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CONSTANT TERM OF EISENSTEIN INTEGRALS ON A

REDUCTIVE p-ADIC SYMMETRIC SPACE

JACQUES CARMONA AND PATRICK DELORME

Abstract. Let H be the fixed point group of a rational involution σ of a
reductive p-adic group on a field of characteristic different from 2. Let P be a
σ-parabolic subgroup of G, i.e. such that σ(P ) is opposite P . We denote the
intersection P ∩ σ(P ) by M .

Kato and Takano on one hand and Lagier on the other associated canon-
ically to an H-form, i.e. an H-fixed linear form, ξ, on a smooth admissible
G-module, V , a linear form on the Jacquet module jP (V ) of V along P which
is fixed by M ∩ H. We call this operation the constant term of H-forms.
This constant term is linked to the asymptotic behaviour of the generalized

coefficients with respect to ξ.

P. Blanc and the second author defined a family of H-forms on certain
parabolically induced representations, associated to an M ∩H-form, η, on the
space of the inducing representation.

The purpose of this article is to describe the constant term of theseH-forms.

Also it is shown that when η is discrete, i.e. when the generalized coeffi-
cients of η are square integrable modulo the center, the corresponding family
of H-forms on the induced representations is a family of tempered, in a suit-
able sense, H-forms. A formula for the constant term of Eisenstein integrals
is given.

1. Introduction

Let F be a nonarchimedean local field of characteristic different from 2. The
hypothesis on the characteristic of the residue field in the first version of the article
has been removed (see Proposition 2.3 and Section 10).

Let G be the set of F-points of a connected reductive algebraic group defined
over F. Let σ be a rational involution of G defined over F and let H be equal to
the fixed point group of G (a slightly weaker assumption is made in the main body
of the article).

If (π, V ) is a smooth representation of G, an H-fixed element of the algebraic
dual V ′ of V , i.e. ξ ∈ V ′H , will be called an H-form on V . We know (cf. [12,
Theorem 4.5]) that if V is of finite length the vector space of H-forms on V is finite
dimensional. We will denote the smooth dual of V by V̌ .

If (π, V ) is a smooth representation of G and P is a parabolic subgroup of G, we
will denote the normalized Jacquet module along P by (πP , VP ) and the canonical
projection V → VP by jP : V → VP . For v ∈ V , we will also denote jP (v) by vP .
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5324 JACQUES CARMONA AND PATRICK DELORME

A parabolic subgroup of G is called a σ-parabolic subgroup if and only if P and
P− := σ(P ) are opposite (studied by A. Helminck and Wang, A. Helminck and
G. Helminck; cf. [18] and [17]). Then M := P ∩σ(P ) is the σ-stable Levi subgroup
of P and PH is open in G. Let U be the unipotent radical of P .

Let (π, V ) be an admissible representation of G and let P be a σ-parabolic
subgroup of G. Let π′ be the dual representation of π on V ′. Independently Kato-
Takano [20] and Lagier [23] have associated to each H-form ξ on V an M ∩H-form
jP−ξ, also denoted by ξP− , on VP such that, for all v ∈ V , there exists ε satisfying:

δ
−1/2
P (a)〈ξ, π(a)v〉 = 〈(ξP− , πP (a)vP 〉, a ∈ A−

M (ε),

where A−
M (ε) is some translate of the negative Weyl chamber in the maximal split

torus, AM , of the center of M and δP is the modulus function of P . This is
a characteristic property of ξP− which describes the asymptotics of generalized
coefficients. The linear form ξP− will be called the constant term of ξ along P .

By the Second Adjointness Theorem (Casselman and Bernstein; cf. [8], [2],
[25, VI.9.6]) (V̌ )P− is canonically isomorphic to (VP )̌, i.e. there exists a canonical
nondegenerate pairing between (V̌ )P− and VP , denoted by 〈., .〉P .

If K is a compact open subgroup, let eK be the normalized Haar measure on K
and eKξ be the smooth linear form defined by:

〈eKξ, v〉 = 〈ξ, π(eK)v〉, v ∈ V.

We define the notion of a (P,H)-good compact open subgroup of G (cf. (2.23)).
For K a (P,H)-good compact open subgroup of G, one has:

〈ξP− , vP 〉 = 〈(eKξ)P− , vP 〉P , v ∈ V K .

This property justifies the notation ξP− . There exist arbitrary small (P,H)-good
compact open subgroups of G (Kato-Takano [20, Lemma 4.6] and Lagier [23, The-
orem 1 (ii)]). Hence ξP− is determined by the various (eKξ)P− .

P. Blanc and the second author defined families of H-forms on parabolically
induced representations (cf. [3]). The purpose of this article is to describe the
constant term of these H-forms.

For this we prepare several tools. First we introduce two operations on H-forms
on induced representations.

The first one is denoted ǰQ−◦ (cf. Section 3.4). Let P = MU be a parabolic
subgroup of G, as above. Let (δ, E) be a smooth representation of finite length of
M and let iGPE be the normalized parabolically induced representation. Our choice
is such that the elements of iGPE are left covariant E-valued functions and G acts
by the right regular representation. Let (Q,Q−) be a pair of opposite parabolic
subgroups ofM . Let PQ = QU ⊂ P, PQ− = Q−U ⊂ P . We define a homomorphism
of G-modules,

ǰQ−◦ : (iGPE )̌ → (iGPQ−EQ)̌ ,

as the composition of four maps:

(iGPE )̌ → iGP Ě
f→ iGPQ− ((Ě)Q−)

g→ iGPQ− ((EQ)̌ ) → (iGPQ−EQ)̌ ,

where the first and the last maps are deduced from a choice (cf. (3.10)) of an
isomorphism between the smooth dual of a parabolically induced representation
and the parabolically induced representation of the smooth dual, where f is given
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CONSTANT TERM OF EISENSTEIN INTEGRALS 5325

by the composition with jQ− and g is the induced map of the isomorphism between

(Ě)Q− and (EQ)̌ given by the Second Adjointness Theorem.
This operation on smooth linear forms easily extends to an H-form: one asso-

ciates to an H-form, ξ, on iGPE, an H-form ǰQ− ◦ ξ on iGPQ−
(EQ) (cf. Proposition

3.3).
Let P1 = M1U1 be a parabolic subgroup of G such that P ⊂ P1, M ⊂ M1

and such that P1H is open. The second operation is denoted řM1
(cf. Section

3.3). Let ξ be an H-form on iGPE. Inducing in stages, ξ is an H-form on iGP1
E1

where E1 := iM1

P∩M1
E. The linear form ξ might be viewed as an E1-distribution

which is right invariant under H and left covariant under P1. The restriction of
this distribution to the open set P1H is simply a function. Its value at 1 is denoted
řM1

ξ ∈ (E1)
′M1∩H .

The next tool is what we call the Generic Basic Geometric Lemma (cf. Propo-
sition 4.8). Let P = MU be a σ-parabolic subgroup of G. Let (δ, E) be a finite
length smooth representation of M . Let X(M)σ be the identity component of the
set of σ-antiinvariant elements of X(M). If χ ∈ X(M)σ, we denote the space of
the representation δχ := δ⊗χ by Eχ. If x ∈ G and X is a subset of G, xXx−1 will
be denoted by x.X. Then xδ is the representation of x.M on xE := E such that, if
m ∈ M , xδ(xmx−1) = δ(m). If there is no ambiguity, we will denote the bijective
intertwining operator between iGPE and iGx.PxE by λ(x)v(g) = v(x−1g), g ∈ G,.
Also we will denote the transpose of the inverse of λ(x) again by λ(x).

Let P ′ = M ′U ′ be another σ-parabolic subgroup of G. Then we have the fol-
lowing result that we call the Generic Basic Geometric Lemma (or rather its dual
version; cf. Proposition 4.9).

Lemma. For a good choice W (M ′\G/M) of a set of representatives of P ′\G/P ,
one defines successively for w ∈ W (M ′\G/M):

Xχ,w := iM
′

M ′∩w.Pw((Eχ)M∩w−1.P ′),

P̃w = (M ∩ w−1.P
′−)U, P̃ ′

w = (M ′ ∩ w.P )U ′−AA.

Also, for χ in a suitable open dense subset of X(M)σ we define the transpose of the

intertwining integral tA(w.P̃w, P̃
′
w, wjM∩w−1.P ′δχ) and βχ,w : (iGPEχ)̌ → (Xχ,w )̌

by:
βχ,w = řM ′ ◦ tA(w.P̃w, P̃

′
w, wjM∩w−1.P ′δχ) ◦ λ(w) ◦ (ǰM∩w−1.P ′−◦)

so that the linear map
⊕

w∈W (M ′\G/M) βχ,w : (iGPEχ)̌ → (
⊕

w∈P ′\G/P Xw )̌ goes

through the quotient to an isomorphism:

βχ : ((iGPEχ)̌ )P ′− → X̌χ,

where Xχ =
⊕

w∈W (M ′\G/M) Xχ,w.

The proof of the Generic Basic Geometric Lemma requires the study of bijectivity
of intertwining integrals and the notion of an infinitesimal character linked to the
Bernstein center (cf. Section 9.2). This notion allows us to show that, for χ in an
open dense subset ofX(M)σ, two distinctXχ,w do not have irreducible subquotients
in common. The end of the proof uses the Basic Geometric Lemma which describes
the graded object associated to a natural filtration of the Jacquet module of a
parabolically induced representation.

From our isomorphism βχ : ((iGPEχ) )̌P ′− → X̌χ, Xχ is identified with (iGPEχ)P ′ ,
by the Second Adjointness Theorem. Hence, if ξ is an H-form on iGPEχ, ξP ′−
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5326 JACQUES CARMONA AND PATRICK DELORME

is identified with a linear form denoted again by ξP ′− on Xχ, with components
ξP ′−,w ∈ (Xχ,w)

′.
By reduction to the eKξ, and by unwinding the definitions, one proves a prelim-

inary result (cf. Theorem 4.11):

Theorem 1. For χ in an open dense subset of X(M)σ,

ξP ′−,w = řM ′ ◦ tA(w.P̃w, P̃
′
w, wjM∩w−1.P ′δ) ◦ λ(w) ◦ ǰM∩w−1.P ′− ◦ ξ.

To simplify the exposition, we assume, only in the introduction, that there is only
one open (P,H)-double coset, PH. A theorem due to Blanc and the second author

(cf. [3, Theorem 2.8]) can be stated as follows. For η ∈ E
′M∩H , there exists a unique

rational map on X(M)σ, χ → ξ(P, δχ, η) ∈ (iGP δχ)
′H , with řMξ(P, δχ, η) = η. The

proof of this theorem adapts to the weaker hypothesis on F in this article.
Let Q be a σ-parabolic subgroup of G whose σ-stable Levi subgroup is equal to

M . Then one sees (cf. Proposition 6.2) that there is a rational map on X(M)σ (the

analogue of the B-matrices of van den Ban, [1]), χ 
→ B(Q,P, δχ) ∈ End(E
′M∩H),

such that:
tA(P,Q, δχ)ξ(P, δχ, η) = ξ(P, δχ, B(Q,P, δχ)η).

Let (π, V ) be a smooth representation of G and let ξ be an H-form on V . For
v ∈ V , we denote the smooth function on H\G defined by:

cξ,v(Hg) = 〈ξ, π(g)v〉, g ∈ G,

by cξ,v. If π is of finite length, hence admissible, ξ is said to be cuspidal or H-
cuspidal if one of the equivalent statements holds (Kato-Takano [20]):

1) ξP− = 0 for every proper σ-parabolic subgroup, P , of G.
2) For all v ∈ V , the function g 
→ 〈ξ, π(g)v〉 has a compact support modulo

HZ, where Z is the center of G.
Assuming that (π, V ) is irreducible and unitary, an H-form is said to be discrete

if the cξ,v are square integrable on H\G/AG. Kato and Takano (cf. [21, Theorem
4.7]) have characterized a discrete H-form ξ by a criterion analogous to a criteria of
Casselman [8, Theorem 4.4.6] for square integrable representations of the group. It
involves a condition on jP−ξ for each σ-parabolic subgroup of G, P . We define the
tempered H-forms by a similar property (cf. Definition 7.6). One has the following
result (cf. Theorems 7.4, 7.5, 7.8).

Theorem 2. Let η ∈ E′M∩H . If χ ∈ X(M)σ we denote the H-form ξ(P, δχ, η) by
ξχ, when it is defined.

(i) Let us assume that (ξχ)P ′−,w is nonidentically zero when χ varies in X(M)σ.
Then one may change w in the same double (P ′, P )-coset such that:

a) M ′∩w.P is a σ-parabolic subgroup of M ′, M∩w−1.P ′ is a σ-parabolic subgroup

of M , and P̃ ′
w, Pw and w.P̃w are σ-parabolic subgroups of G.

b) The exponents (cf. Definition 7.3) of ξχ along P ′ are explicitly controlled by
the exponents of η along certain σ-parabolic subgroups of M .

(ii) With these choices of w, if η is cuspidal, one has w.M ⊂ M ′, M∩w−1.P
′− =

M , so that P̃w = P and

(ξχ)P ′−,w = ξ(M ′ ∩ w.P,wδχ, B(P̃ ′
w, w.P, wδχ)η).

(iii) If η is discrete and χ is unitary, then ξχ is tempered. The notion of a weak
constant term of tempered H-forms is introduced and computed for ξχ.

(iv) The B-matrices preserve cuspidal (resp., discrete) M ∩H-forms.
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Remark. (a) As expected, when η is cuspidal and P ′ is too small, ξP ′− vanishes,
by (ii).

(b) The analogue of part (iii) for real groups is the main result of [10] which
plays an important role in the proof of the Plancherel formula (cf. [11]). The long
proof used the description of the relative discrete series by Oshima and Matsuki.
Our proof here does not need such knowledge. It would be interesting if one could
find a proof of this result of [10], avoiding the description of the relative discrete
series.

Let us describe the two main key lemmas of the article and let us explain how
they lead to (i) a) of the theorem above.

First key lemma (cf. Lemma 5.1). Let P be a parabolic, not necessarily a σ-
parabolic, subgroup of G. Let A0 be a σ-stable maximal split torus of P , which
exists, and let M be a Levi subgroup of P with A0 ⊂ M . Let δ be a smooth
representation of M of finite length.

Let (ξχ) be a smooth family of H-forms on iGP (δχ), with χ in a neighborhood of
1 in a complex subtorus X of X(M).

Let us assume that PH is contained and open in the support of the family (ξχ).
Then the elements of X are antiinvariant under σ. Moreover, if there exists χ

strictly P -dominant in X, then P is a σ-parabolic subgroup of G.

Applying this to the family ((ξχ)P ′−,w) (with G replaced by M ′, and P by a

suitable conjugate in M ′ of M ′ ∩w.P ), one sees why, in Theorem 2 (i) a), one can
take M ′ ∩ w.M to be a σ-parabolic subgroup of M ′. Then it is possible to refine
the choice of w to get (i) a).

Let us explain how one gets assertion (a) of the above remark and let us assume
now that η is cuspidal. If M ∩w−1.P ′ is different from M , it is not possible to see
directly that (ξχ)P ′−,w is zero. What is easily seen in that case, from the cuspidality

of η, is that ǰM∩w−1.P ′ ◦ ξχ vanishes on the open (P̃w, H)χ-double cosets, hence its
support has an empty interior.

The second key lemma (cf. Lemma 5.4) describes the effect of intertwining
integrals on the support of certainH-forms. It was suggested by a lemma of Matsuki
(cf. [24, Lemma 3]) on the orbit closures of orbits of parabolic subgroups on a real
reductive symmetric space. Then one sees, using the second key lemma (see the
proof of Theorem 7.4 (iii)), that for χ in an open dense subset of X(M)σ, the
element

tA(w.P̃w, P̃
′
w, wjM∩w−1.P ′δ) ◦ λ(w) ◦ ǰM∩w−1.P ′− ◦ ξχ

of (iG
P̃ ′

w

(wjM∩w−1.P ′δχ))
′ has support with an empty interior.

Applying řM ′ to something which vanishes on all open (P̃ ′
w, H)-double cosets,

you get something which vanishes on all open (M ′ ∩ w.P,M ′ ∩ H)-double cosets.
The last ingredient to prove assertion (a) of the above Remark is that for χ-generic,
an H-form on iGPEχ is determined by its restriction to open (P,H)-double cosets
(cf. [3]). This is applied to M ′ instead of G.

The computation of (ξχ)P ′−,w when M ∩w−1.P ′ = M follows from Theorem 1.
The last statement, which says that B-matrices preserve cuspidal M ∩ H-forms,
comes from the hereditary properties of jP ′− and the fact observed in the Remark,
that for P ′ small enough, jP ′−ξ = 0.

Theorem 2, together with the determination of part of the Casselman pairing for
parabolically induced representations (cf. Lemma 8.3), leads to the determination
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5328 JACQUES CARMONA AND PATRICK DELORME

of the constant term and the weak constant term of Eisenstein integrals for p-adic
reductive symmetric spaces in terms of the corresponding C-functions (cf. Theorem
8.4).

The role of this type of result might be seen in the p-adic case in [29] for the
work of Harish-Chandra on the Plancherel formula for p-adic groups, and in [13],
[14] for Whittaker functions.

2. Notation

2.1. Reductive p-adic groups. If E is a vector space, E′ will denote its dual. If
E is real, EC will denote its complexification.

If G is a group, g ∈ G and X is a subset of G, g.X will denote gXg−1. If J is a
subgroup of G, g ∈ G and (π, V ) is a representation of J , V J will denote the space
of invariant elements of V under J and (gπ, gV ) will denote the representation of
g.J on gV := V defined by:

(gπ)(gxg−1) := π(x), x ∈ J.

We will denote the dual representation of a representation (π, V ) of G in the alge-
braic dual vector space V ′ of V by (π′, V ′). If V is a vector space of vector-valued
functions on G which is invariant under right (resp., left) translations, we will
denote the right regular representation of G in V by ρ (resp., λ).

If G is locally compact, dlg will denote a left invariant Haar measure on G and
δG will denote the modulus function.

Let F, be a nonarchimedean local field. Unless specified we assume:

(2.1) The characteristic of F is different from 2.

Let |.|F be the absolute value of F.
One considers various algebraic groups defined over F, and a sentence like:

(2.1)
“let A be a split torus” will mean “let A be the group of F-points of a
torus, A, defined and split over F”.

With these conventions, let G be a connected reductive linear algebraic group.
Let A be a split torus of G. Let X∗(A) be the group of one-parameter subgroups

of A. This is a free abelian group of finite type. Such a group will be called a
lattice. One fixes a uniformizing element � of F:

(2.2)
One denotes by Λ(A) the image of X∗(A) in A under the morphism of
groups λ 
→ λ(�).

Under this morphism Λ(A) is isomorphic to X∗(A).
If (P, P−) are two opposite parabolic subgroups of G, we will denote their com-

mon Levi subgroup by M and the maximal split torus of its center by AM or A.
We denote the unipotent radical of P (resp., P−) by U (resp., U−).

Let A− (or A−
P ) be the set of P -antidominant elements in A. More precisely, if

Σ(P,A) is the set of roots of A in the Lie algebra of P , and Δ(P,A) is the set of
simple roots, one has:

A− = {a ∈ A||α(a)|F ≤ 1, α ∈ Δ(P,A)}.

Also one defines for ε > 0:

A−(ε) = {a ∈ A||α(a)|F ≤ ε, α ∈ Δ(P,A)}.
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If J is an algebraic group, one denotes by Rat(J) the group of its rational
characters defined over F . Let us define:

(2.3) aG = HomZ(Rat(G),R).

The restriction of rational characters from G to AG induces an isomorphism:

(2.4) Rat(G)⊗Z R � Rat(AG)⊗Z R.

Notice that Rat(AG) appears as a generating lattice in the dual space a′G of aG and

(2.5) a
′
G � Rat(G)⊗Z R.

One has the canonical map HG : G → aG which is defined by:

(2.6) e〈HG(x),χ〉 = |χ(x)|F, x ∈ G,χ ∈ Rat(G).

The kernel of HG, which is denoted by G1, is the intersection of the kernels of the
characters of G, |χ|F, χ ∈ Rat(G). One defines

(2.7) X(G) = Hom(G/G1,C∗),

which is the group of unramified characters of G. One will use similar notation for
Levi subgroups of G. One denotes by aG,F, resp., ãG,F, the image of G, resp., AG,
under HG. Then G/G1 is isomorphic to the lattice aG,F.

There is a surjective map:

(2.8) (a′G)C → X(G) → 1

denoted by ν 
→ χν which associates to χ⊗s, with χ ∈ Rat(G), s ∈ C, the character
g 
→ |χ(g)|sF (cf. [29, I.1.(1)]). In other words,

(2.9) χν(g) = e〈ν,HG(g)〉, g ∈ G, ν ∈ (a′G)C.

The kernel is a lattice and it defines a structure of a complex algebraic variety
on X(G) of dimension dimRaG. Moreover X(G) is an abelian complex Lie group
whose Lie algebra is equal to (a′G)C.

If χ is an element ofX(G), let ν be an element of a′G,C such that χν = χ. The real

part Re(ν) ∈ a′G is independent from the choice of ν. We will denote it by Re(χ).
If χ ∈ Hom(G,C∗) is continuous, the character |χ| of G belongs to X(G). One sets
Re(χ) = Re(|χ|). Similarly, if χ ∈ Hom(AG,C

∗) is continuous, the character |χ|
of AG extends uniquely to an element of X(G) with values in R∗+, that we will
denote again by |χ|, and one sets Re(χ) = Re(|χ|).

If P is a parabolic subgroup of G with Levi subgroup M we set:

aP = aM , HP = HM .

The inclusions AG ⊂ AM ⊂ M ⊂ G determine a surjective morphism aM,F → aG,F,
resp., an injective morphism ãG,F → ãM,F, which extends uniquely to a surjective
linear map between aM and aG, resp., an injective map between aG and aM . The
second map allows us to identify aG with a subspace of aM , and the kernel of the
first one, aGM , satisfies:

(2.10) aM = a
G
M ⊕ aG.

Let us denote the set of restrictions to M of elements of X(G) by X(G|M).
Then X(G|M) is the analytic subgroup of X(M) with Lie algebra (a′G)C ⊂ (a′M )C.
This follows easily from (2.9) and (2.10). Moreover:

(2.11) X(G|M) is a closed subgroup of X(M).
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5330 JACQUES CARMONA AND PATRICK DELORME

This will be seen by writing X(G) = X(G)uX(G)+, where X(G)u is the compact
group of unitary characters in X(G) and X(G)+ is the group of elements in X(G)
which are strictly positive. The group X(G)u is compact and has compact image.
The group X(G)+ is isomorphic to a vector subgroup, and the restriction, which
is a morphism of Lie groups, determines an isomorphism of X(G)+ to a connected
Lie subgroup of X(M)+: the restriction of an element of X(G)+ trivial on AG is
trivial by what has been said above. Hence the image of X(G)+ is closed. This
implies our claim on X(G|M).

One has (cf. [12], (4.5))

(2.12)
The map Λ(AG) → G/G1 is injective and allows us to identify Λ(AG)
with a subset of aG.

Let A be a maximal split torus of G and let M0 be the centralizer of A in G.
We fix a W -invariant scalar product on a := aM0

, where W is the Weyl group of
(G,A). Then aG is identified with the fixed point set of a under W and aG is an
invariant subspace of a under W which is supplementary to aG. Hence it is the
orthogonal subspace to aG in a. The space a′G might be viewed as a subspace of a′

by (2.10). More generally let M be a Levi subgroup of G which contains A. From
(2.10) applied to M instead of G and to M0 instead of M , one gets a decomposition
a = aMM0

⊕ aM . From the W -invariance of the scalar product one gets:

(2.13)
The decomposition a = aMM0

⊕aM is an orthogonal decomposition. The
space a′M appears as a subspace of a′ and, in the identification of a with
a′ given by the scalar product, a′M is identified with aM .

If ν ∈ a′, the parabolic subgroup of G whose Lie algebra is equal to the sum of
the A-weight spaces for the weights α which are either equal to zero or to a root α
such that (ν, α) ≥ 0, is denoted by Pν . Then one has:

(2.14) The parabolic subgroups of G,Pν and P−ν are opposite.

If ρP ∈ a′ is the half sum of the A-roots of A in the Lie algebra of P , then the
following is clear:

(2.15) P = PρP
.

Let G be the algebraic group defined over F whose group of F-points is G. Let
σ be a rational involution of G defined over F. Let H be the group of F-points of
an open F-subgroup of the fixed point set of σ. We will also denote the restriction
of σ to G by σ.

(2.16) A split torus of G, A, is said to be σ-split if A is contained in the set
of elements of G which are antiinvariant under σ.

Notice that our terminology differs from other authors ([18], [17], [20]). Let A be a
σ-invariant maximal split torus of G. We fix a scalar product on a which is invariant
under σ and the action of the Weyl group of G with respect to A. This is possible
because σ normalizes A, hence its normalizer and the Weyl group of G with respect
to A.

(2.17)

Let Aσ (resp., Aσ) be the maximal split torus in the group of elements
of A which are invariant (resp., antiinvariant) under σ. Then aσ (resp.,
aσ) is identified with the set aσ (resp., a−σ) of invariant (resp., antiin-
variant) elements of a under σ and Aσ is the maximal σ-split torus of
A.
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(2.18)

If M is a σ-invariant Levi subgroup of G which contains A, aM is a
σ-invariant subspace of a and aM = aσM ⊕ a

−σ
M where aσM = aM ∩

aσ, a−σ
M = aM ∩ a−σ. This is an orthogonal decomposition and, in the

identification of a to a′, (aM )−σ is identified with the space (a′M )−σ of
σ-antiinvariant elements of a′M .
Moreover the Lie algebra of the connected component, X(M)σ, of the
group of antiinvariant elements of X(M), with the identification of aM
and a′M , is equal to a

−σ
M .

(2.19)

A parabolic subgroup of G, P , is called a σ-parabolic subgroup if P
and σ(P ) are opposite parabolic subgroups. Then M := P ∩ σ(P ) is
the σ-stable Levi subgroup of P . If P is such a parabolic subgroup,
P− will denote σ(P ). Then the maximal split torus of the center of
M , AM is σ-stable.

The sentence “Let P = MU be a parabolic subgroup of G” will mean that U is
the unipotent radical of P and M is a Levi subgroup of G. If moreover P is a
σ-parabolic subgroup of G, M will denote its σ-stable Levi subgroup.

One deduces from [18, Proposition 13.4]:

(2.20)
PH and P−H are open in G. Let M be equal to P ∩ σ(P ). The
restriction to H ∩M of the modulus function of P , δP , is trivial as it
is positive and equal to its inverse on M ∩H.

We also recall that (cf. loc. cit. Corollary 6.16):

(2.21)
There are only a finite number of H-conjugacy classes of parabolic
subgroups of G.

Let M∅ be the σ-stable Levi subgroup of a minimal σ-parabolic subgroup of G.
Let A∅ be the maximal σ-split torus of the center of M∅.

Definition 2.1. An element x of G is said to be A∅-good if and only if x−1.A∅ is
a σ-split torus.

From [3, Lemma 2.4] one sees:

(2.22)

There exists a finite set of representatives of the (P∅, H)-double cosets
open in G, WG

M∅
, whose elements are A∅-good.

Moreover if M is the σ-stable Levi subgroup of a σ-parabolic subgroup
of G, with M∅ (or A∅) contained in M , there exists a subset, WG

M , of
WG

M∅
such that for all σ-parabolic subgroups P of G with Levi subgroup

M , WG
M is a set of representatives of the (P,H)-double open cosets.

Lemma 2.2. Let the notation be as above. Let P = MU be a σ-parabolic subgroup
of G with M∅ ⊂ M and let x ∈ G be A∅-good. Then one has:

(i) The group x−1.P is a σ-parabolic subgroup of G with σ-stable Levi subgroup
x−1.M . Moreover σ(x−1.P ) = x−1.P−, where P− = σ(P ).

(ii) The set PxH is open in G.
(iii) One defines an involution of G, σx, by:

σx(g) := xσ(x−1gx)x−1, g ∈ G,

whose fixed point set contains x.H. Then P is a σx-parabolic subgroup of G,
σx(M) = M and σx(P ) = P−.
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(iv) For all y ∈ PxH, y−1.P is a σ-parabolic subgroup of G and P is a σy-
parabolic subgroup of G. Let My be the σy-stable Levi subgroup of P . Then My ∩
y.H = P ∩ y.H. Moreover if y = px with p ∈ P , one has My = p.M .

Proof. (i) and (ii) follow from [3, Lemma 2.4].
(iii) follows immediately from (i).
(iv) If y = pxh with h ∈ H, p ∈ P , then y−1.P = h−1.(x−1.P ). Then the first

part of (iv) follows from (i). One also has σy = σpx. Hence one is reduced to prove
the second part of (iv) for h = 1 and y = px. A simple computation shows that
σy(P ) = p.P−. Hence σy(P ) ∩ P = p.M , which proves (iv). �

Let A∅ be a maximal σ-split torus of G and let A0 be a σ-stable maximal split
torus of G which contains A∅. Let P∅ = M∅U∅ be a minimal σ-parabolic subgroup
of G, whose σ-stable Levi subgroup is equal to the centralizer, M∅, of A∅ in G.

Proposition 2.3. There exists a decreasing sequence of σ-stable compact open
subgroups of G, (Jn)n∈N∗ , which forms a basis of neighborhoods of 1 in G and such
that for each n ≥ 1, J := Jn satisfies:

(i) For every σ-parabolic subgroup of G, P = MU which contains P∅, the product
map JU−×JM×JU → J is bijective, where JU− = J∩U−, JM = J∩M , JU = J∩U.

(ii) Let A ⊂ A∅ be the maximal σ-split torus of the center of M and let A− be
the set of its P -antidominant elements. For all a belonging to A−, one has

aJUa
−1 ⊂ JU , a

−1JU−a ⊂ JU− .

(iii) One has J = JHJP , where JH = J ∩H, JP = J ∩ P .
(iv) For each σ-parabolic subgroup of G which contains P∅, P = MU , the se-

quence (Jn ∩M) enjoys the same properties as those of (Jn) for M , P∅ ∩M .

Remark 2.4. If the characteristic of the residue field of F is different from 2, the
proposition is due to Katano and Takano (cf. [20, Lemma 4.3]). In that case, their
result is stronger, as their Jn satisfy more properties.

Proof. We use the terminology and notation of Section 10 (cf. also Lemma 10.2).
We fix a basis of the Lie algebra of G, g, (Xj), which is the union of a basis (Uk)
of u∅ made of weight vectors for A∅, of a basis of m∅ ∩ h, a basis of the space of

σ-antiinvariant elements of m∅ and the basis (σ(Uk)) of σ(u∅). We use Lemma 10.1

(iv) for G1 = U,G2 = M,G3 = σ(U) to prove (i).
Let A0 be the maximal compact open subgroup of A. One can choose a

finite family (λl) such that the family (A0λl) generates the monoid A−. We apply
Lemma 10.1 (iii) to the family of automorphisms of G induced by the conjugation
by elements of A0λl. The fact that Jn can be chosen σ-stable is proven similarly.

(iii) We apply Lemma 10.1 to G1 = U , G2 = M , G3 = H. Here g′
1
= u, g′

2
= m

and g′
3
is the subspace generated by Ui + σ(Ui), where Ui are those which belong

to u.
(iv) The results from the fact that JM is defined like J , in view of Lemma 10.1

(iv). �

Remark 2.5. In [12, Remark 3.2], it was stated incorrectly, although not used, that
in (ii) one could replace A by the maximal split torus of the center of M .
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(2.23)
If a compact open subgroup of G satisfies the properties of Proposition
2.3, it will be said to have a σ-factorization. These are the (P,H)-good
subgroups from the introduction.

(2.24)

If (P = MU,P− = MU−) is a pair of opposite parabolic subgroups of
G, we will say that a compact open subgroup J of G has an Iwahori
factorization with respect to (P, P−) if the product map JU− × JM ×
JU → J is bijective, where JU− = J ∩ U−, JM = J ∩M , JU = J ∩ U.

3. Two operations on H-forms on induced representations

3.1. Second Adjointness Theorem and H-forms. In the sequel, the smooth
representations of G and of its closed subgroups will have complex coefficients.

Let (π, V ) be a smooth representation of G and let P = MU be a parabolic
subgroup of G. One denotes by (πP , VP ) the tensor product of the quotient of V
by the M -submodule generated by π(u)v−v, u ∈ U, v ∈ V , with the representation

of M on C given by δ
−1/2
P . We call it the normalized Jacquet module of V along

P . We denote the natural projection map from V to VP by jP and sometimes πP

will be denoted jP (π). For further reference, we state the following fact:

(3.1)

Let P = MU be a parabolic subgroup of G, let Q = LV be a parabolic
subgroup of M and let (δ, E) be a smooth representation of M . If x is
an element of G, one has the equality of vector spaces (xE)x.Q = EQ,
and the natural representation of x.Q on (xE)x.Q is simply x.δQ.

The following result is due to J. Bernstein for smooth representations (cf. [2],
[25, Chapter V.9]; see also [7] for the first published proof). Here we present a
slight reformulation of his result (cf. [12, Lemma 2.1]). This is a generalization of
a result of W. Casselman for admissible representations (cf. [8]). Let (P, P−) be a
pair of opposite parabolic subgroups of G with common Levi subgroup M . Let A0

be a maximal split torus of M and let P0 be a minimal parabolic subgroup P0 such
that A0 ⊂ P0 ⊂ P . We define:

(3.2)

ΘP := Δ(P0 ∩M,A0)

and, for ε > 0, we set:

A−
0 (P,< ε) := {a ∈ A−

0 ||α(a)|F < ε, α ∈ Δ(P0, A0) \ΘP }.
Second Adjointness Theorem.

(3.3)

Let (π, V ) be a smooth representation of G. Let jP (resp., jP−) denote
the canonical projection of V (resp., of the smooth dual V̌ of V ) onto
VP (resp., (V̌ )P−).
Then there exists a unique nondegenerate M -invariant bilinear form
〈., .〉P on (V̌ )P− × VP such that for all compact open subgroups, J , of
G, there exists εJ < 1 such that:

δ
1/2
P (a)〈jP−(v̌), πP (a)jP (v)〉P = 〈v̌, π(a)v〉,

for a ∈ A−
0 (P,< εJ ), v ∈ V J , v̌ ∈ V̌ J . It is part of the statement that

εJ does not depend on V .
In particular there is a canonical isomorphism between (VP )̌ , (V̌ )P− .

(3.4) An H-form on a smooth module of G is an H-fixed linear form on V .
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One denotes by eJ the normalized Haar measure on J that we view as a compactly
supported distribution on G. Using the same argument as in [23, Lemma 2], one
sees:

(3.5)

Let P = MU be a σ-parabolic subgroup of G. Let A be the maximal
split torus of the center of M . Let Aσ be the maximal σ-split torus of
the maximal split torus, A, of the center of M . Let J be a compact
open subgroup of G with a σ-factorization with respect to (P, P−).

Then for every smooth module (π, V ), ξ ∈ V
′H :

〈ξ, π(a)v〉 = 〈eJξ, π(a)v〉, v ∈ V J , a ∈ A− ∩Aσ,

where eJξ is the element of V̌ defined by:

〈eJξ, v〉 = 〈ξ, π(eJ)v〉, v ∈ V.

From our hypothesis on J , one sees that one can take J ′ = J in the proof of Lemma
2 of [23].

The following result has been proved independently on one hand by Kato and
Takano ([20, Proposition 6]) and on the other by Lagier ([23, Theorem 1 (ii)]) for
admissible modules. Later, it was remarked (cf. [12]) that it works for general
smooth modules. Let AM , or simply A, be the maximal split torus of the center
of M . For every smooth module (π, V ) of G and ξ an H-form on V , there exists
a unique M ∩H-form jP−ξ on VP such that for each compact open subgroup J of
G, there exists ε′J > 0, such that ε′J ≤ εJ , depending only on J and not on V and
ξ. Thus one has:

(3.6) 〈ξ, π(a)v〉 = δ
1/2
P (a)〈jP−ξ, πP (a)jP (v)〉, v ∈ V J , a ∈ A−(ε′J).

From (3.5), one deduces from the above that if J is a compact open subgroup of G
with a σ-factorization, one has

〈eJξ, π(a)v〉 = δ
1/2
P (a)〈jP−ξ, πP (a)jP (v)〉P , v ∈ V J , a ∈ Aσ ∩ A−(ε′J ).

From the Second Adjointness Theorem, one deduces from this that for a ∈ Aσ ∩
A−(ε′J ), v ∈ V J :

〈jP−ξ, πP (a)jP (v)〉 = 〈jP−eJξ, πP (a)jP (v)〉.
If π is admissible, the two sides of this equality are Aσ-finite functions on Aσ, hence
they are equal. In particular, in a = 1 one gets:

(3.7)

Let J be a compact open subgroup of G with a σ-factorization with
respect to (P, P−). Then, if π is admissible, one has

〈jP−ξ, v〉 = 〈jP−(eJξ), v〉P , v ∈ V JM

P .

3.2. Induced.

(3.8)

Let A be a maximal split torus of G. Let K be a maximal compact
open subgroup of G which is the stabilizer of a special point of the
apartment of the extended building of G. It fixes a choice of a left
invariant measure on each algebraic closed subgroup of G such that
the measure of its intersection with K is equal to 1. It depends on A
and K.

Let P = MU be a parabolic subgroup of G with Levi subgroup M containing A
and with unipotent radical U . Let χ be an element of X(M). One denotes by
Eχ the space of the representation δχ := δ ⊗ χ. Let iGPEχ be the space of maps v
from G to E, right invariant under a compact open subgroup of G and such that
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v(mug) = δP (m)1/2δχ(m)f(g) for all m ∈ M , u ∈ U , g ∈ G. Let iGP δχ be the
representation of G in iGPEχ by right translations.

If (δ, E) is a smooth representation of M , one extends it to a representation of P
trivial on U , denoted in the same way. One denotes by iKP∩KE the space of maps
v from K in E, which are right invariant under a compact open subgroup of K
and such that v(pk) = δ(p)v(k) for all k ∈ K and p ∈ P ∩ K. The restriction of
functions to K determines an isomorphism from iGPEχ to iKP∩KE. We will denote
the representation of G in iKP∩KE deduced from iGP δχ “par transport de structure”

by i
G
P (δχ). This representation will be called the compact realization of iGP δχ in this

space independent from χ. If v ∈ iKP∩KE, one denotes by vχ the element of iGPEχ

whose restriction to K is equal to v. If δ is unitary, one defines a scalar product on
iKP∩KE by:

(3.9) (v, v′) =

∫
K

(v(k), v′(k)) dk, v, v′ ∈ iKP∩KE.

The representation i
G
P δχ is unitary for this scalar product when χ is unitary. Con-

sequently, “par transport de structure”, iGP δχ is also unitary.
If g ∈ G, one chooses uP (g) ∈ U,mP (g) ∈ M and kP (g) ∈ K such that g =

uP (g)mP (g)kP (g). Then δP (mP (g)) does not depend on the choice of mP (g). Let
P− = MU− be the opposite parabolic subgroup of P with respect to M .

(3.10)

We will identify iGP Ě with (iGPE )̌ by associating to v̌ ∈ iGP Ě the linear
form φ on iGPE defined by

〈φ, v〉 =
∫
K

〈v̌(k), v(k)〉dk, v ∈ iGPE.

Let e be an element of E and let J be a compact open subgroup of G such that

e is invariant under J ∩ P under δ. One defines a map vP,J
e,δ from G to E by:

(3.11)
vP,J
e,δ (pj) = δ

1/2
P (p)δ(p)e, j ∈ J, p ∈ P,

vP,J
e,δ (g) = 0, g /∈ PJ,

the definition making sense due to our hypothesis on J and e. Notice that this
hypothesis is satisfied if J has an Iwahori factorization with respect to (P, P−)
(resp., if P is a σ-parabolic subgroup of G and J has a σ-factorization for (P, P−))
and e is JM -invariant.

In all cases vP,J
e,δ is invariant on the right by J and defines an element of iGPE.

3.3. The operation řM . Let P = MU be a parabolic subgroup of G such that
A ⊂ M and (δ, E) is a smooth representation of M . Let π = iGP δ.

Then with our choice of Haar measures, the left invariant Haar measure dlp on
P satisfies:

(3.12)

∫
G

f(g)dg =

∫
P×K

f(pk) dlp dk, f ∈ C∞
c (G).

Let drp = δPdlp, which is a right invariant measure on P . One defines a linear map
Mδ,P from C∞

c (G)⊗ E to iGPE by:

(3.13) (Mδ,P (f))(g) =

∫
P

δ
1/2
P (p−1)δ(p−1)f(pg) drp, f ∈ C∞

c (G)⊗ E, g ∈ G,
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where we have identified C∞
c (G)⊗ E with C∞

c (G,E). This map goes through the
quotient to an isomorphism between H0(P,C

∞
c (G)⊗ E)) and iGPE ([3, Prop. 1.13

(iv)]), where H0 stands for the 0-homology.

Lemma 3.1. We recall our choice of a left invariant measure on P (cf. (3.12)).

A linear form ξ on iGPE determines an E-distribution on G, ξ̃, which is defined by

ξ̃(f) = 〈ξ,Mδ,P (f)〉, f ∈ C∞
c (G)⊗ E.

The distribution ξ̃ is P -covariant for the representation π = δ ⊗ δ
−1/2
P (cf. Section

9.1 for the definitions).

Proof. Here we denote the left regular representation of G on C∞(G) ⊗ E by λ.
The lemma follows from the obvious equality:

〈ξ̃, λ(p)(π(p)f)〉 = 〈ξ,Mδ,P (λ(p)(π(p)f))〉, f ∈ C∞
c (G)⊗ E

and from the equality:

Mδ,P (λ(p)(π(p)f)) = Mδ,P (f), f ∈ C∞
c (G)⊗ E,

that we are going to prove. Let p0 be an element of P . Taking into account the
equality δP (p0)

−1/2 with δP (p0)
1/2δ−1

P (p0), one has, for g ∈ G:

[Mδ,P (λ(p0)(π(p0)f))](g) =

∫
P

δ
1/2
P (p−1p0)δ(p

−1p0)f(p
−1
0 pg)δP (p0)

−1drp.

Using the definition of drp, the change of variables p′ = p−1
0 p leads to the required

identity. �

The support of E-distributions is given in Section 9.1. We define the support of
ξ as follows:

(3.14) The support of ξ is by definition the support of ξ̃. As ξ̃ is left P -
covariant, one has:

(3.15)
Supp(ξ) is left P -invariant and is equal to the complement of the largest
left P -invariant open subset of G, O, such that 〈ξ, v〉 = 0 if the support
of v ∈ iGPE is contained in O.

If moreover ξ is invariant under the right action of H, then the same is true for the
E-distribution ξ̃.

Let us assume that PH is open in G and that ξ is right invariant under H. The
group P ×H acts on PH by

(p, h)g = pgh−1, g ∈ PH, p ∈ P, h ∈ H.

Hence X = PH is a homogeneous space under P × H homeomorphic to X =
(P × H)/Diag(P ∩ H) by the map (p, h) → ph−1(cf. [3, Lemma 3.1 (iii)]). One
remarks that the Haar measure on G restricted to PH is left invariant under P and
right invariant under H. One applies Lemma 9.1 to P ×H (instead of G) acting on

PH and to the δ⊗ δ
−1/2
P -covariant distribution ξ̃ restricted to PH. From above, X

has a P ×H-invariant measure. The dual representation of δP is δ−1
P . Hence there

exists a unique H ∩ P -invariant linear form η on E such that one can define:

(3.16) fξ(g) := (δP )(p)
1/2δ′(p)η, g = ph, p ∈ P, h ∈ H,
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which verifies:

(3.17) 〈ξ̃, f〉 =
∫
PH

〈fξ(g), f(g)〉dg if f ∈ C∞
c (G)⊗E has its support contained

in PH.

Let us assume that moreover f has its support contained in P (K ∩H). The set of
(p, k) ∈ P ×K such that pk ∈ P (K ∩H) is equal to P × (K ∩ P )(K ∩H). Thus,
from (3.12), one gets:

∫
P (K∩H)

〈fξ(g), f(g)〉 dg =

∫
P×(K∩P )(K∩H)

〈fξ(pk), f(pk)〉 dlp dk.

Then one integrates over P , taking into account the covariance property of ξ. Then,
as δP dlp = drp, one gets:

(3.18) 〈ξ, v〉 =
∫
(K∩P )(K∩H)

〈fξ(k), v(k)〉 dk,

where v = Mδ,P (f).
One remarks that if e is fixed by J ∩ P , using the notation of (3.11), one has:

(3.19) vP,J
e,δ = Vol(J ∩ P )−1Mδ,P (1J ⊗ e),

where Vol(J ∩ P ) denotes the volume of J ∩ P for the measure dlp.
Let x in G be such that PxH is open in G. Applying (3.16) and (3.17) to each

π′(x)f , which is xHx−1-invariant, one can define a function on the union Ω of all
(P,H) open double cosets, fξ, with values in E′, right invariant under H, and left

covariant under P by δ′ ⊗ δ
−1/2
P , such that:

(3.20)

If f ∈ C∞
c (G)⊗ E has its support contained in Ω,

〈ξ̃, f〉 =
∫
Ω

〈fξ(g), f(g)〉 dg.

Moreover if x ∈ G is such that PxH is open in G:

fξ(x) ∈ E′P∩x.H .

Notice that fξ depends on our choice of dg.
Let us assume moreover that P is a σ-parabolic subgroup of G. Let J be a

compact open subgroup of K which has a σ-factorization for (P, P−). Let e ∈ E
be fixed by JM . Let us prove:

(3.21) 〈ξ, vP,J
e,δ 〉 = Vol((K ∩ P )JH)〈η, e〉.

One can apply (3.18) with v = vP,J
e,δ by taking into account (3.19). As the support

of v is contained PJ = PJH where JH = J ∩H, one gets from (3.18):

〈ξ, v〉 =
∫
K∩(PJH)

〈fξ(k), v(k)〉 dk.

But K ∩ (PJH) = (K ∩ P )JH . So, one has:

〈ξ, v〉 =
∫
(K∩P )JH

〈fξ(k), v(k)〉 dk.
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The function under the integral sign is left invariant under K∩P , due to (3.16) and
to the properties of the induced representation. It is right invariant under JH due
to the fact that ξ is H-invariant and that v is J-invariant. Hence (3.21) follows.

(3.22)

Let v̌ be a smooth (resp., ξ be an H-fixed) linear form on iGPE, where
P = MU is a parabolic subgroup of G (resp., a parabolic subgroup of
G such that PH is open in G) such that A ⊂ M and (δ, E) is a smooth
representation of M . We have identified v̌ with an element of iGP Ě

(cf (3.10)), and we will denote its value at 1 by řM v̌ ∈ Ě. Similarly
fξ(1) ∈ E′M∩H is well defined. We will denote it by řMξ.

Proposition 3.2. Let us assume that A is a σ-stable maximal split torus which
contains a maximal σ-split torus.

(i) If P = MU is a σ-parabolic subgroup of G such that A ⊂ M , for all compact
open subgroups of K, J , with a σ-factorization with respect to (P, P−), one has:

řM (eJξ) = eJM
(řMξ).

(ii) Let Q = LV be a a parabolic subgroup of G, such that QH is open and let
P = MU be a parabolic subgroup, such that P ⊂ Q and A ⊂ M ⊂ L. Let (δ, E),
v̌, ξ be as above. Applying induction in stages, iGPE is isomorphic to iGQ(i

L
P∩LE).

From (3.22), one gets an element řLv̌ of (iLP∩LE )̌ (resp. řLξ of (iLP∩LE)′L∩H).
(iii) Let us assume that P and Q are σ-parabolic subgroups of G. Then:

řMξ = ˇrM (řLξ).

Proof. (i) One reduces easily to compare the evaluation on any element e of EJM of

both sides of the equality that we want to prove. One introduces v := vP,J
e,δ . From

(3.21), one gets, on one hand:

〈ξ, v〉 = Vol((K ∩ P )JH)〈fξ(1), e〉.

As v is J-invariant, this implies:

(3.23) 〈eJξ, v〉 = Vol((K ∩ P )JH)〈fξ(1), e〉.

On the other hand:

〈eJξ, v〉 =
∫
K

〈(eJξ)(k), v(k)〉 dk.

Again, we use the fact that the support of v is contained in PJ = PJH :

〈eJξ, v〉 =
∫
(K∩P )JH

〈(eJξ)(k), v(k)〉 dk.

The function under the integral sign is left invariant under K∩P , by the properties
of the induced representations, and right invariant under JH as v and eJξ are
invariant under J . So one gets:

〈eJξ, v〉 = Vol((K ∩ P )JH)〈(eJξ)(1), e〉.

The equality needed to prove that (i) follows from this and from (3.23).
(ii) is a simple consequence of (i).
(iii) It is easy to see that for all v̌ ∈ (iGPE )̌ the equality řM v̌ = řM (řLv̌) holds.

Then (iii) follows from the last assertion of (i). �
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3.4. The operation ǰQ−◦. Our second operation needs some preparation.
Let P = MU be a parabolic subgroup of G. Let (Q,Q−) be a pair of opposite

parabolic subgroups of M with L := Q∩Q−. Let us assume that A ⊂ L ⊂ M . Let
(δ, E) be a smooth representation of M . We denote the parabolic subgroup of G
equal to QU (resp., Q−U) by PQ (resp., PQ−). We define a G-homomorphism ǰQ−◦
from (iGPE )̌ to (iGPQ−

EQ)̌ as follows. Let v̌ ∈ (iGPE )̌ . As in (3.10) we identify (iGPE )̌

with iGP Ě and we denote the element of iGPQ−
((Ě)Q−)) obtained by the composition

of v̌ with the projection jQ− by jQ− ◦ v̌. By the Second Adjointness Theorem (cf.

(3.3)), (Ě)Q− is canonically isomorphic to (EQ)̌ . Let us denote the image of jQ− ◦ v̌
under the induced isomorphism by j′Q− ◦ v̌. This is an element of iGPQ−

(EQ)̌ . Then

one defines ǰQ− ◦ v̌ as the image of j′Q− ◦ v̌ under the isomorphism defined by (3.10)

of iGPQ−
(EQ)̌ with (iGPQ−

EQ)̌ . Summarizing, ǰQ−◦ appears as the composition of

the homomorphisms of G-modules:

(iGPE )̌ → iGP Ě
f→ iGPQ− ((Ě)Q−)

g→ iGPQ− (EQ)̌ → (iGPQ−EQ)̌ ,

where the first arrow is the isomorphism (3.10) between (iGPE )̌ and iGP Ě, the last
arrow is the isomorphim (3.10) between iGPQ−

(EQ)̌ and (iGPQ−
EQ)̌ , the arrow f is

given by composition of functions with the projection jQ− , and the arrow g is the

induced morphism from the canonical isomorphism between (Ě)Q− and (EQ)̌ given

by the Second Adjointness Theorem. Hence ǰQ−◦ is a G-module homomorphism.
One sees easily that:

(3.24)

For v̌ ∈ (iGPE )̌ , one has:

(ǰQ− ◦ v̌)(1) = jQ−(v̌(1)),

where on the left hand side of the equality ǰQ− ◦ v̌ is viewed as an

element of iGPQ−
(EQ)̌ and where on the right side v̌ is viewed as an

element of iGP Ě (cf. (3.10)) and jQ−(v̌(1)) is viewed as an element of
(EQ)̌ by the Second Adjointness Theorem. In other words:

řL(ǰQ− ◦ v̌) = jQ−(řM (v̌)).

Proposition 3.3. Let P = MU be a parabolic subgroup of G. Let (Q,Q−) be a
pair of opposite parabolic subgroups of M . Let us assume that A ⊂ L := Q ∩ Q−.
Let (δ, E) be a smooth representation of M and let ξ be an H-form on V = iGPE.

(i) Let v1 ∈ V1 := iGPQ−
EQ. The number 〈ǰQ− ◦ (eJξ), v1〉 does not depend on the

compact open subgroup J of G such that v1 is fixed by J .
(ii) This allows us to define a linear form on V1, denoted by ǰQ− ◦ ξ, as follows.
If v1 ∈ V1 is fixed by the compact open subgroup J of G, one defines

〈ǰQ− ◦ ξ, v1〉 := 〈ǰQ− ◦ (eJξ), v1〉.

Then ǰQ− ◦ ξ is an H-form on V1.
(iii) For every compact open subgroup J of G, one has:

eJ (ǰQ− ◦ ξ) = ǰQ− ◦ (eJξ).

(iv) The support of ǰQ− ◦ ξ is contained in the support of ξ.
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Proof. (i) Let v1 ∈ V1. It is enough to prove that if J ′ ⊂ J are two compact open
subgroups of G which leave v1 invariant, one has:

〈ǰQ− ◦ (eJ′ξ), v1〉 = 〈ǰQ− ◦ (eJξ), v1〉.
As eJv1 = v1, one has:

〈ǰQ− ◦ (eJ′ξ), v1〉 = 〈ǰQ− ◦ (eJ′ξ), eJv1〉 = 〈eJ ǰQ− ◦ (eJ′ξ), v1〉
= 〈ǰQ− ◦ (eJξ), v1〉,

which proves (i).
(ii) Let π (resp., π1) be the induced representation of G on V = iGPE (resp.,

V1 = iGPQ−
EQ). Let v1 be an element of V1 and let h be an element of H. One may

choose a small enough compact open subgroup J of G, such that h.J and h−1.J
also leave v1 under π1 invariant. This implies that π1(h)v1 is also fixed by J . Then,
one has, from the definition of ǰQ− ◦ ξ:

〈ǰQ− ◦ ξ, π1(h)v1〉 = 〈ǰQ− ◦ (eJξ), π1(h)v1〉.
By elementary operations one sees that

〈ǰQ− ◦ ξ, π1(h)v1〉 = 〈ǰQ− ◦ (π′(h−1)eJξ), v1〉 = 〈ǰQ− ◦ (π′(h−1)eJπ
′(h)ξ), v1〉

= 〈ǰQ− ◦ (eh−1.Jξ), v1〉.
Hence one gets, from the definition of ǰQ− ◦ ξ and the fact that v1 is h−1.J fixed,
the equality:

〈ǰQ− ◦ ξ, π1(h)v1〉 = 〈ǰQ− ◦ ξ, v1〉,
which proves the H-invariance of ǰQ− ◦ ξ.

The linearity is proved in the same way. This proves (ii).
(iii) is an immediate corollary of (ii).
(iv) Let F be the support of ξ and let v1 ∈ V1 whose support, F1, is contained in

the complement of F in G. Let us choose a compact open subgroup J of G which
fixes v1 and such that FJ is disjoint from F1, which might be achieved from the
compactness of PQ\G.

Then the support of eJξ is disjoint from the support of v1. As the composition
by jQ− does not increase support, one concludes, from the definition in (ii), that:

〈ǰQ− ◦ ξ, v1〉 = 0.

This implies (iv). �

Lemma 3.4. We keep the notation of the preceding proposition, but we assume
that P is a σ-parabolic subgroup with a σ-stable Levi subgroup M and that Q is a
σ-parabolic subgroup of M with a σ-stable Levi subgroup L. We assume moreover
that A is σ-stable, contained in L, and that it contains a maximal σ-split torus A∅
of L. Let x be an element of G which is A∅-good. Then π′(x)ξ is an x.H-form, P ,
Q are σx-parabolic subgroups (see Lemma 2.2) and one has:

řL(π
′
1(x)(ǰQ− ◦ ξ)) = jQ−(řM (π′(x)ξ)).

Proof. We first treat the case where x = 1.
Notice that σ(PQ−) = (P−)Q is opposite to PQ− . Hence PQ− is a σ-parabolic

subgroup of G.
Let e be an element of EQ. From Proposition 2.3, one can choose a compact

open subgroup of K, J , arbitrarily small, which has a σ-factorization with respect
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to (P, P−) and (PQ− , (P−)Q), such that JM has a σ-factorization with respect to
(Q,Q−). Hence we can choose J such that JL fixes e. One has:

(3.25) J = (J ∩ PQ−)(J ∩H),

JM = (JM ∩Q−)(JM ∩H).

Let us prove

(3.26) 〈řL(eJ(ǰQ− ◦ ξ)), e〉 = 〈řL(ǰQ− ◦ ξ), e〉.

Let P ′ denote PQ− . As e is fixed by JL, v := vP
′,J

e,jQ(δ) is well defined.

One will compute 〈eJξ′, v〉 in two ways, where ξ′ = ǰQ− ◦ ξ. First v is invariant
under J so that one has:

〈eJξ′, v〉 = 〈ξ′, v〉.
Using (3.18) and (3.19), one deduces from the preceding equality, as in the proof
of (3.21), that:

〈eJξ′, v〉 =
∫
(P ′∩K)JH

〈fξ′(k), v(k)〉 dk.

The function under the integral sign is left invariant under K ∩ P ′. Moreover, if
j ∈ JH , fξ′(j) = fξ′(1) by the right H-invariance of fξ′ and v(j) = e by the right
invariance by J of v. So one gets:

(3.27) 〈eJξ′, v〉 = Vol((P ′ ∩K)JH)〈fξ′(1), e〉.
Our second computation of 〈eJξ′, v〉 starts with:

〈eJξ′, v〉 =
∫
K

〈(eJξ′)(k), v(k)〉 dk.

As v is supported on P ′J , one gets:

〈eJξ′, v〉 =
∫
(K∩P ′)J

〈(eJξ′)(k), v(k)〉 dk.

As the function to integrate is invariant under P ′ ∩K on the left and by J on the
right, one has

(3.28) 〈eJξ′, v〉 = Vol((P ′ ∩K)J)〈(eJξ′)(1), e〉.
Notice that:

fξ′(1) = řL(ǰQ− ◦ ξ), (eJξ′)(1) = řL((eJξ
′)).

Then, taking into account the equality J = (J ∩P ′)JH , one sees that (P ′ ∩K)J =
(P ′∩K)JH . Then (3.26) follows from these two computations of 〈eJξ′, v〉 (cf. (3.27)
and (3.28)).

From the fact that the composition by jQ− commutes with right translations by
elements of G, one sees:

eJ (ǰQ− ◦ ξ) = ǰQ− ◦ (eJξ);
hence:

〈řL(eJ(ǰQ− ◦ ξ)), e〉 = 〈(řL(ǰQ− ◦ (eJξ)), e〉.
From this and (3.24), one deduces:

〈řL(eJ (ǰQ− ◦ ξ)), e〉 = 〈jQ−(řM (eJξ)), e〉.
As J has a σ-factorization for (P, P−), one deduces from Proposition 3.2 (i), that

řM (eJ (ξ)) = eJM
řM (ξ).
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Replacing it in the above equality, one gets:

〈řM (eJ (ǰQ− ◦ ξ)), e〉 = 〈jQ−(eJM
řMξ), e〉.

From (3.7), and using the fact that JM has a σ-factorization for (Q,Q−), this
implies:

〈řM (eJ (ǰQ− ◦ ξ)), e〉 = 〈jQ−(řMξ), e〉.

Together with (3.26), this shows that:

〈řL(ǰQ− ◦ ξ), e〉 = 〈jQ−(řMξ), e〉,

which proves the assertion for x = 1.
Let us treat the general case. Then (see Lemma 2.2), P is a σx-parabolic sub-

group of G, M is σx-stable and Q is a σx-parabolic subgroup of M . One may apply
the first part of the proof to ξx := π′(x)ξ which is fixed by x.H. The result follows
from the fact that ǰQ−◦ is a G-module homomorphism. �

4. Generic Basic Geometric Lemma

In the next two subsections, we make no assumptions on the characteristic of
the residue field of F.

4.1. Intertwining integrals. We keep the choices of (3.8). Let P = MU be a
parabolic subgroup of G such that A ⊂ M , and let (δ, E) be a smooth representation
of M with finite length. Let Q = MV be another parabolic subgroup of G with
M as a Levi subgroup. We denote the set of roots of AM in the Lie algebra of Q
which are not roots of AM in the Lie algebra of P by Σ(Q,P ). Let P− = MU−

be the opposite parabolic to P which admits M as a Levi subgroup. We have a
right V -invariant measure on V ∩ U\V which follows from our choice of measures
(cf. (3.8)). We have a canonical identification of V ∩ U\V with V ∩ U−.

We have AM ⊂ A and we fix a scalar product on a′ which is invariant under the
Weyl group of the pair (G,A). It induces a scalar product on a′M (cf. (2.13)).

One has (cf. [29, Theorem IV.1.1 and Proposition IV.2.1]):

(4.1)

There exists R > 0 such that, for all χ ∈ X(M) which satisfies

(Re(χ), α) > R,α ∈ Σ(Q,P ),

there exists an intertwining operator, A(Q,P, δχ), between iGP δχ and
iGQδχ satisfying:

(A(Q,P, δχ)f)(g) =

∫
V ∩U\V

f(vg) dv, f ∈ iGPEχ,

the integral being absolutely convergent. This family of operators
viewed in the compact realization admits an extension to a rational
family in χ ∈ X(M) denoted in the same way. More precisely, there
is a nonzero polynomial function b on X(M) such that for all f in
iKK∩PE, the family b(χ)(A(Q,P, δχ)f) is polynomial, in the compact
realization.
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From this characterization, one deduces:

(4.2)

The intertwining integrals commute with induced operators from in-
tertwining operators between smooth representations of finite length of
M . Namely let (δ1, E1) be another smooth admissible representation
of M , and let us assume that T is an intertwining operator between the
representations (δ, E) and (δ1, E1). For χ ∈ X(M), the composition
with T determines an induced map TP

χ between iGPEχ and iGPE
1
χ. With

the notation above, one has:

TQ
χ ◦A(Q,P, δχ) = A(Q,P, δ1χ) ◦ TP

χ .

Let us show that:

(4.3) When A(Q,P, δχ) is defined, this operator is nonzero.

Let P− be the opposite parabolic subgroup to P with Levi subgroup M . Let e ∈ E
and let J be a compact open subgroup with Iwahori factorization with respect to

(P, P−) and such that e is invariant under JM . Let f = vP,J
e,δχ

whose support is PJ .

As (V ∩ U−) ∩ PJ = V ∩ (U− ∩ J) one sees that

(A(Q,P, δχ)f)(1) = Vol(V ∩ U− ∩ J)e,

which proves our claim.
The following lemma is an immediate consequence of the induction in stages and

of the definitions.

Lemma 4.1. Let P = MU be a parabolic subgroup of G and let Q1 = LV1, Q2 =
LV2 be two parabolic subgroups of M . Let us assume A ⊂ L. Let us define PQ1

:=
Q1U , PQ2

:= Q2U . Let (ω, F ) be a finite length smooth representation of L. By
induction in stages, the representation iGPQi

ω is identified with iGP (i
M
Qi
ω).

Let v ∈ iGPQ1
E1. Then, with the identifications defined above, one has the equality

of rational functions in χ ∈ X(L):

A(Q1, Q2, ωχ) ◦ v = A(PQ1
, PQ2

, ωχ)v.

From [29, IV.1 (11)], one has the relation:

(4.4) 〈A(Q,P, δ)f, f̌〉 = 〈f,A(P,Q, δ̌)f̌〉, f ∈ iGPE, f̌ ∈ iGP Ě.

Let us prove:

Lemma 4.2. Let χ ∈ X(M) such that A(Q,P, δχ) and A(P,Q, δ̌χ) are defined.
(i) Let f ∈ iGPEχ. Then one has:

Supp(A(Q,P, δχ)f) ⊂ cl(V (Supp(f))),

where cl denotes the closure in G and Supp the support.
(ii) Let T be a linear form on iGQEχ. Let T ′ = T ◦A(Q,P, δχ). Then one has:

Supp(T ′) ⊂ cl(U(Supp(T ))).

Proof. (i) Let g /∈ cl(V (Supp(f))). Let us show that g is not an element of the
support of (A(Q,P, δχ)f). One reduces immediately, by holomorphy, to the case
where A(Q,P, δχ) is defined by a converging integral. If there exists v ∈ V such
that f(vg) does not vanish, g has to be an element of V Supp(f). As this is not
true, this implies that (A(Q,P, δχ)f)(g) = 0. This proves (i).
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(ii) Let A := A(Q,P, δχ). Let g be an element of Supp(T ′). Then for any
compact open neighborhood Ω of g in G, there exists an f ∈ iGPEχ with support
in PΩ, such that 〈T ′, f〉 �= 0. Then 〈T,Af〉 �= 0, so that Supp T ∩ Supp(Af) is
nonempty. By (i), Supp(Af) ⊂ cl(V Supp(f)). So one has:

(4.5) cl(V PΩ) ∩ Supp(T ) �= ∅.
Let us show that if X is a subset of G and (Ωp) is a decreasing sequence of compact
open neighborhoods of g in G, whose intersection is reduced to g,

(4.6)
⋂
p∈N

cl(XΩp) = cl(Xg).

In order to see this, one can reduce to the case where g = e. If y ∈
⋂

p∈N
cl(XΩp),

for all p, y = limxn,pωn,p, where ωn,p ∈ Ωp and xn,p ∈ X. Let V, V ′ be symmetric
neighborhoods of e in G with V ′2 ⊂ V . Let p ∈ N such that Ωp ⊂ V ′ and let n ∈ N

such that y−1xn,pωn,p ∈ V ′. Then y−1xn,p is an element of V . Hence y is an element
of cl(X), which proves our claim. But, as V P = QU , V PΩp is left Q-invariant and
the image of cl(V PΩp) in Q\G is closed as the projection is open. Hence this
projection is compact. It is the same for the projection of Supp(T ). Together with
(4.5), an argument of compactness shows that the intersection

⋂
p∈N

cl(V PΩp) ∩
Supp(T ) is nonempty. Together with (4.6), this implies:

cl(V Pg) ∩ Supp(T ) �= ∅.
Then, one sees that g ∈ cl(PV Supp(T )): if (vnpng) admits t ∈ Supp(T ) as a limit,
then (vnpn) has tg

−1 as a limit and ((vnpn)
−1t) has g as a limit.

But, by the Q-invariance of Supp(T ) and the equality PV = UQ, one has:

PV Supp(T ) = USupp(T ).

Hence g is an element of cl(USupp(T )), which proves (ii). �

Definition 4.3. A (Q,P )-subset of X(M) is the complement in X(M) of a finite
union of sets of the form {χν |ν ∈ (a′M )C, (ν, α) = c}, where α describes the set
Σ(Q,P ).

It is clear that such a set is open and dense in X(M).

Lemma 4.4. There exists a (Q,P )-subset of X(M), such that for the χ element
of this set, A(Q,P, δχ) is invertible and the map χ 
→ A(Q,P, δχ), viewed in the
compact realization, is holomorphic on this set.

Proof. From [29, IV.1.1(12) and (14)], it suffices to prove the statement assuming
that P and Q are adjacent and opposite, hence maximal. Let α be the single
element of Σ(Q,P ). Recall that aM = aGM ⊕ aG (cf. (2.10)). Here aGM is one
dimensional. Hence the image in X(M) of (aGM )′

C
, X(M)G, under the map λ 
→ χλ,

is a one dimensional torus. Thus the family χ → A(Q,P, δχ), depending rationally
on χ ∈ X(M)G, has a finite number of poles χi. One remarks that A(Q,P, δχ)
does not change if χ is multiplied by an element of X(G|M), so that A(Q,P, δχ)
has poles only along the sets χiX(G|M). This implies the holomorphy statement.

From [29, IV.3], there exists a rational function on X(M) with values in C, j,
such that A(P,Q, δχ)A(Q,P, δχ) is equal to the multiplication by j(χ). Moreover
(cf. [27, Theorem 3.2]), iGP δχ is irreducible for χ in an open dense subset of X(M).
From (4.3), one deduces that j is not identically zero. Also it is invariant under
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X(G|M), by the remark above. Hence, again, its poles and zeros are along a finite
number of subtori of X(M) of the form χ′

lX(G|M) where χ′
l ∈ X(M)G. The second

part of the lemma follows. �
It follows from (4.2) and the proof of the preceding lemma that:

(4.7)
The intertwining integrals and their inverses commute with induced
operators from intertwining operators between smooth representations
of finite length of M .

Let P ′ = M ′U ′ be a parabolic subgroup of G with M ⊂ M ′, P ⊂ P ′. Let (δ, E)
be a finite length smooth representation of M . Let v be an element of iGPE. We

denote the value at 1 of the element of iGP ′(iM
′

M ′∩P δ) associated to v by the induction
in stages by rM ′v . Thus for χ ∈ X(M), it defines a map denoted again by rM ′ :

(4.8) rM ′ : iGPEχ → iM
′

P∩M ′Eχ.

We will identify iMME with E.

Lemma 4.5. There exists a (Q,P )-subset of X(M), O, such that for every χ ∈ O
one has the following property:

For every G-submodule, V , of iGPEχ the equality

rM (V ) = E

implies the equality
rM (A(Q,P, δχ)V ) = E.

Proof. Let us take a (Q,P )-set as in the previous lemma and let χ be an element
of this (Q,P )-set. If rM (A(Q,P, δχ)V ) is equal to a strict M -submodule, E1, of E,
this implies that A(Q,P, δχ)V is a submodule of iGQE1. By (4.7) one would have

rMV ⊂ E1. This leads to a contradiction. This proves that the (Q,P )-set of the
previous lemma has the required property. The lemma follows. �
4.2. Generic Basic Geometric Lemma. Let P (resp., P ′) be a parabolic sub-
group of G with Levi subgroup M (resp., M ′). Let A (resp., A′) be a maximal split
torus of M (resp., M ′). We choose a maximal compact subgroup K (resp. K ′) of
G which is the stabilizer of a special point of the apartment associated to A (resp.
A′) in the extended Bruhat-Tits building of G. Let us show:

(4.9)
There exists a set of representatives of P ′\G/P such that for each of
its elements, w, one has w.A = A′.

By considering a minimal parabolic subgroup of G, contained in P (resp., P ′) and
containing A (resp., A′), one can reduce to the case where P and P ′ are minimal
parabolic subgroups of G. Then P ′ = x.P for some element x of G. As all maximal
split tori in a minimal parabolic subgroup are conjugate by an element of this
parabolic subgroup (cf. [5, Theorem 11.6]), one can choose x such that x.P = P ′

and x.A = A′. On the other hand, by the Bruhat decomposition G =
⋃

w PwP
where the w normalize A. Hence, G =

⋃
w P ′xwP . Then (4.9) follows from the

fact that xw.A = A′.
We will say that a maximal split torus of G is maximally σ-split if it contains a

maximal σ-split torus . Such a torus is σ-stable (cf. [18, Lemma 4.5(ii)]).

(4.10)
We will denote a set of representatives of P ′\G/P such that for each
w ∈ W (M ′\G/M), w.A = A′ by W (M ′\G/M) (although this set is
not unique).

Licensed to AIMABMAR. Prepared on Thu Jun 30 05:19:34 EDT 2016 for download from IP 139.124.6.128.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5346 JACQUES CARMONA AND PATRICK DELORME

ThenM ′∩w.M (resp., M∩w−1.M ′) contains A′ (resp., A) and is the Levi subgroup
of the parabolic subgroup M ′ ∩ w.P (resp., M ∩ w−1.P ′) of M ′ (resp., M) which
contains A′ (resp., A).

If P = MU , P ′ = M ′U ′ are σ-parabolic subgroups of G, one will assume that A
(resp., A′) is a maximally σ-split σ-stable maximal split torus of M (resp., M ′).

Proposition 4.6. Let P = MU and P ′ = M ′U ′ be parabolic subgroups of G such
that A ⊂ M , A′ ⊂ M ′. We denote the set of AM -roots in the Lie algebra of P by
Σ(P ). Let (δ, E) be a smooth representation of M of finite length. Let w,w′ be two
distinct elements of W (M ′\G/M). Let X be a complex subtorus of X(M) stable
under complex conjugation. We assume that the Lie algebra of X contains at least
an element ν such that (ν, α) is strictly positive for each element α of the set Σ(P ).
This condition is satisfied in particular if P = MU is a σ-parabolic subgroup and
X = X(M)σ. Then the following holds:

(i) The set Ow,w′ of elements χ of X such that:

(4.11)
The M ′-modules Vχ,w = iM

′

M ′∩w.P (wjM∩w−1.P ′Eχ) and Vχ,w′ =

iM
′

M ′∩w′.P (w
′jM∩w′−1P ′Eχ) have disjoint sets of Bernstein parameters

(cf. Section 9.2 for the terminology)

is open and dense in X. If (δ, E) is unitary, Ow,w′ ∩ X(M)u is dense in Xu :=
X ∩X(M)u.

(ii) If χ is an element of the open dense subset O =
⋂

w,w′∈W (M ′\G/M),w 
=w′ Ow,w′

of X(M), the Jacquet module jP ′(iGPEχ) is isomorphic to the direct sum:
⊕

w∈W (M ′\G/M)

iM
′

M ′∩w.P (wjM∩w−1.P ′Eχ).

Proof. Let {Λ1, . . . ,Λp} be the set of Bernstein’s parameters of the representation
(jM∩w−1.P ′δ,jM∩w−1.P ′E) ofM∩w−1.M ′ , where for every i, Λi=(Li, ωi)M∩w−1.M ′ ,
Li is a Levi subgroup of M ∩ w−1.M ′ which contains A and ωi is a cuspidal rep-
resentation of Li, i.e. whose smooth coefficients have a support which is compact
modulo the center of Li.

We introduce similar data related to w′, L′
j , ω

′
j . Then, using (9.3) and (9.4), one

sees:

(4.12)

The set of Bernstein’s parameters of the finite length M ′-smooth mod-
ule Vχ,w is equal to

{(w.L1, w(ω1 ⊗ χ|L1
))M ′ , . . . , (w.Lp, w(ωp ⊗ χ|Lp

))M ′}.

Let us prove that the set Y = X \Ow,w′ is closed in X and has an empty interior.
From (4.12), one sees that χ ∈ Y , if and only if for some i, j, one has:

(4.13) (w.Li, w.(ωi ⊗ χ|Li
))M ′ is M ′-conjugate to (w′.L′

j , w
′.(ωj ⊗ χ|L′

j
))M ′ .

Let Yi,j be the subset of elements of Y satisfying (4.13). Let us assume that Yi,j is
nonempty. In particular w.Li is conjugate in M ′ to w′.L′

j .
These are two Levi subgroups of M ′ which contain A′ and which are conju-

gate under M ′. As two maximal split tori in w′.L′
j are conjugate, these two Levi

subgroups of M ′ are conjugate by an element of the normalizer in M ′ of A′.
By multiplying w by this element of the normalizer in M ′ of A′, one reduces

to the case where these two Levi subgroups of M ′, w.Li, w
′L′

j are equal. Let us
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denote this Levi subgroup of M ′ by L′′. Two cuspidal representations of L′′, ω,
ω′ define the same infinitesimal character for M ′ if for some x in the normalizer of
L′′ in M ′, NM ′(L′′), xω is equivalent to ω′. Hence χ ∈ Yi,j if and only if for some
x ∈ NM ′(L′′), that might be chosen to normalize A′,

(4.14) xwωi ⊗ xwχ|L′′ is equivalent to w′ω′
j ⊗ w′χ|L′′ .

For x given, the set Yi,j,x of such χ is easily seen to be closed because

(4.15)
The characters of these two families of irreducible representations of
L′′ vary weakly holomorphically in χ.

As Yi,j,x depends only on the right coset xL′′ and as NM ′(L′′)/L′′ is finite, this
implies that Yi,j is closed. Hence Y is closed in X(M) and Ow,w′ is open in X.

Let us assume that O is not dense. This implies that Y has a nonempty interior,
hence by Baire’s Theorem, there exist w,w′, i, j, x as above such that Yi,j,x has a
nonempty interior.

By multiplying w′ by x−1 one may and one will reduce to the case where x = 1.
From (4.15), one deduces that for all χ ∈ X, (4.14) holds. In particular it is true for
χ = 1. Denote by ω′′ the representation wωi of L

′′. Then one also concludes that
for all χ ∈ X, (w′χ−1

|L′′)(wχ|L′′) belongs to the finite set of elements χ′′ of X(L′′)

such that ω′′ ⊗ χ′′ is equivalent to ω′′. Hence, by connectedness,

(4.16) for all χ ∈ X,wχ|L′′ = w′χ|L′′ .

Let us denote the Lie algebra of X by b ⊂ (a′M )C. By differentiation, it implies

wν = w′ν, ν ∈ b.

This might be written:

w′′ν = ν, ν ∈ b,

where w′′ = w′−1w is an element of the normalizer of A in G. From our hypothesis
on b, one sees that w′′ν = ν for a strictly P -dominant element of b, ν. But w′′ acts
on a′

C
as an element of the Weyl group of A, which, by the above, is a product of

symmetries with respect to roots orthogonal to ν. The corresponding roots have to
be roots of A in the Lie algebra of M , by our hypothesis on ν. This implies that w′′

fixes pointwise (aM )′
C
. Hence w′′ is an element of the normalizer of A which fixes

pointwise aM . This implies that it is an element of M . As w = w′−1
w′′, this implies

that w and w′ represent the same element of P ′\G/P . This is a contradiction with
our hypothesis. Hence Y has an empty interior and O is dense in X. This proves
the first statement on Ow,w′ . The proof of the statement for Ow,w′ ∩Xu is similar.

(ii) By the Basic Geometric Lemma (cf. [25, VI.5.1]) the Jacquet module
jP (i

G
PEχ) has a filtration whose associated graded object is the direct sum of the

statement. (ii) is an immediate consequence of the definition of O and (9.5). �

Lemma 4.7. We keep the notation and the assumptions of the previous lemma.
(i) Let us assume that (δ, E) is irreducible (resp. irreducible and unitary). There

exists an open dense subset of X (resp., Xu) such that for every χ in this subset,
iGP δχ is irreducible.

(ii) Let us assume that (δ, E) is a finite length smooth representation of M .
There exists an open dense subset of X, X ′, such that for every χ ∈ X ′ and for
every G-submodule V of iGPEχ such that rMV = Eχ, then V = iGPEχ.
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Proof. (i) follows easily from [27, Theorem 3.2], where no assumption of unitarity
on the inducing representation is made, and on our hypothesis on X.

(ii) Let X ′ be an open and dense subset of X such that:
1) For every irreducible subquotient of (δ, E), (ω, F ) and χ ∈ X ′, iGPωχ is irre-

ducible.
2) X ′ is a subset of the set O of the preceding lemma, where we take P = P ′,

M = M ′.
The existence of X ′ follows from (i) and from the preceding lemma. We proceed

by induction on the length of E to prove that:

(4.17)
An open dense subset, X ′, of X satisfying 1) and 2) above has the
properties required by the lemma.

If E is of length one and χ ∈ X ′, iGPEχ is irreducible. As V is nonzero, one sees
that the claim is true in that case.

Now let us assume that (4.17) is true if E is of length p ≥ 1. Let E be a
smooth M -module of length p + 1. Let χ be an element of X ′. Let (π1, V1)
be an irreducible G-submodule of V . As χ ∈ X ′, π1 is isomorphic to iGPωχ for
some irreducible subquotient (ω, F ) of (δ, E). This determines a nonzero element,
T , of HomG(i

G
PFχ, V ) ⊂ HomG(i

G
PFχ, i

G
PEχ). The latter space is isomorphic to

HomM (jP (i
G
PFχ), Eχ). But from our hypothesis on χ and the properties of X ′,

jP (i
G
PFχ) splits as a direct sum

⊕
w∈W (M\G/M) i

M
M∩w.PwjM∩w−1.PFχ. As χ is an

element of O, for w /∈ P , the set of Bernstein parameters of iMM∩w.PwjM∩w−1.PFχ

is disjoint from the set of Bernstein parameters of Fχ. Hence, one has:

HomM (jP (i
G
PFχ), Eχ) ≈ HomM (Fχ, Eχ).

From this and from the fact that T is nonzero, it follows that HomM (Fχ, Eχ) is
nonreduced to zero. This proves that F appears as a submodule of E, which we still
denote by F . Moreover T is the induced map from an element of HomM (Fχ, Eχ)
and V1 is equal to iGPFχ. Going through the quotient of V by iGPFχ and applying
the induction hypothesis, one gets the result. �

We need some notation.

(4.18)

Let P = MU be a parabolic subgroup of G, let (δ, E) be a smooth
representation of M and let x be an element of G. If there is no
ambiguity, we will denote the bijective intertwining operator between
iGPE and iGx.PxE, which associates to v ∈ iGPE the element λ(x)v of
iGx.PxE defined by

λ(x)v(g) = v(x−1g), g ∈ G,

by λ(x). We will also denote, again by abuse of notation, the transpose
of the inverse of λ(x) by λ(x). It intertwines (iGPE)′ and (iGx.PxE)′.

Proposition 4.8. Generic Basic Geometric Lemma.
Let P = MU , P ′ = M ′U ′ be parabolic subgroups of G such that A ⊂ M ,

A′ ⊂ M ′. Let Σ(P ) be the set of AM -roots in the Lie algebra of P , let (δ, E) be
a smooth representation of the finite length of M and let X be a complex subtorus
of X(M) stable under complex conjugation. We assume that the Lie algebra of X,
denoted by b ⊂ (a′M )C, contains at least an element ν such that (ν, α) is strictly
positive for each α element of the set Σ(P ). This in particular is satisfied if P is a
σ-parabolic subgroup and X = X(M)σ.

Licensed to AIMABMAR. Prepared on Thu Jun 30 05:19:34 EDT 2016 for download from IP 139.124.6.128.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CONSTANT TERM OF EISENSTEIN INTEGRALS 5349

If w ∈ W (M ′\G/M), let us define parabolic subgroups of G by:

Pw = (M ∩ w−1.P ′)U ⊂ P, P ′
w = (M ′ ∩ w.P )U ′ ⊂ P ′.

There exists a dense open subset O of X, whose intersection with Xu is dense, such
that:

(i) For χ belonging to O and w belonging to W (M ′\G/M), the map αχ,w is well

defined from iGPEχ to Vχ,w := iM
′

M ′∩w.Pw(jM∩w−1.P ′Eχ) by:

αχ,w(v) = rM ′ [A(P ′
w, w.Pw, wjM∩w−1.P ′δχ)(λ(w) ◦ jM∩w−1.P ′ ◦ v)],

for v ∈ iGPEχ. Moreover it goes through the quotient to a surjective morphism of
M ′-modules from jP ′iGPEχ to Vχ,w, that we will denote in the same way. Here we
use the normalization of measures as in (3.8) relative to (A′,K ′).

(ii) For χ ∈ O, the map

αχ : jP ′(iGPEχ) →
⊕

w∈W (M ′\G/M)

Vχ,w,

whose components are the αχ,w, is an isomorphism of M ′-modules.

Proof. Let us denote the Levi subgroup of P ′
w which contains A′ = w.A by M ′

w.
Then M ′

w = M ′ ∩ w.M .
From the properties of intertwining integrals (cf. Lemma 4.4), αχ,w is well

defined for a χ element ofX and such that wχ|M ′
w
is an element of some (P ′

w, w.Pw)-
subset Yw of X(M ′

w).
We denote the set of such χ by Xw. Such a set is open in X. Let us show that it

is dense in X. If it was false, the complement of some (P ′
w, w.Pw)-subset of X(M ′

w)
would contain the set of wχ|M ′

w
when χ varies in a nonempty open subset of X.

Thus, by looking to tangent spaces, one would see that wb should be contained in
the orthogonal subspace of some nonempty collection of roots, α, of the maximal
split torus of the center of M ′

w, AM ′
w
, in the Lie algebra of P ′

w and which are not a
root in the Lie algebra of w.Pw. But, by the hypothesis on X in Proposition 4.6,
such a root would be trivial on waM , as the roots which are orthogonal to b are
trivial on aM . Hence it would be a root of AM ′

w
in the Lie algebra of the intersection

of P ′ with w.M . On the other hand, from the definition of Pw one sees that:

w.M ∩ P ′ ⊂ w.Pw.

Moreover one has:

w.M ∩ P ′ = (w.M ∩M ′)(w.M ∩ U ′).

From the definition of P ′
w one concludes:

w.M ∩ P ′ ⊂ P ′
w.

Hence one sees that w.M ∩P ′ is a subset of w.Pw ∩P ′
w and there is no root having

the required property. This proves that Xw is dense in X. Similarly one sees that
Xw ∩Xu is dense in Xu.

Let us denote the G-submodule {λ(w)(jM∩w−1.P ′ ◦ v)|v ∈ iGPEχ} of
iGw.Pw

(wjM∩w−1.P ′Eχ) by V . From the surjectivity of jM∩w−1.P ′ and the surjec-

tivity of rM from iGPEχ to E, one concludes, by “transport de structure”, that
rM ′∩w.MV = wjM∩w−1.P ′Eχ. By Lemma 4.5, one concludes that for χ belonging
to an open dense subset of Xw one has:

rM ′∩w.M (A(P ′
w, Pw, wjM∩w−1.M ′Eχ)V ) = wjM∩w−1.P ′Eχ.
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As rM ′∩w.M = rM ′∩w.M ◦ rM ′ , one concludes that for χ belonging to this open
dense subset of Xw, the image of αχ,w, αχ,w(i

G
PEχ) satisfies:

rM ′∩w.Mαχ,w(i
G
PEχ) = wjM∩w−1.P ′Eχ.

Then from Lemma 4.7, one deduces that for χ belonging to an open dense subset
of Xw, the image of αχ,w is equal to iM

′

M ′∩w.P (wjM∩w−1.P ′Eχ). Hence the image

of α admits Vχ,w = iM
′

M ′∩w.P (wjM∩w−1.P ′Eχ) as a quotient. The fact that α goes
through the quotient to jP ′(iGPEχ) follows from the fact that, in the definition of
αχ,w, all maps are G-morphisms except rM ′ , which goes through the quotient to
the Jacquet module. This proves (i).

(ii) Using (i) and Proposition 4.6, one sees that for χ in a dense open subset of
X, O, whose intersection with Xu is dense in Xu, αχ,w is surjective for every w ∈
W (M ′\G/M) and that the various Vχ,w have disjoint sets of Bernstein’s parameters.
This implies (cf. (9.5)) that the image is equal to the direct sum of Vχ,w. So
α is a surjective M ′-module map from jP ′(iGPEχ) to

⊕
w∈W (M ′\G/M) Vχ,w. On

the other hand, by Proposition 4.6, jP ′(iGPEχ) is an M ′-module isomorphic to⊕
w∈W (M ′\G/M Vχ,w. By looking to the length of modules, one concludes from this

that α is bijective. �

Let P and Q be two parabolic subgroups of G, with a common Levi subgroup
M . Let (δ, E) be a smooth representation of the finite length of M such that
the operators A(Q,P, δ) and A(P,Q, δ̌) are well defined. Then the restriction of
the transposed operator of A(Q,P, δ), tA(Q,P, δ) to the space of smooth vectors
intertwines (iGQδ)̌ with (iGP δ)̌ . Using the isomorphism of iGP Ě with (iGPE )̌ and iGQĚ

with (iGQE )̌ (cf. (3.10)), the restriction of tA(Q,P, δ) to the space of smooth vectors

defines an intertwining operator between iGQĚ and iGP Ě which, by (4.4), is equal to

A(P,Q, δ̌).

Proposition 4.9. One keeps the notation of the preceding proposition. If w ∈
W (M ′\G/M), let us define two parabolic subgroups of G by

P̃w = (M ∩ w−1.P ′−)U ⊂ P, P̃ ′
w = (M ′ ∩ w.P )U ′− ⊂ P ′−.

There exists a dense open subset O′ of X, whose intersection with Xu is dense in
Xu, such that:

(i) For χ ∈ O′ and w ∈ W (M ′\G/M) and v̌ ∈ (iGPEχ)̌ :

βχ,w(v̌) := řM ′ ◦ tA(w.P̃w, P̃
′
w, w.jM∩w−1.P ′δχ) ◦ λ(w)(ǰM∩w−1.P ′− ◦ v̌)

is a well-defined element of (Vχ,w )̌ where Vχ,w := iM
′

M ′∩w.P (wjM∩w−1.P ′Eχ). More-
over the map βχ,w goes through the quotient to a surjective morphism of M ′-modules
from jP ′−((iGPEχ)̌ ) to (Vχ,w )̌ that we will denote in the same way.

(ii) For χ ∈ O′, the map

βχ : jP ′−((iGPEχ) )̌ →
⊕

w∈W (M ′\G/M)

(Vχ,w )̌ ,

whose components are βχ,w, is an isomorphism of M ′-modules.

Remark 4.10. Notice that in order to define ǰM∩w−1.P ′−◦ we use the normalization
of measures relative to (A,K) (cf. (3.8)). For the intertwining integrals we use
(A′,K ′). When it will be needed, we will make a particular choice of K ′.
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Proof. The fact that βχ,w(v̌) is a well-defined element of (Vχ,w )̌ follows from the
definitions. The rest of the proof is similar to the proof of the preceding proposition,
using the isomorphism of the smooth dual of a parabolically induced representation
with the parabolically induced representation of the smooth dual of the inducing
representation (cf. (3.10)). �

4.3. Generic Basic Geometric Lemma and H-forms. We come back to our
assumption that the characteristic of F is different from 2. Let us keep the notation
of the preceding proposition. Let χ ∈ O′. We set V = iGPEχ. The Second Adjoint-
ness Theorem shows that (iGPEχ)P ′ is canonically isomorphic to (((iGPEχ)̌ )P ′− )̌ .
From the preceding proposition, the isomorphism βχ determines an isomorphism

γχ : jP ′(iGPEχ) → VP ′,1 :=
⊕

w∈W (M ′\G/M)

Vχ,w.

We recall that 〈., .〉P ′ is the canonical pairing between VP ′ and (V̌ )P ′− . In other
words, the isomorphism γχ is characterized by

(4.19) 〈v̌P ′− , vP ′〉P ′ = 〈βχ(v̌), γχ(v)〉, v ∈ V, v̌ ∈ V̌ ,

where, in the second member of the equality, the pairing is the natural pairing
between (VP ′,1)̌ and VP ′,1. We denote the composition of γχ with the projection
onto Vχ,w by γχ,w.

Theorem 4.11. We keep the notation of the preceding proposition. We assume
moreover that P and P ′ are σ-parabolic subgroups of G. Let χ ∈ O′ and let ξ be an
H-form on V := iGPEχ. We define:

ξP ′− := jP ′−ξ.

We will denote the components of the linear form ξ1 := ξP ′− ◦ γ−1
χ on VP ′,1 =⊕

w∈W (M ′\G/M) Vχ,w by ξP ′−,w ∈ (Vχ,w)
′, where Vχ,w := iM

′

M ′∩w.P (wjM∩w−1.P ′Eχ).

Then one has:

ξP ′−,w = řM ′ ◦t A(w.P̃w, P̃ ′
w, w.jM∩w−1.P ′δχ) ◦ λ(w)(ǰM∩w−1.P ′− ◦ ξ).

Proof. Let J be a compact open subgroup of G with a σ-factorization with respect
to (P ′, P ′−). Let v be an element of V J . Let us compute 〈ξP ′− , vP ′〉. First one
has, from the definition of γχ and ξ1:

(4.20) 〈ξP ′− , vP ′〉 = 〈ξ1, γχ(vP ′)〉.
From the definition of ξP ′− and of the σ-factorization (cf. (3.7), Proposition 2.3),
one has:

〈ξP ′− , vP ′〉 = 〈(eJξ)P ′− , vP ′〉P ′ .

From (4.19), one sees:

〈ξP ′− , vP ′〉 = 〈βχ(eJξ), γχ(vP ′)〉.
Let us denote the element of the dual of VP ′,1 whose components are

řM ′ ◦t A(w.P̃w, P̃ ′
w, w.jM∩w−1.P ′δχ) ◦ λ(w) ◦ ǰM∩w−1.P ′− ◦ ξ,

by ξ2. Using Proposition 3.3, Proposition 3.2 (i), and the definition of βχ in Propo-
sition 4.9, one easily sees that

βχ(eJξ) = eJM′ ξ
2.

Licensed to AIMABMAR. Prepared on Thu Jun 30 05:19:34 EDT 2016 for download from IP 139.124.6.128.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5352 JACQUES CARMONA AND PATRICK DELORME

Hence we get a second expression for 〈ξP ′− , vP ′〉:

〈ξP ′− , vP ′〉 = 〈eJM′ ξ
2, γχ(vP ′)〉, v ∈ V J .

Together with (4.20), this implies that ξ1 and ξ2 are equal on V
JM′
P ′,1 . As there are

arbitrary small open compact subgroups of G with a σ-factorization with respect
to (P ′, P ′−), this implies that ξ1 = ξ2. This finishes the proof of the theorem. �

5. Two key lemmas and some of their consequences

5.1. Families of distributions on PH, where P is a parabolic subgroup
of G. We keep the notation of the preceding subsection. Let O be a nonempty
open subset of X. A map χ 
→ ξχ ∈ (iGPEχ)

′ defined on O is said to be weakly
holomorphic if for all v ∈ iKK∩PE, the map χ 
→ 〈ξχ, vχ〉 is holomorphic on O.

We will denote the map C∞
c (G) ⊗ E → iGPEχ denoted by Mδχ,P in equation

(3.13) by Mχ, and we set ξ̃χ := ξχ ◦Mχ. Let us prove:

(5.1)
Let f ∈ C∞

c (G)⊗ E. Then χ 
→ 〈ξ̃χ, f〉 is holomorphic on O; in other

words, χ 
→ ξ̃χ is a weakly holomorphic family of E-distributions on
G.

Let J be a compact open subgroup of K such that f is right and left invariant under
J . Then v(χ) := (Mχf)|K has its values in the finite dimensional space (iKK∩PE)J .
To see that χ → v(χ) is holomorphic, it is enough to check that for every k ∈ K,
χ → (v(χ))(k) is holomorphic. By using left translates by elements of K, one can
reduce to k = 1. But f ∈ C∞

c (G) ⊗ E. Hence its restriction to P is invariant
under a compact open subgroup J ′ of P and is supported by a finite number of
right cosets of J ′ in P , xiJ

′. Hence, using the definition of Mχ and the fact that
the unramified characters are trivial on compact open subgroups, one sees that:

(v(χ))(1) =
∑
i

χ(x−1
i )(

∫
J′
δ
1/2
P (x−1

i )δ((xip)
−1)f(xi) drp).

Hence χ 
→ v(χ) is holomorphic. Then (5.1) follows from the finite dimension of
(iKK∩PE)J and from our hypothesis on the family (ξχ).

Let (ξχ) be as above and let us assume that every ξχ has a zero restriction
to the complement of a closed set F of X, which is left P -invariant. Then (cf.

Section 9.1) ξ̃χ induces on F an E-distribution denoted by ξ̃F,χ ∈ (C∞
c (F ) ⊗ E)′.

If f ∈ C∞
c (F )⊗ E, let f1 ∈ C∞

c (G) ⊗ E be such that its restriction to F is equal
to f . Then

(5.2) ξ̃F,χ(f) = ξ̃χ(f1).

From this one concludes that: χ → ξ̃F,χ is a weakly holomorphic family of E-
distributions on F . Similarly, if Ω is a left P -invariant open set of F , the restriction
of ξ̃F,χ to Ω, (ξ̃F,χ)|Ω, is a weakly holomorphic family of E-distributions on Ω.

Let us make two observations. By [17, Lemma 2.4] one has:

(5.3)
Each parabolic subgroup of G contains a σ-stable maximal split sub-
group of G.
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One also has:

(5.4)

Let A0 be a maximal split torus of M . The morphism of Lie groups
from X(M) to X(A0) given by the restriction has finite kernel. Hence
one may view the Lie algebra (aM )′

C
of X(M) as a subspace of the Lie

algebra (a0)
′
C
of X(A0) (cf. also (2.13)).

The following lemma is one of the two key lemmas in the article.

Lemma 5.1. Let P be a parabolic subgroup of G. Let A0 be a σ-stable maximal
split torus of G contained in P . Let M be the Levi subgroup of P which contains
A0 and let U be the unipotent radical of P .

Let (δ, E) be a finite length smooth representation of M and let X be a complex
subtorus of X(M). Let O be a nonempty open subset of X.

Let χ 
→ ξχ be a weakly holomorphic family, depending on χ ∈ O, of E-
distributions on PH. We assume moreover that the family (ξχ) is nonidentically
zero and that for every χ ∈ O, ξχ is H-invariant on the right and δχ-covariant
under P (cf. Section 9.1).

(i) The elements of the Lie algebra b of X, viewed as a subspace of (a0)
′
C
as in

(5.4), are σ-antiinvariant.
(ii) Moreover if b contains a strictly P -dominant element, ν (i.e. such that

(ν, α) > 0 for every root, α, of AM in the Lie algebra of P ), then P is a σ-parabolic
subgroup of G.

Proof. There is no restriction to assume that O is connected and ξχ is never equal
to zero. Also, by translation by an element of O, one can assume that O contains
1. The group P ×H acts on PH by

(p, h)g = pgh−1, g ∈ PH, p ∈ P, h ∈ H.

Hence PH is a homogeneous space under P×H homeomorphic to (P×H)/Diag(P∩
H) by the map (p, h) → ph−1(cf. [3, Lemma 3.1 (iii)]).

Let us denote the trivial character of H by εH . Let us define the mean value
operation MP∩H which sends C∞

c (P ×H)⊗ E to C∞
c (PH)⊗ E:

(MP∩Hf)(ph) :=

∫
P∩H

f(px, x−1h) dlx, f ∈ C∞
c (P ×H)⊗ E,

where dlx is a left invariant Haar measure on P ∩H. We define ξ′χ by:

ξ′χ := ξχ ◦MP∩H .

It is a weakly holomorphic family of E-distributions on P ×H which are (δ
1/2
P ⊗

δχ)⊗ εH -left covariant under P ×H.
From Lemma 9.1, there exists ηχ ∈ E′ such that for all e ∈ E and for all compact

open subgroups, J , of P which fixes e under δ, one has

〈ξ′χ, f〉 =
∫
P×H

〈ηχ, δ(p)f(p, h)e〉 dlp dh = vol(J)〈ηχ, e〉,

where f = 1J ⊗ f1 ⊗ e ∈ C∞
c (P ×H)⊗ E and f1 is a smooth function on H with

compact support and with its integral equal to 1.
As the family (ξ′χ) is weakly holomorphic, this implies that:

(5.5) (ηχ) is a weakly holomorphic family of linear forms on E.
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Also from Lemma 9.1, one deduces:

(5.6) (δχ)
′(p)ηχ = δ−1

P∩H(p)δP (p)ηχ, p ∈ P ∩H.

Let a ∈ AM ⊂ A0 and let b be equal to aσ(a) ∈ A0 ∩H ⊂ M ∩H. Then, one has:

(δχ)
′(b)ηχ = δ−1

P∩H(b)δP (b)ηχ.

But (δχ)
′(b) = χ−1(b)δ′(b) so that one has:

(5.7) δ′(b)ηχ = δ−1
P∩H(b)δP (b)χ(b)ηχ.

Let us consider the parabolic subgroupM∩σ(P ) ofM . Its Levi subgroup containing
A0 is equal to M ∩ σ(M). Let us prove that:

(5.8) ηχ ∈ (EM∩σ(P ))
′,

where EM∩σ(P ) is the Jacquet module of (δ, E) with respect to the parabolic sub-
group M ∩ σ(P ) of M .

Let x ∈ M ∩ σ(U). From [3, Proposition 2.1 (iv)], there exists a unipotent
subgroup V ′ of P ∩ σ(P ), h ∈ H ∩ V ′ and y ∈ U ∩ σ(P ) such that x = yh. Then,
as δχ is trivial on U , one has:

(δχ)
′(x)ηχ = (δχ)

′(yh)ηχ = (δχ)
′(h)ηχ.

As h ∈ V ′ ∩H and V ′ is a unipotent subgroup of P , h is an element of a union of
compact subgroups of P ∩H. From the fact that a continuous positive character
on a topological group is trivial on compact subgroups, one deduces:

δ−1
P∩H(h)δP (h) = 1.

Similarly, as χ is unramified, one has

χ(h) = 1.

Hence, from (5.6), one gets

(δχ)
′(h)ηχ = ηχ.

As χ is an unramified character of M and x is an element of the unipotent subgroup
of M , M ∩ σ(U), one has χ(x) = 1. From the previous discussion, one sees:

δ′(x)ηχ = ηχ, x ∈ M ∩ σ(U),

so that one has:

ηχ ∈ (E′
δ)

M∩σ(U),

which proves (5.8).
The Jacquet module EM∩σ(P ) being an M ∩σ(M)-module of finite length and b

being an element of the center of M ∩σ(M), the number of generalized eigenvalues
of δ′(b) on (EM∩σ(U))

′ is finite. From (5.7), one deduces that the map χ 
→ χ(b) is
constant on O, and equal to 1 as O is connected and contains 1. In other words we
have proved:

(5.9) χ(aσ(a)) = 1, χ ∈ X, a ∈ AM .

AsX ⊂ X(M), one views an element ν of b as an element of (a0)
′
C
which vanishes

on aM0 . One deduces from (5.9) that:

(5.10) ν(X + σ(X)) = 0, X ∈ aM , ν ∈ b.

Hence the restriction of ν to aM + σ(aM ) is σ-antiinvariant.
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Recall that we have choosen a scalar product on a0 which is invariant under the
Weyl group of (G,A0) and by σ. Then ν ∈ b ⊂ (a′M )C is zero on the orthogonal to
aM , hence also on the orthogonal to aM + σ(aM ). Hence ν is σ-antiinvariant. This
proves (i).

Now let us assume that ν is an element of b which is strictly P -dominant. Then,
with the notation of (2.14), one has P = Pν . One sees from the antiinvariance
of ν that σ(P ) = P−ν , which is clearly opposite to P . Hence P is a σ-parabolic
subgroup of G. �
Lemma 5.2. Let P = MU be a parabolic subgroup of G and let (δ, E) be a smooth
representation of M of finite length Let X be a complex subtorus of X(M) and
let O be a nonempty subset of X. Let χ 
→ ξχ be a weakly holomorphic family of
H-forms on iGPEχ defined for χ ∈ O. Let F be the union of the supports of the ξχ,
χ ∈ O. As these supports are left invariant under P and right invariant under H
and as there are only a finite number of (P,H)-double cosets, F is closed. We call
F the support of the family.

Let A be a maximal split torus in M . Let Ω be a (P,H)-double coset of G open
in F . Then one can choose x ∈ Ω such that Ax := x−1.A is a σ-stable maximal
split torus contained in x−1.P . For such an x, x−1.M is the Levi subgroup of x−1.P
which contains Ax. The conjugation by x−1 induces a map χ → x−1χ from X to
the subtorus x−1.X of X(x−1.M).

(i) Then the Lie algebra of x−1.X appears as a subspace of (ax)
′
C
made of anti-

invariant elements by σ.
(ii) Moreover if X contains a strictly P -dominant element, x−1.P is a σ-parabolic

subgroup.
(iii) With the assumption of (ii), one can choose x such that Ax is a maximally

σ-split σ-invariant maximal split torus in the σ-stable Levi subgroup of x−1.P .

Proof. Let x be an element of Ω. First x−1.P contains a σ-invariant maximal split
torus of G (cf. [17, Lemma 2.4]). Two maximal split tori of a parabolic subgroup
are conjugate by an element of this subgroup (see [5, Proposition 4.7 and Theorem
4.21]). Hence changing x into px, for a suitable p ∈ P , one can assume that Ax is
σ-invariant. The restriction to Ω of the induced E-distribution ξF,χ by ξχ on F (see
Section 9.1) will be denoted by ζχ. Then, from the text that follows (5.2), λ(x−1)ζχ
(cf. (4.18) for the definition of λ(x)) satisfies the hypothesis of the preceding lemma
with P changed in x−1.P , A0 in Ax and X in x−1.X. Then (i) and (ii) are an
immediate consequence of the preceding lemma.

Let us prove (iii). We are in the case where x−1.P is a σ-parabolic subgroup
whose σ-stable Levi subgroup contains a maximally σ-split σ-invariant maximal
split torus of G. This implies (iii). �
5.2. Generic Basic Geometric Lemma for H-forms and the role of σ-
parabolic subgroups.

Proposition 5.3. Let P = MU (resp., P ′ = M ′U ′) be a σ-parabolic subgroup
and let A (resp., A′) be a maximally σ-split maximal split torus of M (resp., M ′).
Let Aσ (resp., A′

σ) be the maximal σ-split torus of A (resp., A′). We denote the
identity component of the set of elements of X(M) which are antiinvariant under
σ by X := X(M)σ. Let (ξχ) be a weakly holomorphic family of H-forms on iGPEχ

defined for χ in an open subset O of X. With the notation of Theorem 4.11, let w
be an element of W (M ′\G/M). Let us assume that ξP ′−,w �= 0 where ξ = ξχ0

for
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some element χ0 of O∩O′, where O′ is as in Theorem 4.11. Then one may change
our choice of w in its class in P ′\G/P in such a way that:

(i) One has A′ := w.A.
(ii) The group w.P is a σ-parabolic subgroup of G with a σ-stable Levi subgroup

w.M and M ′ ∩ w.P is a σ-parabolic subgroup of M ′.
(iii) The groups P ′

w and w.Pw are σ-parabolic subgroups of G.
(iv) One has the equality w−1.A′

σ = Aσ.
(v) The group w−1.P ′ (resp., w−1.P ′−) is a σ-parabolic subgroup of G with a σ-

stable Levi subgroup w−1.M ′ and M ∩w−1.P ′ (resp., M ∩w−1.P ′−) is a σ-parabolic
subgroup of M .

The groups Pw, P
′
w, P̃w, P̃

′
w are σ-parabolic subgroups of G.

Proof. It will be more convenient for the proof of this proposition to denote A′ by
A1 in order to avoid too many ′s.

First, as w ∈ W (M ′\G/M), one has w.A = A1. Moreover:

(5.11)
The Lie algebra of X is equal to the space (aM )′−σ

C
of σ-antiinvariant

elements of (aM )′
C
that one can view as a subspace of a′

C
(cf. (2.13)

and (2.18)).

We define X ′ := {wχ|M ′∩w.M |χ ∈ X} which is closed in X(M ′ ∩w.M) (cf. (2.11)).
By looking to a differential, one sees that on an open neighborhood of χ0 in O∩O′,
the map χ 
→ wχ|M ′∩w.M , from X to X ′, is an isomorphism whose inverse, de-

fined by O′′ ⊂ X ′, will be denoted χ′ 
→ w−1χ′. Let us show that the family
χ′ → (ξw−1χ′)P ′−,w defined by O′′ is weakly holomorphic. It is enough to prove

that for all e elements of the compact realization of iM
′

M ′∩w.PwjM∩w−1.P ′Eχ, the map
χ 
→ 〈(ξχ)P ′−,w, ewχ〉 is holomorphic on O. We choose a compact open subgroup of
G, J , with a σ-factorization for (P ′, P ′−) such that e is fixed by JM ′ . One starts
by using (3.7) and then uses the fact that (eJξχ) is a holomorphic family of J-fixed
vectors. One deduces from Proposition 4.9 that 〈(ξχ)P ′−,w, ewχ〉 is weakly holo-

morphic if for all v in the compact realization of iGP Ě, the map χ 
→ 〈βχ,w(v̌), ewχ〉
is holomorphic on O′, where βχ,w(v̌) = (v̌χ)P ′−,w. This follows easily from the
definition of βχ,w(v̌) (cf. Proposition 4.9) and from the holomorphy properties of
the intertwining integrals.

As P is a σ-parabolic subgroup, X contains strictly P -dominant elements and
X ′ contains a strictly M ′∩w.P -dominant element. The conclusion of the preceding
lemma, applied to M ′ instead of G and X ′ instead of X, asserts that there exists
m′ ∈ M ′ such that A2 := m′w.A = m′.A1 is a maximally σ-split, σ-stable, maximal
split torus of M ′, Q := m′.(M ′ ∩w.P ) is a σ-parabolic subgroup of M ′, m′.X ′ and
hence m′w(aM )′−σ ⊂ (a2)

′ is made of σ-antiinvariant elements, where (aM )′−σ is
the space of antiinvariant elements of (aM )′. Then the half sum of the roots of A2

in the Lie algebra of Q, ρQ, satisfies:

(5.12) ρQ ∈ (a2)
′−σ.

Two maximally σ-split σ-stable maximal split tori of M ′ are conjugate by an el-
ement of M ′ which conjugates their maximal σ-split tori, because two maximal
σ-split tori are conjugate, and two maximal split tori in the centralizer of a maxi-
mal σ-split torus are conjugate. So one can choose m′′ in M ′ such that m′′.A2 = A′

and m′′(a2)
′−σ = (a1)

′−σ. Then from (5.12), one sees that the parabolic subgroup
of M , Q′ := (m′′m′w.M) ∩ P ′ contains A1 and the half sum of the roots of A1 in
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its Lie algebra ρQ′ is an element of (a1)
′−σ . Using (2.14), one sees that it is a

σ-parabolic subgroup of M . One will change w to m′′m′w. Hence one has:

(5.13) w.A = A1, w(aM )′−σ ⊂ (a1)
′−σ.

Let us show that w satisfies (ii) and (iii). Let ρP ∈ a′M ⊂ a′ be the half sum of
roots of A in the Lie algebra of P . Similarly we define ρw.Pw

, ρP ′
w

and ρP ′∩w.M

with respect to A1. These are elements of (a1)
′. One has

(5.14) ρw.Pw
= ρP ′∩w.M + wρP .

As P is a σ-parabolic subgroup of G, one has ρP ∈ (aM )′−σ. From (5.13), one
deduces that:

(5.15) wρP ∈ (a1)
′−σ is σ-antiinvariant.

It follows that w.P is a σ-parabolic subgroup of G. The group w.M is the Levi
subgroup of w.P which contains A1 = w.A, whose Lie algebra is the sum of the
A1-weight spaces for weights α which are equal to zero or to an A1-root α such that
(wρP , α) = 0. As wρP is σ-antiinvariant, one sees that w.M is σ-invariant. As P ′

is a σ-parabolic subgroup of G, σ(P ′) ∩ P ′ = M ′, which implies:

σ(P ′ ∩ w.M) ∩ P ′ ∩ w.M = M ′ ∩ w.M.

As M ′ ∩ w.M is the Levi subgroup of the parabolic subgroup P ′ ∩ w.M of w.M
which contains A′, this implies that P ′ ∩ w.M is a σ-parabolic subgroup of w.M
with the σ-stable Levi subgroup equal to w.M ∩M ′. Hence

(5.16) ρP ′∩w.M is σ-antiinvariant.

From (5.14), (5.15), and (5.16), one sees that ρw.Pw
∈ (a1)

′ is σ-antiinvariant. It
follows from (2.14) that w.Pw is a σ-parabolic subgroup of G. One easily sees that
its σ-stable Levi subgroup is M ′ ∩ w.M .

Similarly one proves that P ′
w is a σ-parabolic subgroup of G, by using the equal-

ity:

ρP ′
w
= ρM ′∩w.P + ρP ′

and that P ′ (resp., M ′ ∩ w.P ) is a σ-parabolic subgroup of G (resp., M ′), as w.P
is a σ-parabolic subgroup of G from (5.15) and w.M is its σ-stable Levi subgroup.

Altogether we have found a choice of w which satisfies (i), (ii) and (iii). We will
modify our preceding choice of w to get one which will also satisfy (iv).

Let w be as above. Then (w.P )wH = wPH is open in G. Moreover w.P is
a σ-parabolic subgroup of G, and (A1)σ is a maximal σ-split torus contained in
w.P , hence contained in its σ-stable Levi subgroup w.M . As any (w.P,H)-open
orbit has a representative which is (A1)σ-good (cf. (2.22)), there exists p′ = w.p
with p ∈ P such that w′ := (w.p)w = wp satisfies the fact that w′−1.(A1)σ is σ-
split. But w′−1.(A1)σ ⊂ p−1.A ⊂ P . As w′−1.(A1)σ is σ-split, it is σ-stable hence
contained in M = P ∩ σ(P ). Hence w′−1.(A1)σ is a maximal σ-split torus in M .
Then, as all maximal σ-split tori in M are conjugate (cf. [17, Proposition 1.16]), we

can choose an element m of M , such that w′′ = w′m satisfies w′′−1.(A1)σ = Aσ.

Then w′′−1
.A′ is contained in the centralizer of Aσ which is contained in M . Hence

one can choose m1 elements of this centralizer such that w1 := w′′m1 is such that
w−1

1 .A1 = A and w−1
1 .(A1)σ = Aσ. Hence, as ρP ∈ a′−σ, w1ρP is σ-antiinvariant

and w1.P is a σ-parabolic subgroup of G. As above, one also sees that it implies
that w1.M is its σ-stable Levi subgroup. Then, as above, one sees that w1 satisfies
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(ii) and (iii). As P ′ is a σ-parabolic subgroup of G, ρP ′ is an element of (a1)
′−σ

and one gets w−1
1 ρP ′ ∈ a′−σ. One sees, as above, that w−1

1 .P ′ is a σ-parabolic
subgroup of G with a σ-stable Levi subgroup equal to w−1

1 .M ′. This easily implies
that M ∩ w−1

1 .P ′ is a σ-parabolic subgroup of M with a σ-stable Levi subgroup
equal to M ∩ w−1

1 .P ′.

Then the assertions on Pw1
, P ′

w1
, P̃w1

, P̃ ′
w1

follow easily. Thus w1 has the required
properties. �

5.3. Intertwining integrals and support of families of H-forms. An ordered
pair (P = MU,P ′ = MU ′) of parabolic (resp., σ-parabolic) subgroups of G, is said
to be adjacent (resp., σ-adjacent) if there is a unique reduced AM -root (resp., a
reduced (AM )σ-root), α, which is positive for P and negative for P ′. We denote by
Aα the group of F-points of the identity component of the kernel of α in AM (resp.,
(AM )σ) and by Mα the centralizer of Aα in G. The group Pα generated by P and
P ′ is a parabolic (resp. σ-parabolic) subgroup of G with Mα as a Levi subgroup
(resp. the σ-stable Levi subgroup) and its unipotent radical Uα is contained in
U ∩ U ′. It is easy to see that α is P -simple.

A minimal string of parabolic (resp., σ-parabolic) subgroups of G between two
parabolic (resp., σ-parabolic) subgroups of G, P = MU , P ′ = MU ′, is a sequence
(Pi)i=0,...,r of parabolic (resp., σ-parabolic) subgroups of G, such that P0 = P, Pr =
P ′ and (Pi, Pi+1) is adjacent (resp., σ-adjacent) for i = 0, . . . , r − 1. Such a string
always exists (cf. [22], before Theorem 4.2 for parabolic subgroups; it works in a
similar manner for σ-parabolic subgroups).

The next lemma is the second key lemma mentioned in the Introduction. It was
suggested by a geometric result of Matsuki (cf. [24, Lemma 3]).

Lemma 5.4. Let P = MU and Q = LV be two σ-parabolic subgroups of G, with
P ⊂ Q. Let (δ, E) be a smooth irreducible representation of M . Let P ′ = MU ′

be another σ-parabolic subgroup of G such that (P, P ′) is σ-adjacent, and let α be
the unique reduced (AM )σ-root which is positive for P and negative for P ′. One
assumes that the restriction α|a−σ

L
of α, to a

−σ
L is nonzero, where a−σ

L is the subspace

of elements of aL antiinvariant under σ.
We denote the identity component of the set of σ-antiinvariant elements of X(L)

by X(L)σ.
Let χ 
→ ξχ be a weakly holomorphic family of H-forms on iGPEχ defined for χ

in an open subset, O, of X(L|M)σ := {χ|M |χ ∈ X(L)σ}. Let us assume that the
support of every ξχ has an empty interior in G.

Then one has the following:
(i) The set O′ of χ ∈ O such that A(P, P ′, δχ) has no pole is an open and dense

subset of O.
(ii) If χ ∈ O′, the support of ξχ ◦ A(P, P ′, δχ), which is an H-form on iGP ′Eχ,

has an empty interior in G.
(iii) Let Q′ be the σ-adjacent σ-parabolic subgroup of G determined by the Q-

simple (AL)σ-root α|a−σ
L

. Then P ′ ⊂ Q′ and (Q,Q′) are σ-adjacent.

Proof. The fact that O′ is dense follows from the fact that α restricted to a
−σ
L is

nonzero and from Lemma 4.4. This proves (i).
Let us show that the union of the (P,H)-double cosets PxiH which are open

in the support F of the family ξχ, χ ∈ O′ is dense in this support. In fact if it
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was false, the complementary of the union of the PxiH would contain a (P,H)-
invariant subset open in F . Then it contains an open (P,H)-double coset in F (see
e.g. [3, Lemma 3.1 (ii)]). This is impossible due to our definition of PxiH. This
proves our claim.

From Lemma 4.2, the support of the family (ξχ ◦A(P, P ′, δ, χ))χ∈O′ is contained
in cl(PαF ), hence in the union of cl(PαxiH) as for A,B, subsets of G, cl(Acl(B)) =
cl(AB) and cl(A ∪B) = cl(A) ∪ cl(B). Hence it suffices to show that:

(5.17) For all x = xi one has PαxH with empty interior.

Let A be a maximally σ-split torus σ-stable maximal split torus in M , which is
automatically a maximally σ-split σ-stable maximal split torus in G as P is a σ-
parabolic subgroup. As any parabolic subgroup contains a σ-invariant maximal
split torus, we may and we will choose x in its double (P,H)-coset such that x−1.A
is σ-stable. The Lie algebra of X := X(L|M)σ is identified with (a′L)

−σ
C

. We can
apply Lemma 5.2 (ii) to the family (ξχ)χ∈O′ and one sees, using (2.18), that:

(5.18) x−1(a−σ
L ) ⊂ (x−1

a)−σ.

One sets: Px = x−1.P, P ′
x = x−1.P ′, etc.. Here we denote the Lie algebra of the

algebraic group G such that G = G(F) by g. By abuse of terminology we will say
that g is the Lie algebra of G (notice that this notion is different from the one used
in Section 10). We use a similar terminology for the subgroups of G which are the
groups of F-points of a subgroup of G defined over F.

Let g(α) (resp., g(−α)) be the Lie algebra of U ∩Mα (resp., U ′∩Mα). Similarly

let g(x−1α) (resp., g(−x−1α)) be the Lie algebra of Ux ∩ Mα
x (resp., U ′

x ∩ Mα
x ).

One has:

pα
x
= g(−x−1α) + p

x
.

We fix Yx = x−1Y ∈ x−1(a−σ
L ), where Y is a strictly Q-dominant element in (a′L)

−σ

which is canonically identified to a
−σ
L (cf. (2.18)). Then an Ax-root β is such that

β(Yx) > 0 if and only if the corresponding root space is contained in vx. But
g(α) ⊂ v, as P ⊂ Q and α|aL

�= 0. So one has (x−1α)(Yx) > 0. Let us prove that:

(5.19) h+ p
x
= h+ pα

x
.

The only thing to prove is that g(−x−1α) ⊂ h + p
x
. Let β be a root of Ax in

g(−x−1α), so that β(Yx) < 0 by what has been said above. Let Z be an element
of the corresponding weight space in g. Let σβ be the Ax root β ◦ σ. Then

σβ(Yx) = β(σ(Yx)). But as x−1(a−σ
L ) is contained in the space of σ-antiinvariant

elements (cf. (5.18)), one has σ(Yx) = −Yx, and σβ(Yx) = −β(Yx) is strictly
positive. Hence σ(Z) is an element of vx ⊂ p

x
. Consequently one has:

Z = (Z + σ(Z))− σ(Z) ∈ h+ p
x
,

which proves (5.19).
Let us assume that Pα

x H has a nonempty interior. We will prove that it leads
to a contradiction. From (2.22) and Lemma 2.2 (iv), one deduces that Pα

x is a
σ-parabolic subgroup of G. Hence (9.6) implies that Pα

x is a σ-parabolic of G and
(9.7) implies

h+ pαx = g.

Then, together with (5.19), it implies that h + px = g. Hence (cf. Lemma 9.3),
HPx is open. From Lemma 9.4, one sees that PxH would be open in G. This is
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a contradiction with our hypothesis on the support of ξ, which implies (5.17). We
have thus proved (ii).

The assertion on Q′ in (iii) being clear, this proves the lemma. �
Lemma 5.5. We keep the notation of the previous lemma, except that P ′ is not
necessarily adjacent to P . We assume that every (AM )σ-root which is positive for
P ′ and negative for P satisfies α|a−σ

L
�= 0. Then the same conclusion as in (i) and

(ii) of the previous lemma is valid.

Proof. Let P0, . . . , Pr be a minimal string of σ-parabolic subgroups between P and
P ′. We will prove by induction on i that for χ ∈ O′, the support of A(Pi, P, δχ)ξχ
has an empty interior in G and we will define σ-parabolic subgroups of G, Q0 =
Q, . . . , Qr, with a σ-stable Levi subgroup L, such that:

The family (ξiχ) := (ξχ ◦ A(Pi, P, δχ)) is such that (Pi, Pi+1), Qi satisfy the
hypothesis of the previous lemma, by the induction hypothesis. The lemma follows
by using this previous lemma. �

6. Families of H-forms on representations induced

from σ-parabolic subgroups and B-matrices

6.1. Families of H-forms on representations induced from σ-parabolic
subgroups. Let P = MU be a σ-parabolic subgroup of G. Let (δ, E) be a smooth
representation of M with finite length. Let WG

M be a set of representatives of the
open (P,H)-double cosets as in (2.22): here Aσ is a maximal σ-split torus of M .
As remarked in Lemma 2.2, if x ∈ WG

M , x−1.P is a σ-parabolic subgroup of G. We
define

(6.1) E′(δ,H) :=
⊕

x∈WG
M

E′M∩x.H .

We have the following mild generalization of [3, Theorem 2.8], that one gets in an
entirely similar way (see the comments following the statement). Notice that this
statement is true assuming only that the characteristic of F is different from 2, as
is shown by the examination of the proof.

Let us give a definition.

(6.2)
If B is a split torus we denote the real vector space denoted aB in (2.3)
by b.

The lattice Λ(B) (cf. (2.2) for its definition) is identified with a subset of b (cf.
(45)), and if B is a subtorus of the split torus A one has b ⊂ a.

We will use the identification of the Lie algebra of X(M)σ and (a−σ
M )C given by

a suitable scalar product on aM (see (2.13) and (2.18)).

Proposition 6.1. Let us assume that we are given a σ-split torus B ⊂ AM , and a
complex subtorus X of X(M)σ. We assume that the Lie algebra of X is identified
with bC ⊂ (a−σ

M )C and that the lattice Λ(B) contains strictly P -dominant elements.
(i) Let χ ∈ X. Let us denote the subspace of elements of iGPEχ whose support is

contained in the union of the open (P,H)-double cosets by Jχ.
There is a canonical linear isomorphism between E′(δ,H) and J ′H

χ which asso-

ciates to η ∈ E′M∩x.H the element ξ′(P, δχ, η) of J
′H
χ defined by:

ξ′(P, δχ, η)(ϕ) =

∫
(H∩x−1.M)\H

〈ϕ(xh), η〉 dh, ϕ ∈ Jχ.
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(ii) There exists an open dense subset, O0, of X such that for χ ∈ O0, ξ
′(P, δχ, η)

extends uniquely to an H-form, ξ(P, δχ, η), on iGPEχ. In particular for χ ∈ O0,
every H-form on iGPEχ whose restriction to Jχ is equal to zero vanishes.

(iii) Moreover there exists a polynomial function, b, on X, such that for every
v ∈ iKK∩PE and η ∈ E′(δ,H), χ 
→ b(χ)〈ξ(P, δχ, η), vχ〉 extends to a polynomial
function on X.

The main point for this generalization of [3, Theorem 2.8] is the generalization
of [3, Lemma 2.5] with our X. But it is straightforward by changing A to B in its
proof and the projection pa to the orthogonal projection pb on b.

Then, we will see that one has, for a suitable normalization of the measures in
Proposition 6.1:

(6.3)
For all η = (ηx)x∈WG

M
and for all x ∈ WG

M , řM ((iGP δχ)
′(x)ξ(P, δχ, η)) =

ηx.

For x = 1, it follows from Section 9.1 and [3, Equation (2.33)]. Now the assertion re-
duces to the one for x = 1 applied to the x.H-fixed linear form (iGP δχ)

′(x)ξ(P, δχ, η).

6.2. B-matrices.

Proposition 6.2. We keep the notation of the preceding proposition. Let Q be a
σ-parabolic subgroup of G with a σ-stable Levi subgroup equal to M . There exists a
rational function χ 
→ B(P,Q, δχ) on X(M)σ with values in EndC(E

′(δ,H)) such
that one has the equality of rational maps on X(M)σ:

ξ(Q, δχ, η) ◦A(Q,P, δχ) = ξ(P, σ,B(P,Q, δχ)η), η ∈ E′(δ,H).

More precisely, let bA (resp., bξ) be a nonzero polynomial function on X(M)σ, such
that for all v in iKK∩PE, χ 
→ bA(χ)(A(Q,P, δχ)v) (resp., and for all η ∈ E′(δ,H),
χ 
→ bξ(χ)〈ξ(Q, δχ, η), vχ〉) is polynomial on X(M)σ. Then for all η ∈ E′(δ,H),
the map χ 
→ (bAbξ(χ))B(P,Q, σχ)η is a polynomial map on X(M)σ with values in
E′(δ,H).

Proof. From Proposition 6.1, for χ an element of a dense open subset, O, of X(M)σ,
there is a unique θ(χ) ∈ E′(δ,H), such that

bξ(χ)ξ(Q, δχ, η) ◦ (bA(χ)A(Q,P, δχ)) = ξ(P, δχ, θ(χ)).

Let us show that the map χ 
→ θ(χ) is polynomial in χ ∈ X(M)σ. Let θ(χ)x, x ∈
WG

M , be the components of θ(χ). First, let us prove:

(6.4) For all e ∈ E, 〈θ(χ)1, e〉 is polynomial in χ ∈ X(M)σ.

Let J be a compact open subgroup of K which has a σ-factorization for (P, P−)
and such that e is fixed by JM . Then one has from (3.21)

〈θ(χ)1, e〉 = Vol((K ∩ P )JH)−1〈ξ(Q, δχ, θ(χ)), v
P,J
e,δχ

〉

= Vol((K ∩ P )JH)−1bξ(χ)〈ξ(Q, δχ, η), bA(χ)A(Q,P, δχ)v
P,J
e,δχ

〉.

It follows from (3.11) that the restriction to K of vP,J
e,δχ

is independent of χ. Hence,

from the properties of bA, one sees that χ → v(χ) := bA(χ)A(Q,P, δχ)v
P,J
e,δχ

is

polynomial in the compact realization. Hence (6.4) follows.
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Let x ∈ WG
M . One applies (6.4) to (iGP δχ)

′(x)ξ(P, δχ, η) by changing σ to σx.
One concludes that the map χ → θ(χ) is polynomial in χ ∈ X(M)σ. Then

B(Q,P, σχ)η := (bξbA)
−1(χ)θ(χ)

satisfies the required properties. �

7. Main theorems

7.1. Let us prove

(7.1)
Let P = MU be a σ-parabolic subgroup of G and let Aσ be a maximal
σ-split torus of M . If x, x′ ∈ G are Aσ-good and PxH = Px′H, then
x′ = mxh with m ∈ M , h ∈ H

One has x′ = muxh with m ∈ M , u ∈ U , h ∈ H. As x′ is Aσ-good, x
′−1.M is σ-

stable, which implies that x−1.u−1.M is σ-stable. Let M ′ = x−1.M , which contains
x−1Aσ. Then M ′ is the σ-stable Levi subgroup of the σ-parabolic subgroup P ′ :=
x−1.P (cf. Lemma 2.2). Hence, as x−1.(u−1.M) ⊂ P ′, one has x−1.(u−1.M) =
x−1.M , which implies that u−1.M = M . Hence, for all m ∈ M , u−1mu ∈ M ,
which implies m−1u−1mu ∈ M . Then m−1u−1mu is an element of U ∩ M and
hence is equal to 1. Hence u commutes with every element of M . This is possible
only if u = 1. Hence x′ = mxh, which proves (7.1).

Lemma 7.1. (i) Let P = MU,R = LV ⊂ P be two σ-parabolic subgroups of G.
Let Q be equal to R ∩ M , which is a σ-parabolic subgroup of M with a σ-stable
Levi subgroup equal to L. Let Aσ be a maximal σ-split torus of M . If x ∈ M and
Ω = Qx(M ∩H) is open in M , then RxH is open in G.

(ii) Let x, x′ ∈ M , which are Aσ-good. If RxH = Rx′H, one has Qx(M ∩H) =
Qx′(M ∩H).

(iii) Let (δ, E) be a smooth representation of L and let ξ be an H-form on iGRE.
If Supp(ξ) ⊂ G has an empty interior, the same is true for the support of řMξ ∈
(iMQ E)′.

Proof. (i) The first claim on Q is clear as Q ∩ σ(Q) = R ∩ σ(R) ∩M ∩ σ(M) = L.
The map P × H → PH, (p, h) 
→ ph, is open (cf. [3, Lemma 3.1]) and UΩ is

open in P . Hence UΩH is open in PH and also in G, as PH is open in G. But
UΩH ⊂ RxH. It implies that RxH has a nonempty interior, and hence is open.

(ii) By (7.1) applied to R, one has x′ = lxh with l ∈ L, h ∈ H. Hence h is an
element of M ∩H and (ii) follows.

(iii) Let us prove that with our hypothesis, 1 does not belong to the support of
řMξ. The hypothesis implies that řLξ = 0. From Proposition 3.2 (iii), one deduces
that řLξ = řL(řMξ)) = 0, which is equivalent to the fact that 1 is not in the support
of řMξ. This proves our claim.

Now let x be as in (i). Changing the representative in Qx(H ∩ H), we may
assume (cf (2.22)) that x is Aσ-good . Then P is a σx-parabolic subgroup of G
(cf. Lemma 2.2). Then one applies the first part of the proof to (iGRδ)

′(x)ξ, which
is fixed by x.H, replacing σ by σx. This implies that x is not an element of the
support of řMξ. �
Lemma 7.2. Let P = MU , R = LV be two σ-parabolic subgroups of G with
R ⊂ P . Let Q = M ∩R, which is a σ-parabolic subgroup of M . Let A be a σ-stable
maximally σ-split maximal split torus of L. We choose the set WG

M such that its
elements are Aσ-good. Then for all y ∈ WG

M , y−1.M is σ-stable and y−1.Q is a
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σ-parabolic subgroup of y−1.M with a σ-stable Levi subgroup equal to y−1.L. For

all y ∈ WG
M , we choose Wy−1.M

y−1.L such that its elements are y−1.Aσ-good. Then

W :=
⋃

y∈WG
M
yWy−1.M

y−1.L is made of Aσ-good elements, the union being disjoint, and

may be taken as WG
L .

Proof. We will show that W is a set of representatives of the open (R,H)-double
cosets in G.

Let x = yz, x′ = y′z′ ∈ W with y, y′ ∈ WG
M , z ∈ Wy−1.M

y−1.L , z′ ∈ Wy′−1.M
y′−1.L Then

x, x′ are Aσ-good. Hence RxH and Rx′H are open. Moreover PxH = PyH,
Px′H = Py′H as z ∈ y−1.M , z′ ∈ y′−1.M . Let us show that:

(7.2) The equality RxH = Rx′H implies y = y′ and z = z′.

Our hypothesis implies PxH = Px′H. By what we have just seen, it implies
PyH = Py′H. Hence one has y = y′.

First, let us assume that y = y′ = 1. Then z, z′ ∈ M are Aσ-good, RzH = Rz′H,
and, by (7.1), z′ = lzh, where l ∈ L and h ∈ H. Hence one has h ∈ M ∩ H. If
Q = R ∩M , z, z′ determine the same (Q,M ∩H)-double coset. This implies that
z′ = z. Hence this proves (7.2) if y = y′ = 1.

For the general case, we apply this to y−1.L and y−1.R in order to prove (7.2).
So W is a set of representatives of certain open (R,H)-cosets.

Reciprocally, let RxH be an open (R,H)-double coset in G. We may assume
that x is Aσ-good. Let Q = R ∩ M . Let us show that there is x′ ∈ W with
RxH = Rx′H. First there exists y ∈ WG

M such that PxH = PyH. Let us assume
that y = 1. Then, by (7.1), one has x = mh with m ∈ M , h ∈ H. Hence
one can assume x ∈ M . As x ∈ M is Aσ-good, Qx(H ∩ M) is open in M and
Qx(H ∩ M) = Qx′(H ∩ M) with x′ ∈ WM

L . Then RxH = Rx′H, as wanted.
In general one changes P to P ′ = y−1.P and R to R′ = y−1.R. Hence one has
P ′y−1xH = P ′H, as PxH = PyH. Then one uses our last result. �

7.2. σ-exponents of jP−ξ.

Definition 7.3. Let (π, V ) be a smooth representation of G of finite length. Then
it is a finite direct sum of generalized eigenspaces under AG,σ := (AG)σ. If ν is a
character of AG,σ, let us denote the corresponding generalized eigenspace of V by
V (ν) and the restriction to V (ν) of any element ξ of V ′ by ξ(ν), which might be
extended to an element of V ′ , which is zero on the other generalized eigenspaces
also denoted ξ(ν). If ξ ∈ V ′H , Exp(ξ) will denote the subset of ν such that ξ(ν) is
nonzero. The elements of Exp(ξ) are called the AG,σ-exponents or σ-exponents of
ξ.

Theorem 7.4. Let P = MU (resp., P ′ = M ′U ′) be a σ-parabolic subgroup of
G and let A (resp., A′) be a maximally σ-split σ-stable maximal split torus of M
(resp., M ′). Let (P ′\G/P )σ be the set of (P ′, P )-double cosets in G having a rep-
resentative w such that w.A = A′, w.Aσ = A′

σ. We denote a set of representatives
of (P ′\G/P )σ with this property by W (M ′\G/M)σ and we assume that the set
W (M ′\G/M) defined in (4.10) contains W (M ′\G/M)σ.

Let (δ, E) be an irreducible smooth represention of M and let η be an element of
the space E′(δ,H) (cf. (6.1) for the definition of this space). Let O′ be as in Theorem
4.11, with X = X(M)σ. In particular it is open and dense in X(M)σ. Let O0 be the
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open dense subset of X(M)σ from Proposition 6.1 (ii) for X = X(M)σ. Let χ be
an element of the open and dense subset O′ ∩O0 of X(M)σ and let ξ = ξ(P, δχ, η).

(i) Let w∈W (M ′\G/M). Then if ξP ′−,w is nonzero , one has w∈W (M ′\G/M)σ.
(ii) If w ∈ W (M ′\G/M)σ, then Q = M ∩ w−1.P ′ is a σ-parabolic subgroup of

M and L = M ∩w−1.M ′ is its σ-stable Levi subgroup. We introduce WG
L as in the

preceding lemma.

If y ∈ WG
M and z ∈ Wy−1.M

y−1.L , we define z′ := yzy−1 ∈ M and x = yz. Then

δ′(z′)ηy is M ∩ x.H-invariant and Q is a σx-parabolic subgroup of M . Hence
jQ−δ′(z′)ηy is defined.

(iii) One writes

EQ = E+
Q ⊕ E0

Q,

where E+
Q is the sum over y ∈ WG

M and z ∈ Wy−1.M
y−1.L of the AL,σ-weight space

corresponding to the set of exponents of jQ−δ′(z′)ηy, where E0
Q is the sum over the

other weights.
Then, for χ belonging to an open dense subset, O′′ of O0 ∩ O′, hence also open

and dense in X(M)σ, the AM ′,σ-exponents of ξP ′−,w are of the form (wχ+)|AM′,σ

where χ+ is an AM ′,σ-eigenvalue of (E+
Q)χ.

Proof. (i) If ξP ′−,w is nonzero, one has w ∈ W (M ′\G/M)σ by Proposition 5.3.
This proves (i).

Let us prove (ii). From (i), w−1.P ′ is a σ-parabolic subgroup of G, as w is
A′

σ-good, which contains A. Hence Q is a σ-parabolic subgroup of M .
Let x, y, z be as in statement (ii). The linear form δ′(z′)ηy on E is M ∩ x.H-

invariant as ηy is M ∩y.H-invariant and z′y = yz = x. By the construction of WG
M ,

x is Aσ-good. Hence Q, Q− are opposite σx-parabolic subgroups of M (cf. Lemma
2.2). This proves (ii).

Let us prove (iii). One defines projections p+Q and p0Q of EQ onto E+
Q and E0

Q

corresponding to the decomposition EQ = E+
Q ⊕ E0

Q. This defines, by induction,

projections on the space (iGPQ−
(Eχ)Q)

′ that we will denote in the same way. Notice

that PQ− is equal to P̃w. With these conventions, we define for χ ∈ O0 ∩O′:

ξ+Q = p+Q(ǰQ− ◦ ξ).

Similarly one defines ξ0Q. Then

ξ+P ′−,w := řM ′ ◦ tA(w.P̃w, P̃
′
w, w.jQδχ) ◦ λ(w)ξ+Q

is a well-defined element of V ′
w where Vw := iM

′

M ′∩w.P (wE
+
χ ). Similarly one defines

ξ0P ′−,w so that one has:

ξP ′−,w = ξ+P ′−,w + ξ0P ′−,w.

We will prove that ξ0P ′−,w = 0. We first study the restriction of ξ0Q on the open

(M ′ ∩ w.P,M ′ ∩H)-orbits. From Lemma 3.4, one sees that for x ∈ WG
L :

řL((i
G
PQ− (δχ)Q)

′(x)ǰQ− ◦ ξ) = jQ−(řM ((iGP δχ)
′(x)ξ)).

But if x = yz with y ∈ WG
M and z ∈ Wy−1.M

y−1.L , one has x = z′y with z′ = yzy−1 ∈ M

and, with the notation of (3.20), one has:

řM ((iGP δχ)
′(x)ξ) = fξ(x) = δ′χ(z

′)fξ(y) = χ(z′)−1δ′(z′)ηy.
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Hence, one has:

řL((i
G
PQ− (δχ)Q)

′(x)ǰQ− ◦ ξ) = χ(z′)−1jQ−(δ′(z′)ηy)

and the result is not changed if one replaces ǰQ ◦ ξ by ξ+Q. This implies:

řL(i
G
PQ− (δχ)Q)

′(x)ξ0Q) = 0.

From the preceding lemma, one sees that the support of ξ0Q has an empty interior.

By structural transport the same is true for λ(w) ◦ ξ0Q. One can apply Lemma 5.5

with L replaced by w.M and M replaced by M ′ ∩ w.M as it follows immediately
from the definition of P̃w, P̃ ′

w in Proposition 4.9. Then by Lemma 5.5 and Lemma
7.1, one sees that the support of ξ0P ′−,w has an empty interior. Let us see that one

can apply Proposition 6.1 to M ′, M ′∩w.P , w.(AM )σ and X ′ = {(wχ)|M ′∩w.M |χ ∈
X(M)σ} instead of G, P , B and X. As wAσ = A′

σ, one sees that M ′ ∩ w.P
is a σ-parabolic subgroup of w.M with M ′ ∩ w.M as its σ-stable Levi subgroup.
Then X ′ ⊂ X(M ′ ∩w.M)σ and its Lie algebra is equal to w(a′M )C, and if λ is any
strictly P -dominant element in Λ(AM )σ, w.λ is a strictly-(M ′ ∩ w.P ) dominant
of Λ(w.(AM )σ. Then Proposition 6.1 implies that ξ0P ′−,w is equal to zero for χ

belonging to an open dense subset, O′′ of O0 ∩O′. Hence one has:

ξP ′−,w = ξ+P ′−,w.

As ξ+P ′−,w is a linear form on iM
′

M ′∩w.Pw((E
+
Q)χ|M∩w−1M′ ), (iii) follows. �

An H-form ξ on a smooth admissible representation of G, (π, V ) is said to be
H-cuspidal if jQ−ξ = 0 for all proper σ-parabolic subgroups of G. We denote the

space of cuspidal H-forms on V by V ′H
cusp.

We define
E′(δ,H)cusp :=

⊕
x∈WG

M

(E′)M∩x.H
cusp .

Theorem 7.5. Let η ∈ E′(δ,H)cusp. Let w ∈ W (M ′\G/M)σ. With the notation
of the preceding theorem, let χ be an element of the open and dense subset O′′ of
X(M)σ and let ξ = ξ(P, δχ, η).

(i) If ξP ′−,w �= 0, one has M ∩ w−1.P ′ = M .

(ii) If M ∩w−1.P ′ = M , one defines WG
w.M := wWG

M whose elements are A′
σ =

w.Aσ = A′
σ-good. One can choose WM ′

w.M such that for y′ ∈ WM ′

w.M , there exists a
unique y ∈ WG

w.M and h ∈ M ′ ∩H with y′ = yh.
If η ∈ E′(wδ,H), pM ′η := (ηy)y′∈WM′

w.M
is an element of (wE)′(wδ,M ′ ∩ H).

With this notation,

ξP ′−,w = ξ(M ′ ∩ w.P,wδχ, pM ′B(P̃ ′
w, w.P, wδχ)η),

where the B-matrices are defined relative to WG
w.M .

(iii) Let us assume that M ′ = M and A′ = A. Then B(P ′, P, δχ)η is an element
of E′(δ,H)cusp. Hence B(P ′, P, δχ) restricts to an endomorphism of E′(δ,H)cusp.

Proof. (i) Let us assume that M ∩w−1P ′ �= M . From the definition of E′(δ,H)cusp
and of E+

Q in Theorem 7.4 (iii) one will see that E+
Q is zero. In fact, with the notation

of Theorem 7.4 (ii), as ηy is M ∩ y.H cuspidal, one sees by a direct computation
that δ′(z′)ηy is M∩x.H-cuspidal and jQ−δ′(z′)ηy = 0. This implies that E+

Q = {0}.
From the preceding theorem one has ξP ′−,w = 0.
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(ii) Let us assume M ∩ w−1.P ′ = M . Then the σ-stable Levi subgroup of P ′
w is

equal to w.M .
If y′ ∈ M ′ is A′

σ-good, then P ′
wy

′H is open and P ′
wy

′H = P ′
wyH for some element

y of WG
w.M . In particular y is A′

σ-good. From (7.1), one sees that y′ = lyh with
l ∈ M ′∩w.M , h ∈ H. Changing y′ to l−1y′, one may assume that y′ = yh for some
h ∈ M ′ ∩H. This allows us to choose WM ′

w.M as in (ii). From Theorem 4.11

ξP ′−,w = řM ′
tA(w.P, P̃ ′

w, w(δχ))λ(w)ξ.

One has chosen WG
w.M := wWG

M whose elements are A′
σ = w.Aσ-good. Then, one

sees that (wE)′(wδ,H)cusp = E′(δ,H)cusp, as (E′)M∩x.H
cusp = ((wE)′)

(w.M)∩(wx.H)
cusp .

Also one has λ(w)ξ(P, δχ, η) = ξ(w.P,w(δχ), η). Hence from the definition of B-
matrices one has:

ξP ′−,w = řM ′ξ(P̃ ′
w, w(δχ), B(P̃ ′

w, w.P, w(δχ))η).

In order to prove the equality of the theorem for χ in an open dense subset of
X(M)σ, one can use Proposition 6.1 applied to M ′ instead of G and M ′ ∩ w.P ′

instead of P to the complex torus X = {wχ|M ′∩w.M |χ ∈ X(M)σ} and to B =
w.(AM )σ. Then it suffices to prove the equality of the values of řM ′ξ(P ′

w, w(δχ),
B(P ′

w, w.P, w(δχ)η)) and ξ(M ′∩w.P,wδχ, pM ′B(P ′
w, w.P, wδχ), η) at every element,

y′, of WM ′

w.M . This is easily seen from (6.3) and from the fact that y′ = yh for an
element y of WG

w.M and h ∈ H ∩M ′.
(iii) We take w = 1 in (ii). Hence, one has:

ξP ′−,1 = B(P ′, P, δχ)η ∈ V (δ,H).

From (i) and the transitivity of the constant term, one sees that ξP ′−,1∈E′(δ,H)cusp
is M ∩H-cuspidal. �

If P = MU is a σ-parabolic subgroup of G, let us denote (AM )σ by AM,σ. Let
+a′M,σ (resp ++a′M,σ) be the set of λ ∈ a′M,σ which are linear combinations of roots

of AM,σ in the Lie algebra of U with coefficients greater than or equal to zero (resp.,
greater than zero).

Definition 7.6. Let (π, V ) be a finite length smooth representation of G and ξ
an H-form on V . Then ξ is said to be tempered (resp., discrete) if and only if for
every σ-parabolic subgroup of G, P = MU , every exponent, χ, of ξP− is such that
Re(χ) is an element of +a′M,σ (resp ++a′M,σ). If ξ is a tempered H-form we define
its weak constant term

(7.3) ξwP− =
∑

χ∈Exp(ξP− ),Re(χ)=0

ξP−(χ).

Hence a discrete H-form is a tempered H-form such that its weak constant term
is zero for all proper σ-parabolic subgroups of G. Notice that Kato-Takano (cf. [21])
showed that, if π is irreducible and has a unitary central character, an H-form is
discrete if and only if its generalized coefficients are square integrable modulo the
center.

Lemma 7.7. (i) If ξ is a tempered H-form on V , then ξwP− is a tempered M ∩H-
form on VP .

(ii) If Q is a σ-parabolic subgroup of M and R = QU , one has:

ξwR− = (ξwP−)wQ− .
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Proof. (i) and (ii) follow from the transitivity of the constant term (cf. [12]). �

If (δ, E) is a smooth unitary irreducible representation of M , let E′M∩H
disc be the

space of discrete M ∩H-forms on E and let:

E′(δ,H)disc =
⊕

x∈WG
M

E′M∩x.H
disc .

Theorem 7.8. With the notation of Theorem 7.4, let us assume δ is unitary,
η ∈ E′(δ,H)disc and χ ∈ O′′ ∩X(M)u. Then one has:

(i) The H-form ξ(P, δχ, η) is tempered.
(ii) If w ∈ W (M ′\G/M) is not in W (M ′\G/M)σ or if M ∩ w−1.P ′ is distinct

from M , then ξwP ′−,w = 0. Otherwise, with the notation of Theorem 7.5 (ii):

ξwP ′−,w = ξ(M ′ ∩ w.P,wδχ, pM ′B(P̃ ′
w, w.P, wδχ)η),

where the B-matrices are defined relative to WG
w.M .

(iii) Let us assume that M ′ = M and A′ = A. Then B(P ′, P, δχ) restricts to an
endomorphism of E′(δ,H)disc.

Proof. Let us use the notation of Theorem 7.4 (ii). Using the criteria of Kato and
Takano (see above), one sees by “transport de structure” that δ′(z′)ηy is discrete.
Moreover Q is a σx-parabolic subgroup of M . Then (i) follows from Theorem 7.4
(iii) and from our definition of discrete forms.

The proof of (ii) (resp., (iii)) is analogous to the proof of (i) and (ii) (resp., (iii))
of the preceding theorem. �

8. Constant term of Eisenstein integrals

If f is a smooth function on H\G the constant term fP of f along P has been
defined in [12, Section 3.3]. It generalizes the definition in [23, Proposition 2] to
general smooth function. It is a smooth function on M ∩H\M .

If (π, V ) is a smooth admissible representation of G, ξ is an H-form on V and v
is an element of V , let cξ,v be the generalized coefficient defined by:

cξ,v(Hg) = 〈ξ, π(g)v〉.

Let P = MU be a σ-parabolic subgroup of G. If f = cξ,v, the constant term fP
of f along P has been defined in [23, Proposition 2 (i)] (see [12, Section 3.3], for a
definition for general smooth functions). Then (cf. [23, Proposition 2 (ii)]) one has:

(8.1) (cξ,v)P = cξP− ,vP ,

where ξP− = jP−ξ, vP = jP v.

Definition 8.1. We define Atemp(H\G) to be the set of functions of the type cξ,v
for a finite length smooth representation (π, V ) of G and a tempered H-form on
V . It is easily seen to be a vector subspace of the space of smooth functions on
H\G. If f is such a generalized coefficient fw

P will denote the generalized coefficient
cξw

P− ,vP . It is naturally deduced from the constant term fP as in the definition of

ξwP− (cf. Definition 7.6), hence it does not depend on the presentation of f as a
generalized coefficient.
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Definition 8.2. Let P = MU be a σ-parabolic subgroup of G and let (δ, E) be an
irreducible smooth representation of M . Let η ∈ E′(δ,H) be such that ξ(P, δ, η) is
defined. Then if v ∈ iGPE, one defines an element EG

P (η ⊗ v) of C∞(H\G) by:

EG
P (η ⊗ v)(g) = 〈ξ(P, δ, η), (iGP δ)(g)v〉, g ∈ G.

Then, from Proposition 6.1, there exists a nonzero polynomial function b on X(M)σ
such that for all v ∈ iKK∩PE, η ∈ E′(δ,H), g ∈ G the map χ 
→ b(χ)EG

P (η ⊗ vχ)(g)
is polynomial in χ ∈ X(M)σ. By bilinearity, we define EG

P (φ) similarly, where φ is
an element of E′(δ,H)⊗ iGPE.

Lemma 8.3. Let W (M ′|G|M)σ be the set of elements of W (M ′\G/M)σ) such
that w.M ⊂ M ′. Let us assume that W (M ′|G|M)σ is non empty. Let s ∈
W (M ′|G|M)σ. We choose K ′ = s.K (see the beginning of Section 4.2). This choice
together with the choice of K determines βχ. Let w be an element of W (M ′|G|M)σ.
Let γ(G|M ′) be the constant defined in [29] after the proof of I.1.(3), with the nor-
malization of measures determined by K ′. For χ belonging to an open dense subset
of X(M)σ one has, with the notation of (4.19):

γχ,w = γ(G|M ′)−1αχ,w.

Proof. It is enough, by “transport de structure”, to prove the result for s−1.P ′

instead of P ′, as the Jacquet modules for P ′ and s−1.P ′ of iGP δχ are canonically
isomorphic. So we may assume that 1 ∈ W (M ′\G/M)σ and A′ = A, K ′ = K.
By Lemma 4.7 applied to M ′ instead of G, one sees that for χ belonging to a
dense subset O′′ of X(M)σ, Vχ,w is irreducible for all w ∈ W (M ′\G/M)σ. Hence
γχ,w = γ(P,w, χ)αχ,w for an element γ(P,w, χ) of C∗. Notice that in the definition
of βχ,w (resp. αχ,w) the intertwining integrals which occur are relative to parabolic
subgroups of G with a Levi subgroup equal to M . Also only the operations jM
and ǰM occur and they are equal to the identity. Then the proof of the lemma is
identical to the proof of Proposition V.1.1 in [29] (see Equations V.1 (2), (3) and
(4)), where parabolic subgroups have to be replaced by σ-parabolic subgroups. �

Theorem 8.4. We keep the notation of Theorem 7.4. Let χ be an element of the
dense open subset O′′ of X(M)σ. If w ∈ W (M ′|G|M)σ, one defines a linear map
C(w,P ′, P, δχ) from E′(δ,H)⊗ iGPEχ to (wE)′(wδ,M ′ ∩H)⊗ iGPw

wEχ by :

C(w,P ′, P, δχ) = γ(G|M ′)−1B(P̃ ′
w, w.P, w(δχ))⊗ (A(P ′

w, w.P, w(δχ))λ(w)).

Then, if φ ∈ E′(δ,H)cusp ⊗ iGPEχ (resp., E′(δ,H)disc ⊗ iGPEχ and δ and χ are
unitary), one has: EG

P (φ)P ′ = 0 (resp., EG
P (φ)wP ′ = 0) if W (M ′|G|M)σ is empty.

Otherwise EG
P (φ)P ′ (resp., EG

P (φ)wP ′) is equal to:

∑
w∈W (M ′|G|M)σ

EM ′

M ′∩w.P ((pM ′ ⊗ rM ′)(C(w,P ′, P, δχ)φ)).

Proof. By M ′-equivariance, it is enough to prove the equalities of the proposition
evaluated at m′ = 1. Then the result follows from property (8.1) (resp., Defi-
nition 8.1) and from (4.19) together with Theorem 7.5 (resp., Theorem 7.8) and
Lemma 8.3. �
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9. Appendix

9.1. Covariant distributions on a homogeneous space. Let X be an l-space
(cf. e.g. [3, section 3] for the terminology) and let V be a complex vector space.
We denote the space of locally constant functions on X with compact support and
with values in C (resp., V ) by C∞

c (X) (resp., C∞
c (X,V )). Notice that C∞

c (X,V )
is identified with C∞

c (X)⊗ V . We denote the space of linear forms on C∞
c (X,V )

which are called V -distributions onX by D′(X,V ). The support of a V -distribution
T on X is the complement of the largest open subset O such that T restricted to
C∞

c (O)⊗ V is equal to zero.
Let F be a closed subset of X and let O denote X \F . From the exact sequence

0 → C∞
c (O)⊗ V → C∞

c (X)⊗ V → C∞
c (F )⊗ V → 0,

one sees that if T has support contained in F , then T defines a V -distribution on
F which is called the distribution on F induced by T .

Let (π, V ) be a smooth representation of an l-group G. Recall that H0(G, V )
denotes the quotient of V by the subspace generated by the elements of the form
π(g)v−v, g ∈ G, v ∈ V . The dual of H0(G, V ) is identified with the space of G-fixed
linear forms on V .

Let X be an l-space on which G acts continuously on the left. Let λ be the
left regular representation of G on C∞

c (X). A V -distribution T on X is said to be
π-covariant if

T (f − (λ(g)⊗ π(g))f) = 0, f ∈ C∞
c (X)⊗ V.

Lemma 9.1. Let H be a closed subgroup of G and let (π, V ) be a smooth repre-
sentation of G. Let T be a π-covariant distribution on G/H. Let us denote a left
invariant Haar measure on G (resp., H) by dlg (resp., dlh). Let us denote the
modulus function of G by δG. It satisfies∫

G

f(gg0)dlg = δG(g0)

∫
G

f(g) dlg, f ∈ Cc(G), g0 ∈ G.

We define a linear map from C∞
c (G)⊗ V to C∞

c (G/H)⊗ V by

MHf(gH) :=

∫
H

f(gh) dlh, f ∈ C∞
c (G)⊗ V.

Then there exists a unique η ∈ V ′ such that

〈T,MHf〉 =
∫
G

〈π′(g)η, f(g)〉 dlg, f ∈ C∞
c (G)⊗ V.

The linear form η will be called the value at 1 of T and denoted ev1T or T (1).
Moreover

π′(h)η = δ−1
H (h)δG(h)η, h ∈ H.

Notice that T (1) depends on the choice of dlg, dlh.
If G/H has a nonzero left G-invariant measure, one has

〈T, f〉 =
∫
G/H

〈π′(g)η, f(gH)〉 dgH, f ∈ C∞
c (G/H)⊗ V.

In that case η is H-invariant and depends only on the choice of the left G-invariant
measure on G/H.
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Proof. Let us assume first that H = {1}. We remark that T ∈ (H0(G,C∞
c (G) ⊗

V ))′ where G acts on C∞
c (G) ⊗ V by the tensor product λ ⊗ π of the left regular

representation with π. From [3, Prop. 1.13 (iv)], one sees

(9.1)
The map f ∈ C∞

c (G)⊗ V 
→
∫
G
π(g−1)f(g) dlg goes through the quo-

tient to an isomorphism of H0(G,C∞
c (G)⊗ V ) with V .

Hence T defines η ∈ V ′ by “transport de structure”. One sees that T verifies

(9.2) 〈T, f〉 =
∫
G

〈π′(g)η, f(g)〉 dlg, f ∈ C∞
c (G, V ),

which proves our claim when H = {1}.
In general, we introduce a V -distribution T̃ on G by

〈T̃ , f〉 = 〈T,MHf〉, f ∈ C∞
c (G)⊗ V.

Since T is π-covariant implies that T̃ is π-covariant, we may apply the first part of
the proof to T̃ . Now one has

MHRhf = δH(h)MHf ∈ C∞
c (G)⊗ V,

which implies

〈T̃ , Rhf〉 = δH(h)〈T̃ , f〉, f ∈ C∞
c (G)⊗ V.

Hence, it follows from (9.2) applied to T̃ that

〈T̃ , Rhf〉 = δH(h)

∫
G

〈η, π(g)−1f(g)〉 dlg.

But, again using (9.2), one has

〈T̃ , Rhf〉 =
∫
G

〈π′(g)η, f(gh)〉dlg = δG(h)

∫
G

〈π′(g)π′(h−1)η, f(g)〉 dlg.

From the preceding equalities one deduces

δH(h)

∫
G

〈η, π(g)−1f(g)〉dlg = δG(h)

∫
G

〈π′(h−1)η, π(g)−1f(g)〉 dlg.

Then (9.1) implies

π′(h)η = δ−1
H (h)δG(h)η, h ∈ H.

�

9.2. Bernstein’s parameters of finite length smooth modules. The Bern-
stein’s center [9], ZB(G), is identified with an algebra of functions on the set,
Ω(G), of G-conjugacy classes of cuspidal pairs, i.e. pairs (L, ω), where L is a Levi-
subgroup of G and ω is a smooth, irreducible cuspidal representation of L. Here
cuspidal means that the smooth coefficients of the representation are compactly
supported modulo the center.

If (L, ω) is such a pair, we denote its conjugacy class under G by (L, ω)G. If
Λ ∈ Ω(G), we denote the character of ZB(G) given by the evaluation at Λ by χΛ

and the kernel of χΛ by IΛ. It is a maximal ideal of ZB(G). We say that χΛ has
Bernstein parameter Λ.

Let (π, V ) be a smooth G-module of finite length. We say that {Λ1, . . . ,Λp} ⊂
Ω(G) is the set of Bernstein’s parameters of (π, V ), if V splits as a direct sum of
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G-modules V1 ⊕ · · · ⊕ Vp such that Vi is nonreduced to {0} and is annihilated by a
power of the ideal IΛi

of ZB(G). Then one easily sees

(9.3)

If χ is an unramified character of G and if the set of Bernstein’s parame-
ter of (π, V ) is equal to {L1, ω1)G, . . . , (Lp, ωp)G}, the set of Bernstein’s
parameter of (π ⊗ χ, V ) is equal to {(L1, ω1 ⊗ χ|L1

)G, . . . , (Lp, ωp ⊗
χ|Lp

)G}.

Let P be a parabolic subgroup of G with Levi subgroup M and let (δ, E) be a
smooth representation of finite length of M with the set of Bernstein’s parameters
{(L1, ω1)M , . . . , (Lp, ωp)M}, where (Li, ωi) is a cuspidal pair for M . Then, one has

(9.4)
The set of Bernstein’s parameters of (iGPE, iGP δ) is
{(L1, ω1)G, . . . , (Lp, ωp)G}.

The following is an immediate consequence of the splitting of the category of smooth
modules (cf. [2], [25]):

(9.5)

If one has a short exact sequence 0 → V1 → V2 → V3 → 0 of finite
length smooth M ′-modules such that V1 and V3 have disjoint sets of
Bernstein’s parameters, then V2 is isomorphic to the direct sum of
V1 ⊕ V3.

9.3. Some results on σ-parabolic subgroups. In this subsection, we slightly
change the notation of the main body of the article.

Lemma 9.2. Let G be a connected algebraic group acting over the nonempty variety
X.

(i) Let x ∈ X. Then Y = Gx is a smooth locally closed subset of X.
(ii) There exists at least one closed orbit.
(iii) Let Gx be the stabilizer of x in G. Then dimY = dimG− dimGx.

Proof. (i) and (ii) follows from [19, Proposition 8.3].
(iii) The morphism G → G.x is dominant: this morphism is surjective and G is

irreducible, hence G.x is also irreducible and our claim follows from the discussion
in the middle of [4, Ch. AG. 8.2]. Then, the assertion on dimensions follows from
[4, Ch. AG. 10.1], with X = G, Y = G.x, W = {x}, and Z the identity component
of Gx.

Lemma 9.3. Let G be a connected algebraic group acting over an irreducible non-
singular variety X, with a finite number of orbits.

If an orbit, X ′, of G in X has the same dimension than X, then X ′ is open in
X.

Proof. We use induction on the number of orbits. If this number is 1, our statement
is clear. Otherwise, if this number is greater than 1, let Y be a closed orbit in
X. Then Y is not equal to X. As G is connected, Y is irreducible. It follows
from [19, Proposition 3.2] that dim Y < dim X. Then X \ Y contains X ′ and is
irreducible, as Y is closed and X is irreducible. Moreover the action of G on X
induces an action on X \ Y . One applies the induction hypothesis. �

Let G be a connected reductive group defined over a local field k of characteristic
different from 2. Let P , Q be two parabolic subgroups of G defined over k. Let Gk

be the set of k-points of G. We have similar notation for subgroups of G.
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Let us show

(9.6)
The k-parabolic subgroups P and Q of G are opposed if and only if
Pk ∩Qk is equal to Mk where M is a common Levi to P and Q.

If P and Q are opposed, P ∩ Q is equal to their common Levi subgroup, M , and
it is clear that Pk ∩Qk = Mk. Reciprocally if Pk ∩Qk = Mk, then P ∩Q contains
the Zariski closure of Mk which is equal to M by [4, Corollary 18.3]. By looking
to the k-parabolic subgroups of G with Levi subgroup M , one sees that only the
k-parabolic subgroup opposed to P satisfies Pk ∩Qk = Mk. This proves our claim.

Hence if σ is an involution of G defined over k and P is a parabolic subgroup of
G defined over k, P is a σ-parabolic of G if and only if Pk is a σ-parabolic subgroup
of Gk.

Let us show

(9.7)
If P is a σ-parabolic subgroup of G, p+h = g, where g (resp., p) is the
Lie algebra of G (resp., P ) and h is the Lie algebra of the fixed point
group of σ.

As P is a σ-parabolic subgroup of G, p+σ(p) = g. Hence any X ∈ g is of the form
Y + σ(Z) with Y, Z ∈ p. Hence, one has

X = Y − Z + (Z + σ(Z)).

The result follows from the fact that h is equal to the fixed point set of σ in g
(cf. [26, proof of Lemma 2.4]). Let H be an open subgroup, defined over k, of the
fixed point group of σ. We will show

(9.8)
Let P be a σ-parabolic subgroup of G defined over k. Then: a) HP is
open in G, b) HkPk is open in Gk.

Assertion a) follows from [18, Lemma 4.8] and assertion b) reduces to the case
where P is a minimal σ-parabolic subgroup of G defined over k. In that case it
follows from [18, Definition 13.1 and Proposition 13.4].

Lemma 9.4. Let P be a σ-parabolic subgroup of G defined over k. Let x ∈ Gk.
The following conditions are equivalent:
(i) HkxPk is open in Gk.
(ii) HxP is open in G.
(iii) x ∈ HP .
(iv) xPx−1 is a σ-parabolic subgroup of G defined over k.

Proof. (i) implies (ii): Let P ′ be a minimal k-parabolic subgroup of G contained in
P . There are finitely many (Hk, P

′
k)-double cosets in Gk (cf. [18, Corollary 6.16]).

Hence HkxPk contains an open (Hk, P
′
k)-double coset, Hkx

′Pk, with x′ = xp and
p ∈ Pk. From [17, Proposition 3.5], one sees that x′.P ′ is contained in a minimal
σ-parabolic subgroup of G, hence Hx′P ′ is open in G by [18, Lemma 4.8]. Hence
Hx′P = HxP is open in G and hence (i) implies (ii).

(ii) implies (iii): As the union of the closures of the open (H,P )-double coset in
G is equal to G and as G is connected, hence irreducible, there is only one open
(H,P )-double coset in G. From (9.8) a), one knows that HP is open. Hence (ii)
implies (iii).

(iii) implies (iv) because the conjugation by an element of H preserves the set
of σ-parabolic subgroups of G.

(iv) implies (i) follows from (9.8) b). �
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10. Compact open subroups of Lie groups over F

Let G be a Lie group over F in the sense of [6, Ch. III.1, Definition 1] and let g
be its Lie algebra.

We will use an idea given by Deligne in [9, top of p. 16]. We fix an analytic
bijective map ψ : V → W between an open neighborhood V of 0 in g to an open
neighborhood W of 1 in G. We assume that its differential at 0 is the identity.
Such a map will be called a good chart at 1 for G.

Lemma 10.1. Let P be the the maximal ideal of the ring of integers, O of F. We
fix a basis (Xj) of g.

(i) Let Λng (resp. Λg) be the Pn-module (resp. O-module) generated by (Xj).
It is a basis of neighborhoods of 0 in g. Let Jn be the image of Λng under ψ, which
is defined for n large enough.

Then for n large enough, Jn is a compact open subgroup of G.
(ii) If J ′

n is defined with another good chart ψ′, one has Jn = J ′
n for n large

enough.
(iii) Let Θ be a family of automorphisms of the Lie group G whose differential

preserves Λg. Then it preserves Λng for all n ∈ N∗. We assume moreover that Θ
has the structure of a compact analytic manifold over F and that the map Θ×G →
G, (θ, g) 
→ θ(g) is analytic. Then for n large enough, Jn is invariant under every
θ ∈ Θ.

(iv) Let us assume that we are given three closed Lie subgroups G1, G2, G3 of
G and vector subspaces g′

i
⊂ g

i
, i = 1, 2, 3, of g such that Λg = (Λg ∩ g′

1
)⊕ (Λg ∩

g′
2
)⊕ (Λg ∩ g′

3
). Then for n large enough one has

Jn = (Jn ∩G1)(Jn ∩G2)(Jn ∩G3).

Proof. (i) The fact that Jn is compact and open follows from the fact that Λng is
compact and open. We choose n large enough so that JnJn ⊂ W .

Let us denote by xj the j-th coordinate map on g. We define

|X| = Supj |xj(X)|F.

Let X,X ′ ∈ Λng, and let us study xj(ψ
−1(ψ(X)ψ(X ′))). By our hypothesis on ψ

and from the formula of the differential of the product in G, one sees that the dif-
ferential of this map of (X,X ′) is simply (X,X ′) 
→ xj(X)+xj(X

′). The definition
of the differential shows that

xj(ψ
−1(ψ(X)ψ(X ′))) = xj(X) + xj(X

′) + Sup(|X|, |X ′|)ε(X,X ′),

where ε(X,X ′) tends to zero if (X,X ′) tends to (0, 0). Let n0 be large enough
such that |ε(X,X ′)| < 1 for X,X ′ in Λn0

g. One deduces from the above equality
that for n ∈ N larger than n0, jj

′ ∈ Jn for all j, j′ ∈ Jn. Similarly one sees that
j−1 ∈ Jn if j ∈ Jn and n is larger than some n′

0. Then (i) follows.
(ii) One proceeds as in (i), by considering the mapX 
→xj(ψ

−1(ψ(X)(ψ′(X))−1)),
whose differential at 0 is equal to zero. Arguing as in (i), for n large one sees that
ψ(X)(ψ′(X))−1 ∈ Jn+1 if X ∈ Λng. Hence if j ∈ Jn, we have found j′ ∈ J ′

n such

that j(j′)−1 ∈ Jn+1. Using the fact that J ′
n is a group, and proceeding inductively,

we find a sequence (j′p) in J ′
n such that j(j′p)

−1 ∈ J ′
n+p. Hence j′p converges to j.

But J ′
n is compact, hence j ∈ J ′

n and Jn ⊂ J ′
n. The reverse inclusion is proved

similarly. This proves (ii).
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(iii) By compactness, one is reduced to prove that for every θ0 ∈ Θ, there exist
a neighborhood V (θ0) of θ0 in Θ and n0 ∈ N such that for all n ∈ N greater than
n0 and for all θ ∈ V (θ0), one has θ(Jn) ⊂ Jn. We fix θ0. We again denote the
differential at 1 of θ ∈ Θ by θ. Shrinking V and Θ if necessary, let us consider the
analytic map from (Θ, V ) to g, (θ,X) 
→ ψ−1[θ(ψ(X))(ψ(θ(X)))−1]. By looking to
partial derivatives, one sees that its differential at (θ0, 0) is equal to zero. One sees
as above that it implies that for θ in a small neighborhood V (θ0) of θ0 and for n
large enough one has

θ(ψ(X))(ψ(θ(X)))−1 ∈ Jn, X ∈ Λng.

As θ(X) ∈ Λng, this implies θ(ψ(X)) ∈ Jn. This proves (iii).
(iv) Let ψi be a good chart at zero of Gi, i = 1, 2, 3. From the first part of the

lemma, one can use the following map ψ to study Jn:

ψ(Y1 + Y2 + Y3) = ψ1(Y1)ψ2(Y2)ψ3(Y3), Yi ∈ g′
i
, i = 1, 2, 3.

One easily sees that Λng = (Λng∩g′
1
)⊕(Λng∩g′

2
)⊕(Λng∩g′

3
). From the definition

of Jn it is clear that

Jn ⊂ (Jn ∩G1)(Jn ∩G2)(Jn ∩G3).

The reverse inclusion being clear, this proves the lemma. �

Lemma 10.2. If G ⊂ GL(n) is a linear algebraic group defined over F, the group
G = G(F) has a structure of analytic Lie group, whose Lie algebra g is the Lie
algebra, g(F), of F-points of the Lie algebra of G.

Proof. The following fact seems to be well known but by lack of reference, we give
a proof. We thank Joseph Bernstein, Bertrand Lemaire and Jean-Pierre Labesse
for discussions on this fact.

(10.1)

Let X be an affine irreducible variety. Let us assume that X is nonsin-
gular and defined over F and let Ω be the algebraic closure of F. Let
us assume that X is a Zariski closed set in Ωn. Let x ∈ X(F).
(a) There exist f1, . . . , fp polynomial functions vanishing on X with
coefficients in F such that the rank of their differentials at x is equal
to the codimension of X in Ωn and to p.
(b) If f1, . . . , fp are as above, let V (f1, . . . , fp) be the set of their com-
mon zeroes. There exists an open subset O in Ωn such that x ∈ O and
such that X ∩O is is equal to V (f1, . . . , fp) ∩O.

(a) follows from the definition of nonsingular points in [15, I.5] and from the
fact that the ideal of functions vanishing on X is generated by polynomials with
coefficients in F.

(b) Let Y = V (f1, . . . , fp) and let O′ be the open set of elements of Ωn such
that the rank of the differential of f1, . . . , fp is of rank p. It is open in Ωn and it
contains x. By [15, Theorem I.5.3], one knows that

(10.2)
The rank r of the Jacobian matrix, at a point of y ∈ Y , associated
to polynomial functions vanishing on Y , is at most n − dim(Y ), i.e.
codim(Y ) ≥ r.

Applying this to f1, . . . , fp one has codim(Y ) ≥ p, hence the codimension of any
irreducible component of Y is of codimension greater than or equal to p. On the
other hand, from the definition of Y by p equations and [19, 3.4 Corollary B], every
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irreducible component of Y has codimension at most p. Hence every irreducible
component of Y is of dimension n − p. Then from the definition of a nonsingular
point in [15, I.5] and (10.2), one sees that x is nonsingular in Y .

A simple point in the sense of [4, AG.17.1] is exactly a nonsingular point in the
sense of [15], due to [15, Theorem I.5.1]. Hence, by [4, Theorem 17.1], one sees
that x belongs to only one irreducible component of Y . Let Z be the irreducible
component of Y which contains x and let O′′ be the complement in Ωn of the (finite)
union of the other irreducible components of Y . It is open in Ωn and contains x.

Let us show that O := O′ ∩O′′ satisfies (b). In fact X ′ = X ∩O is contained in
Z ′ = Z ∩ O and has the same dimension. It contains x. Moreover as X (resp. Z)
is irreducible, X ′ and Z ′ are irreducible [4, AG.1.1]. Hence from [19, Proposition
3.2], one has X ′ = Z ′. This proves (10.1).

Let f1, ..., fp be a set of polynomials, with coefficients in F, as in (10.1) forX=G.
Then we consider the map h : Fn →Fn, x 
→ (f1(x), . . . , fp(x), x1(x), . . . xn−p(x)),
where the affine coordinates (x1, . . . , xn) in Fn are equal to zero at the neutral
element 1 of G and are chosen such that the differential of h at 1 is bijective. The
Inverse Function Theorem (cf. [28, LG.2.10]) gives a local analytic inverse to this
map, φ.

Let ψ be the map defined on an open neighborhood V of (0, , . . . , 0) in Fn−p by
ψ(y) = φ((0, . . . , 0), y). From (10.1) and from the fact that φ is a homeomorphism,
one sees that if V is small enough, ψ is a homeomorphism from V onto an open
neighborhood of 1 in G. The differential at 0 of ψ is injective and its image is a
subspace of the space of common zeroes in Fn of the differential at 1 of f1, . . . , fp.
The space of common zeroes in Ωn of the differential at 1 of f1, . . . , fp is the tangent
space at 1 of G, hence is equal to g. For reasons of dimension this implies that the
image of the differential at 0 of ψ is equal to g(F).

The map ψ gives one chart of G at 1. Then by translation this gives a chart at
every point of G. The analyticity of the change of charts follows from the analyticity
of φ and its inverse. Similarly one proves that G has a structure of Lie groups. It
is even an analytic Lie subgroup of GL(n,F). The Lie algebra of G is the image of
the differential at 0 of ψ. Hence the Lie algebra of G is g(F).
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[5] Armand Borel and Jacques Tits, Groupes réductifs (French), Inst. Hautes Études Sci. Publ.
Math. 27 (1965), 55–150. MR0207712 (34 #7527)
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[13] Patrick Delorme, Théorème de Paley-Wiener pour les fonctions de Whittaker sur un groupe
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(French, with English and French summaries), J. Funct. Anal. 254 (2008), no. 4, 1088–1145,
DOI 10.1016/j.jfa.2007.07.012. MR2381204 (2009d:22013)

[24] Toshihiko Matsuki, Closure relations for orbits on affine symmetric spaces under the action
of minimal parabolic subgroups, Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv.
Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 541–559. MR1039852

(91c:22014)
[25] David Renard, Représentations des groupes réductifs p-adiques (French), Cours Spécialisés
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