariant under an automorphism of a Dynkin diagram (see Theorem 5).
The heart of Theorem 3 is Proposition 4, where the relations of Proposition 2
again play an important part.

Theorem 3 has a corollary (Theorem 4) motivated by the twisted Arthur-Selberg
trace formula (see [A2, page 505], [A3, Section 11]). We do not need to list the relations
of Proposition 2 to state it, but we do need to introduce some notation. Let P = MAN

be a parabolic subgroup of G, and let P ′ be the intersection of its normalizer P + in
G+ with G′. We assume in the following that P ′ is nonempty. Similarly, let L+ be the
intersection of the normalizer of L = MA in G+ with P +. Let M+ be the subgroup
of L+ generated by τ and M . Then, L+ = M+A, P + = L+N , and N and A are
normal subgroups of P + and L+, respectively. Note that A is not necessarily in the
center of L+. Let a be the Lie algebra of A.

We repeatedly use the convention that if a group J acts on a vector space E, and
X ⊂ J , then EX denotes the space of elements of E fixed by all of the elements of
X. Now, given a tempered unitary representation ε+ of M+ whose restriction to M

is irreducible, and given λ ∈ ia∗L+
, then ε+ ⊗ eλ ⊗ 1N is a unitary representation of

P +. We denote by πP +
ε+,λ the corresponding unitarily induced representation from P +

to G+.

THEOREM

Let φ be a complex-valued function defined on the tempered dual Ĝ+
temp of G+, which

is nonzero only on the subset Ĝ′
temp of (equivalence classes) of representations of G+

whose restrictions to G are irreducible and tempered. We identify φ with its Z-linear
extension to the set of tempered representations of G+ of finite length. Then, there
exists a left and right K-finite f ∈ C∞

c (G) such that

tr
(
π+(f )π+(σ )

) = φ(π+), π+ ∈ Ĝ+
temp

if and only if φ satisfies the following conditions.
(i) There exists a finite subset � of the unitary dual K̂ such that φ(π+) = 0 if

the restriction of π+ to G does not contain any K-type in �.
(ii) If π+ and π ′+ ∈ Ĝ′

temp have the same restriction to G, then π+(σ ) =
c π ′+(σ ), where c is a root of unity. In this case, φ(π+) = c φ(π ′+).

(iii) Let Q = MQAQNQ be a parabolic subgroup of G with Q′ nonempty.
Assume that ε+ is a representation of M+

Q whose restriction to MQ is
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tempered and irreducible, and assume that λ ∈ a∗M+
Q . Then, λ �→ φ(πQ+

ε+,λ)

is the Fourier transform of a function in C∞
c (a

M+
Q

Q ).
xxx

Theorem 4 is a more precise version of this theorem, taking into account the size of
the support of the function f .

2. Preliminaries

2.1. Generalized principal series
Given a group J , elements g, x ∈ J , and X ⊂ J , we set g · x := gxg−1 and
g · X := gXg−1. If π is a map defined on a subgroup H of J , and if H is normalized
by some x ∈ G, then πx denotes the map defined on H by πx(h) = π(x−1 · h) for
h ∈ H . Note that π may be a representation of H . Recall from the introduction that
EJ is the subspace of J -fixed elements in a vector space E. If J is a Lie group, then j

denotes its Lie algebra and Ad denotes the adjoint representation of J on j.
Let us reconsider the objects defined from G+ as in the introduction. The set G′

generates G+; indeed, for any σ ∈ G′, one has G+ = ⋃n

i=1 σ iG, where n is the least
positive integer such that σn ∈ G. We choose a maximal compact subgroup K+ of
G+, which is the fixed-point group of some Cartan involution θ , in the sense of [BH,
Proposition 1.10]. Set K = K+ ∩ G. According to [BH, Proposition 1.10], K is a
maximal compact subgroup of G, and K ′ = K+∩G′ is nonempty. Clearly, σ ·K = K

for any σ ∈ K ′. We fix such a σ for the remainder of this article.
Let 0G be the intersection of the kernels of the continuous characters of G with

values in R∗+. Let AG be the analytic subgroup of G whose Lie algebra is the subspace
of the anti-invariant elements under θ in the center of the Lie algebra g. Actually, with
our definition of a Cartan involution, AG is just the identity component of the group
of real points of a maximally split torus in the center of G. One calls AG the split
component of the center of G.

We fix a symmetric bilinear form B on g which is invariant under the adjoint
group Ad G as well as under θ . In addition, we may assume that the quadratic form
‖X‖2 = −B(X, θX) is positive definite.

Suppose that P is a parabolic subgroup of G. Then, L = P ∩ θ(P ) is its θ -stable
Levi subgroup. The decomposition P = MAN , where M = 0L, A = AL, and N

is the unipotent radical of P , is called the Langlands decomposition of P . We fix a
minimal parabolic subgroup Pm = MmAmNm, and we recall that a parabolic subgroup
is said to be standard if it contains Pm.

Let W (A) be the quotient of the normalizer of A in K by its centralizer. The group
W (A) acts naturally on A and on the (equivalence classes of ) representations of M .
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If δ is a unitary representation of M and if λ ∈ ia∗, then we denote by Wδ (resp., Wλ)
the stabilizer in W (A) of δ (resp., λ). We also define Wδ,λ := W (A)δ ∩ W (A)λ.

Let ρP be the half-sum of the roots of a∗ determined by the root spaces in n. We
denote by IP

δ,λ the space of measurable functions ϕ from G to the space of δ, such that

ϕ(gman) = a−λ−ρP δ(m−1)ϕ(g), g ∈ G, m ∈ M, a ∈ A, n ∈ N,

and the integral ‖ϕ‖2 := ∫
K

|ϕ(k)|2 dk is finite. This space is endowed with the scalar
product defined from ‖ · ‖. The group G acts unitarily on this space by left translations,
and the corresponding representation is denoted by π̃P

δ,λ.
Let I (δ) be the space formed by the restriction of the elements of IP

δ,λ to K .
Observe that I (δ) is independent of λ. The restriction is bijective, and the representation
obtained from π̃P

δ,λ by “transport de structure” is denoted by πP
δ,λ. This version of π̃P

δ,λ

is called the compact realization of π̃P
δ,λ. For any ϕ ∈ I (δ), we take ϕλ to be the unique

element of IP
δ,λ whose restriction to K is ϕ. The equivalence class of πP

δ,λ, λ ∈ ia∗,
does not depend on P with Levi subgroup MA (see [KS, Section 8]). As a result, we
sometimes write πMA

δ,λ instead of πP
δ,λ.

2.2. A review of the classification of irreducible tempered
representations: A dictionary between two points of view

Let P = MAN be a parabolic subgroup of G, let δ be a discrete series representation
of M , and let λ ∈ ia∗. Define A(δ) to be the set of minimal K-types of I (δ) (see [V],
[D3, references following (1.8)] for G not connected as a Lie group). For µ ∈ A(δ),
let Iµ(δ) be the corresponding isotypic component of µ in I (δ). It is irreducible as a
representation of K . We fix an element µ0 of A(δ).

We make extensive use of the intertwining operators of Knapp and Stein [KS, Part
1] and of the particular normalization introduced by Delorme [Dl, Section 1], [D3,
Section 1] for G not connected as a Lie group. For a parabolic subgroup Q = MAV

with Levi subgroup MA, A(Q, P, δ, λ) is an analytic family of unitary operators
in λ ∈ ia∗, intertwining πP

δ,λ with π
Q
δ,λ. In addition, for any µ ∈ A(δ), there exists

c
µ

δ (Q, P ) ∈ C with c
µ0
δ (Q, P ) = 1, such that

for all λ ∈ ia∗, A(Q, P, δ, λ)|Iµ(δ) reduces to multiplication by c
µ

δ (Q, P ).

(2.1)

If R is another parabolic subgroup with Levi subgroup MA, then

A(R, Q, δ, λ)A(Q, P, δ, λ) = A(R, P , δ, λ), λ ∈ ia∗. (2.2)

Note that we are using the letter A for the normalized intertwining operators instead
of A as in [KS, Part 1] or [Dl, Section 1].
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Let M ′A′ be a Levi subgroup of G with MA ⊂ M ′A′. We assume that θ(V ) ∩
N ⊂ M ′. Let a′⊥ be the orthogonal complement of a′ in a. We may decompose
λ ∈ ia∗ as

λ = λ′ + λ′′, λ′ ∈ a′∗, λ′′ ∈ (a′⊥)∗.

We require the fact that

A(Q, P, δ, λ) depends only on λ′′. (2.3)

Indeed, by [KS, Theorems 7.6, 8.4], it suffices to prove (2.3) in the case where P

and Q are adjacent. In that case (see [KS, Proposition 7.5, Section 8]), the unnor-
malized operators, as well as the normalizing factors, depend only on λ′′, so (2.3)
follows.

For w ∈ Wδ , A(P, w, δ, λ) is an analytic family of unitary operators in λ ∈ ia∗,
intertwining πP

δ,λ with πP
δ,wλ. In addition, for any µ ∈ A(δ), there exists a character

χµ of Wδ such that

for all λ ∈ ia∗ and w ∈ Wδ , we have the fact that A(P, w, δ, λ)|Iµ(δ) is
multiplication by χµ(w) and χµ0 is trivial.

(2.4)

A(P, w, δ, w′λ)A(P, w′, δ, λ) = A(P, ww′, δ, λ), λ ∈ ia∗, w, w′ ∈ Wδ.

(2.5)

Let w̃ be a representative in K of w ∈ Wδ and let uw̃ be a unitary operator intertwining
δw̃ with δ. Then there exists c ∈ C of modulus one such that

A(P, w, δ, λ) = cuw̃Rw̃A(w−1Pw, P, δ, λ), λ ∈ ia∗. (2.6)

Indeed, both sides of this equation are unitary self-intertwining operators of πP
δ,λ, and

they are analytic in λ. When πP
δ,λ is irreducible, these operators have to be proportional.

This is true for λ in an open and dense set of ia∗. Furthermore, the two families are
constant on minimal K-types. Hence, the proportionality factor is constant on this set,
and the assertion follows by analytic continuation.

Recall (see [CD2, section 2]) that W 0
δ is the normal subgroup of Wδ consisting of

those elements w for which A(P, w, δ, 0) is trivial. Because of this, each character
χµ as mentioned above is a character of Wδ which is trivial on W 0

δ .
Recall also that W 0

δ is the Weyl group of a root system �δ in a, and recall that P

determines a set of positive roots �+
δ of �δ . The positive roots �+

δ determine a unique
chamber Cδ in a (i.e., the set of elements in a on which the elements of �+

δ are greater
than zero). If �+

δ is empty, it is equal to a. We denote its closure by C̄δ .
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Let Rc
δ be the subgroup of Wδ leaving �+

δ invariant. The group Wδ is the semidirect
product of Rc

δ and W 0
δ . Consequently, every character χµ ∈ Ŵδ described above may

be identified with a character of Rc
δ . Moreover, the map µ �→ χµ is a bijection between

A(δ) and R̂c
δ .

For λ ∈ ia∗, let W 0
δ,λ be the subgroup of elements w of Wδ,λ for which

A(P, w, δ, λ) is trivial. (It is already trivial on the K-type µ0.) It is the Weyl group of
the root system �δ,λ = {α ∈ �δ | (α, λ) = 0}. We let �+

δ,λ be the subset of positive
roots determined by P . Let Rc

δ,λ be the subgroup of Wδ,λ preserving �+
δ,λ.

We now introduce representations attached to the objects that we have just defined
(see [V], [Dl, Section 1] for G connected as a Lie group; see [D3, (1.6) – (1.8), (1.15),
(1.16)] for G not connected as a Lie group).

Let λ ∈ iCδ , and let H = Rc
δ,λ. Let χ ∈ Ĥ , and let πP

δ,H,χ,λ be the
subrepresentation of πP

δ,λ generated by the set of minimal K-types µ ∈
A(δ) so that χµ|H = χ . Then, πP

δ,H,χ,λ is irreducible and πP
δ,H,χ,λ contains

the minimal K-type µ if and only if χµ|H = χ . Moreover,

πP
δ,λ =

⊕
χ∈Ĥ

πP
δ,H,χ,λ.

(2.7)

Every irreducible tempered representation arises as such a πP
δ,H,χ,λ for a standard

parabolic subgroup P . The data (M, δ, λ) are determined modulo conjugacy by K .
Once δ is given, H and χ are unique, and λ is unique up to the action of Rc

δ .
The notions of (2.7) actually hold in a more general setting:

every subrepresentation of πP
δ,λ, λ ∈ ia∗ is characterized by the minimal

K-types that it contains.
(2.8)

Let Diag(δ) be the set of subgroups {Rc
δ,λ | λ ∈ iCδ} of Rc

δ . For H ∈
Diag(δ), χ ∈ Ĥ , and λ ∈ ia∗H , let πP

δ,H,χ,λ be the subrepresentation
of πP

δ,λ generated by the minimal K-types µ such that χµ|H = χ . The
subrepresentation πP

δ,H,χ,λ contains the minimal K-type µ if and only if
χµ|H = χ :

(2.9)

πP
δ,λ =

⊕
χ∈Ĥ

πP
δ,H,χ,λ, λ ∈ ia∗H . (2.10)
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For H, H ′ ∈ Diag(δ) with H ⊂ H ′, one has

πP
δ,H,χ,λ =

⊕
χ ′∈Ĥ ′,χ ′

|H =χ

πP
H ′,χ ′,λ, λ ∈ ia∗H ′

. (2.11)

Let us justify (2.9) – (2.11). From (2.7), one sees that (2.9) and (2.10) are true for
λ ∈ iCδ and H = Rc

δ,λ. After decomposing πP
δ,H,χ,λ into irreducible representations

and then using (2.7), it is apparent that (2.9) and (2.10) hold also for λ ∈ iCδ and
H ⊂ Rc

δ,λ. Decomposing both sides of (2.11) in a similar manner reveals that (2.11)
holds for λ ∈ iCδ . This establishes (2.9) – (2.11) when λ ∈ iCδ . Now, suppose that
λ ∈ ia∗H for some H ∈ Diag(δ). As W 0

δ is the Weyl group of �δ , there exists w ∈ W 0
δ

such that ν := wλ ∈ iCδ . Let us first show that Rc
δ,λ ⊂ Rc

δ,ν . If r ∈ Rc
δ,λ, then

rν = rwλ = rwr−1λ = rwr−1w−1ν.

As W 0
δ is normal in Wδ , the element rwr−1 lies in W 0

δ . Therefore, rν and ν are
conjugate by an element of W 0

δ , and both belong to iCδ . This implies that rν = ν, and
so the inclusion Rc

δ,λ ⊂ Rc
δ,ν is proved. Now, taking into account that πP

δ,λ is equivalent
to πP

δ,ν , one sees that πP
δ,H,χ,λ is equivalent to πP

δ,H,χ,ν . Assertions (2.9) – (2.11) for
πP

δ,H,χ,λ are therefore consequences of the parallel statements for πP
δ,H,χ,ν , which we

proved for ν ∈ iCδ .
We carry on by listing some facts relating discrete series representations to non-

degenerate limits of discrete series (see [CD2, section 2] for references; essentially,
see [KZ, Theorem 14.2] for G connected as a Lie group and [S, Section 4.3] for G not
connected as a Lie group). Let λ ∈ iCδ , and let Aλ be the fixed-point set in A of Rc

δ,λ.
The centralizer of Aλ in G admits Aλ as split component and is written as MλAλ. It is
the Levi subgroup of a parabolic subgroup of G which does not necessarily contain P

or Pm. The element λ may be regarded as an element of i(aλ)∗, and one has the finite
decomposition

πP
δ,λ

∼=
⊕

j

πMλAλ

δλ
j ,λ

, (2.12)

where each induced representation on the right-hand side is irreducible and

πP∩Mλ

δ,0 =
⊕

j

δλ
j (2.13)

is a decomposition into nondegenerate limits of discrete series δλ
j of Mλ. The set

{δλ
j | λ ∈ iCδ} is the set of nondegenerate limits of discrete series called strongly

affiliated to δ. The set of Levi subgroups MλAλ, as λ varies over iCδ , is the set of
Levi subgroups called strongly affiliated to δ.
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Every irreducible tempered representation π of G occurs in a decomposition as
above (i.e., each is of the form πMλAλ

δλ,λ
, where λ ∈ iCδ and δλ is a nondegenerate

limit of discrete series of Mλ strongly affiliated to δ). The data (MλAλ, δλ, λ) are
determined up to conjugacy under K .

Let M1A1 be a Levi subgroup strongly affiliated to δ, and let δ1 be a nondegenerate
limit of discrete series of M1 strongly affiliated to δ. By definition, we may choose
an element ν ∈ iCδ ∩ ia∗ so that Aν = A1 and π

M1A1
δ1,ν

is irreducible. To these
data, one may associate a subgroup H of Rc

δ , a character of H , and χ ∈ Ĥ in the
following manner. Recall that the dual group R̂c

δ acts simply transitively on A(δ) and
that by fixing µ0, we may identify A(δ) with R̂c

δ . The set A(δ1) of minimal K-types
π

M1A1
δ1,λ

, λ ∈ ia∗
1, corresponds to an orbit in A(δ) of the orthogonal complement H⊥

of H in R̂c
δ , where H = Rc

δ,ν . The elements of this orbit are characterized by their
restriction χ to H . This may be seen by applying the results of (2.7) to the irreducible
subrepresentation π

M1A1
δ1,ν

of πP
δ,ν . For all λ in ia∗H = i(aν)∗ = ia∗

1, one has

π
M1A1
δ1,λ

∼= πP
δ,H,χ,λ. (2.14)

In fact, both sides are equivalent to subrepresentations of πP
δ,λ containing the same

minimal K-types, and so the assertion follows from (2.8).
We henceforth fix a set of representatives of conjugacy classes under K of pairs

(M, δ) (often abbreviated simply as δ), where MA is the Levi subgroup of a standard
parabolic subgroup of G, and δ is a discrete series representation of M . This set is
called the set of discrete data and denoted by DD. For (M, δ) ∈ DD, there exists by
definition a unique standard parabolic subgroup with Levi subgroup MA. It is called
the standard parabolic subgroup of (M, δ). This fixes a choice of �+

δ and Cδ .

3. The classification of irreducible tempered σ -stable representations

3.1. A choice of σ

LEMMA 1
There exists σ in K ′ = K+ ∩ G′ such that
(i) conjugation by σ commutes with θ and Ad σ commutes with the differential

of θ ;
(ii) σ normalizes Mm, Am and Pm;
(iii) Ad σ is of finite order on am; and
(iv) we may choose our bilinear form B to be Ad σ -invariant.

Proof
The set K+ ∩ G′ is nonempty (see [BH, Proposition 1.10]). Let σ ′ be any element of
K+ ∩G′. Then, σ ′ ·Pm is a minimal parabolic subgroup of G. Hence, it is of the form
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k ·Pm for some k ∈ K . Set σ = k−1σ ′. Clearly, σ is fixed by θ . This implies assertion
(i). By definition, σ · Pm = Pm, and by (i) it is clear that MmAm = Pm ∩ θ(Pm) is
preserved by σ . Thus σ preserves Mm and Am in view of their definitions. This proves
(ii). As σ preserves the roots of am, we need only prove that σ has finite order on aG

to obtain (iii). As G+ has finitely many connected components, the element σn lies
in G for some minimal positive integer n. Hence, Ad σ n is trivial on the center of G,
and (iii) is proved. Finally, recall that B restricted to [g, g] is a multiple of the Killing
form. Hence, it is invariant under Ad σ . Also, the center z of g is orthogonal to [g, g]
with respect to B. After possibly averaging B over the finite group of automorphisms
generated by Ad σ restricted to z, one may assume that B is Ad σ -invariant. �

3.2. The definition of DDT
The next lemma is a slight improvement of [M2, Proposition 4.1].

LEMMA 2
Let (M, δ) ∈ DD, and let P = MAN be the standard parabolic subgroup of G with
Levi subgroup MA. If there exists a σ -stable irreducible subrepresentation of πP

δ,λ for
some λ ∈ iCδ , then there exists kδ in K such that
(i) conjugation by τδ := k−1

δ σ leaves Am, A, M , �+
δ , and the equivalence class

of δ invariant; and
(ii) the automorphism Ad τδ is of finite order on a, commutes with θ , and pre-

serves B.

Proof
(i) For λ ∈ iCδ , the representation (πP

δ,λ)σ is equivalent to πσ ·P
δσ ,σλ (see [M2,

proof of Proposition 3.1], the intertwining map being given by ϕ �→ ϕσ

with the notation of Section 2.1 in the compact realizations). The Langlands
disjointness theorem [L, pages 149, 150] provides k ∈ K with kσ ·M = M ,
kσ · A = A, and δσ equivalent to δk . After possibly multiplying by a
representative in K of a suitable element of W 0

δ and then by an element of
K ∩ M , one finds the desired kδ .

(ii) The automorphism Ad τδ preserves B, since the actions of Ad kδ and Ad σ

preserve B. The action of Ad τδ on the center is equal to that of σ , as
Ad kδ acts trivially. Moreover, Ad τδ preserves the Killing form. Hence, it
commutes with θ and preserves B (see Lemma 1(iv)). The assertion on the
finite order of Ad τδ on a follows from the fact that it permutes the roots of
a and agrees with Ad σ on the center of g (see Lemma 1(iii)). �

We denote by DDT the set of elements (M, δ) ∈ DD satisfying the hypotheses of
Lemma 2. The Langlands disjointness theorem tells us that an element (M, δ) ∈ DD
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is in DDT if and only if (πP
δ,0)σ is equivalent to πP

δ,0. For each (M, δ) ∈ DDT, we fix
a kδ and τδ as in Lemma 2.

Remark 1
There are several choices for DD and DDT. In the case of base change (see [D2,
Sections 3 – 5]), the set DDT was chosen so that kδ was always trivial, and hence, τδ

was equal to σ . Such a choice may not be possible in general.

3.3. The action of τδ on Rc
δ and A(δ)

Fix δ ∈ DDT, and let P = MAN be its standard parabolic subgroup. We choose a
unitary operator Uδ on the space of δ so that

δτδ (m) = U−1
δ δ(m)Uδ, m ∈ M. (3.1)

Recall that we have fixed µ0 ∈ A(δ) in Section 2.2. For the remainder of this article,
we denote the differential of Ad τδ by τδ whenever the action on a is required. With
the same abuse of notation, we denote Ad kδ by kδ and Ad σ by σ .

LEMMA 3
Suppose that r ∈ Rc

δ . Then, the element τδ(r) := τδ rτδ
−1
|a belongs to Rc

δ as a group of
automorphisms of a.

Proof
As conjugation by τδ preserves K and A (see Lemma 2), it is clear that τδ(r) is in
W (A). Moreover, as τδ preserves δ and �+

δ (see Lemma 2), it follows that τδ(r)
preserves them as well. �

LEMMA 4
For every µ ∈ A(δ), one has µτδ ∈ A(δ).

Proof
Suppose that kC is the complexification of the Lie algebra of K , and suppose that
b is a Borel subalgebra of kC containing the Lie algebra t of a Cartan subgroup of
K . Let γ be a highest weight of µ with respect to b (i.e., a highest weight of some
irreducible constituent of µ restricted to the identity component of K). Let ρc be the
half-sum of the roots of t in b. As Cartan subgroups of K and Borel subalgebras of
kC are conjugate by elements of K , there exists k in K such that Ad (kτδ)b = b and
Ad(kτδ)t = t. It is clear that kτδ(γ ) is a highest weight of µτδ . As k and τδ preserve
B, it follows that

‖γ + 2ρc‖ = ‖kτδγ + 2kτδρc‖ = ‖kτδγ + 2ρc‖.
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From the definition of minimal K-types (see [V, Definition 5.1] for G connected as a
Lie group, and see [CD1, page 433] in general), this implies that µτδ is an element of
A(δ). �

Using Lemma 4 and the simply transitive action of R̂c
δ on A(δ), we define χ0 ∈ R̂c

δ so
that

µ
τδ

0 = χ0 · µ0

or, equivalently,

χµ0
τδ = χ0. (3.2)

3.4. τδ-stable and σ -stable representations
We are now prepared to determine exactly which of the representations defined in
(2.7) are τδ-stable or σ -stable.

LEMMA 5
(i) The following defines a unitary operator Tδ on I (δ) (see (3.1)):

(
Tδ(ϕ)

)
(k) := Uδϕ

τδ (k) = Uδϕ(τ−1
δ · k), ϕ ∈ I (δ), k ∈ K.

(ii) For all λ ∈ ia∗, Tδ intertwines (πP
δ,λ)τδ with π

τδ ·P
δ,τδλ

.
(iii) For all µ ∈ A(δ), Tδ sends Iµ(δ) to Iµτδ (δ).
(iv) For w ∈ Wδ , one has

TδA(P, w, δ, λ)T −1
δ = χ0(w)A

(
τδ · P, τδ(w), δ, τδλ

)
, λ ∈ ia∗.

(v) For µ ∈ A(δ), χµτδ = χ0χ
τδ

µ .
(vi) If H ∈ Diag(δ) and λ ∈ ia∗H , then the operator Tδ intertwines (πP

δ,H,χ,λ)τδ

with π
τδ ·P
δ,H ′,χ ′,τδλ

, where H ′= τδ(H ) and χ ′ = χ0|τδ(H )χ
τδ .

Proof

(i) If ψ = Tδ(ϕ), k ∈ K , and m ∈ K ∩ M , then, using (3.1), one has

ψ(km) = Uδδ(τ−1
δ ·m−1)

(
ϕ(τ−1

δ ·k)
) = δ(m−1)Uδϕ(τ−1

δ ·k) = δ(m−1)ψ(k).

This proves that Tδ is an operator on I (δ). It is evident that it is unitary.
(ii) The operator Tλ corresponding to Tδ in the noncompact realization is given

by

(
Tλ(ϕ)

)
(g) := Uδ

(
ϕ(τ−1

δ · g)
)
, ϕ ∈ IP

δ,λ, g ∈ G.
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Its image lies in I
τδ ·P
δ,τδλ

by computations similar to those in (i), and it intertwines
(π̃P

δ,λ)τδ with π̃
τδ ·P
δ,τδλ

. Assertion (ii) now follows easily.
(iii) Let πδ be the representation of K on I (δ). Let (µ, Vµ) be a model for µ ∈ K̂ ,

and let Tµ : Vµ → Iµ(δ) be a unitary intertwining operator. Then, Tδ ◦ Tµ

intertwines (µτδ , Vµ) with the image of Iµ(δ) under Tδ , as may be seen from

πδ(k)TδTµv = Tδπδ

(
τ−1
δ (k)

)
Tµv = TδTµµτδ (k)v, k ∈ K, v ∈ Vµ.

(iv) Both sides of the equation to be proved intertwine π
τδ ·P
δ,τδλ

with π
τδ ·P
δ,τδwλ. To

see this, one may use the intertwining properties of the various operators
and the fact that if an operator intertwines π and π ′, then it also intertwines
πτδ and π ′τδ . On the open dense set of ia∗, where these representations are
irreducible, both operators are proportional. To see that they are equal, it is
therefore enough to verify that they are equal on the isotypic component of
µ0

τδ . This is obvious from (iii), (2.4), and (3.2).
(v) The desired equation follows by restricting the equation of (iv) to the isotypic

component of µτδ ∈ A(δ), recalling the definitions of χµ and χµτδ , and then
applying (iii).

(vi) From (iii), the minimal K-types of (πP
δ,H,χ,λ)τδ are of the form µτδ , where µ

runs through the minimal K-types of πP
δ,H,χ,λ. Using (v), they are seen to be

the elements µ′ ∈ A(δ) such that χµ′ |τδ(H ) = χ0|τδ(H )χ
τδ . The claim follows

from (2.7). �

The following theorem is a classification of the σ -stable irreducible tempered repre-
sentations.

THEOREM 1
(i) Every irreducible tempered σ -stable representation of G is equivalent to

πP
δ,H,χ,λ for some δ ∈ DDT, λ ∈ iCδ , H = Rc

δ,λ, χ ∈ Ĥ such that
(1) H is τδ-stable;
(2) the character χ satisfies χτδ = χ0|Hχ (the set of such characters of H

is denoted by Ĥ (τδ)); and
(3) there exists r ∈ Rc

δ such that rτδλ = λ.
The set of such subgroups of Rc

δ , corresponding to r , is denoted Diag(τδ, r).
(ii) Two representations πP

δ,H,χ,λ and πP ′
δ′,H ′,χ ′,λ′ as in (i) are equivalent if and

only if δ = δ′, H = H ′, χ = χ ′, and there exists r ∈ Rc
δ such that λ′ = rλ.

Proof
(i) By Lemma 2 and Section 2.2, every irreducible tempered σ -stable representation
of G is equivalent to πP

δ,H,χ,λ for some δ ∈ DDT, λ ∈ iCδ . Since τδ = kδσ , the
representation (πP

δ,H,χ,λ)σ is equivalent to (πP
δ,H,χ,λ)τδ . By Lemma 5(vi), we have
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the fact that (πP
δ,H,χ,λ)τδ is equivalent to π

τδ ·P
δ,H ′,χ ′,τδλ

, where H ′ = τδ(H ) and χ ′ =
χ0|τδ(H )χ

τδ . As A is τδ-stable (see Lemma 2), the parabolic subgroup τδ ·P has MA as
a Levi subgroup, and π

τδ ·P
δ,H ′,χ ′,τδλ

is equivalent to πP
δ,H ′,χ ′,τδλ

(see [KS, Theorem 8.4]).
Thus πP

δ,H,χ,λ is τδ-stable if and only if πP
δ,H,χ,λ and πP

δ,H ′,χ ′,τδλ
are equivalent. Using

the third sentence following (2.7) and the fact that τδ preserves Cδ (see Lemma 2),
this is true if and only if H = H ′, χ = χ ′, and τδλ = rλ for some r ∈ Rc

δ .
(ii) The assertion follows from the classification of tempered irreducible repre-

sentations in Section 2.2. �

The σ -stable representations of Theorem 1 are induced from parabolic subgroups that
are not necessarily stable under the actions of any σ , τδ , or rτδ . We close this section
by relating our σ -stable representations to some representations that are induced from
parabolic subgroups that are stable under the action of rτδ .

PROPOSITION 1
Let (M, δ) ∈ DDT, let λ ∈ iCδ , and let π be an irreducible subrepresentation of πP

δ,λ.
Suppose that π is equivalent to π

M1A1
δ1,λ

, where M1A1 is equal to MλAλ and (M1, δ1)
is a nondegenerate limit of discrete series strongly affiliated to δ, as follows from
Section 2.2. Recall that a∗

1 may be viewed as a subspace of a∗, and recall that λ ∈ ia∗
1

(see (2.12)). Let Q be the parabolic subgroup of G whose Lie algebra is the sum
of the a root spaces for roots α with Im(α, λ) ≥ 0. Its Levi subgroup MQAQ is the
centralizer in G of λ and contains M1A1. Then, the representation π is σ -stable if
and only if there exists r ∈ Rc

δ such that rτδλ = λ, r̃τδ normalizes MQAQ and Q,

and (πP∩MQ

δ1,0 )r̃τδ is equivalent to ε := π
P∩MQ

δ1,0 , where r̃ is a representative in K of r .

Moreover, π is equivalent to π
Q
ε,λ and r̃τδ · Q = Q.

Proof
We must determine when π is τδ-stable. First, Q contains a parabolic subgroup P1

with Levi subgroup M1A1. Indeed, let P ′
1 = M1A1N

′
1 be a parabolic subgroup of G

with Levi subgroup M1A1. Then, P1 = (P ′
1 ∩MQ)NQ has the required property. Thus

π
M1A1
δ1,λ

is equivalent to π
P1
δ1,λ

. Applying induction in stages, π is equivalent to π
Q

π
P1∩MQ
δ1 ,O ,λ

.

Let us show that the conditions of the theorem are sufficient. Suppose that they are
satisfied. As rτδλ = λ, the parabolic subgroup Q satisfies r̃τδ ·Q = Q. The resulting
representation is induced from an r̃τδ-stable parabolic subgroup and an r̃τδ-stable
representation. This implies that the induced representation is r̃τδ-stable. It is then
also τδ- and σ -stable, as r̃ , kδ ∈ G. This proves that the conditions are sufficient.

Let us prove that they are necessary. According to Theorem 1(i), there exists
r ∈ Rc

δ such that rτδλ = λ. It follows from Lemma 2 that τδ normalizes Rc
δ,λ. Hence,

r̃τδ normalizes A1 = Aλ (see Section 2.2) and M1. Therefore, it suffices to determine
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when π
M1A1
δ1,λ

is r̃τδ-stable. The representation (πM1A1
δ1,λ

)r̃τδ is easily seen to be equivalent

to π
M1A1

δ′
1,λ

, where δ′
1 is equal to δ

r̃τδ

1 . Thus π is τδ-stable if and only if π
M1A1

δ′
1,λ

and π
M1A1
δ1,λ

are equivalent. By Section 2.2, this is true if and only if there exists a w ∈ NK (A1)
fixing λ and conjugating δ′

1 with δ1. Finally, if w fixes λ, it is in MQ by definition,
which implies that (πP∩MQ

δ1,0 )r̃τδ is equivalent to π
P∩MQ

δ1,0 . �

4. The classification of irreducible admissible σ -stable representations
We now turn to the resolution of goal (B), our second principal goal. The results of
this section essentially appear in [M2, Section 3]. We include a brief review for the
sake of completeness and convenience.

Suppose that P = MAN is a parabolic subgroup, and suppose that ρ is an
irreducible tempered representation of M . Suppose further that λ lies in the complexi-
fication of a∗, and suppose that its real part lies in the positive chamber of a∗ determined
by P . Langlands [L, Section 3] has shown that the induced representation πP

ρ,λ has a
unique irreducible quotient J P

ρ,λ and that every irreducible admissible representation
of G is (infinitesimally) equivalent to some such Langlands quotient. He also proved
that two Langlands quotients, J P

ρ,λ and J P ′
ρ ′,λ′ , are equivalent if and only if there exists

h ∈ G such that h · P = P ′, ρh is equivalent to ρ ′, and hλ = λ′ (i.e., Langlands
quotients are unique up to conjugation). This allows us to restrict our classification to
standard parabolic subgroups P , as all parabolic subgroups are conjugate to a (unique)
standard parabolic subgroup.

THEOREM 2
Suppose that P is a standard parabolic subgroup of G, and suppose that J P

ρ,λ is a
Langlands quotient as defined in the preceding paragraph. Then, J P

ρ,λ is σ -stable if
and only if σ · P = P , ρσ is equivalent to ρ and σλ = λ.

Proof
We provide a sketch, leaving the details to [M2, proof of Proposition 3.1]. Composition
by σ provides an intertwining operator between (πP

ρ,λ)σ and πσ ·P
ρσ ,σλ. This equivalence

induces an equivalence between the Langlands quotients (J P
ρ,λ)σ and J σ ·P

ρσ ,σλ. The “if”
part of the theorem is now immediate. For the converse, we see that J P

ρ,λ is equivalent
to J σ ·P

ρσ ,σλ, and since σ.Pm = Pm, the parabolic subgroup σ · P remains standard.
The theorem then follows from the uniqueness of Langlands quotients up to conju-
gation. �

Taken together, both Theorems 1 and 2 constitute a classification of irreducible ad-
missible σ -stable representations of G.
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5. Intertwining operators and twisted characters

5.1. Representations of G+ and twisted characters
The group G+/G is cyclic and generated by the coset of any element τ ∈ G′. Let us
look at an irreducible unitary representation π+ of G+ whose restriction to G is an
irreducible representation π of G. Let τ ∈ G′, and let n be the order of the image of τ

in G+/G so that τn = g ∈ G. Then, T = π+(τ ) is an intertwining operator between
πτ and π such that T n = π+(τn) = π(g). Conversely, if T is such an intertwining
operator, then it defines a representation of G+.

If T ′ is another operator that intertwines πτ with π , then T ′n is proportional to
π(g) by Schur’s lemma. Thus there are exactly n distinct choices for a constant c ∈ C
such that T = cT ′ and T n = π(g).

The τ -twisted character 	τ
π of π+ is the distribution on G defined by

	τ
π (f ) = tr

(
π(f )π+(τ )

)
, f ∈ C∞

c (G).

Now, suppose that τ, σ belong to G′, and suppose that σ = kτ for k ∈ K . Then, one
has

	σ
π = Rk	

τ
π , (5.1)

where R denotes the right-regular representation of G. We speak of a τ -twisted
character of π more generally by replacing π+(τ ) above with any intertwining operator
between πτ and π .

5.2. The definition of the operators T (δ, r, H, χ, λ)
LEMMA 6
In the notation of Theorem 1 and Lemma 5, one has the following.
(i) The operator T (δ, r, λ), defined by

T (δ, r, λ) := A(P, r, δ, τδλ)A(P, τδ · P, δ, τδλ)Tδ, r ∈ Rc
δ, λ ∈ ia∗rτδ ,

intertwines (πP
δ,λ)τδ with πP

δ,rτδλ
.

(ii) T (δ, r, λ) sends the isotypic component Iµ(δ) to Iµτδ (δ) for every µ ∈ A(δ).
It is independent of λ, and it is equal to a scalar multiple of Tδ on each
Iµ(δ).

(iii) Let r̃ be a representative in K of r ∈ Rc
δ , and let ur̃ be a unitary intertwining

operator between r̃δ and δ. There then exists c ∈ C such that

T (δ, r, λ) = cur̃Rr̃A(r · P, τδ · P, δ, τδλ)Tδ, λ ∈ ia∗rτδ .
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(iv) Let T (δ, r, H, χ, λ) be the restriction of T (δ, r, λ) to the space of πP
δ,H,χ,λ

for each H ∈ Diag(τδ, r), χ ∈ Ĥ (τδ), and λ ∈ ia∗rτδ . Then the operator
T (δ, r, H, χ, λ) intertwines (πP

δ,H,χ,λ)τδ with πP
δ,H,χ,λ.

Proof
As Tδ intertwines (πP

δ,λ)τδ with π
τδ ·P
δ,τδλ

(see Lemma 5(i), (ii)), assertion (i) follows from
the properties of intertwining operators of [KS, Section 8]. The first part of assertion (ii)
follows from Lemma 5(iii). The second part follows from the intertwining properties
of our normalized intertwining operators (see (2.1), (2.4)). Using equation (2.6) and
taking into account the fact that r = r−1, one has

T (δ, r, λ) = c ur̃ Rr̃ A(r · P, P, δ, τδλ) A(P, τδ · P, δ, τδλ) Tδ.

Assertion (iii) therefore results from the properties of our normalized intertwining
operators (see (2.2)). As πP

δ,H,χ,λ is τδ-stable, its set of minimal K-types is also τδ-
stable (see Lemma 4). Assertion (iv) therefore follows from (i), (ii), and the definitions
of πP

δ,H,χ,λ and Ĥ (τδ) (see Theorem 1(i)). �

Remark 2
In Lemma 6, one may replace P by any other parabolic subgroup with the same Levi
subgroup. This is also the case for Lemma 5.

Lemma 6 allows us to define the twisted character

	
τδ

δ,r,H,χ,λ(f ) = tr
(
πP

δ,H,χ,λ(f ) T (δ, r, H, χ, λ)
)
, f ∈ C∞

c (G). (5.2)

5.3. Some auxiliary operators
This section is inspired by [M2, Section 5]. We begin with a simple remark:

let L ⊂ L′ be two Levi subgroups of G which contain Am. Let P ′ = L′N ′

be a parabolic subgroup of G with Levi subgroup L′. Then, there exists
a parabolic subgroup P of G with Levi subgroup L such that P ⊂ P ′.

(5.3)

Indeed, if PL′ is any parabolic subgroup of L′ with Levi subgroup L, then P = PL′N ′

has the required property.
Let (M, δ) ∈ DDT, let P = MAN be a standard parabolic subgroup of G, let

r ∈ Rc
δ , and let H ∈ Diag(τδ, r). By the definition of Diag(τδ, r), there exists λ ∈ ia∗

such that Rc
δ,λ = H , rτδλ = λ, and λ ∈ iC̄δ . Furthermore, the centralizer of aH is

a Levi subgroup L1 = M1A1 with a1 = aH (see Section 2.2). Thus, the set O of
λ ∈ ia∗〈rτδ,H 〉 with Rc

δ,λ = H is nonempty. Hence, the fixed-point set of r ′ ∈ Rc
δ \ H

in ia∗〈rτδ,H 〉 is a proper subspace. The complement of O in ia∗〈rτδ,H 〉 is equal to the
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possibly trivial finite union of these proper subspaces. According to Baire’s theorem,
the set O is open and dense in ia∗〈rτδ,H 〉.

The finite group 〈rτδ, H 〉 preserves Cδ . Therefore, we may average an element
of iCδ under the action of 〈rτδ, H 〉 to conclude that iCδ ∩ ia〈rτδ,H 〉 �= ∅. The density
of O now implies that iCδ ∩ O �= ∅.

Let us show that there exists λ0 ∈ iCδ ∩ O such that for any a-weight α, α

vanishes on ia∗〈rτδ,H 〉 if and only if it vanishes on λ0. Suppose that α is a weight of a

in g which does not vanish on a〈rτδ,H 〉, and let Oα be the complement of the kernel of
α in a〈rτδ,H 〉; it is the complement of a hyperplane and, as such, is open and dense. The
intersection of all the sets Oα is dense by Baire’s theorem, and it therefore intersects
the nonempty open set iCδ ∩ O. Therefore, we may take λ0 in this intersection. The
element λ0 satisfies the desired property.

Let Q = MQAQNQ be the parabolic subgroup of G whose Lie algebra is the sum
of the weight spaces of the a-weights α so that Im(α, λ0) ≥ 0. This implies that the
Levi subgroup MQAQ is the centralizer in G of λ0. Since λ0 is rτδ-invariant, one has

r̃τδ · Q = Q, (5.4)

where r̃ is a representative in K of r . Notice that the set of weights of a whose weight
spaces lie in nQ contains �+

δ , as λ0 ∈ Cδ . Notice also that aQ is the intersection of the
kernels of those weights that vanish on λ0. Recalling the main property of λ0 above,
this implies that aQ contains a〈rτδ,H 〉. Let M1A1 = Mλ0Aλ0 be a strongly affiliated
Levi subgroup as defined in Section 2.2. The group M1A1 centralizes a〈rτδ,H 〉, which
contains λ0. As MQAQ is the centralizer of λ0, one has

MA ⊂ M1A1 ⊂ MQAQ.

By (5.3), there exist parabolic subgroups P ′ and P1 of G with Levi subgroups MA

and M1A1, respectively, such that

P ′ ⊂ P1 ⊂ Q.

As P ′ ⊂ Q and Q is r̃τδ-stable, we have

θ(P ′) ∩ r̃τδ · P ′ ⊂ θ(Q) ∩ r̃τδ · Q = θ(Q) ∩ Q = MQAQ. (5.5)

LEMMA 7
(i) The operator

T ′ := A(P ′, δ, r, τδλ)A(P ′, τδ · P ′, δ, λ)Tδ, λ ∈ ia∗〈rτδ,H 〉,

is independent of λ ∈ ia∗〈rτδ,H 〉 and intertwines (πP ′
δ,λ)τδ with πP ′

δ,λ.
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(ii) The space of πP ′
δ,H,χ,λ is independent of λ ∈ ia∗〈rτδ,H 〉, and

πP ′
δ,H,χ,λ = π

Q
ε,λ, λ ∈ ia∗〈rτδ,H 〉,

where Q is r̃τδ-stable and

ε = π
P ′∩(MQAQ)
δ1,0

is an r̃τδ-stable representation of MQ.
(iii) Let T ′(δ, r, H, χ) be the restriction of T ′ to the space of πP ′

δ,H,χ,λ. It inter-
twines (πP ′

δ,H,χ,λ)τδ with πP ′
δ,H,χ,λ.

(iv) There exists c ∈ C such that for all λ ∈ ia∗〈rτδ,H 〉, the operator
T (δ, r, H, χ, λ) of Lemma 6 is equal to the restriction of the operator
cA(P ′, P , δ, λ)−1T ′A(P ′, P , δ, λ) to the space of πP

δ,H,χ,λ.

(v) For H ∈ Diag(τδ, r), χ ∈ Ĥ (τδ), and λ ∈ ia∗〈rτδ,H 〉, we have

	
τδ

δ,r,H,χ,λ(f ) = c tr
(
πP ′

δ,λ(f )T ′(δ, r, H, χ)
)
, f ∈ C∞

c (G).

Proof
(i) By Remark 2 and Lemma 6(iii) applied to P ′, one sees that T ′ has the desired
intertwining property and that

A(P ′, δ, r, τδλ)A(P ′, τδ ·P ′, δ, λ) = c ur̃ Rr̃ A(r ·P ′, τδ ·P ′, δ, τδλ), λ ∈ ia∗〈rτδ,H 〉.

As r(a〈rτδ,H 〉) ⊂ raQ, the element τδλ = rλ lies in i(raQ)∗ for any λ ∈ ia∗〈rτδ,H 〉. It
follows from (2.3) and (5.5) that A(r ·P ′, τδ ·P ′, δ, τδλ) is an intertwining operator that
does not depend on λ ∈ ia∗〈rτδ,H 〉. This shows that T ′ is independent of λ ∈ ia∗〈rτδ,H 〉.

(ii) For λ ∈ O∩iCδ , one has MλAλ = M1A1 (see Section 2.2). As P ′ ⊂ P1 ⊂ Q,
we may apply induction in stages, as in equation (2.14). In the context at hand, this
equation takes the form

πP ′
δ,H,χ,λ = π

Q
ε,λ, λ ∈ (O ∩ iCδ) ⊂ ia∗〈rτδ,H 〉,

where

ε = π
P ′∩(MQAQ)
δ1,0 .

When λ ∈ iCδ ∩O, the first assertion of (ii) follows from an analysis of the induction
in stages in the compact realization. It follows for all λ ∈ ia∗〈rτδ,H 〉 by analytic
continuation. The r̃τδ-stability of Q has been shown in (5.4). For λ = λ0, finally,
the parabolic subgroup Q and the representation ε are as in Proposition 1, and so the
r̃τδ-stability of ε follows.

(iii) This assertion follows from Remark 2 and Lemma 5 applied to P ′.
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(iv) We make use of the following fact. Let π , π ′ be two unitary representations of
G of finite length, and let A (resp., S) be an invertible intertwining operator between
π and π ′ (resp., πσ and π ). Then, S ′ = ASA−1 is an intertwining operator between
π ′σ and π ′, and

tr
(
π ′(f )S ′) = tr

(
π(f )S

)
, f ∈ C∞

c (G). (5.6)

The operators T (δ, r, H, χ, λ) and A(P, P ′, δ, λ)−1T ′A(P, P ′, δ, λ) are intertwining
operators between (πP

δ,H,χ,λ)τδ and πP
δ,H,χ,λ for λ ∈ ia∗〈rτδ,H 〉. For λ in the nonempty

open set iCδ ∩O (see (ii) above) of ia∗〈rτδ,H 〉, the representation πP
δ,H,χ,λ is irreducible

(see Section 2.2). These two operators are proportional by Schur’s lemma. The two
operators are independent of λ on each minimal K-type and are proportional to Tδ (see
equation (2.1) and Lemma 6(ii)). Therefore, the proportionality factor is independent
of λ in this open set. The assertion follows by analytic continuation.

(v) This assertion follows from (iii), (iv), and equation (5.6). �

6. Some properties of twisted characters
The properties that we prove here reappear in Theorem 3 as those properties that
characterize functions derived from twisted characters. The first property that we
prove harkens back to the classical Paley-Wiener theorem. Let C∞

c (G, K)t be the
space of smooth functions on G, which are left and right K-finite and whose support
is contained in K exp(Bt )K , where Bt is the closed ball of radius t > 0 about the
origin in am. Define C∞

c (a〈rτδ,H 〉)t to be the space of smooth functions on a〈rτδ,H 〉 with
support in the closed ball of radius t , and define PW(a〈rτδ,H 〉)t to be the image of
C∞

c (a〈rτδ,H 〉)t under the Fourier transform.

LEMMA 8
For each f ∈ C∞

c (G, K)t , the function on ia∗〈rτδ,H 〉, defined by

λ �→ Fδ,r,H,χ (λ) := 	
τδ

δ,r,H,χ,λ(f ),

is an element of the space PW(a〈rτδ,H 〉)t .

Proof
Let f ∈ C∞

c (G, K)t . The K-finiteness of f implies that there exists an orthogo-
nal projection p onto a finite sum of isotypic components of K in I (δ) such that
πP ′

δ,H,χ,λ(f ) = p πP ′
δ,H,χ,λ(f ) p. Substituting the right-hand side into the equality of

Lemma 7(ii), Fδ,r,H,χ is seen to be the restriction to ia∗〈rτδ,H 〉 of a finite sum of coef-
ficients of the matrix Fourier transform of f . The lemma follows from the properties
of the Fourier transform of elements of C∞

c (G, K)t as given in [A1, Lemma 3.1] (see
also [CD1, section 2.1]). �
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PROPOSITION 2
(i) Let r ∈ Rc

δ , and let H ∈ Diag(τδ, r). If w ∈ W 0
δ satisfies w(ia∗〈rτδ,H 〉) =

ia∗〈rτδ,H 〉, then

	
τδ

δ,r,H,χ,wλ = 	
τδ

δ,r,H,χ,λ, χ ∈ Ĥ (τδ), λ ∈ ia∗〈rτδ,H 〉.

(ii) Let r ∈ Rc
δ . If H, H ′ are subgroups in Diag(τδ, r) with H ⊂ H ′, then

	
τδ

δ,r,H,χ,λ =
∑

χ ′∈Ĥ ′(τδ),χ ′
|H =χ

	
τδ

δ,r,H ′,χ ′,λ, χ ∈ Ĥ (τδ), λ ∈ a〈rτδ,H
′〉.

(iii) If r, s ∈ Rc
δ and H ∈ Diag(τδ, s) with rs ∈ H , then ia∗〈rτδ,H 〉 = ia∗〈sτδ,H 〉

and

	
τδ

δ,r,H,χ,λ = χ(rs)	τδ

δ,s,H,χ,λ, χ ∈ Ĥ (τδ), λ ∈ ia∗〈rτδ,H 〉.

(iv) Suppose that r, s ∈ Rc
δ , and let H ∈ Diag(τδ, r). Recall that τδ(s) is the

action of τδ on s. Then, H is an element of Diag(τδ, rsτδ(s)), and

	
τδ

δ,rsτδ (s),H,χ,sλ = χ0

(
τδ(s)

)
	

τδ

δ,r,H,χ,λ, χ ∈ Ĥ (τδ), λ ∈ ia∗〈rτδ,H 〉.

(The left-hand side is defined, as our hypothesis on λ implies that sλ ∈
ia∗〈rsτδ (s),H 〉.)

Proof
(i) Let λ ∈ ia∗〈rτδ,H 〉. The restriction A(λ) of A(P, w, δ, λ) to the space of πδ,H,χ,λ

intertwines πP
δ,H,χ,λ with πP

δ,H,χ,wλ. By Lemma 6(i), the operator T (δ, r, H, χ, λ)
intertwines (πP

δ,H,χ,λ)τδ with πP
δ,H,χ,λ. Taking into account equation (5.6), it suffices to

prove that

T ′(λ) := A(λ)−1T (δ, r, H, χ, wλ)A(λ)

is equal to T (λ) := T (δ, r, H, χ, λ). Both operators intertwine (πP
δ,H,χ,λ)τδ with

πP
δ,H,χ,λ. As the representation πP

δ,H,χ,λ and its equivalent representation (πP
δ,H,χ,λ)τδ

are generated by their minimal K-types, it is enough to prove this equality on the
minimal K-types of πP

δ,H,χ,λ. On these minimal K-types, T (δ, H, χ, λ) does not
depend on λ (see Lemma 6(ii)). On the other hand, A(λ) is trivial on all of the minimal
K-types as w ∈ W 0

δ (see (2.4)). The equality T ′(λ) = T (λ) follows.
(ii) From decomposition (2.11), one has

	
τδ

δ,r,H,χ,λ(f ) =
∑

χ ′∈Ĥ ′,χ ′
|H =χ

tr
(
πP

δ,H ′,χ ′,λ(f )T (δ, r, H, χ, λ)|Iδ,H ′,χ ′ ,λ

)
,
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where Iδ,H ′,χ ′,λ denotes the space of πP
δ,H ′,χ ′,λ. For λ in the nonempty open subset

{ν ∈ ia∗〈rτδ,H
′〉 ∩ iCδ | Rc

δ,ν = H ′} of ia∗〈rτδ,H
′〉, the representation πP

δ,H ′,χ ′,λ is irre-

ducible. If χ ′ /∈ Ĥ ′(τδ), this representation is neither σ -stable (see Theorem 1(i)) nor
τδ-stable. In this case, the operator T (δ, r, λ) of Lemma 6 sends the space of this
irreducible subrepresentation of πP

δ,λ to an orthogonal space. Indeed, this irreducible
subrepresentation occurs with multiplicity 1 in the decomposition πP

δ,λ. Hence, the
contribution of this χ ′ to the sum above is zero. As the operators T (δ, r, H, χ, λ) and
T (δ, r, H ′, χ ′, λ), χ ′ ∈ Ĥ ′(τδ), are restrictions of T (δ, r, λ), assertion (ii) follows.

(iii) Since rs ∈ H , one has a∗〈rτδ,H 〉 = a∗〈sτδ,H 〉. As in (i), it suffices to prove that

T (δ, r, H, χ, λ) = χ(rs)T (δ, s, H, χ, λ), λ ∈ ia∗〈rτδ,H 〉 = ia∗〈sτδ,H 〉. (6.7)

Since both sides are intertwining operators between (πP
δ,H,χ,λ)τδ and πP

δ,H,χ,λ and since
the sum of the isotypic components of the minimal K-types of πP

δ,H,χ,λ generates this
representation of G, one need only check the equality of these two operators on each
such component Iµ(δ). These µ ∈ A(δ) satisfy χµ|H = χ . Using equations (2.1),
(2.4), and Lemma 6(i), (ii), one sees that the restriction of T (δ, r, H, χ, λ) to such an
Iµ(δ) is equal to

χµτδ (r) cµτδ (P, τδ · P ) Tδ |Iµ(δ).

Similarly, the restriction of T (δ, s, H, χ, λ) to such an Iµ(δ) is equal to

χµτδ (s) cµτδ (P, τδ · P ) Tδ |Iµ(δ).

As πP
δ,H,χ,λ is τδ-stable, µτδ is a minimal K-type of πP

δ,H,χ,λ (see Lemma 4). Hence,
χµτδ |H = χ and χµτδ (r) = χ(rs)χµτδ (s). Identity (6.7) follows.

(iv) First, if λ ∈ ia∗〈rτδ,H 〉, one has sλ ∈ ia∗〈rsτδ (s),H 〉 by

rsτδ(s)τδsλ = rsτδsτ
−1
δ τδsλ = rsτδλ = s(rτδλ) = sλ.

As H ∈ Diag(τδ, r), there exists λ ∈ iCδ ∩ ia∗〈rτδ,H 〉 with Rc
δ,λ = H . Then, sλ

satisfies sλ ∈ iCδ ∩ ia∗〈rsτδ (s),H 〉 and Rc
δ,sλ = H . Hence, H ∈ Diag(τδ, rsτδ(s)).

The restriction A(λ) of A(P, δ, s, λ) to the space of πP
δ,H,χ,λ intertwines πP

δ,H,χ,λ

with πP
δ,H,χ,sλ. Its inverse is the restriction of A(P, δ, s, sλ) to the space of πP

δ,H,χ,sλ

(see (2.5)). Using (5.6), assertion (iv) follows once we prove that

A(λ)−1 T
(
δ, rsτδ(s), H, χ, λ

)
A(λ) = χ0

(
τδ(s)

)
T (δ, r, H, χ, λ). (6.8)

It is enough to prove this equation on the isotypic component of each minimal K-type
µ of πP

δ,H,χ,λ. Using (2.4), (2.1), and Lemma 6(i), (ii), one sees that the restriction to
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Iµ(δ) of the operator on the left-hand side of (6.8) is equal to

χµτδ (s) χµτδ

(
rsτδ(s)

)
cµτδ

(
P, τδ(P )

)
Tδ |Iµ(δ) χµ(s).

This operator is equal to

χµτδ (r) χµτδ

(
τδ(s)

)
χµ(s) cµτδ (P, τδ · P ) Tδ |Iµ(δ). (6.9)

On the other hand, by Lemma 5(v), one has, in turn, that

χµτδ = χ0χ
τδ

µ

and

χµτδ

(
τδ(s)

) = χ0

(
τδ(s)

)
χµ(s).

Therefore, (6.9) is equal to

χµτδ (r) χ0

(
τδ(s)

)
cµτδ (P, τδ · P ) Tδ |Iµ(δ).

The restriction to Iµ(δ) of the operator on the right-hand side of (6.8) is seen, by
parallel computations, to be equal to the previous expression. �

6.1. σ -twisted characters
PROPOSITION 3
Define S(δ, r, H, χ, λ) = πP

δ,H,χ,λ(kδ)T (δ, r, H, χ, λ), where kδ is the element of

Lemma 2. For H ∈ Diag(τδ, r), χ ∈ Ĥ (τδ), and λ ∈ ia∗〈rτδ,H 〉, the following hold:
(i) the operator S(δ, r, H, χ, λ) intertwines (πP

δ,H,χ,λ)σ with πP
δ,H,χ,λ; and

(ii) the corresponding twisted character

	σ
δ,r,H,χ,λ(f ) = tr

(
πP

δ,H,χ,λ(f ) S(δ, r, H, χ, λ)
)
, f ∈ C∞

c (G),

satisfies both the same relations as 	
τδ

δ,r,H,χ,λ does in Proposition 2, and the
analogue of Lemma 8.

Proof
(i) This assertion is clear, as σ = kδτδ .
(ii) This assertion follows easily from (5.1). �

7. The main theorem

THEOREM 3
Suppose that we are given functions Fδ,r,H,χ : ia∗〈rτδ,H 〉 → C for every δ ∈ DDT,
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r ∈ Rc
δ , H ∈ Diag(τδ, r), χ ∈ Ĥ , and let t > 0. Then, there exists f ∈ C∞

c (G, K)t
such that

	σ
δ,r,H,χ,λ(f ) = Fδ,r,H,χ (λ), λ ∈ ia∗〈rτδ,H 〉,

for all of the above data if and only if the following conditions hold.
(i) The functions are identically zero, except for a finite number of δ ∈ DDT.
(ii) Each function Fδ,r,H,χ belongs to PW(a〈rτδ,H 〉)t .
(iii) Let r ∈ Rc

δ , and let H ∈ Diag(τδ, r). If w ∈ W 0
δ and r ∈ Rc

δ satisfy
w(ia∗〈rτδ,H 〉) = ia∗〈rτδ,H 〉, then

Fδ,r,H,χ (wλ) = Fδ,r,H,χ (λ), χ ∈ Ĥ (τδ), λ ∈ ia∗〈rτδ,H 〉.

(iv) Let r ∈ Rc
δ . If H, H ′ are elements of Diag(τδ, r) for r ∈ Rc

δ with H ⊂ H ′,
then

Fδ,r,H,χ (λ) =
∑

χ ′∈Ĥ ′(τδ),χ ′
|H =χ

Fδ,r,H ′,χ ′(λ), χ ∈ Ĥ (τδ), λ ∈ a〈rτδ,H
′〉.

(v) If r, s ∈ Rc
δ , H ∈ Diag(τδ, s) with rs ∈ H , one has

Fδ,r,H,χ (λ) = χ(rs)Fδ,s,H,χ (λ), χ ∈ Ĥ (τδ), λ ∈ ia∗〈rτδ,H 〉 = ia∗〈sτδ,H 〉.

(vi) Let r, s ∈ Rc
δ , and let H ∈ Diag(τδ, r). Then, H is an element of

Diag(τδ, rsτδ(s)) and

Fδ,rsτδ (s),H,χ (sλ) = χ0

(
τδ(s)

)
Fδ,r,H,χ (λ), χ ∈ Ĥ (τδ), λ ∈ ia∗〈rτδ,H 〉.

Proof
The “only if” part of the theorem follows from Propositions 2 and 3, together with
Lemma 8.

Therefore, we turn to the proof of the “if” part. In so doing, we follow the inductive
reasoning of [CD1, section 2.3] and the following analogue of [CD1, proposition 1].
Let us introduce the transitional spaces C∞

c (G)µµ′
, where µ, µ′ are equivalence classes

of irreducible unitary representations of K . Let θµ, θµ′ be the complex conjugates of
the normalized characters of µ and µ′. We define

C∞
c (G)µµ′ = θµ ∗ C∞

c (G) ∗ θµ′ . (7.10)

An element f of this space is said to be of type (µ, µ′). For each representation
π of G, the operator π(f ) sends the isotypic component of type µ′ to the isotypic
component of type µ. It annihilates the other isotypic components.

PROPOSITION 4
Let t > 0. Suppose that (Fδ,r,H,χ ) is a family of functions satisfying Theorem 3(i) – (vi)
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for a fixed δ ∈ DDT. Then, there exist functions hµ ∈ C∞
c (G, K)t , µ ∈ A(δ), of type

(µ, µτδ ) such that

Fδ,r,H,χ (ν)

= tr

(
πP

H,χ,ν

( ∑
µ∈A(δ)

hµ

)
T (r, H, χ, ν)

)
, r ∈ Rc

δ, ν ∈ ia∗〈rτδ,H 〉, χ ∈ Ĥ (τδ).

We postpone the proof of Proposition 4 until Section 8 and continue our proof of
Theorem 3 by induction. We perform this proof by induction using a partial ordering
on DDT. Define δ < δ′ to mean that ‖µ‖ < ‖µ′‖ for all µ ∈ A(δ) and µ′ ∈ A(δ′) (see
[V, Definition 5.1] and [CD1, page 433] for the definition of ‖µ‖). Define δ ≤ δ′ to
mean that either δ < δ′ or δ = δ′. Now, suppose that we are given functions satisfying
Theorem 3(i) – (vi). Define the support �F of these functions to be the collection
of δ ∈ DDT so that Fδ,r,H,χ does not vanish for some r , H , and χ . Condition (ii)
implies that �F is a finite collection of representations. Let �̄F be the collection of
representations in DDT which are less than or equal to some representation in �F .
We prove Theorem 3 by induction on |�̄F |. If �̄F is empty, then f = 0 solves the
problem. Now, suppose that �̄F is not empty, and suppose that δ′ ∈ DDT is a maximal
element of �F . Clearly, δ′ is also a maximal element of �̄F . Proposition 4 tells us that
there exists h ∈ C∞

c (G, K)t , which is a sum of functions of type (µ′, µ′δ), µ′ ∈ A(δ′),
such that

Fδ′,r ′,H ′,χ ′(λ) = tr
(
πP ′

H ′,χ ′,λ(h) T (r ′, H ′, χ ′)
)
, λ ∈ i(a′)∗〈r ′τδ′ ,H ′〉,

for any r ′ ∈ Rc
δ′ , H ′ ∈ Diag(τδ′, r ′), and χ ′ ∈ Ĥ ′(τδ′). Define a new family function

by

F ′
δ,r,H,χ (λ) = Fδ,r,H,χ (λ) − tr

(
πP

H,χ,λ(h) T (r, H, χ)
)
, λ ∈ ia∗〈rτδ,H 〉, (7.11)

for δ ∈ DDT, r ∈ Rc
δ, H ∈ Diag(τδ, r), and χ ∈ Ĥ (τδ).

This new family apparently also satisfies Theorem 3(i) – (vi). In addition,
F ′

δ′,r ′,H ′,χ ′ vanishes by construction. We wish to show that �̄F ′ � �̄F . Suppose that
δ ∈ �F ′ . Then, there exist r , H , and χ such that F ′

δ,r,H,χ �= 0. From (7.11), we evidently
have that Fδ,r,H,χ �= 0 or tr(πP

H,χ,λ(h) T (r, H, χ)) �= 0. The former inequality implies
that δ ∈ �F −{δ′}. The latter inequality implies that some µ′ ∈ A(δ′) is a K-type of δ.
By definition, any µ ∈ A(δ) satisfies ‖µ‖ ≤ ‖µ′‖. If ‖µ‖ = ‖µ′‖, then µ′ ∈ A(δ) and
[CD2, proposition D.1] implies that δ is equal to δ′, which contradicts F ′

δ,r,H,χ �= 0.
In consequence, ‖µ‖ < ‖µ′‖ for all µ ∈ A(δ), that is, δ < δ′. This proves, in turn,
that δ ∈ �̄F − {δ′}, �F ′ � �̄F , and �̄F ′ � �̄F . We may now appeal to the induction
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hypothesis to obtain a function f ′ ∈ C∞
c (G, K)t such that

F ′
δ,r,H,χ (λ) = tr

(
πP

H,χ,λ(f ′) T (r, H, χ)
)
, λ ∈ ia∗〈rτδ,H 〉.

Substituting this equation into (7.11), it is clear that f = f ′ + h satisfies the desired
properties. �

8. Proof of Proposition 4
In this section, we fix δ ∈ DDT, and for simplicity, we often drop the lower index δ

from much of the previous notation. For example, we write � instead of �δ and τ for
τδ . Moreover, Rc

δ is denoted by R.

8.1. An extension result
LEMMA 9
Suppose that Fδ,r,H,χ satisfies Theorem 3(ii) – (vi) for every r ∈ R, H ∈ Diag(τδ, r),
and χ ∈ Ĥ (τ ). Then, Fδ,r,H,χ extends to a W 0-invariant function F̃δ,r,H,χ ∈ PW(a)t .

Proof
Suppose that {r1, . . . , rm} is a minimal set of generators for H ⊂ R. Let E1 be the
subspace of fixed points under r1, let �1 = {α|E1 |α ∈ �, α|E1 �= 0}, and let �+

1 be
the set of elements of �1 which are restrictions of elements of �+ to E∗

1 . By [CD2,
proposition A.2], �1 is a root system and the Weyl group of �1 is

W1 = {
w|E1

∣∣ w ∈ W 0, w(E1) = E1

}
.

By [CD1, proposition A.1, lemme C.1], the restriction map

PW(a)W
0

t → PW(E1)W1
t

is surjective. Arguing inductively, we obtain surjections

PW(a)
W 0

δ

t → PW(E1)W1
t → · · · → PW(Em)Wm

t = PW(aH )Wm

t , (8.1)

where Wm is the Weyl group of the root system of �m = {α|EH |α ∈ �δ, α|EH �= 0}.
Thus �+

m = {α|EH |α ∈ �+
δ , α|EH �= 0} is a set of positive roots of �m. Now, consider

the automorphism rτ of a. For any s ∈ H , τ (s) = τ−1sτ lies in H , as H is τ -stable,
and

srτλ = rτ (τ−1sτ )λ = rτ (λ), λ ∈ a∗H .
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This shows that a∗H is rτ -stable. Since �+ is also τ - and r-stable, �+
m is rτ -stable.

We may apply Corollary 1 of the appendix to conclude that the restriction map

PW(aH )Wm

t → PW(a〈rτ,H 〉)W
′

t (8.2)

is surjective, where W ′ is a certain subgroup of

W ′′ := {
w|a∗〈rτ,H 〉

∣∣w ∈ W 0
δ , w(a∗〈rτ,H 〉) = a∗〈rτ,H 〉}.

By Theorem 3(iii), the function Fδ,r,H,χ is invariant under W ′′.
As a result, the function Fδ,r,H,χ belongs to PW(a〈rτ,H 〉)W

′
t . Combining the sur-

jections of (8.1) and (8.2), we obtain a function F̃δ,rH,χ , as desired. �

8.2. Some τ -stable subgroups of R
Let R′ be the subgroup of the automorphism group of a∗ generated by τ and R. It is
a finite group, as τ is of finite order on a and normalizes R. Given λ ∈ a∗, define
R′

λ = {r ∈ R′ : rλ = λ}.

LEMMA 10
Suppose that s ∈ R. Then, there exists a unique subgroup R′[sτ ] of R′ which satisfies
the following.
(i) We have a∗R′[sτ ] = a∗sτ .
(ii) There exists λ ∈ C̄ ∩ a∗sτ such that R′

λ = R′[sτ ]. (Here C = Cδ .)
(iii) The element sτ belongs to R′[sτ ].
(iv) Suppose that H ′ is a subgroup of R′ such that sτ ∈ H ′ and R′

λ = H ′ for
some λ ∈ a∗. Then, R′[sτ ] ⊂ H ′.

Proof
The proof is essentially that of [CD2, lemme C.2] with R replaced by R′. We include
it for the sake of completeness. Recall that C is a Weyl chamber of � = �δ . For each
subgroup H of R′, set

AH = {λ ∈ C̄ ∩ a∗sτ | R′
λ = H }.

It is immediate that

AH ⊂ a∗H ⊂ a∗sτ

and that C̄ ∩ a∗sτ = ⋃
H⊂R′ AH . One may average an element of C over the finite

group generated by sτ to obtain an element in C ∩ a∗sτ (see Section 5.3). As a result,
the set C̄ ∩ a∗sτ has nonempty interior as a subset of a∗sτ . According to Baire’s
theorem, one of the subgroups in the above union has an invariant subspace that is
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open in, and therefore equal to, a∗sτ . Denote such a subgroup by R′[sτ ]. It is apparent
from its definition that sτ ∈ R′[sτ ]. This proves assertions (i) – (iii). Now, suppose
that λ ∈ a∗ is as in the hypothesis of (iv). Then, we have λ ∈ a∗sτ = a∗R′[sτ ], and
so R′[sτ ] ⊂ R′

λ = H ′. This proves (iv), from which the uniqueness assertion also
follows. �

LEMMA 11
Suppose that s ∈ R, and set R[sτ ] = R′[sτ ] ∩ R. Then R[sτ ] is stable under
conjugation by τ .

Proof
Suppose that r ∈ R[sτ ]. By Lemma 3, τ (r) = τrτ−1 belongs to R. Since R is abelian,
the element τrτ−1 is equal to (sτ )r(sτ )−1. The latter element belongs to R′[sτ ] (see
Lemma 10(iii)). �

LEMMA 12
Suppose that s ∈ R. Then R[sτ ] belongs to Diag(τ, s).

Proof
In view of Lemma 11, it remains only to show that R[sτ ] = Rλ for some λ ∈ a∗sτ ∩C̄.
According to Lemma 10, there exists λ ∈ a∗sτ ∩ C̄ such that R′

λ = R′[sτ ]. It is easily
verified that

Rλ = R′
λ ∩ R = R′[sτ ] ∩ R = R[sτ ]. �

LEMMA 13
Suppose that s ∈ R, let H ∈ Diag(τ, s), and let h ∈ H . Then, H contains R[shτ ].

Proof
By the definition of Diag(τδ, s), there exists λ ∈ a∗sτ ∩ C̄ such that Rλ = H . Since λ

is fixed by shτ = hsτ , the element shτ belongs to R′
λ. According to Lemma 10(iv),

the group R′[shτ ] is contained in R′
λ. Finally,

H = Rλ = R′
λ ∩ R ⊃ R′[shτ ] ∩ R = R[shτ ]. �

8.3. The statement and proof of a key lemma
LEMMA 14
Suppose that Fδ,r,H,χ , r ∈ R, H ∈ Diag(τ, r), χ ∈ Ĥ (τ ), is a family of functions
satisfying Theorem 3(ii) – (vi). Then, for each α ∈ R̂, there exists a function �α ∈
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PW(a)W
0

t such that

Fδ,r,H,α(λ) =
∑

α∈R̂,α|H =χ

χ0(r) ατ (r) �α(λ), λ ∈ ia∗〈rτ,H 〉,

for any r ∈ R, H ∈ Diag(τ, r), χ ∈ Ĥ (τ ).

Proof
In what follows, we generalize the proof of the similar nontwisted statement [CD1,
proposition C.1]. Let r ∈ R. The subgroup R[rτ ], defined in Lemma 10, belongs to
Diag(δ, r) (see Lemma 12). Consequently, the function Fδ,r,R[rτ ],η ∈ PW(a〈rτ,R[rτ ]〉)t
is defined for each character η ∈ R̂[rτ ](τ ). By Lemma 9, each of these functions
extends to a function F̃δ,r,R[rτ ],η ∈ PW(a)W

0

t . Define ϕr : ia∗ → C by

ϕr =
∑

η∈R̂[rτ ](τ )

F̃δ,r,R[rτ ],η.

For each α ∈ R̂, define

�α = 1

|R|
∑
s∈R

χ0(s) ατ (s) ϕs.

Clearly, the function �α lies in PW(a)W
0

t . In order to prove that these objects satisfy
the lemma, we choose r ∈ R, H ∈ Diag(τ, r), and χ ∈ Ĥ (τ ). We proceed by
rearranging the right-hand side of the identity in the lemma as

∑
α∈R̂,α|H =χ

χ0(r) ατ (r) �α(λ)

=
∑

α∈R̂,α|H =χ

χ0(r)ατ (r)
1

|R|
∑
s∈R

χ0(s)ατ (s)ϕs(λ)

= 1

|R|
∑
s∈R

ϕs(λ)
∑

α∈R̂,α|H =χ

(χ0α
τ )(rs), λ ∈ ia∗〈rτδ,H 〉.

Let us consider the inner sum in more detail. Since R is a product of copies of Z/2Z,
we may regard it as a vector space over Z/2Z. In this view, H is a vector subspace, and
we may fix a complementary subspace {1, r1, . . . , r�}. This complementary subspace
forms a subgroup of R which is isomorphic to R/H . Then, the map

(riH, h) �→ rih, h ∈ H,
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is a group isomorphism from R/H × H to R. This induces the dual isomorphism
R̂ ∼= R̂/H × Ĥ , as all of the groups are abelian. Suppose that rs = rih for some
h ∈ H . Then, the summand (χ0α

τ )(rs) may be decomposed according to the dual
isomorphism as α′(riH )(χ0α

τ )(h) for some α′ ∈ R̂/H . Furthermore, since H ∈
Diag(τ, r) and χ ∈ Ĥ (τ ) (see Theorem (i.2)), one has

(χ0α
τ )(h) = χ0(h)α

(
τ−1(h)

) = χ0(h)χ
(
τ−1(h)

) = χ0(h)χτ (h)

= χ0(h)χ0(h)χ(h) = χ(h),

so that

(χ0α
τ )(rih) = α′(riH )χ(h).

If ri �= 1, then the inner sum reduces to

χ(h)
∑

α′∈R̂/H

α′(riH ) = χ(h) × 0 = 0,

thanks to the orthogonality relations of characters. On the other hand, if rs = h, then
the sum is equal to |R̂/H |χ(h). Taking these identities into account, we continue our
earlier computation by writing∑

α∈R̂,α|H =χ

χ0(r) ατ (r) �α(λ)

= 1

|R|
∑
h∈H

|R̂/H |χ(h)ϕrh(λ)

= 1

|H |
∑
h∈H

χ(h)ϕrh(λ) (8.3)

= 1

|H |
∑
h∈H

χ(h)
∑

η∈R̂[rhτ ](τ )

F̃δ,rh,R[rhτ ],η(λ), λ ∈ ia∗〈rτδ,H 〉.

Lemma 13 tells us that H ⊃ R[rhτ ] for every h ∈ H . As Fδ,rh,R[rhτ ],η satisfies
Theorem 3(iv), we have

F̃δ,rh,R[rhτ ],η(λ) = Fδ,rh,R[rhτ ],η(λ) =
∑

χ ′∈Ĥ (τ ),χ ′
|R[rhτ ]=η

Fδ,rh,H,χ ′(λ), λ ∈ ia∗〈rτδ,H 〉.

Substituting the expression on the right-hand side into (8.3) and summing over the
characters η, we obtain

∑
α∈R̂,α|H =χ

(χ0α
τ )(r)�α(λ) = 1

|H |
∑
h∈H

χ(h)
∑

χ ′∈Ĥ (τ )

Fδ,rh,H,χ ′(λ), λ ∈ ia∗〈rτδ,H 〉.
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Now, Theorem 3(v) tells us that

Fδ,rh,H,χ ′(λ) = χ ′(h)Fδ,r,H,χ ′(λ).

Combining this with the orthogonality relations, we conclude that

∑
α∈R̂,α|H =χ

(χ0α
τ )(r)�α(λ) = 1

|H |
∑
h∈H

χ(h)
∑

χ ′∈Ĥ (τ )

χ ′(h)Fδ,r,H,χ ′(λ)

=
∑

χ ′∈Ĥ (τ )

Fδ,r,H,χ ′(λ)
( 1

|H |
∑
h∈H

χ(h)χ ′(h)
)

= Fδ,r,H,χ (λ),

as desired. �

8.4. The behavior of �α under R
For the remainder of this article, we use the bijection µ �→ χµ between A(δ) and R̂ to
define �µ = �χµ

for any function �χµ
as defined in Lemma 14. By Lemma 5(v), the

equation of Lemma 14 may be rewritten as

Fδ,r,H,α(λ) =
∑

µ∈A(δ),χµ|H=χ

χ0(r) χτ
µ(r) �µ(λ) =

∑
µ∈A(δ),χµ|H=χ

χµτ (r) �µ(λ) (8.4)

for any λ ∈ ia∗〈rτ,H 〉.
Now, suppose that s ∈ R, let t > 0, and suppose that � is any collection

(�µ)µ∈A(δ) of functions in PW(a)W
0

t . Then,

(s · �)µ(λ) = χµ(s)χµτ (s) �µ(sλ), λ ∈ ia∗,

defines an action on the set of such collections, thanks to the commutativity of R.

LEMMA 15
Suppose that a collection � = (�µ)µ∈A(δ) of functions in PW(a)W

0

t satisfies equation
(8.4) of Lemma 14, and let s ∈ Rc

δ . Then, s · � is also a collection of functions in
PW(a)W

0

t which satisfies equation (8.4).

Proof
By Lemma 5(v), we have

χµτ

(
τ (s)

) = χ0

(
τ (s)

)
χµ

(
τ−1(τ (s))

) = χ0

(
τ (s)

)
χµ(s).
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Consequently,

χµτ (r) χµ(s) χµτ (s) = χµ(s) χµτ (rs)

= χµ(s) χµτ

(
τ (s)

)
χµτ

(
τ (s)

)
χµτ (rs)

= χ0

(
τ (s)

)
χµτ

(
rsτ (s)

)
.

Therefore, for λ ∈ ia∗〈rτ,H 〉, we have
∑

µ∈A(δ),χµ|H =χ

χµτ (r)(s · �)µ(λ) = χ0

(
τ (s)

) ∑
µ∈A(δ),χµ|H =χ

χµτ

(
rsτ (s)

)
�µ(sλ).

By hypothesis, the right-hand side is equal to χ0(τ (s))Fδ,rsτ (s),H,χ (sλ). By Theo-
rem 3(vi), this expression is equal to Fδ,r,H,χ (λ). �

Lemma 15 further shows that if � = (�µ)µ∈A(δ) satisfies the conclusion of Lemma
14, then this is also the case for |R|−1

∑
s∈R s · �. This being the case, we assume

without loss of generality that our � satisfies

�µ(sλ) = χµ(s)χµτ (s) �µ(λ), λ ∈ ia∗, (8.5)

for any s ∈ Rc
δ .

8.5. The conclusion of the proof of Proposition 4
Suppose that the hypotheses of Proposition 4 are satisfied. In Lemma 14, we have
shown the existence of functions �µ ∈ PW(a)W

0

t satisfying (8.5) for every minimal
K-type µ ∈ A(δ) and shown that

Fδ,r,H,χ (λ) =
∑

µ∈A(δ),χµ|H =χ

χµτ (r) �µ(λ), λ ∈ ia∗〈rτ,H 〉.

We wish to express the right-hand side as

tr

(
πP

δ,H,χ,λ

( ∑
µ∈A(δ)

hµ

)
T (δ, r, H, χ, λ)

)

for some functions hµ ∈ C∞
c (G, K)µµτ

. To obtain this expression, it is sufficient to
have

tr
(
πP

δ,H,χ,λ(hµ) Tr,µ

) = χµτ (r)�µ(λ), λ ∈ ia∗〈rτδ,H 〉, (8.6)

where Tr,µ is the restriction of T (δ, r, H, χ, λ) to Iµ(δ). In fact, it is sufficient for this
equation to hold for r = 1 and for all λ ∈ ia∗H . Indeed, by Lemma 6(i), (ii) and (2.4),
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the operator Tr,µ is bijective from Iµ(δ) to Iµτδ (δ), independent of λ ∈ ia∗〈rτδ,H 〉, and

Tr,µ = A(P, δ, r, 0) T1,µ = χµτ (r) T1,µ.

Having reduced the proof of Proposition 4 to finding these specific functions hµ

satisfying (8.6), we may take advantage of the action of R on �µ, as in (8.5). For any
t > 0 and η ∈ R̂, define (PW(a)W

0

t )η to be the subspace of functions � in PW(a)W
0

t

which satisfy

�(sλ) = η(s) �(λ), λ ∈ ia∗, s ∈ Rc
δ.

It is obvious from (8.5) that �µ belongs to (PW(a)W
0
)ηµ , where ηµ = χµχµτ .

The existence of the hµ as stated in Proposition 4 is a consequence of the next
result with µ′ = µτ . This result appears in [D3, (1.38)] in the required general-
ity. The particular case of µ = µ′ was proved for G connected as a Lie group in
[CD1, proposition 1]. Note that the proof given in [D3, (1.38)] uses [DF, Theorem 2]
instead of [A1, Theorem III.4.1]:

suppose that t > 0, let µ, µ′ ∈ A(δ), and let η = χµ′χµ ∈ R̂;
suppose further that PW(a)µµ′

t is the space of functions from ia∗ to
Hom(Iµ′

(δ), Iµ(δ)) defined by

λ �→ πP
δ,λ(h)|Iµ′ (δ), λ ∈ ia∗,

for h ∈ C∞
c (G, K)t of type (µ, µ′); then,

PW(a)µµ′
t = (

PW(a)W
0

t

)η ⊗ Hom
(
Iµ′

(δ), Iµ(δ)
)
.

(8.7)

9. A corollary of the main theorem
Let P = MAN be a parabolic subgroup of G, and let P ′ be the intersection of G′

with its normalizer P + in G+. We assume in the following that it is nonempty and
contains τ . Thus τ · P = P , which implies that σ · P is conjugate under G to P .
This implies that there exists k ∈ K with kσ ∈ P ′ such that P ′ ∩ K+ is nonempty.
We may choose τ ∈ P ′ ∩ K+. Hence, the map P +/P → G+/G is surjective. It is
bijective, as the normalizer of P in G is P . The normalizer P + is generated by P ′.

Similarly, let L+ be the intersection of the normalizer of L = MA in G+ with P +.
It is an algebraic group and has nonempty intersection L′ with G′, which generates
L+. In fact, τ ∈ K+ ∩ P ′ is in L+, as τ normalizes P + and θ(P +). Let M+ be
the subgroup of L+ generated by τ and M . Then, L+ = M+A, and A is a normal
subgroup of L+, but it is not necessarily in the center of L+.

If B is equal to either K , P , L, or M , then B ′ := B ∩ G′ is equal to Bτ ,
B ′ generates B+, and the canonical map B+/B → G+/G is surjective. Moreover,
P + = L+N , and A and N are normal subgroups of L+ and P +, respectively. The
fixed-point spaces aL+

and aτ are equal.
If ε+ is a tempered unitary representation of M+ whose restriction ε to M is

irreducible and if λ ∈ ia∗L+ = ia∗τ , then ε+ ⊗ eλ ⊗ 1N is a unitary representation of
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P +. We denote by πP +
ε+,λ the corresponding unitarily induced representation from P +

to G+:

the unitarily induced representation πP +
ε+,λ from P + to G+ restricts to G

as a representation canonically equivalent to πP
ε,λ.

(9.8)

LEMMA 16
Let (	λ) and (	′

λ) be two families of σ -twisted characters (see Section 5.1) of repre-
sentations πλ and π ′

λ of G+, respectively, for λ in an open connected subset � of a
finite-dimensional subspace of ia∗ so that
(i) the restrictions of πλ and π ′

λ to G are equivalent;
(ii) the families of twisted characters are analytic; and
(iii) 	λ0 = 	′

λ0
�= 0 for some λ0 ∈ � such that πP

δ,λ is irreducible in a neigh-
borhood of λ0.

Then, the two families of twisted characters are identical.

Proof
Recall from Section 5.1 that n is the least positive integer such that σn ∈ K . It is
also the order of the coset of σ in G+/G or K+/K . As mentioned in Section 5.1,
there exist n equivalence classes of representations of G+ with a given irreducible
restriction to G. They differ by an nth root of unity on σ ∈ G′. Thus there exist nth
roots of unity c(λ) such that in a connected neighborhood of λ0,

	λ = c(λ)	′
λ.

Since 	 and 	′ are analytic, c(λ) is constant. The constant c(λ) equals 1, as c(λ0) = 1.
The lemma follows by analytic continuation. �

THEOREM 4
Let φ be a complex-valued function defined on the tempered dual Ĝ+

temp of G+ which
is nonzero only on the subset Ĝ′

temp of equivalence classes of representations of G+

whose restrictions to G are irreducible and tempered. We also denote by φ the Z-linear
extension of φ to the set of tempered representations of G+ of finite length. Then, there
exists f ∈ C∞

c (G, K)t with

tr
(
π+(f )π+(σ )

) = φ(π+), π+ ∈ Ĝ+
temp ,

if and only if φ satisfies the following conditions.
(i) There exists a finite subset � of the unitary dual K̂ such that φ(π+) = 0 if

the restriction π of π+ to G does not contain any K-type in �.
(ii) If π+ and π ′+ ∈ Ĝ′

temp have the same restriction π to G and π+(σ ) =
cπ ′+(σ ) for some root of unity c, then φ(π+) = cφ(π ′+).
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(iii) Let Q = MQAQNQ be a parabolic subgroup of G with Q′ nonempty.
Assume that ε+ is a tempered representation of M+

Q , and let λ ∈ a∗M+
Q . Then,

λ �→ φ(πQ+
ε+,λ) is the Fourier transform of a function on a

M+
Q

Q of support
contained in the closed ball of radius t . In such a case, we say that φ is the
twisted invariant Fourier transform of f .

Proof
First, let us show that the conditions are necessary. If φ is the twisted invariant Fourier
transform of f ∈ C∞

c (G, K)t , it evidently satisfies (i) and (ii). Since σ ∈ K+, it
follows that in the compact realization, the operator π

Q+
ε+,λ(σ ) does not depend on λ.

Therefore, condition (iii) can be proved by imitating the proof of Lemma 8.
Let us show that the conditions are sufficient. First, we wish to define Fδ,r,H,χ,λ as

in Theorem 2. The operator S(δ, r, H, χ, λ) (see Section 6.1) intertwines (πP
δ,H,χ,λ)σ

with πP
δ,H,χ,λ. Therefore, when πP

δ,H,χ,λ is irreducible, the operators S(δ, r, H, χ, λ)n

and πP
δ,H,χ,λ(τn

δ ) are proportional (see Section 5.1). As τn
δ ∈ K , the second oper-

ator is independent of λ. By Lemma 6(ii), this is true also for the first operator
restricted to the minimal K-types. Thus the proportionality factor is independent of
λ when πP

δ,H,χ,λ is irreducible. Since these operators are analytic in λ, the propor-
tionality factor is always independent of λ. Consequently, there exists c ∈ C such
that S ′(δ, r, H, χ, λ) = cS(δ, r, H, χ, λ) verifies (S ′(δ, H, χ, λ))n = πP

δ,H,χ,λ(τn
δ ).

As a consequence, S ′(δ, H, χ, λ) determines a representation (πP
δ,H,χ,λ)+ of G+. It is

clearly analytic in λ. We define

FH,δ,r,χ (λ) = c−1φ
(
(πP

δ,H,χ,λ)+
)
.

The relations between the 	σ
δ,r,H,χ,λ (see Propositions 2, 3) carry over to the twisted

characters of the (πP
δ,H,χ,λ)+ by Lemma 16. The fact that φ is Z-linear on the set of

tempered representations of G+ therefore implies that the family of functions Fδ,r,H,χ

satisfies Theorem 3(iii) – (vi). Theorem 3(i) follows from condition (i) for φ. It remains
to verify Theorem 3(ii). To achieve this, we show that the family of representations
(πP

δ,H,χ,λ)+ is equivalent to a family π
Q+
ε+,λ for a suitable parabolic subgroup Q of G. In

fact, Proposition 1 tells us that for λ ∈ a∗rτδ , the representation πP
δ,H,χ,λ is equivalent

to π
Q
ε,λ (with Q and ε as in Proposition 1). In particular, Q, ε, and λ are r̃τδ-stable. As

a result, r̃τδ ∈ Q′, ε extends to an irreducible representation of M+
Q , and λ ∈ a∗M+

Q .

The representation π
Q+
ε+,λ is, like (πP

δ,H,χ,λ)+, a representation of G+ whose restriction
to G is equivalent to πP

δ,H,χ,λ. Thus ε+ can be multiplied by a root of unity so that they
are equivalent representations of G+ for some λ0 for which πP

δ,H,χ,λ0
is irreducible. By

Lemma 16, one sees that the twisted characters of (πP
δ,H,χ,λ)+ and π

Q+
ε+,λ are identical

for all λ. This means that the two representations are equivalent and that

Fδ,r,H,χ (λ) = c−1φ(πQ+
ε+,λ), λ ∈ ia∗〈rτδ,H 〉.
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Theorem 2(ii) for Fδ,r,H,χ follows from condition (iii) for φ. Thus Theorem 3 applies
and furnishes a function f ∈ C∞

c (G, K)t such that

φ
(
(πP

δ,H,χ,λ)+
) = tr

(
πP

δ,H,χ,λ(f ) π+(σ )
)

for all data (r, H, χ, λ). According to Theorem 1, every irreducible tempered σ -stable
representation of G appears as such a πP

δ,H,χ,λ. This implies that for every σ -stable
irreducible representation π of G, there exists an extension π+ to G+ with

φ(π+) = tr
(
π(f ) π+(σ )

)
. (9.9)

Condition (ii) implies that this is also true for all π+ ∈ Ĝ′
temp.

Finally, if π+ is an irreducible representation of G+ whose restriction to G

is reducible, then both sides of (9.9) are zero. This shows that f has the required
properties. �

Appendix

THEOREM 5
Suppose that � is a root system of a subspace of a finite-dimensional real vector space
E, suppose that W is its Weyl group, and suppose that β is a nontrivial automorphism
of E, of finite order, preserving � and a subset of positive roots. Suppose further that
Wβ = {w|Eβ |w ∈ W, w(Eβ) = Eβ}. Let S(E) denote the algebra of polynomial
functions on E. Then, the restriction map from S(E) to S(Eβ) induces a surjection
from S(E)W to S(Eβ)Wβ .

Proof
The theorem reduces easily to the case where � generates E. We first treat the case
when the Dynkin diagram of � is connected. In this case, the automorphism β is either
an involution or is an automorphism of order three of the Dynkin diagram of type D4.
As the theorem is known to hold when β is an involution (see [CD2, appendice A]),
we assume that the latter holds. Following [Bo, Chapter VI, Section 4.8], E = R4 and
{ε1, ε2, ε3, ε4} is the canonical basis of R4. The roots system � is equal to

{±εi ± εj | 1 ≤ i < j ≤ 4},

and the base for � is

α1 = ε1 − ε2, α2 = ε2 − ε3, α3 = ε3 − ε4, α4 = ε3 + ε4.



378 DELORME and MEZO

The elements of the Weyl group W are of the form w = sgn ◦ s, where sgn denotes
a sign change on the εi of product 1 and s is a permutation of ε1, ε2, ε3, ε4. Without
loss of generality, we have

β(α1) = α3, β(α3) = α4, β(α4) = α1, β(α2) = α2.

The subspace Eβ is generated by α2 and α1 +α3 +α4. It is accordingly also generated
by

α1 + 2α2 + α3 + α4 = ε1 + ε2 and α1 + α2 + α3 + α4 = ε1 + ε3.

At this point, it is convenient to conjugate β by the element x ∈ W , which fixes ε1, ε4

and negates both ε2 and ε3. The fixed-point set Eβ ′
of the resulting automorphism

β ′ = xβx−1 is generated by

α1 = ε1 − ε2 = x(ε1 + ε2) and α2 = ε2 − ε3 = x(ε1 + ε3) − (ε1 − ε2).

If Eβ ′
is stable under w = sgn ◦ s, then s must fix ε4, and sgn = ±Id. Thus Wβ ′

is isomorphic to the direct product S3 × {±1}, where S3 is the permutation group of
ε1, ε2, ε3. Using the canonical coordinates, S(Eβ ′

)S3 is isomorphic to the polynomial
algebra generated by the restriction of X2

1 + X2
2 + X2

3 and X1X2X3 to Eβ ′
. Let u1

and u2 denote the respective restrictions. As u1 is invariant under −1, the subalgebra
S(Eβ ′

)Wβ′ is generated by u1 and u2
2. On the other hand, according to [Bo, Chapter VI,

Section 4.8], S(E)W is generated by the symmetric polynomials

t1(X) = (X1)2 + · · · + (X4)2,

t2(X) = (X1)2(X2)2 + · · · + (X3)2(X4)2,

t3(X) = (X1)2(X2)2(X3)2 + · · · + (X2)2(X3)2(X4)2,

t4(X) = X1X2X3X4.

The desired surjectivity now follows from the fact that (t1)|Eβ′ = u1 and (t3)|Eβ′ = u2
2.

We now prove the theorem in the case of disconnected Dynkin diagrams. In
this circumstance, the automorphism β may permute the connected components. The
decomposition of a permutation into a product of disjoint cycles allows us to reduce
the problem to the case where β permutes n isomorphic copies of a connected Dynkin
diagram cyclically among themselves. The cyclic permutation given by β on these
connected components allows us to identify each of them with a given D′, generating
a space E′ and a root system R′ with Weyl group W ′. The nth power of β induces an



A TWISTED INVARIANT PALEY-WIENER THEOREM 379

automorphism β ′ of the Dynkin diagram D′. One has

Eβ = {
(x, . . . , x)

∣∣ x ∈ E′, β ′(x) = x
}
.

As a result, the theorem reduces to the connected case proved above. �

COROLLARY 1
The natural restriction map from PW(E) to PW(Eβ) induces a surjection from
PW(E)W to PW(Eβ)Wβ .

Proof
The corollary follows from Theorem 5 by the argument given in [CD2, lem-
me C.1]. �
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