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CONSTANT TERM OF SMOOTH Hψ-SPHERICAL FUNCTIONS

ON A REDUCTIVE p-ADIC GROUP

PATRICK DELORME

Abstract. Let ψ be a smooth character of a closed subgroup, H, of a reduc-
tive p-adic group G. If P is a parabolic subgroup of G such that PH is open
in G, we define the constant term of every smooth function on G which trans-
forms by ψ under the right action of G. The example of mixed models is given:
it includes symmetric spaces and Whittaker models. In this case a notion of
cuspidal function is defined and studied. It leads to finiteness theorems.

1. Introduction

The theory of the constant term first appears in the theory of automorphic forms
as an important tool in the spectral decomposition of L2(G/Γ), for Γ an arithmetic
subgroup of a reductive group G defined over Q. The terminology comes from the
case of GL2, where the constant term is related to the constant term of Fourier
series on U/U ∩ Γ, where U is some unipotent subgroup of G.

It was later modified and used by Harish-Chandra in his treatment of the
Plancherel formula for the real and p-adic reductive groups (cf. [12], [19]).

Later, in the case of p-adic groups, Casselman (cf. [8]) has found interpretation
of the work of Harish-Chandra in terms of Jacquet modules. More recently Bern-
stein (cf. [1], see also [6]) vastly generalized this approach. In this article, we use
Bernstein’s theory to extend the results to functions which transform by a smooth
character under certain subgroups of G. This includes the case of symmetric spaces,
Whittaker models and mixed models (see below). The construction for Whittaker
models is related to the work of Casselman and Shalika [9].

An important aspect of our work is that the constant term is defined for all
smooth functions.

Let us be more precise.
Let F be a non-Archimedean local field. Let G be the group of F -points of a

connected reductive group, G, defined over F . Let H be a closed subgroup of G
and ψ be a smooth character of H. An Hψ-fixed linear form on a smooth G-module
is a linear form which transforms by ψ under H. We assume that:

(1.1)
(P, P−) is a pair of opposite parabolic subgroups of G such that P−H
is open.

We have in mind the following examples of this situation.
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934 PATRICK DELORME

Example 1 (Symmetric spaces). The group H is the fixed point set in G of a
rational involution σ defined over F of the group G, P is a σ-parabolic subgroup
of G, i.e. P and σ(P ) are opposite, and F is of characteristic different from 2. For
the purpose of induction, we do not limit ourselves to ψ trivial.

Notice that G itself appears as a symmetric space for G × G, where σ(x, y) =
(y, x). This will be referred as “the group case”.

Example 2 (Whittaker models). The group H is the unipotent radical, U0, of a
minimal parabolic subgroup P0 of G, P is a parabolic subgroup of G which contains
P0, and ψ is a nondegenerate smooth character of U0 (see Definition 5.1).

Example 3 (Mixed models). Let Q be a parabolic subgroup of G, with Levi
subgroup L and unipotent radical UQ. Let H ′ be the fixed point set of a rational
involution, σ′, of L. If σ′ is not trivial, we assume that F is of characteristic
different from 2. We take H = H ′UQ and ψ is nondegenerate (see Definition 5.1).
We assume that P−Q is open and that P− ∩ L is a σ′-parabolic subgroup of L.

We denote by δP the modulus function of P . Let V be a smooth G-module,
VP its normalized Jacquet module along P . Assuming (1.1) and denoting by M
the common Levi subgroup of P and P−, our first result (cf. Theorem 3.4) is the
definition of a natural linear map

jP− : V ∗Hψ �→ V
∗(M∩H)ψP

P ,

from the space of Hψ-fixed linear forms on V to the space of (M ∩H)ψP
-fixed linear

forms on VP , where ψP is equal to the product of the restrictions to M ∩H of ψ

and δ
1/2
P .

In Example 1, this definition has already been given by Kato and Takano [15]
and Lagier [16], when V is admissible. This definition is related to the behavior
on the maximal split torus, A, of the center of M , of the generalized coefficients
cξ,v, v ∈ V, ξ ∈ V ∗Hψ . The latter are defined by cξ,v(g) = 〈ξ, π(g−1)v〉, g ∈ G. For
the group itself viewed as a symmetric space of G × G, as was mentioned above
this construction is due to Casselman (cf. [8]) for admissible representations and
to Bernstein (cf. [1], see also [6]) for general smooth representations.

Using results of Bernstein on smooth representations (the generalized Jacquet
Lemma and the second adjointness theorem; see section 2), we generalize this map
jP− to arbitrary smooth representations and to the more general situation described
above.

This allows us to define the constant term along P , fP , of any smooth function,
f , on G transforming under ψ on the right. In Example 1, when f is a generalized
coefficient cξ,v of an admissible representation, this has already been defined in [16],
Proposition 2, where it is shown that the restriction of fP to A is determined by
the restriction of f to A. It seems that it is different for smooth modules.

In Example 1 (resp., Example 2) an Hψ-fixed linear form, ξ, on a smooth G-
module is said to be Hψ-cuspidal if and only if jP−(ξ) is zero for all pairs (P, P−)
where P is a proper σ-parabolic subgroup of G and P− = σ(P ) (resp., P contains
P0 and P− contains a given opposite parabolic subgroup of P0). There is a similar

definition for Example 3. We denote by V
∗Hψ
cusp the space of such linear forms.

Let X(G) be the group of unramified characters of G which has the structure
of a complex torus. We will denote by X(G)H the group of elements of X(G)
which are trivial on H. An X(G)H-component of equivalence classes of irreducible
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SMOOTH Hψ-SPHERICAL FUNCTIONS ON A REDUCTIVE p-ADIC GROUP 935

representations of G is a set {π ⊗ χ | χ ∈ X(G)H} of irreducible representations of
G, where π is an irreducible representation of G.

Let K be a compact open subgroup of G. Our second result asserts that for
Example 1 (Theorem 4.4), there exists a finite number of X(G)H-components of
irreducible representations, (Oi), such that every smooth irreducible representation

of G, (π, V ), which has a nonzero vector fixed by K and such that V
∗Hψ
cusp is nonzero,

is equivalent to at least one representation in the Oi. One has also a finiteness result
for Examples 2 and 3 (see Theorem 5.6).

The final results (Theorem 4.5 and Theorem 5.7) assert that for any smooth
representation (π, V ) of finite length, i.e. admissible of finite type, the dimension of
V ∗Hψ is finite, this for Examples 1, 2 and 3. For Example 2, the result was already
known and due to Bushnell and Henniart [7]. For some particular cases of Example
3 (Klyachko models), Offen and Sayag proved in [17] that, for irreducible unitary
representations of GL(n, F ), the dimension is one or zero.

We hope to use these results, as well as the notion of the constant term of
smooth functions, for harmonic analysis. Proposition 3.17 gives some insight into
the constant term of wave packets. Notice that our Theorem 3.4 leads, when one
views the group as a symmetric space, to a curious operation which associates, to
an invariant distribution on G, an invariant distribution on a Levi subgroup (see
section 4.6).

2. Preliminaries

2.1. Notation. If E is a vector space, E∗ will denote its dual. If E is real, EC will
denote its complexification.

If G is a group, g ∈ G and X is a subset of G, g.X will denote gXg−1. If (π, V )
is a representation of G, V G will denote the space of invariants under G.

We will use conventions as in [19]. Let F be a non-Archimedean local field. One
considers various algebraic groups defined over F , and a sentence such as:

(2.1)
“let A be a split torus” will mean “let A be the group of F -points of a
torus, A, split and defined over F”.

With these conventions, let G be a connected reductive linear algebraic group.
Let A be a split torus of G. Let X∗(A) be the group of one-parameter subgroups

of A. This is a free abelian group of finite type. Such a group will be called a
lattice. One fixes a uniformizing element � of F . One denotes by Λ(A) the image
of X∗(A) in A by the morphism of groups λ �→ λ(�). By this morphism Λ(A) is
isomorphic to X∗(A).

If (P, P−) are two opposite parabolic subgroups of G, we will denote by M their
common Levi subgroup and by AM or A the maximal split torus of its center. We
denote by U (resp., U−) the unipotent radical of P (resp., P−). We define the
set A− (resp., A−−) of P to be the antidominant (resp., strictly antidominant)
elements in A. More precisely, if Σ(P,A) is the set of roots of A in the Lie algebra
of P , and ∆(P,A) is the set of simple roots, one has:

A− (resp., A−−) = {a ∈ A | |α(a)|F ≤ 1 (resp., < 1), α ∈ ∆(P,A)}.
We define similarly A+ and A++ by reversing the inequalities. One defines also for
ε > 0:

A−(ε) = {a ∈ A | |α(a)|F ≤ ε, α ∈ ∆(P,A)}.
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Let M0 be a minimal Levi subgroup of G, and let A0 be the maximal split torus
of the center of M0. We choose a minimal parabolic subgroup, P0, of G with Levi
subgroup M0. One chooses a maximal compact subgroup of G, K0, which is the
stabilizator of a special point of the apartment associated to A0 of the Bruhat-Tits
building of G. If P is a parabolic subgroup of G which contains A0, we denote by
P− the opposite parabolic subgroup of G to P which contains A0 and by M the
intersection of P and P−.

For the following result, see [8], Prop. 1.4.4:

(2.2)

There exists a decreasing sequence of compact open subgroups of G,
Kn, n ∈ N such that for all n ∈ N∗, K = Kn is normal in K0 and for
every parabolic subgroup, P , which contains P0, one has:
1) K = KU−KMKU , where KU− = K ∩ U−, KM = K ∩ M , KU =
K ∩ U.
2) For all a ∈ A− , aKUa

−1 ⊂ KU , a
−1KU−a ⊂ KU− .

3) The sequence Kn forms a neighborhood basis of the identity in G.

One says that K has an Iwahori factorization with respect to (P, P−) if 1) and 2)
are satisfied. In that case, one has:

(2.3)

For all a ∈ A−−, one has: ⋃
n∈N

a−nKUa
n = U.

2.2. Second adjointness theorem. If P is a parabolic subgroup ofG, one denotes
by δP its modulus function. We keep the notation of the preceding paragraph. We
choose an A0 that contains A and a P0 that is included in P . Let (π, V ) be a smooth
representation of G and let P be a parabolic subgroup of G, with unipotent radical
U and Levi subgroup M . One denotes by (πP , VP ) the tensor product of the
quotient of V by the M -submodule generated by the π(u)v − v, u ∈ U, v ∈ V with

the representation of M on C given by δ
−1/2
P . We call it the normalized Jacquet

module of V along P . We denote by jP the natural projection map from V to VP .
The following result is due to J. Bernstein (cf. [1]). This is a generalization of a

result of W. Casselman [8] and a consequence of his stabilization theorem (cf. [1];
see [6], Theorem 1 for a published version) and of the description of the canonical
duality between VP and V̌P− (cf. [6], section 5 and [8]). Here (π, V ) is a smooth
representation of G. Let jP (resp., jP−) denote the canonical projection of V (resp.,
of the smooth dual V̌ of V ) onto VP (resp., V̌P−).

(2.4)

Let (π, V ) be a smooth representation of G. Then there exists a unique
nondegenerate M -invariant bilinear form 〈., .〉P on V̌P−×VP , such that
for all compact open subgroups K and for all a ∈ A−− we have:

δ
1/2
P (an)〈jP−(v̌), πP (a

n)jP (v)〉P = 〈v̌, π(an)v〉, n ≥ nK(a),

where nK(a) ∈ N depends only on K and a but not on V, v ∈
V K , v̌ ∈ V̌ K .

We define:

ΘP := ∆(P0 ∩M,A0)
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SMOOTH Hψ-SPHERICAL FUNCTIONS ON A REDUCTIVE p-ADIC GROUP 937

and for ε > 0:

A−
0 (P,< ε) := {a ∈ A−

0 | |α(a)|F < ε, α ∈ ∆(P0, A0) \ΘP }.(2.5)

Lemma 2.1. Assume that P contains P0. Let K be a compact open subgroup of
G. Then there exists εK < 1 such that for every smooth G-module (π, V ), one has:

δ
1/2
P (a)〈jP−(v̌), πP (a)jP (v)〉P = 〈v̌, π(a)v〉,

for a ∈ A−
0 (P,< εK), v ∈ V K , v̌ ∈ V̌ K .

Proof. It is clearly enough to prove the statement when K = Kn, n ∈ N∗. We

assume this in the sequel. One chooses a0 in A−− and sets b = a
nK(a0)
0 . Let

εK := inf{|α(b)|F | α root of A in P}.
We have:

(2.6) A−
0 (P,< εK) ⊂ bA−

0 .

Let a be an element of A−
0 . We will use properties of some distributions on

G. First one denotes by eK the normalized Haar measure on K, that we view as
a compactly supported distribution on G. We will use similar notation for other
compact subgroups of G, not necessarily open. If g ∈ G, we will denote also by g
the Dirac measure at g. We will denote the convolution of two compactly supported
distributions e, e′ on G simply by ee′. Then we define

(2.7) h(a) := eKaeK .

As K has an Iwahori factorization and a, b ∈ A−
0 , it is is well known that one has:

(2.8) h(ba) = h(b)h(a).

Denoting by Ka
U = a−1KUa, we have also:

(2.9) h(a) = aeKa
U
eK .

Let v ∈ V K , v̌ ∈ V̌ K . One has:

〈v̌, π(ba)v〉 = 〈v̌, π(h(ba))v〉.
From (2.8), one has:

〈v̌, π(ba)v〉 = 〈v̌, π(h(b))π(h(a))v〉.
As h(b)eK = h(b) and v, v̌ are K-invariant, one has:

〈v̌, π(ba)v〉 = 〈v̌, π(b)π(h(a))v〉.
From (2.4) and the definition of b, one deduces:

〈v̌, π(ba)v〉 = δ
1/2
P (b)〈jP−(v̌), πP (b)jP (π(h(a))v)〉P .

But from (2.9), from the fact that Ka
U is a compact subgroup of U and from the

intertwining properties of jP , one deduces:

jP (π(h(a)v)) = δ
1/2
P (a)πP (a)jP (v).

So we get:

〈v̌, π(ab)v〉 = δ
1/2
P (ba)〈jP−(v̌), πP (ba)jP (v)〉.

Taking into account (2.6), this proves the lemma. �
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3. Hψ-fixed linear forms

3.1. Hψ-fixed linear forms and Jacquet modules. Let H be a closed subgroup
of G, and let ψ be a smooth complex character of G, which means that the kernel
of ψ is open in G. Define:

Hψ := {(h, ψ(h)) ∈ H × C∗ | h ∈ H}.

If (π, V ) is a complex representation of H, one has a representation (πψ, V ) of Hψ,
given by

(3.1) πψ((h, ψ(h))) = ψ(h)π(h), h ∈ H.

Let (P, P−) be a pair of opposite parabolic subgroups of G, with common Levi
subgroup M , and assume that P−H is open. We claim that:

(3.2) The map P− ×H → P−H, (p, h) �→ ph, is open.

In fact, looking at P−H as an orbit of P−×H in G for a suitable action, the proof
of Lemma 12 (iii) in [3] shows that P−H is homeomorphic with the quotient of
P− ×H by the stabilizer of the neutral element. But the projection of P− ×H on
this quotient is open. This proves our claim.

Examples of this situation were given in the introduction.
The proof of [16], Lemma 2 easily adapts to our situation to give:

Lemma 3.1. Let P be as above. If K is a compact open subgroup of G, there
exists a compact open subgroup of G, K ′ ⊂ K, such that for all smooth modules V ,
ξ ∈ V ∗Hψ :

(3.3) 〈ξ, av〉 = 〈eK′ξ, av〉, v ∈ V K , a ∈ A−
M ,

where eK′ξ is the element of V̌ defined by

〈eK′ξ, v〉 = 〈ξ, π(eK′)v〉, v ∈ V.

If K has an Iwahori factorization with respect to (P, P−), one can take for K ′ any
compact open subgroup of G contained in the open set K ∩ (KU−KMKer ψ) (see
(3.2)), or equivalently contained in KU−KM (K ∩Ker ψ).

Remark 3.2. For Example 1, Kato and Takano [15, Lemma 4.6] proved the exis-
tence of arbitrarily small σ-stable, compact open subgroups, K, with an Iwahori
factorization such that

K = KU−KM (K ∩H).

In that case one can take K ′ = K.
For Example 2, and K = Kn as in (2.2) and small enough so that KU0

⊂ Ker ψ,
one sees also that one can take K ′ = K.

Definition 3.3. For any compact open subgroup of G having an Iwahori fac-
torization K for (P, P−), we fix K ′ as in the previous lemma and we define
n′
K(a) := nK′(a) for a ∈ A−−, where nK(a) has been defined in (2.4). With

the notation of Lemma 3.1, we also set ε′K := εK′ . If K is any compact open sub-
group of G, we choose a compact open subgroup K of G, contained in K, having
an Iwahori factorization for (P, P−), and we set n′

K(a) = n′
K(a), ε′K = ε′K .
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From the definition of the action of Hψ on any smooth G-module (π, V ) (cf.
(3.1)), one sees that:

(3.4)
One has ξ ∈ V ∗Hψ if and only if ξ ∈ V ∗ and ξ(π(h)v) = ψ(h−1)ξ(v),
for all v ∈ V, h ∈ H.

Theorem 3.4. Let (P, P−) be a a pair of opposite parabolic subgroups of G such
that PH is open in G. Let A be the maximal split torus M of the center of their
common Levi subgroup. For every smooth module V , ξ ∈ V ∗Hψ , there exists a

unique jP−(ξ) ∈ V
∗(M∩H)ψP

P such that for all a ∈ A−−:

(3.5) 〈ξ, π(an)v〉 = δ
1/2
P (an)〈jP−(ξ), πP (a

n)jP (v)〉, v ∈ V K , n ≥ n′
K(a)

and

(3.6) 〈ξ, π(a)v〉 = δ
1/2
P (a)〈jP−(ξ), πP (a)jP (v)〉, v ∈ V K , a ∈ A−(ε′K).

Proof. First, we prove that there is at most one linear form on VP satisfying (3.5)
and (3.6) for all compact open subgroups of G. If there exist two linear forms on
VP with these properties, let us denote by η their difference. Then one has, in
particular, for all compact open subgroups, K, of G, with n = n′

K(a):

〈η, πP ((a)
n)jP (v)〉 = 0, v ∈ V K .

One chooses K with an Iwahori factorization for (P, P−). Then, from Bernstein’s
generalized Jacquet Lemma (cf. [1], 5.4), one has

(3.7) jP (V
K) = V KM

P ,

and πP (a
n) acts bijectively on V KM

P . Hence η vanishes on V KM

P , for all such K.
Hence η is equal to zero, which proves the unicity statement of the theorem. Notice
that the unicity statement has been proved without using the (M∩H)ψP

-invariance
of the linear forms. The proof above shows:

(3.8)

Let a ∈ A−− and n ∈ N∗. There is at most one linear form η on V KM

P

such that

〈ξ, π(an)v〉 = δ
1/2
P (a)〈η, πP (a

n)jP (v)〉, v ∈ V K .

Now we turn to the existence. One chooses a compact open subgroup K with
an Iwahori factorization with respect to (P, P−), and one defines a linear form on

V KM

P , ηK by:

〈ηK , x〉 := 〈jP−(eK′ξ), x〉P , x ∈ V KM

P .

Then, using Lemma 3.1 and equation (3.7), one sees that:

(3.9) 〈ξ, π(an)v〉 = δ
1/2
P (an)〈ηK , πP (a

n)jP (v)〉, v ∈ V K , a ∈ A−, n ≥ nK′(a)

and

(3.10) 〈ξ, av〉 = δ
1/2
P (a)〈ηK , πP (a)jP (v)〉, v ∈ V K , a ∈ A−(ε′K).

Now, let K1 be another compact open subgroup with an Iwahori factorization

with respect to (P, P−) and contained in K. Using (3.8), the fact that V
(K1)M
P

contains V KM

P , and the properties above of ηK and ηK1
, one gets:

ηK1 |V KM
P

= ηK .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



940 PATRICK DELORME

This proves the existence of a linear form η on jP (V ) such that for any compact
open subgroup K with an Iwahori factorization with respect to (P, P−), one has:

η|V KM
P

= ηK .

Then from (3.9) and (3.10) the linear form η satisfies analogous of (3.5) and (3.6)
for any compact open subgroup K with an Iwahori factorization with respect to
(P, P−). But the definition of n′

K(a) and ε′K implies that it is true also for any
open compact subgroup of G. It remains to prove the (M ∩ H)ψP

-invariance of
η. But it is clear that if m ∈ M ∩ H, the linear form ψP (m

−1)η ◦ πP (m) ∈ V ∗
P

satisfies analogous of (3.5) and (3.6), maybe for a different choice of the n′
K , as

π(m)V K = V mKm−1

, this for all compact open subgroups. From the proof of the
unicity (see Equation (3.8)), one concludes that this linear form is equal to η. So η
has the required properties. �

Remark 3.5. (i) It was shown in the proof of Theorem 3.4, that property (3.5), for
a compact open subgroup K of G with an Iwahori factorization, and for a single a,
characterizes the restriction of jP−(ξ) to V KM

P . By choosing an element in A−(εK),
one deduces similarly that (3.6) for such a K characterizes also the restriction of

jP−(ξ) to V KM

P .
(ii) The proof of unicity (see Equation (3.8)) shows that if a linear form on VP

enjoys the same properties as jP−(ξ) but for a different choice of the n or ε, it is
equal to jP−(ξ). This remark was already used in order to show the (M ∩H)ψP

-
invariance of η.

(iii) The theorem generalizes results of Kato and Takano (cf. [15]) on the one
hand and of Lagier (cf. [16]) on the other hand, for admissible representations,
for Example 1. Our proof is close to the proof of Lagier. The proof of Kato and
Takano takes into account Remark 3.2 and uses standard sections of V KM

P . This
point of view might work here also for Examples 1 and 2.

From the unicity statement in the theorem, one deduces:

Proposition 3.6. The map jP− : V ∗Hψ �→ V ∗(M∩H)ψP is linear.

Proposition 3.7. Assume that P contains P0. Let K be a compact open subgroup
of G. For every smooth G-module (π, V ), one has:

δ
1/2
P (a)〈jP−(ξ), πP (a)jP (v)〉P = 〈ξ, π(a)v〉, a ∈ A−

0 (P,< ε′K).

Proof. The proof is similar to the proof of Lemma 2.1. �

Lemma 3.8. Let V , W be smooth G-modules and let φ : V → W be a morphism
of G-modules. If η ∈ W ∗Hψ , let ξ = η ◦ φ ∈ V ∗Hψ . Let jP (φ) be the morphism of
M -modules jP (φ) : VP → WP deduced from φ. Then one has:

jP−(ξ) = jP−(η) ◦ jP (φ).

Proof. It is a simple exercise to prove that jP−(η) ◦ jP (φ) ∈ V ∗(M∩H)ψP has the
characterization properties (3.5) and (3.6) of jP−(ξ), by using the corresponding
properties for jP−(η). The lemma follows from the unicity statement in Theorem
3.4. �

Proposition 3.9. (i) We keep the preceding notation. Let V be a smooth G-module
and ξ ∈ V ∗Hψ . Let (Q,Q−) be another pair of opposite parabolic subgroups of G
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with Q ⊂ P , Q− ⊂ P− and such that Q−H is open. Denote by R = Q ∩ M ,
R− = Q− ∩M . We assume that R−(M ∩H) is open.

Then (R,R−) is a pair of opposite parabolic subgroups of M . Taking into account
the equality VQ = (VP )R, one has:

jQ−(ξ) = jR−(jP−(ξ)).

(ii) If h ∈ H, (h.P−)H is open, where h.P− = hP−h−1. Denote by Th : VP �→ Vh.P

the map given by jP (v) → jh.P (π(h)v). One has:

〈jP−(ξ), jP (v)〉 = ψ(h)〈jh.P−(ξ), jh.P (π(h)v)〉, v ∈ V, h ∈ H.

Proof. The proof of the proposition is essentially contained in [15] (Proposition 5.9
and Lemma 6.6) and [16] (Theorem 3 and proof of Proposition 3). One can choose
a maximal split torus A0 of G, contained in the common Levi subgroup, L, of Q
and Q−. Moreover let P0 be a minimal parabolic subgroup of G contained in Q
and containing A0. For ε > 0 one has:

A−
0 (Q,< ε) = A−

0 (P,< ε) ∩ A−
0 (R,< ε).

Let K be a compact open subgroup of G. Then, it follows easily from a double
application of Proposition 3.7, that for ε small enough, one has:

〈ξ, π(a)v〉 = 〈jR−(jP−(ξ)), πQ(a)jQ(v)〉, a ∈ A−
0 (Q,< ε).

Let AQ be the maximal split torus of the center of L. The uniqueness statement in
Theorem 3.4 (see also Remark 3.5) and the inclusion A−

Q(ε) ⊂ A−
0 (Q,< ε) imply

(i).
(ii) The proof is also essentially in [15, Lemma 6.6] and [16, proof of Proposi-

tion 3]. It is an easy consequence of the unicity statement in Theorem 3.4 and
Remark 3.5. �
3.2. Families of Hψ-fixed linear forms.

Definition 3.10. Let X be the set of points of an algebraic variety defined over C
(resp., complex, resp., real manifold). Let V be a complex vector space. Let Λ be
a lattice. We say that a family of characters of Λ, χ = (χx)x∈X , is regular (resp.,
holomorphic, resp., C∞) if for all λ ∈ Λ, the map x �→ χx(λ) is regular (resp.,
holomorphic, resp., C∞) on X.

A family of smooth admissible representations of G in V , (πx, Vx)x∈X , is said to
be regular (resp., holomorphic, resp., C∞) if:

(i) The action of some compact open subgroup of G on V under πx does not
depend on x ∈ X.

(ii) For each v ∈ V and g ∈ G, the map x �→ πx(g)v, which has its values in
a finite dimensional vector space of V by the admissibility and (i), is a regular
function on X (resp., holomorphic, resp., C∞).

(iii) For each parabolic subgroup P of G with Levi subgroup M , there exists a
finite set of regular (resp., holomorphic, resp., C∞) families of characters of Λ(AM ),
X = (1χ, . . . ,p χ) depending on x ∈ X, such that:

(3.11)
For all x ∈ X, the Λ(AM )-module (Vx)P is of type (1χx, . . . ,

p χx) (see
Definition 6.2 in the Appendix).

A family of linear forms on V , (ξx)x∈X , is said to be regular (resp., holomorphic,
resp., C∞) if for all v ∈ V , the map x �→ ξx(v) is regular (resp., holomorphic, resp.,
C∞).
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The example we have in mind is the family of parabolically induced representa-
tions from a representation of a Levi subgroup of G, twisted by unramified charac-
ters of this Levi subgroup. Property (iii) follows from the Geometric Lemma (see
e.g. [10], Lemma 7 (i)).

Proposition 3.11. Let (πx, V )x∈X (resp., (ξx)x∈X) be a regular (resp., holomor-
phic, resp., C∞) family of smooth admissible representations of G (resp., of Hψ-
fixed linear forms under πx). Then: (i) For all v ∈ V , the map x �→ 〈jP−(ξx), jP (v)〉
is regular (resp., holomorphic, resp., C∞) on X.

(ii) Let F (X,V ) be the space of all maps from X to V which take their values in
a finite dimensional space and which are regular (resp., holomorphic, resp., C∞).
Let π be the representation of G on F (X,V ) given by:

(π(g)φ)(x) = πx(g)φ(x), φ ∈ F (X,V ), x ∈ X.

π is a smooth representation of G. Let Y be a compact subset of X, and let µ be a
measure on Y . Let ξ be the Hψ-fixed linear form on F (X,V ) given by:

ξ(φ) =

∫
Y

ξy(φ(y))dµ(y), φ ∈ F (X,V ).

Then

(3.12) 〈jP−(ξ), jP (φ)〉 =
∫
Y

〈jP−(ξy), jP (φ(y))〉dµ(y).

Proof. (i) The fact that F (X,V ) is a smooth G-module follows from Definition 3.10
(i). Let a ∈ A−− and v ∈ V . We will study the sequence:

ux(n) := δ
1/2
P (an)〈jP−(ξx), (πx)P (a

n)v〉.
Using (3.11) for a′ = a−1 one sees that

〈jP−(ξx), ((πx)P (a
′)−1 χx(a

′)) . . . ((πx)P (a
′)−p χx(a

′))πP (a
n)v〉 = 0.

By expanding the product, one gets easily:

(3.13) ux(n− p) + θ1(x)ux(n− p+ 1) + · · ·+ θp(x)ux(n) = 0, n ∈ N,

where, for all k, x �→ θk(x) is a regular (resp., holomorphic, resp., C∞) function on
X.

From Theorem 3.4, for n large enough, independent of x ∈ X, ux(n) is equal to
〈ξx, πx(a

n)v〉; hence it is regular (resp., holomorphic, resp., C∞) in x ∈ X. The
recursion relation (3.13) shows that the maps x �→ ux(n) enjoy the same property
for all n ∈ N, and in particular for n = 0. This proves (i).

(ii) Using the properties of jP−(ξx), x ∈ X, given by Theorem 3.4, and part
(i), one sees easily that the right-hand side of (3.12) defines an (M ∩ H)ψP

-fixed
linear form on F (X,V )P which has the characterization properties of jP−(ξ). (ii)
follows. �

3.3. Constant term of smooth functions. Let C∞(G/H,ψ) be the space of
smooth functions on G, i.e. left invariant by at least a compact open subgroup
of G and which transform under the right regular representation of H by ψ. The
left regular representation L of G endows this space with a structure of a smooth
G-module. We denote by δe or δ the Dirac measure in e. This is an Hψ-fixed linear
form on C∞(G/H,ψ). Let (P, P−) be as in (1.1).
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Definition 3.12. We recall that P−H is assumed to be open. For f ∈ C∞(G/H,ψ)
we denote by fP the element of C∞(M/M ∩H,ψP ) defined by

fP (mM ∩H) = 〈jP−(δeH), δ
1/2
P (m)jP (Lm−1f)〉,m ∈ M.

We call it the constant term of f along P .

One sees easily that:

(3.14)

The map f �→ fP is a morphism of P -modules from C∞(G/H,ψ) en-
dowed with the left regular representation of P to C∞(M/M ∩H,ψP ),
on whichM acts by the tensor product of the left regular representation

of M with δ
1/2
P and the unipotent radical, U , of P acts trivially.

If (π, V ) is a smooth G-module and ξ ∈ V ∗Hψ , v ∈ V we denote by cξ,v ∈
C∞(G/H,ψ) the function defined by

(3.15) cξ,v(g) = 〈ξ, π(g−1)v〉, g ∈ G,

so that the map cξ from V to C∞(G/H,ψ), v �→ cξ,v is a morphism of G-modules.
We call cξ,v a generalized coefficient of (π, V ).

Proposition 3.13. With the previous notation one has:

(cξ,v)P = cjP− (ξ),jP (v), v ∈ V ∗Hψ , v ∈ V.

Proof. When V = C∞(G/H,ψ) and ξ is the Dirac measure δeH , the formula is
precisely the definition of the constant term. More generally, one has ξ = δe ◦ cξ.
Also, one has Lmcξ,v = cξ,π(m)v. The proposition follows from Lemma 3.8 and from
Definition 3.12. �
Proposition 3.14. (i) Let V be a smooth G-submodule of C∞(G/H,ψ). The map
f → fP is the unique morphism of P -modules from V to C∞(M/M ∩ H,ψP ),

endowed with the tensor product of the left action of M with δ
1/2
P and the trivial

action of U , such that:

(3.16)
For all compact open subgroups, K, of G, and f ∈ V K ,

f(a−1) = δ
1/2
P (a)fP (a

−1), a ∈ A−(ε′K).

(ii) If A0 is a maximal split torus contained in P ∩ P−, and P0 is a minimal
parabolic subgroup which contains A0 and is contained in P , one has

f(a−1) = δ
1/2
P (a)fP (a

−1), a ∈ A−
0 (P,< ε′K).

Proof. From Definition 3.12, Theorem 3.4 and (3.14), the map f → fP has the
required properties except unicity. Now suppose T is such a map. As T is a
morphism of P modules, the linear form on V , f → T (f)(e) goes through the
quotient to a linear form η on VP . It is fixed under (M ∩H)ψP

. Let ξ be the Hψ-
fixed linear form on V given by the restriction of the Dirac measure δe to V . Then
using (3.16) and Remark 2, one sees easily that jP−(ξ) = η. When one applies
Proposition 3.13 to our choice of V and ξ, and takes into account that cξ,f = f for
f ∈ V , one gets:

(T (f))(e) = fP (e).

From the M -equivariance of T and from (3.14), one deduces:

(T (f))(m) = fP (m), f ∈ V,m ∈ M.

This proves unicity. �
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Remark 3.15. This definition generalizes the definition given by N. Lagier for gen-
eralized coefficients of admissible representations ([16], Proposition 2) in Example
1.

Proposition 3.16. With the notation of Proposition 3.9, one has:
(i)

fQ = (fP )R, f ∈ C∞(G/H,ψ).

(ii)

fh.P (hmh−1) = ψ(h−1)(Lh−1f)P (m), h ∈ H,m ∈ M, f ∈ C∞(G/H,ψ).

Proof. The proof is an immediate consequence of Definition 3.12 and Proposition
3.9. �

3.4. Constant term of wave packets. The constant term of smooth compactly
supported functions modulo H seems mysterious (see sections 4.5 and 4.6 below).
On the other hand, at least in the group case, these functions appear as wave
packets of coefficients of admissible representations (cf. [19]). Still in the group
case, the constant term of the coefficients of the representations occurring in the
wave packets is well understood (cf. loc. cit.) So it seems to us that the following
proposition, which expresses the constant term of a wave packet as a wave packet
of constant terms, might be useful to answer the question (4.15) below.

Proposition 3.17. We use the notation of Proposition 3.11 (iii). Let φ ∈ F (X,V ),
f = cξ,φ, fx = cξx,φ(x), x ∈ X. Then, for g ∈ G (resp., m ∈ M), the map x �→ fx(g)
(resp., x �→ (fx)P (m)) is regular (resp., holomorphic, resp., C∞) on X and

f(g) =

∫
Y

fy(g)dµ(y), fP (m) =

∫
Y

(fy)P (m)dµ(y).

Proof. The assertions on f are immediate. The assertions on fP follow from Pro-
postion 3.11. �

4. Reductive symmetric spaces

4.1. If J is an algebraic group, one denotes by Rat(J) the group of its rational
characters defined over F . Let AG be the largest split torus in the center of G. Let
us define: aG = HomZ(Rat(G),R). The restriction of rational characters from G
to AG induces an isomorphism:

(4.1) Rat(G)⊗Z R � Rat(AG)⊗Z R.

One has the canonical map HG : G → aG, which is defined by

(4.2) e〈HG(x),χ〉 = |χ(x)|F , x ∈ G,χ ∈ Rat(G),

where |.|F is the normalized absolute value of F . The kernel ofHG, which is denoted
by G1, is the intersection of the kernels of the characters of G, |χ|F , χ ∈ Rat(G).
One defines X(G) = Hom(G/G1,C∗), which is the group of unramified characters
of G. One will use similar notation for Levi subgroups of G.

One denotes by aG,F , resp. ãG,F, the image of G, resp. AG, by HG. Then G/G1

is isomorphic to the lattice aG,F .
There is a surjective map:

(4.3) (a∗G)C → X(G) → 1,
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which associates to χ ⊗ s the character g �→ |χ(g)|sF (cf. [19], I.1.(1)). The kernel
is a lattice and it defines a structure of a complex algebraic variety on X(G) of
dimension dimR aG.

From the canonical isomorphism (4.1), one deduces

(4.4) A1
G = AG ∩G1.

Moreover A1
G is the largest compact subgroup of AG.

Notice that, with the notation of section 2.1, Λ(AG) ∩ A1
G is trivial. In fact if

λ ∈ X∗(AG) and λ(�) is an element of A1, then λ ∈ X∗(G) is trivial: one reduces
to see this, by using products, to a similar statement for a one dimensional torus,
where it is clear. Hence from (4.4):

(4.5) The map Λ(AG) → G/G1 is injective.

Let (P, P−) be a pair of opposite parabolic subgroups of G and let M be their
common Levi subgroup. Denote by Z(G) the center of G. Then one has

(4.6) Λ(AM ) ∩ Z(G) = Λ(AG).

In fact, only the inclusion of the left-hand side in the right-hand side is nontrivial.
Let a ∈ Λ(AM ) ∩ Z(G) and λ be a one-parameter subgroup of AM , defined over
F , with λ(�) = a. Let α be a root of AM in the Lie algebra of G. Then α ◦ λ
is a rational character of GL(1, F ) whose image of ω is trivial; hence it is trivial.
It implies that the image of λ commutes with P and with P−. By the density of
P−P for the ordinary topology one sees that this image commutes with G. But
G is Zariski dense in G ([4], Corollary 18.3). Hence, as λ is defined over F , it is a
one-parameter subgroup in the center of G whose image is an F -split torus. Hence
it is an F -split torus contained in AG. It follows that λ(ω) is an element of Λ(AG).

4.2. σ-parabolic subgroups. Recall that G is the group of F -points of a con-
nected reductive group, G, defined over F . Let σ be a rational involution of G,
defined over F . Let H be the group of F -points of an open F -subgroup of the fixed
point set of σ. We will also denote by σ the restriction of σ to G.

A parabolic subgroup P of G, is called a σ-parabolic subgroup if P and σ(P ) are
opposite parabolic subgroups. Then M := P ∩ σ(P ) is the σ-stable Levi subgroup
of P . For this part, we assume:

(4.7) The characteristic of F is different from 2.

Then one deduces from [14], Proposition 13.4:

(4.8)
P−H is open in G and (P, σ(P )) satisfies (1.1), where P− = σ(P ).
Moreover δP restricted to H is trivial.

We recall also that (cf. loc. cit. Corollary 6.16):

(4.9)
There are only a finite number of H-conjugacy classes of σ-parabolic
subgroups of G.

4.3. H-cuspidal linear forms and functions.

Definition 4.1. Let ψ be a smooth character of H. An Hψ-fixed linear form, ξ,
on a smooth G-module V is said to be Hψ-cuspidal if for any proper σ-parabolic
subgroup P of G, one has:

jP−(ξ) = 0.
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An element f of C∞(G/H,ψ) is said to beHψ-cuspidal if for any proper σ-parabolic
subgroup P of G, one has:

(Lgf)P = 0, g ∈ G.

We denote by C∞(G/H,ψ)cusp the vector space of H-cuspidal smooth functions
on G/H.

Notice that it would be more correct to say (σ, ψ)-cuspidal instead ofHψ-cuspidal
as the definition does not depend only on H but on σ. Nevertheless, as in applica-
tions σ is fixed, we have decided to choose Hψ-cuspidal.

In view of Propostions 3.9 and 3.16, one sees that one can limit P to a set of
representatives of theH-conjugacy classes of maximal proper σ-parabolic subgroups
of G.

From the definition, it is clear that:

(4.10)
An Hψ-fixed linear form, ξ, on a smooth G-module V is Hψ-cuspidal
if and only if every generalized coefficient, cξ,v, v ∈ V , is Hψ-cuspidal.

4.4. Finiteness theorems. A split torus is said to be σ-split if all its elements
are anti-invariant by σ. Let A∅ be a maximal σ-split torus of G, let M∅ be the
centralizer of A∅ in G and let P∅ be a minimal σ-parabolic subgroup of G whose
σ-stable Levi subgroup is equal to M∅ (see [14] for the existence). We denote also
by A∅,G the maximal σ-split torus in AG. We denote by Λ+(A∅) the set of P∅
dominant elements in Λ(A∅). Let Σ(G,A∅) be the set of roots of A∅ in the Lie
algebra of G. It is a root system (cf. [14]). We denote by ∆(G,A∅) the set of
simple roots of the set of roots of A∅ in the Lie algebra of P∅. If Θ is a subset
of ∆(G,A∅) we denote by 〈Θ〉∅ the subroot system of Σ(G,A∅) generated by Θ.
Let PΘ be the parabolic subgroup of G which contains A∅ and such that the set of
roots of A∅ in its Lie algebra is equal to the union of the set of roots of A∅ in the
Lie algebra of P∅ and 〈Θ〉∅. It is a σ-parabolic subgroup of G.

Let C > 0. We denote by Λ+(A∅) (resp., Λ+(A∅, C)) the set of elements a in
Λ(A∅) such that |α(a)|F ≥ 1 (resp., C ≥ |α(a)|F ≥ 1) for all α ∈ ∆(G,A∅).

Lemma 4.2. Let Λ(A∅)G be the intersection of Λ(A∅) with the center of G. It is
a subgroup of Λ(AG) and Λ+(A∅, C) is a union of finitely many orbits of Λ(A∅)G.

Proof. As Λ(A∅) is a subgroup of Λ(AM∅), one deduces the first assertion from
(4.6). To prove the second assertion, let us consider the morphism of abelian groups
φ : Λ(A∅) → RΣ(G,A∅) given by a �→ (Log |α(a)|F ). The image of Λ+(A∅, C) is
clearly finite. Hence it is enough to prove that the kernel of φ is equal to Λ(A∅)G.
Let a be an element of its kernel. The image, �′, of the uniformizing element �
by a one-parameter subgroup of GL(1, F ) satisfies |�′|F = 1 if and only if this
one-parameter subgroup is constant. It follows easily that α(a) is equal to one for
all roots of A∅. Hence a commutes to P∅ and to σ(P∅). Hence, by the density of
P∅σ(P∅), it commutes with G. Our assertion on the kernel of φ follows. �

Lemma 4.3. Let K be a compact open subgroup of G. Then there exists a finite
set F∅,K ∈ Λ(A∅)

+ such that the restriction of every element of C∞(G/H,ψ)Kcusp
to Λ+(A∅) is zero outside F∅,KΛ(A∅)G.

Proof. Let A0 be a maximal split torus contained in M∅. Hence it contains A∅. Let
P0 be a minimal parabolic subgroup of G contained in P∅ and containing A0. Let
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ε > 0 and C = ε−1. Using the notation of (2.5), we denote by

Λ+(P,> C) := {a−1 | a ∈ Λ(A∅) ∩A−
0 (P,< ε)}.

From Proposition 3.14(ii), one sees that there exists C > 0 such that for all P = PΘ:

f|Λ+(P,>C) = δ
1/2
P (a)(fP )|Λ+(P,>C), f ∈ C∞(G/H,ψ)K .

If moreover f ∈ C∞(G/H,ψ)Kcusp, one has fP = 0 for all P = PΘ, where Θ is equal

to ∆(G,A∅) \ {α} for some α ∈ ∆(G,A∅). But the complementary in Λ+(A∅) of
the union of Λ+(P,> C) for all such P is equal to Λ+(A∅, C). Then the lemma
follows from the previous lemma. �

Let (Ai)i∈I be a set of representatives of the H-conjugacy classes of maximal
σ-split tori of G. This set is finite (cf. [14], 6.10 and 6.16). One assumes that this
set contains A∅. The tori Ai are conjugated under G (cf. [13], Proposition 1.16).
One chooses, for all i ∈ I, an element xi of G, such that xi.A∅ = Ai. One takes x∅
equal to the neutral element e of G.

One fixes a minimal σ-parabolic subgroup P∅ of G, which contains A∅. Let

W (A∅) be a set of representatives in G of the quotient, W (A∅), of the normalizer of

A∅ in G by its centralizer M∅ in G. One chooses a subset WG
of the set {xiw | w ∈

W (A∅)}, which is a set of representatives of the open (H,P∅)-double cosets of G

(cf. [13, Theorem 3.2]). It is a finite set. Moreover, if y ∈ WG
, y.A∅ is a maximal

σ-split torus of G and y.P∅ is a σ-split parabolic subgroup of G.
The Cartan decomposition (cf. [2], [11]) ensures the existence of a compact

subset Ω of G, such that:

(4.11) G =
⋃

y∈WG

ΩΛ+(A∅)y
−1H.

Let X(G)σ be the neutral component of the set {χ ∈ X(G) | χ ◦ σ = χ−1}. Notice
that elements of X(G)σ are trivial on H.

Theorem 4.4. (i) Let K be a compact open subgroup of G. Let X be a finite
family of characters of Λ(AG). The space C∞(G/H,ψ)Kcusp(X ) of elements of

C∞(G/H,ψ)Kcusp which are of type X under the left regular action of Λ(AG) (see
Definition 6.2) is finite dimensional.

(ii) The elements of C∞(G/H,ψ)Kcusp have their support in a compact set modulo
Λ(A∅)G depending only on K.

(iii) Let (π, V ) be a smooth G-module of finite length. Let V
∗Hψ
cusp be the space of

Hψ-fixed Hψ-cuspidal linear forms. This space is finite dimensional.
(iv) There exists a finite number of irreducible representations of G, (πi), such

that any irreducible representation (π, V ) of G, having a nonzero vector fixed by K

and with V
∗Hψ
cusp nonreduced to zero, is equivalent to a representation πi ⊗ χ for an

element χ of X(G)σ.

Proof. (i) From the compacity of Ω, there exist g1, . . . , gn ∈ Ω such that Ω is
contained in the union of the sets Kg1, . . . ,Kgn. Define Ay := y.A∅, Λ(Ay)

+ =
y.Λ(A∅)

+ for y ∈ WG. Notice that Λ(Ay) is equal to y.Λ(A∅) and the intersection
Λ(Ay) with the center of G is equal to Λ(A∅)G. Then, by the Cartan decomposition
(4.11), one sees that the function f is determined by the restriction of Lyg−1

i
f to

Λ(Ay)
+, when y varies in WG and i = 1, . . . , n. But if g ∈ G, Lgf is invariant
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under g.K. Taking into account that Λ(A∅)G ⊂ Λ(AG) (cf. Lemma 4.2), Lemma
4.3, applied to y.A∅, but changing K, together with the properties of functions
of type X (see (6.3)), shows that there is a finite subset of G/H such that f ∈
C∞(G/H,ψ)Kcusp(X ) is zero if and only if it is zero on this finite set. The restriction
map to this set is injective. This implies (i).

(ii) is proved in the same way.
(iii) From the fact that V is of finite length, one sees that there exists a finite

family of characters of Λ(AG) such that every element of V is of type X . Every
G-module map between V and another G-module has its image in the space of
vectors of type X . From Definitions 4.1 and 6.2, one sees easily that the space
C∞(G/H,ψ)cusp(X ), of elements of C∞(G/H,ψ)cusp of type X under the left reg-
ular action of Λ(AG) is a smooth submodule of C∞(G/H,ψ). Let us consider the
linear map:

ψV : HomG(V,C
∞(G/H,ψ)cusp(X )) → V

∗Hψ
cusp ,

given by
T �→ δeH ◦ T.

It is easily seen to be well defined, i.e. that its image is actually in V
∗Hψ
cusp (see

Proposition 3.13). Also, one checks easily that ξ �→ cξ is the inverse of this linear
map; in particular, ψV is bijective. As V is of finite length, it is generated by
a finite set. One can choose a compact open subgroup K of G, which fixes each
of these generators. An element T of HomG(V,C

∞(G/H,ψ)cusp) is given by the
image of these generators, that have to lie in C∞(G/H,ψ)Kcusp(X ). As this space is
finite dimensional by (i), this implies that HomG(V,C

∞(G/H,ψ)cusp(X )) is finite
dimensional. As ψV is bijective, this implies (iii).

(iv) One will apply Lemma 6.1 of the Appendix to Λ = Λ(AG), Λ
′ = G/G1 (see

(4.5)). We use the notation of this lemma. With this notation, X(G) (resp. X(G)σ)
identifies to X(Λ′) (resp. X(Λ′)σ). Let O be equal to {χ ∈ X(Λ) | χ|Λ+ = ψ|Λ+}.
If χ0 is an element of O, O is equal to χ0X(Λ)−. Then Lemma 6.1 shows that, up
to twisting by some χ ∈ X(G)σ, one can assume that the restriction of the central
character of π to Λ(AG) varies in a finite set.

It remains to prove that there is only a finite set of equivalence classes of irre-
ducible representations with the required property and with a given restriction of
the central character to Λ(AG). If V is a smooth G-module, one defines a linear

map φV : V ⊗ V
∗Hψ
cusp → C∞

c (G/H,ψ)cusp given by v ⊗ ξ �→ cξ,v. From (4.10),
one sees that it is well defined. If V is irreducible, this map is easily seen to be
injective. But if (Vj) are such inequivalent representations, the images of the maps
φVj

above are in direct sum. From (i), applied to X reduced to an element, one
deduces (iv). �
Theorem 4.5. Let (π, V ) be a smooth module of finite length. Then the dimension
of V ∗Hψ is finite.

Proof. We prove the theorem by induction on the dimension of the algebraic group
G. If this dimension is zero, the theorem is clear. Assume now that this dimension
is greater than zero. When G has no proper σ-parabolic subgroup, one sees from

the definition that V ∗Hψ = V
∗Hψ
cusp . Hence it is finite dimensional by point (iii) of the

previous theorem. When G has at least a proper σ-parabolic subgroup, let P be
a set of representatives of H-conjugacy classes of proper σ-parabolic subgroups of
G. This set is nonempty, by our hypothesis, and finite (cf. (4.9)). If P ∈ P, let us
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denote by M its σ-stable Levi subgroup. Then M/M ∩H is a reductive symmetric

space. Define a linear map jP from V ∗Hψ to
⊕

P∈P V
∗(M∩H)ψP

P , where M denotes
the σ-stable Levi subgroup of P , by

jP(ξ) = (jP−(ξ))P∈P , ξ ∈ V ∗H .

From Proposition 3.9 (ii), one sees that the kernel jP is precisely V
∗Hψ
cusp ; hence it

is finite dimensional by Theorem 4.4 (iii). For P ∈ P, VP is a smooth module
of finite length. Then by using the induction hypothesis and the finiteness of P,

one sees that the dimension of
⊕

P∈P V
∗(M∩H)ψP

P is finite. The theorem follows
immediately. �

4.5. Some questions. We take ψ to be trivial in this part. It would be interesting
to determine the constant term of compactly supported functions, in particular for
those supported in P−H.

Let P be a σ-parabolic subgroup of G, M its σ-stable Levi subgroup, and U
its unipotent radical. Let V := C∞

c (G/H) be the space of smooth compactly
supported functions on G/H. It is also the space of locally constant functions
with compact support. Let X = C∞

c (G/H)PH be the subpace of C∞
c (G/H) with

support contained in PH. It is a smooth P -module. If f ∈ X, we define a function
fP on M ∩H by

fP (mM ∩H) = δ
1/2
P (m)

∫
U

f(muM ∩H)du.

Lemma 4.6. At least if F is of characteristic zero, one has:

If f ∈ C∞
c (G/H)PH , then fP ∈ C∞

c (M/M ∩H).

Moreover the map f �→ fP goes through the quotient to XP and defines an isomor-
phism of M -modules between XP with C∞

c (M/M ∩H). From the exactness of the
Jacquet functor, this gives a natural imbedding of M -modules of C∞

c (M/M ∩ H)
into VP , which allows us to identify C∞

c (M/M ∩H) as an M -submodule of VP .

Proof. Along the lines of the proof of Lemma 4 of [5], one can see that:

(4.12)

Assume F is of characteristic zero. Let Ω be a subset of PH which is
compact modulo H. Then

Ω ⊂ ΩUΩMH,

where ΩM is a compact subset of M modulo M ∩ H and ΩU is a
compact subset of the unipotent radical, U , of P .

Also, let us prove that:

(4.13)
Let u ∈ U , m ∈ M , h ∈ H, such that umh ∈ M . Then one has u = 1
and h ∈ M .

In fact, one has umh = m′ with m′ ∈ M ; hence h = u′m−1m′, where u′ ∈ U . Using
that σ(h) = h and σ(P ) ∩ P = M , one sees that h ∈ M and u′ = 1, which proves
(4.13). Together with (4.12), it shows that if f ∈ C∞

c (G/H) has its support in Ω,
fP has its support in ΩM . �
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Now, let ξ be an H-invariant distribution on G/H. The restriction of jP−(ξ) to
C∞

c (M/M ∩H) defines an M ∩H-invariant distribution, ξP , on M/M ∩H.

(4.14)
The map ξ → ξP is a linear map from the space of H-invariant dis-
tributions on G/H to the space of H ∩ M -invariant distributions on
M/H ∩M .

It would be interesting to elucidate this curious operation on distributions.

4.6. The group case. Assume G = G1 ×G1, and σ(x, y) = (y, x). The group H
is the diagonal of G. Then G/H is identified with G1 by the map (x, y)H �→ xy−1,
and C∞

c (G/H) is identified with C∞
c (G1), i.e. to the space of compactly supported

locally finite functions on G1. Then a σ-parabolic subgroup P of G is simply a
parabolic subgroup of G of the form P1 × P−

1 , where P−
1 is a parabolic subgroup

opposite to P1. We will denote by M1 the common Levi subgroup of P1 and P−
1 .

In this case the constant term provides a P -module map

(4.15) f �→ fP from C∞(G1) to C∞(M1).

For coefficients of admissible representations, the constant term defined here coin-
cides with the ordinary constant term.

It would be interesting to determine this map, at least for compactly supported
functions. One might use the Harish-Chandra Plancherel formula [19] and Propo-
sition 3.17.

(4.16)
The map ξ �→ ξP of section 4.5 is a linear map from the space of
distributions on G1, invariant by conjugacy under G1 to the space of
distributions on M1, invariant by conjugacy under M1.

It would be interesting to know if this operation is trivial and, if not, how it
behaves on the Dirac measure at the neutral element, on orbital integrals and on
characters.

5. Whittaker models and mixed models

Let Q be a parabolic subgroup of G with Levi subgroup L and unipotent radical
UQ. Let A0 be a maximal split torus of G contained in L and let P0 be a minimal
parabolic subgroup of G contained in Q and which contains A0. Let U0 be the
unipotent radical of A0. Then the unipotent radical U0 of P−

0 contains UQ. Let ∆
(resp., ∆L) be the set of simple roots of A0 in the Lie algebra of U0 (resp., L∩U0)).
If α ∈ ∆, let Uα be the corresponding subgroup of the unipotent radical of P0. One
has:

Uα ⊂ UQ, α ∈ ∆ \∆L.

.

Definition 5.1. 1) A smooth character ψ of UQ is said to be (A0, P0)-nondegenerate
if the restriction to every Uα, α ∈ ∆ \∆L, is nontrivial.

2) With the notation of Example 2 (Whittaker models) in the Introduction, a
smooth character of U0 is said to be nondegenerate if it is (A0, P0)-nondegenerate
for some maximal split torus, A0, of G contained in P0. The notion is independant
of A0.

3) With the notation of Example 3 in the Introduction, let P ′
∅ be a minimal

σ′-parabolic subgroup of L, which contains a maximal σ′-split torus A∅. Let M
′
∅ be
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the centralizer in L of A∅. Let A0 be a maximal split torus of M ′
∅ which contains

A∅. Let P0 be a minimal parabolic subgroup of G containing A0, such that:

P0 ⊂ Q,P0 ∩ L ⊂ P ′
∅.

A smooth character of H, in Example 3, is said to be nondegenerate if its restriction
to UQ is (A0, P0)-nondegenerate for a pair (A0, P0) as above.

In Examples 2 and 3, we fix a nondegenerate smooth character of H, and we
choose (A0, P0) as above. In Example 2, one takes Q := P0 and L equal to the
centralizer M0 of A0.

Lemma 5.2. Let K be a compact open subgroup of G. There exists ε > 0 such
that for all α ∈ ∆ \∆L and for all a ∈ A0, the inequality |α(a)|F < ε implies that
the restriction of ψ to Uα ∩ a−1Ka is nontrivial.

Proof. One has a filtration of Uα (see [18]), (Uα,n)n∈Z, by compact open subgroups
such that:

(5.1)

1) Uα,n ⊂ Uα,n+1, n ∈ Z,
⋃

n∈Z
Uα,n = Uα.

2) (Uα,n)n∈Z is a basis of neighborhoods of e in Uα.
3) There exists C > 0 such that if a ∈ Ao satisfies |α(a)|F > C one has
Uα,n+1 ⊂ aUα,na

−1, n ∈ Z.

There exists n, n′ ∈ N such that n < n′, K contains Uα,n and there exists x ∈
Uα,n′ and x /∈ Ker ψ. From (5.1) 3), one sees that the lemma holds with ε =

Cn−n′
. �

Lemma 5.3. Let K and ε be as in the previous lemma. If f ∈ C∞(G/H,ψ) is
K-invariant, one has:

(5.2) f(a) = 0 if a ∈ A0 satisfies |α(a)|F < ε for some α ∈ ∆ \∆L.

Proof. Assume a ∈ A0 satisfies |α(a)|F < ε for some α ∈ ∆ \∆L. Then, from the
previous lemma, let us choose x ∈ Uα with x = a−1ka for some k ∈ K and with
ψ(x) different from one. Then ax = ka implies

ψ(x)f(a) = f(a).

The lemma follows. �

For Example 2, we define A∅ := A0, ∆
′ := ∅. In that case, one also has ∆L = ∅.

For Example 3, let ∆′ be the set of simple roots of A∅ in the Lie algebra of P ′
∅.

Let ε, C > 0 and let Λ+(A∅, C, ε) be equal to

{a ∈ Λ(A∅) | 1 ≤ |aα|F ≤ C if α ∈ ∆′ and ε ≤ |aα|F ≤ C if α ∈ ∆ \∆L}.

Lemma 5.4. Let Λ(A∅)G be the intersection of Λ(A∅) with the center of G. It is
a subgroup of Λ(AG) and Λ+(A∅, C, ε) is a finite union of orbits of Λ(A∅)G.

Proof. Let ∆′′ be the union of ∆′ and ∆\∆L. One considers the morphism Λ(A∅) �→
R∆′′

, given by a → (Log |α(a)|F ). As in the proof of Lemma 4.2, one sees that an
element a of the kernel is such that for all α ∈ ∆′′, α(a) = 1. But, as a ∈ A∅, this
implies easily that α(a) = 1, α ∈ ∆. Thus, as in the proof of Lemma 4.2, a is an
element of the center of G. The rest of the lemma is proved like Lemma 4.2. �
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For Example 3, let WL be as in section 4.4, (see (4.11)) for the pair (L, σ′).
Denote by Λ+

L (A∅) the set of P ′
∅-dominant elements of Λ(A∅). One deduces from

(4.11) and from the equality G = KLUQ, where K is a well-chosen maximal com-
pact subgroup of G, that there exists a compact subset Ω of G, such that

(5.3) G =
⋃

y∈WL

ΩΛ+
L (A∅)y

−1H.

For Example 2, there exists a compact subset Ω such that

(5.4) G = ΩΛ(A0)U0.

We introduce some more notation.
Example 3: If Θ ⊂ ∆, let P0,Θ be the parabolic subgroup of G containing P0 and

which has the centalizer of
⋂

α∈Θ Ker α as Levi subgroup. Let P ′
0 = P0 ∩ L. This

is a minimal parabolic subgroup of L. Similarly we define P ′
0,Θ ⊂ L, for Θ ⊂ ∆L.

One has

P0,Θ ∩ L = P ′
0,Θ∩∆L

.

Now, if Θ′ ⊂ ∆′, one defines in a similar way a σ′-parabolic subgroup of L, which
contains P ′

∅, P
′
Θ′ . Now we define a finite set of parabolic subgroups of G.

In Example 3, if α ∈ ∆′, let Pα = P0,Θ be such that ∆−∆L ⊂ Θ and such that
Pα ∩ L = P ′

∆′\{α}.

If α ∈ ∆ \∆L, one defines Pα = P0,∆\{α}.
We define ∆′′ = (∆ \∆L) ∪∆′. On checks easily that, for C > 1:

(5.5) Λ(A∅) ∩ A+
0 (P

α, > C) = {a ∈ Λ(A∅) | |aα| > C}, α ∈ ∆′′.

If R is a parabolic subgroup of G which contains A0, R
− will denote its opposite

parabolic subgroup which contains A0. If α ∈ ∆′′, it is easy to see that the inter-
section of (Pα)− with L is a σ′-parabolic subgroup of L and that (Pα)−H is open.
As P0 contains UQ, one sees that if P is a parabolic subgroup of G which contains
P0, one has P ∩H= UQ(H

′ ∩P ). Taking into account the second part of (4.8), one
sees that

(5.6) δ
1/2
P is trivial on M ∩ H, for P = y.Pα, α ∈ ∆′′, y ∈ WL, where
M = P ∩ P−.

In Example 2, if α is in ∆, we set Pα = P0,∆\{α}.
We give here an ad hoc definition of cuspidality. We will not discuss here its

naturality. The important fact is that it is strong enough to lead to the next
theorem and that it allows us to prove Theorem 5.7 below.

Definition 5.5. For Example 2 (resp. Example 3), an Hψ-fixed linear form,
ξ, on a smooth G-module (resp., an element f of C∞(G/H,ψ)) is said to be
Hψ-cuspidal if and only if jP−(ξ) (resp., for all g ∈ G, (Lgf)P ) is zero for all
pairs (P, P−) of opposite parabolic subgroups of G of the form Pα, α ∈ ∆ (resp.

(y.(Pα)−, y.Pα), y ∈ WL, α ∈ ∆′′). We denote by V
∗Hψ
cusp (resp., C∞(G/H,ψ)cusp)

the space of such linear forms (resp., functions).

Theorem 5.6. (i) Let K be a compact open subgroup of G. Fix a finite fam-
ily X of characters of Λ(AG). The space C∞(G/H,ψ)Kcusp(X ) of elements of

C∞(G/H,ψ)Kcusp which are of type X under the left regular action of Λ(AG) (see
Definition 6.2) is finite dimensional.
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(ii) The elements of C∞(G/H,ψ)Kcusp have their support in a compact set modulo
Λ(AG) depending only on K.

(iii) Let (π, V ) be a smooth G-module of finite length. The space V
∗Hψ
cusp is finite

dimensional.
(iv) Let κ be a complex character of the center of G. There exists a finite number

of irreducible representations (πi, Vi) of G, with κ as central character, such that
any irreducible representation (π, V ) of G, having this central character, a nonzero

vector fixed by K and with V
∗Hψ
cusp nonzero is equivalent to one of the representations

(πi, Vi).

Proof. In view of Lemmas 5.3, 5.4 and (5.5), the proof is analogous to the proof of
Theorem 4.4. �

Let α ∈ ∆′′, P = Pα, and M = P ∩ P−. Then one sees easily that (M,Q ∩M,
M ∩H,ψP ) satisfies the same properties as (G,Q,H, ψ). It is here that it is useful
to allow, in Example 3, that ψ restricted to H ′ is any smooth character of H ′.
Hence one proves the following theorem as in Theorem 4.5.

Theorem 5.7. Let (π, V ) be a smooth module of finite length. Then the dimension
of V ∗Hψ is finite.

6. Appendix

Lemma 6.1. Let Λ ⊂ Λ′ be two lattices, i.e. finitely generated abelian free groups.
Let σ be an involution of Λ′ which preserves Λ. We define two lattices:

Λ+ = {x ∈ Λ | σ(x) = x}, Λ− = {x ∈ Λ | σ(x) = −x}.
Let X(Λ) = Hom(Λ,C∗) be the group of complex characters of Λ. It is a complex
torus. Let X(Λ)− be the set of elements of X(Λ) which are trivial on Λ+. We
define similar notation for Λ′ by replacing Λ by Λ′. Let X(Λ′)−σ be the group of
σ-anti-invariant elements of X(Λ′). It is a real abelian Lie group. Let X(Λ′)σ be
its neutral component.

Then one has:
(i) The restriction of an element of X(Λ′)σ to Λ belongs to X(Λ)−.
(ii) One defines an action of X(Λ′)σ on X(Λ)− by multiplication by the restric-

tion to Λ of elements of X(Λ′)σ. This action has a finite number of orbits.

Proof. (i) Let χ′ be an element of X(Λ′)σ and x ∈ Λ+. Then, from the anti-
invariance of χ′, one has χ′(x) = χ′(x)−1; hence it is equal to 1 or −1. By the
connectivity of X(Λ′)σ, one sees that it is equal to 1. This proves (i).

(ii) Let L = Λ⊗Z R and L′ = Λ′ ⊗Z R. Then σ induces a linear involution of L
and L′. One has

(6.1) L = L+ ⊕ L−,

where L+ = Λ+⊗Z R and L− = Λ− ⊗Z R. If ν ∈ L∗
C
(resp., ν′ ∈ L′∗

C
), it determines

a complex character χν of Λ (resp., χ′
ν′ of Λ′) defined by:

χν(x) = eν(x), x ∈ Λ, χ′
ν′(x′) = eν

′(x′), x′ ∈ Λ′.

Let χ ∈ X(Λ)−. The restriction of χ to Λ+⊕Λ− being trivial on Λ+, one sees from
(6.1), that there exists ν ∈ L∗

C
, trivial on L+, hence anti-invariant by σ, with:

(6.2) The restrictions of χν and χ to Λ+ ⊕ Λ− are equal.
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The anti-invariance by σ of ν allows us to extend it in a σ-anti-invariant linear form
on L′, ν′. One sees easily that χ′

ν′ is an element of X(Λ′)σ. This implies that, in an
orbit of the action of X(Λ′)σ on X(Λ)−, there always exists an element of X(Λ)−

trivial on Λ+ ⊕ Λ−. But the equality:

2x = (x+ σ(x)) + (x− σ(x)), x ∈ Λ

shows that 2Λ ⊂ Λ+ ⊕Λ−. Hence Λ+ ⊕Λ− is of finite index in Λ and there is only
a finite number of characters of Λ trivial on Λ+ ⊕ Λ−. The lemma follows. �
Definition 6.2. Let Λ be a lattice and let X = (χ1, . . . , χn) be a finite family of
characters of Λ. Let (π, V ) be a representation of Λ. A vector v in V is said to be
of type X if

(π(a)− χ1(a)) · · · (π(a)− χn(a))v = 0, a ∈ Λ.

The representation itself is said to be of type X if any vector in V is of type X .
A function f on Λ is said to be of type X if it is of type X for the left regular

representation of Λ. We denote by F (Λ)X the vector space of functions of type X .

A function of type X is Λ-finite under left translations (see e.g [10, Lemma 14]).
Reciprocally a Λ-finite function is of type X for some X . From loc. cit., one has:

(6.3)
If X is given, there exists a finite set, for which the restriction of
elements of F (Λ)X is injective.
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