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GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA

P. DELORME, P. HARINCK, AND S. SOUAIFI

Abstract. Following a scheme suggested by B. Feigon, we investigate a local
relative trace formula in the situation of a reductive p-adic group G relative
to a symmetric subgroup H = H(F) where H is split over the local field F of
characteristic zero and G = G(F) is the restriction of scalars of H/E relative

to a quadratic unramified extension E of F. We adapt techniques of the proof
of the local trace formula by J. Arthur in order to get a geometric expansion
of the integral over H × H of a truncated kernel associated to the regular
representation of G.
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Introduction

In this article, we investigate a local relative trace formula in the situation of
p-adic groups relative to a symmetric subgroup. This work is inspired by the recent
results of B. Feigon (see [F]), where she investigated what she called a local relative
trace formula on PGL(2) and a local Kuznetsov trace formula for U(2).

Before we describe our setting and results, we would like to explain on the toy
model of finite groups the framework of the formulas of Feigon. We even start with
the more general framework of the relative trace formula initiated by H. Jacquet
(cf. [Jac97]; see also [O] for an account of some applications of this relative trace
formula).

Let G be a finite group and let H, H ′, Γ be subgroups of G. We endow any finite
set with the counting measure. We denote by r the right regular representation of
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1816 P. DELORME, P. HARINCK, AND S. SOUAIFI

G on L2(Γ\G) and we consider the H-fixed linear form ξ on L2(Γ\G) defined by

(0.1) ξ =
∑

h∈H∩Γ\H
δΓh,

where δΓh is the Dirac measure of the coset Γh or, in other words,

ξ(ψ) =

∫
H∩Γ\H

ψ(Γh)dh, ψ ∈ L2(Γ\G).

We define similarly ξ′ relative to H ′.
We view ξ, ξ′ as elements of L2(Γ\G) and we form the coefficient cξ,ξ′(g) =

(r(g)ξ, ξ′). Integrating against functions on G, it defines a “distribution” Θ on G
which is right invariant by H and left invariant by H ′. The relative trace formula
in this context gives two expressions of Θ(f) for f a function on G: the first one,
called the geometric side, in terms of orbital integrals, and the second one, called
the spectral side, in terms of irreducible representations of G.

First we deal with the geometric side. For this purpose we introduce suitable
orbital integrals. For γ ∈ Γ, we set [γ] := (H ′ ∩ Γ)γ(H ∩ Γ) and introduce two
subgroups of H ′ ×H:

(H ′ ×H)γ = {(h′, h)|h′γh−1 = γ}, (H ′ ∩ Γ×H ∩ Γ)γ = (H ′ ×H)γ ∩ (Γ× Γ).

Then, we define the orbital integral of a function f on G by

I([γ], f) =

∫
(H′×H)γ\(H′×H)

f(h′γh−1)dh′dh.

Let f be a function on G. Since r(g)δΓh = δΓhg−1 , the definition of ξ and ξ′ gives

Θ(f) =
∑
g∈G

f(g)Θ(g) =
∑
g∈G

f(g)
1

vol(Γ ∩H)

1

vol(Γ ∩H ′)

∑
h∈H

∑
h′∈H′

(δΓhg−1 , δΓh′).

Changing g in g−1h and using the fact that (δΓg, δΓh′) is equal to 1 for g ∈ Γh′ and
to zero otherwise, one gets

(0.2) Θ(f) =
1

vol(Γ ∩H)

1

vol(Γ ∩H ′)

∑
h∈H

∑
h′∈H′

∑
γ∈Γ

f(h′γh).

A simple computation of volumes leads to the geometric expression of Θ in terms
of orbital integrals:

(0.3) Θ(f) =
∑

[γ]∈H′∩Γ\Γ/Γ∩H

vol((H ′ ∩ Γ×H ∩ Γ)γ\(H ′ ×H)γ)I([γ], f).

Let us shift to the spectral side. We decompose L2(Γ\G) into isotypic compo-

nents
⊕

π∈Ĝ Hπ, where Ĝ is the unitary dual of G. The restriction of ξ and ξ′ to
Hπ will be denoted ξπ and ξ′π respectively. The spectral formula for Θ is the simple
equality

(0.4) Θ =
∑
π∈ ̂G

cξπ,ξ′π′ .

Notice that it might also be interesting to decompose further the representation
into irreducible representations, and the restriction of ξ to each of them will be
called a period.
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GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA 1817

There is a third interpretation of the distribution Θ. If f is a function on G,
then the operator r(f) on L2(Γ\G) is an integral operator whose kernel Kf is the
function on Γ\G× Γ\G given by

Kf (x, y) =
∑
γ∈Γ

f(x−1γy).

By (0.2), one gets easily the following expression of Θ(f):

(0.5) Θ(f) =

∫
(H′∩Γ\H′)×(H∩Γ\H)

Kf (h
′, h)dh′dh.

This point of view is probably the best one. But it is important to have the
representation theoretic meaning of Θ.

The toy model for the local relative trace formula of Feigon appears as a partic-
ular case of the above relative trace formula. In that case, the groups G, H, and
H ′ are products G1×G1, H1×H1, and H ′

1×H ′
1 respectively, and Γ is the diagonal

of G1×G1. Then Γ\G identifies with G1, and the right representation corresponds
to the representation R of G1 ×G1 on L2(G1) given by [R(x, y)φ](g) = φ(x−1gy).
Hence we have

ξ(ψ) =

∫
H1

ψ(h)dh, ψ ∈ L2(G1).

The spectral side is more concrete. If (π1,Hπ1
) is an irreducible unitary repre-

sentation of G1, then G1 × G1 acts on End(Hπ1
) by an irreducible representation

denoted by π. It is unitary if we use the scalar product (·, ·) associated to the
Hilbert-Schmidt norm. Moreover L2(G1) is canonically isomorphic to the direct

sum
⊕

π1∈̂G1
End(Hπ1

), where Ĝ1 is the unitary dual of G1. Let Pπ ∈ Hπ1
be the

orthogonal projector onto the space of invariant vectors under H1. Then the period
map ξπ, which is a linear form on End(Hπ1

), is given by

ξπ(T ) =

∫
H1

Tr(π1(h)T )dh = (T, Pπ), T ∈ End(Hπ1
).

One further decomposes ξπ by using an orthonormal basis (ηπ1,i) of the space
of H1-invariant vectors. We will use the identification of End(Hπ1

) with the tensor
product of Hπ1

with its conjugate complex vector space. Under this identification,
one has

Pπ =
∑
i

ηπ1,i ⊗ ηπ1,i.

We define similar notation for ξ′ relative to H ′. Then, for two functions f1, f2 on
G1, the spectral side of (0.4) can be written

Θ(f1 ⊗ f2) =
∑

π1∈̂G1

∑
i,i′

cηπ1,i,η′
π1,i′

(f1)cηπ1,i,η′
π1,i′

(f2).

For the geometric side, we define the orbital integral of a function f on G1 by

I(g, f) =

∫
(H′

1×H1)g\H′
1×H1

f(h′gh−1)dhdh′,

which depends only on the double coset H ′
1gH1. Then one gets by (0.3) the equality

Θ(f1 ⊗ f2) =
∑

g∈H′
1\G1/H1

v(g)I(g, f1)I(g, f2),
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1818 P. DELORME, P. HARINCK, AND S. SOUAIFI

where the v(g)’s are positive constants depending on volumes. Hence the final form
of the local relative trace formula is∑

g∈H′
1\G1/H1

v(g)I(g, f1)I(g, f2) =
∑

π1∈Ĝ1

∑
i,i′

cηπ1,i,η′
π1,i′

(f1)cηπ1,i,η′
π1,i′

(f2).

This formula allows us to invert the orbital integrals I(g, f1) for any g ∈
H ′

1\G1/H1. For this purpose, one chooses g1 ∈ G1 and takes for f2 the Dirac
measure at g1. Then I(g1, f2) = 1, and the other orbital integrals of f2 are zero.
Hence

v(g1)I(g1, f1) =
∑

π1∈Ĝ1

∑
i,i′

cηπ1,i,η′
π1,i′

(f1)cηπ1,i,η′
π1,i′

(f2).

In order to make the formula more precise, one needs to compute the constants
cηπ1,i,η′

π1,i′
(f2).

The inversion of orbital integrals is one of our motivations for investigating a
local relative trace formula in the situation of p-adic groups relative to a symmetric
subgroup H, and we will take H = H ′.

In this article, we consider a reductive algebraic group H defined over a non-
archimedean local field F of characteristic 0. We fix a quadratic unramified exten-
sion E of F and we consider the group G := ResE /FH obtained by restriction of
scalars of H . Here H is considered as a group defined over E. We denote by H and
G the group of F-points of H and G respectively. Then G is isomorphic to H(E),
and H appears as the fixed points of G under the involution of G induced by the
nontrivial element of the Galois group of E /F. We assume that H is split over F
and we fix a maximal split torus A0 of H. The groups G and H correspond to G1

and H1 = H ′
1 respectively in our example of a local relative trace formula for finite

groups.
The starting point of our study is the analogue to the expression (0.5). We

consider the regular representation R of G×G on L2(G) given by (R(g1, g2)ψ)(x) =
ψ(g−1

1 xg2). Then for f = f1 ⊗ f2 where f1 and f2 are two smooth compactly
supported functions on G, the corresponding operator R(f) is an integral operator
on L2(G) with smooth kernel

Kf (x, y) =

∫
G

f1(xg)f2(gy)dg =

∫
G

f1(g)f2(x
−1gy)dg.

As H may not be compact, even modulo the split component AH of the center
of H, we shall truncate this kernel to integrate it. We multiply this kernel by a
product of functions u(x, T )u(y, T ) where u(·, T ) is the characteristic function of a
large compact subset in AH\H depending on a parameter T ∈ a0 = Rat(A0)⊗Z R

(Rat(A0) is the group of F-rational characters of A0) as in [Ar3] (cf. (2.7)). As H
is split, we have AH = AG. Hence the kernel Kf is left invariant by the diagonal
diag(AH) of AH , and we can integrate the truncated kernel over diag(AH)\H ×H.
We set

KT (f) :=

∫
diag(AH)\(H×H)

Kf (x1, x2)u(x1, T )u(x2, T )d(x1, x2).

In [Ar3], Arthur studies the integral of Kf (x, x)u(x, T ) over AG\G to obtain its
local trace formula on reductive groups.

We study the geometric expression of the distribution KT (f) and its dependence
on the parameter T . Our main results (Theorem 2.3 and Corollary 2.11) assert that
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GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA 1819

KT (f) is asymptotic as T approaches infinity to another distribution JT (f) of the
form

(0.6) JT (f) =

N∑
k=0

pξk(T, f)e
ξk(T ),

where ξ0 = 0, . . . , ξN are distinct points of the dual space ia∗0 and each pξk(T, f) is

a polynomial function in T . Moreover, the constant term J̃(f) := p0(0, f) of J
T (f)

is well-defined and uniquely determined by KT (f). We give an explicit expression
of this constant term in terms of weighted orbital integrals.

These results are analogous to those of [Ar3] for the group case. Our proof follows
closely the study by Arthur of the geometric side of his local trace formula, which
we were able to adapt under our assumptions to the case of double truncations.

In the first section, we introduce notation on groups and on symmetric spaces
according to [RR]. The starting point of our study is the Weyl integration formula
established in [RR], which takes into account the (H,H)-double classes of σ-regular
elements of G (cf. (1.30) and (1.32)). These double classes are expressed in terms
of σ-tori, which are tori whose elements are anti-invariant by σ. Under our assump-
tions, there is a bijective correspondence S → Sσ between maximal tori of H and
maximal σ-tori of G which preserves H-conjugacy classes.

Then the Weyl integration formula can be written in terms of Levi subgroups
M ∈ L(A0) of H containing A0 and M -conjugacy classes of maximal anisotropic
tori of M (cf. (1.33)):∫

G

f(g)dg

=
∑

M∈L(A0)

cM
∑

S∈TM

∑
xm∈κS

cS,xm

∫
Sσ

|Δσ(xmγ)|1/2F

∫
diag(AM )\H×H

f(h−1xmγl)

× d(h, l)dγ,

where κS is a finite subset of G, cM and cS,xm
are positive constants, TM is a

suitable set of anisotropic tori of M , and Δσ is a jacobian.
A fundamental result for our proofs concerns the orbital integral M(f) of a

compactly supported smooth function f on G. It is defined on σ-regular points by

M(f)(xmγ) = |Δσ(xmγ)|1/4F

∫
diag(AS)\H×H

f(h−1xmγl)d(h, l),

where S is a maximal torus of H, xm ∈ κS , and γ ∈ Sσ such that xmγ is σ-regular.
As in the group case using the exponential map and the property that each root of
Sσ has multiciplity 2 in the Lie algebra of G, we prove that the orbital integral is
bounded on the subset of σ-regular points of G (cf. Theorem 1.2).

In the second section, we explain the truncation process based on the notion
of (H,M)-orthogonal sets and prove our main results. Using the Weyl integration
formula, we can write

KT (f) =
∑

M∈L(A0)

cM
∑

S∈TM

∑
xm∈κS

cS,xm

∫
Sσ

KT (xm, γ, f)dγ,
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1820 P. DELORME, P. HARINCK, AND S. SOUAIFI

where

KT (xm, γ, f) = |Δσ(xmγ)|1/2F

∫
diag(AM )\H×H

∫
diag(AM )\H×H

f1(y
−1
1 xmγy2)

×f2(x
−1
1 xmγx2)uM (x1, y1, x2, y2, T )d(x1, x2)d(y1, y2)

and

uM (x1, y1, x2, y2, T ) =

∫
AH\AM

u(y−1
1 ax1, T )u(y

−1
2 ax2, T )da.

The function JT (f) is obtained in a similar way to KT (f), where we replace the
weight function uM (x1, y1, x2, y2, T ) by another weight function vM (x1, y1, x2, y2, T ).

The weight function vM is given by

vM (x1, y1, x2, y2, T ) :=

∫
AH\AM

σM (hM (a),YM (x1, y1, x2, y2, T ))da,

where σM (·,Y) is the function defined in [Ar3, equation (3.8)] depending on an
(H,M)-orthogonal set Y and YM (x1, y1, x2, y2, T ) is an (H,M)-orthogonal set ob-
tained as the “minimum” of two (H,M)-orthogonal sets YM (x1, y1, T ) and
YM (x2, y2, T ) (cf. (2.4), Lemma 2.2, and (2.11)). If Y1 and Y2 are two (H,M)-
orthogonal positive sets, then the “minimum” Z of Y1 and Y2 satisfies the property
that the convex hull SM (Z) in aH\aM of the points of Z is the intersection of the
convex hulls SM (Y1) and SM (Y2) in aH\aM of the points of Y1 and Y2 respectively.

If ‖T‖ is large compared to ‖xi‖, ‖yi‖, i = 1, 2, then σM (·,YM (x1, y1, x2, y2, T ))
is just the characteristic function of SM (YM (x1, y1, x2, y2, T )). In that case, this
function is equal to the product of σM (·,YM (x1, y1, T )) and σM (·,YM (x2, y2, T )).

A key step of our proof is a good estimate of

|uM (x1, y1, x2, y2, T )− vM (x1, y1, x2, y2, T )|

when xi, yi, i = 1, 2, satisfy f1(y
−1
1 xmγy2)f2(x

−1
1 xmγx2) �= 0 for some γ ∈ Sσ and

xm ∈ κS . Then, using that orbital integrals are bounded, we deduce our result on
|KT (f)− JT (f)|.

This work is a first step towards a local relative trace formula. For the spectral
side, we have to prove that KT (f) is asymptotic to a distribution kT (f) which is
of general form (0.6) and constructed from spectral data. We hope that we can
express the constant term of kT (f) in terms of regularized local period integrals
introduced by Feigon in [F] in the same way as Jacquet-Lapid-Rogawski regularized
period integrals for automorphic forms in [JLR]. In [DH], we have explicated the
spectral side of such a local relative trace formula for PGL(2).

1. Preliminaries

1.1. Reductive p-adic groups. Let F be a non-archimedean local field of charac-
teristic 0 and odd residual characteristic q. Let |·|F denote the normalized valuation
on F.

For any algebraic variety M defined over F, we identify M with M(F), where F
is an algebraic closure of F, and we set M := M(F).

Licensed to Universite de Strasbourg. Prepared on Wed Jan  9 16:42:24 EST 2019 for download from IP 130.79.108.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA 1821

We will use the same convention as in [W2]. One considers various algebraic
groups J defined over F, sentences such as

(1.1)

“let M be an algebraic group” will mean “let M be the F-points of an
algebraic group M defined over F”,
and “let A be a split torus” will mean “let A be the group of F-points
of a torus, A, defined and split over F”.

If J is an algebraic group, one denotes by Rat(J) the group of its rational characters
defined over F. If V is a vector space, V ∗ denotes its dual. If V is real, VC refers
to its complexification.

Let G be an algebraic reductive group defined over F. We fix a maximal split
torus A0 of G and we denote by M0 its centralizer in G.

Let AG be the maximal split torus of the center of G and let

aG := HomZ(Rat(G),R).

One has the canonical map hG : G → aG, which is defined by

(1.2) e〈hG(x),χ〉 = |χ(x)|F, x ∈ G,χ ∈ Rat(G).

The restriction of rational characters from G to AG induces an isomorphism

(1.3) Rat(G)⊗Z R � Rat(AG)⊗Z R.

Notice that Rat(AG) appears as a generating lattice in the dual space a∗G of aG
and

(1.4) a∗G � Rat(G)⊗Z R.

The kernel G1 of hG is the intersection over all characters χ ∈ Rat(G) of G of
the kernels of |χ|F . The group G1 is normal in G and contains the derived group
Gder of G. Moreover, it is well-known that

(1.5) the group G1 is generated by the compact subgroups of G.

G. Henniart has communicated to us an unpublished proof of this result by N. Abe,
F. Herzig, G. Henniart, and M. F. Vigneras.

(1.6)
One denotes by aG,F (resp. ãG,F) the image of G (resp., AG) by hG.
Then G/G1 is isomorphic to the lattice aG,F.

If P is a parabolic subgroup of G with Levi subgroup M , we keep the same
notation with M instead of G.

The inclusions AG ⊂ AM ⊂ M ⊂ G determine a surjective morphism aM,F →
aG,F (resp. an injective morphism, ãG,F → ãM,F) which extends uniquely to a
surjective linear map hMG from aM to aG (resp. injective linear map between aG
and aM ). The second map allows us to identify aG with a subspace of aM , and the
kernel of the first one, aGM , satisfies

(1.7) aM = aGM ⊕ aG.

For M = M0, we set a0 := aM0
and aG0 := aGM0

. We fix a scalar product (·, ·) on a0
which is invariant under the Weyl group W (G,A0) of (G,A0). Then aG identifies
with the fixed point set of a0 by W (G,A0), and aG0 is an invariant subspace of
a0 under W (G,A0). Hence it is the orthogonal subspace to aG in a0. The space
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1822 P. DELORME, P. HARINCK, AND S. SOUAIFI

a∗G might be viewed as a subspace of a∗0 by (1.7). Moreover, by definition of the
surjective map a0 → aG, one deduces that

(1.8)
if m0 ∈ M0, then hG(m0) is the orthogonal projection of hM0

(m0) onto
aG.

From (1.7) applied to (M,M0) instead of (G,M), one obtains a decomposition
a0 = aM0 ⊕ aM . From the W (G,A0)-invariance of the scalar product on a0, one
gets:

(1.9)
The decomposition a0 = aM0 ⊕ aM is an orthogonal decomposition.
The space a∗M appears as a subspace of a∗0, and in the identification of
a0 with a∗0 given by the scalar product, a∗M identifies with aM .

The decomposition aM = aGM ⊕ aG is orthogonal with respect to the restriction
to aM of the W (G,A0)-invariant scalar product on a0, and the natural map hMG

is identified with the orthogonal projection of aM onto aG.

(1.10)
In particular, aG,F is the orthogonal projection of aM,F onto aG. More-
over, we have ãG,F = aG ∩ ãM,F (cf. [Ar3, equation (1.4)]).

By a Levi subgroup of G, we mean a group M containing M0 which is the Levi
component of a parabolic subgroup of G. If P is a parabolic subgroup containing
M0, then it has a unique Levi subgroup denoted by MP which contains M0. We
will denote by NP the unipotent radical of P .

For a Levi subgroup M , we write L(M) for the finite set of Levi subgroups of G
which contain M and we also let P(M) denote the finite set of parabolic subgroups
P with MP = M .

Let K be the fixator of a special point in the apartment of A0 in the Bruhat-Tits
building of G. We have the Cartan decomposition

(1.11) G = KM0K.

If P = MPNP is a parabolic subgroup of G containing M0, then

(1.12) G = PK = MPNPK.

If x ∈ G, we can write

(1.13) x = mP (x)nP (x)kP (x), mP (x) ∈ MP , nP (x) ∈ NP , kP (x) ∈ K.

We set

(1.14) hP (x) := hMP
(mP (x)).

The point mP (x) is defined up to multiplication by an element of K ∩ MP , but
hP (x) does not depend of this choice.

We introduce a norm ‖ · ‖ on G as in [W2, Section I.1] (called height function in
[W2]). Let Λ0 : G → GLn(F) be an algebraic embedding. For g ∈ G, we write

Λ0(g) = (ai,j)i,j=1,...,n, Λ0(g
−1) = (bi,j)i,j=1,...,n.

We set

(1.15) ‖g‖ := sup
i,j

sup(|ai,j |F, |bi,j |F).

If Λ : G → GLd(F) is another algebraic embedding, then the norm ‖·‖Λ attached to
Λ as above is equivalent to ‖ · ‖ in the following sense: there are a positive constant
CΛ and a positive integer dΛ such that

‖g‖Λ ≤ CΛ‖g‖dΛ .
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GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA 1823

This allows us to use results of [W2] for estimates on norms.
The following properties of the norm ‖ · ‖ are immediate consequences of its

definition:

(1.16) 1 ≤ ‖x‖ = ‖x−1‖, x ∈ G,

(1.17) ‖xy‖ ≤ ‖x‖‖y‖, x, y ∈ G.

In order to have estimates, we introduce the following notation. Let r be a
positive integer. Let f and g be two positive functions defined on a subset W of
Gr.

(1.18)
We write f(x) � g(x), x ∈ W , if and only if there are a positive
constant c and a positive integer d such that f(x) ≤ cg(x)d for all
x ∈ W .

(1.19) We write f(x) ≈ g(x), x ∈ W , if f(x) � g(x), x ∈ W , and g(x) � f(x),
x ∈ W .

If f1, f2, and f3 are positive functions on Gr, we clearly have:
if f1(x) � f2(x), x ∈ W , and f2(x) � f3(x), x ∈ W , then f1(x) � f3(x), x ∈ W ;
if f1(x) ≈ f2(x), x ∈ W , and f2(x) ≈ f3(x), x ∈ W , then f1(x) ≈ f3(x), x ∈ W .

Moreover, if f1, f2, g1 and g2 are positive functions on Gr which take values greater
than or equal to 1, we obtain easily the following properties:

(1.20)

(1) for all positive integers d, we have f1(x) ≈ f1(x)
d, x ∈ W ;

(2) if f1(x) � g1(x), x ∈ W , and f2(x) � g2(x), x ∈ W , then
(f1f2)(x) � (g1g2)(x), x ∈ W ;

(3) if f1(x) ≈ g1(x), x ∈ W , and f2(x) ≈ g2(x), x ∈ W , then
(f1f2)(x) ≈ (g1g2)(x), x ∈ W .

Since ‖x‖ = ‖xyy−1‖ ≤ ‖xy‖‖y‖ and ‖xy‖ ≤ ‖x‖‖y‖, we obtain

(1.21) If Ω is a compact subset of G, then ‖x‖ ≈ ‖xω‖, x ∈ G, ω ∈ Ω.

Let P = MPNP be a parabolic subgroup of G containing M0. Then each x ∈ G
can be written x = mP (x)nP (x)k, where mP (x) ∈ MP , nP (x) ∈ NP , and k ∈ K.
By [Ar3, equation (4.5)], we then have

(1.22) ‖mP (x)‖+ ‖nP (x)‖ � ‖x‖, x ∈ G.

Recall that G1 is the kernel of hG : G → aG. Let us prove that

(1.23) ‖xa‖ ≈ ‖x‖‖a‖, x ∈ G1, a ∈ AG.

According to the Cartan decomposition (1.11), if g ∈ G we denote by m0(g) an
element of M0 such that there exist k, k′ ∈ K with g = km0(g)k

′. Notice that
‖hM0

(m0(g))‖ does not depend on our choice of m0(g). By (1.21), one has

(1.24) ‖g‖ ≈ ‖m0(g)‖, g ∈ G,

and, by [W2, equation I.1(6)], we have

(1.25) ‖m0‖ ≈ e‖hM0
(m0)‖, m0 ∈ M0.

Let x ∈ G1 and a ∈ AG. Then m0(x) ∈ G1 ∩ M0 and m0(xa) = m0(x)a. Thus,
one has hG(m0(x)) = 0. We deduce from (1.7) and (1.8) that hM0

(m0(x)) belongs
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to aG0 . Since hM0
(m0(x)a) = hM0

(m0(x))+ hM0
(a) and hM0

(a) ∈ aG, we obtain by
orthogonality that

1

2
(‖hM0

(m0(x))‖+ ‖hM0
(a)‖) ≤ ‖hM0

(m0(x)a)‖ ≤ ‖hM0
(m0(x))‖+ ‖hM0

(a)‖.

Hence (1.23) follows from (1.24) and (1.25).
We denote by C∞

c (G) the space of smooth functions on G with compact support.
We normalize Haar measures according to [Ar3, Section 1]. Unless otherwise stated,
the Haar measure on a compact group will be normalized to have total volume 1.

Let M be a Levi subgroup of G. We fix a Haar measure on aM so that the
volume of the quotient aM/ãM,F equals 1.

Let P = MNP ∈ P(M). We denote by δP the modular function of P given by

δP (mn) = e2ρP (hM (m)), m ∈ M, n ∈ NP ,

where 2ρP is the sum of roots, with multiplicity, of (P,AM ). Let P̄ = MNP̄ be the
parabolic subgroup which is opposite to P . If dn is a Haar measure on NP , then
the integral

γ(P ) =

∫
NP

e2ρP̄ (hP̄ (n))dn

is finite. Moreover, the measure γ(P )−1dn is independent of the choice of dn and
thus defines a canonical Haar measure on NP .

If dm is a Haar measure on M , then there exists a unique Haar measure dg on
G, independent of the choice of the parabolic subgroup P , such that∫

G

f(g)dg =
1

γ(P )γ(P̄ )

∫
NP

∫
M

∫
NP̄

f(nmn̄)δP (m)−1dn̄ dm dn,

for f ∈ C∞
c (G). If so, we say that dm and dg are compatible. Compatibility has

the obvious transitivity property with respect to Levi subgroups of M . Using the
Iwasawa decomposition (1.12), these measures satisfy∫

G

f(g)dg =
1

γ(P )

∫
K

∫
M

∫
NP

f(mnk)dn dm dk.

1.2. The symmetric space H\G. Let E be an unramified quadratic extension of
F. Then E = F[τ ] where τ2 is not a square in F. We denote by σ the nontrivial
element of the Galois group Gal(E /F) of E /F. The normalized valuation | · |E on
E satisfies |x|E = |x|2F for x ∈ F.

If J is an algebraic group defined over F, then J is as usual its group of points
over F. Let J ×F E be the group, defined over E, obtained from J by extension of
scalars. We consider the group

J̃ := ResE /F(J ×F E)

defined over F, obtained by restriction of scalars.
With our convention, one has J̃ = J̃(F) and J̃ is isomorphic to J(E).
Let H be a reductive group defined over F. Throughout this article, we assume

that H is split over F and we set G := H̃ and G := H̃. We fix a maximal split torus
A0 of H. Then A0 is also a maximal split torus of G. We also have AH = AG.

The nontrivial element σ of Gal(E /F) induces an involution of G defined over F
and denoted by the same letter. This automorphism σ extends to an E-automor-
phism σE on G×F E.
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We consider the canonical map ϕ defined over F from G to (H×FE)× (H×FE)
by ϕ(g) = (g, σ(g)).

(1.26)
Then ϕ extends uniquely to an isomorphism Ψ defined over E from
G ×F E to (H ×F E) × (H ×F E) such that Ψ(g) = (g, σ(g)) for all
g ∈ G. Moreover, if Ψ(g) = (g1, g2), then Ψ(σE(g)) = (g2, g1).

Now we turn to the description of the geometric structure of the symmetric space
S = H\G according to [RR, Sections 2 and 3].

Let g be the Lie algebra of G and let g be the Lie algebra of its F-points. We
will say that g is the Lie algebra of G and the Lie algebra h of H consists of the
elements of g invariant by σ. We denote by q the space of anti-invariant elements
of g by σ. Thus one has g = h⊕ q, and g may be identified with h⊗F E.

As in [RR, Section 2], we say that a subspace c of q is a Cartan subspace of q if
c is a maximal abelian subspace of q (or equivalently a maximal abelian subalgebra
of q) made of semisimple elements. As E = F[τ ], the multiplication by τ induces
an isomorphism between the set of Cartan subspaces of q and the set of Cartan
subalgebras of h which preserves H-conjugacy classes.

We denote by P the connected component of 1 in the set of x in G such that
σ(x) = x−1. Then the map p from G to P defined by p(x) = x−1σ(x) induces an
isomorphim of affine varieties, p : H\G → P.

A torus A of G is called a σ-torus if A is a torus defined over F contained in P.
Notice that such a torus is called a σ-split torus in [RR]. We would rather change
the terminology, as σ-tori are not necessarily split over F. Each σ-torus is the
centralizer in P of a Cartan subspace of q or equivalently of a Cartan subalgebra
of h.

Let S be a maximal torus of H. We denote by Sσ the connected component of

S̃ ∩ P. Then Sσ is a σ-torus defined over F which identifies with the anti-diagonal
{(s, s−1); s ∈ S} of S × S by the isomorphism (1.26). Thus Sσ is a maximal σ-
torus, and each maximal σ-torus arises in this way. The H-conjugacy classes of
maximal tori of H are in a bijective correspondence with the H-conjugacy classes
of maximal σ-tori of G by the map S 
→ Sσ. The roots of S (resp. Sσ) in h = Lie(H)

(resp. q⊗F F̄) are the restrictions of the roots of S̃ in g = Lie(G).

(1.27)

Therefore, each root of S (resp. Sσ) in g has multiplicity two. If S̃ splits

over a finite extension F′ of F, we denote by Φ(S′
σ, g

′) (resp. Φ(S′, h′))
the set of roots of Sσ(F

′) in g⊗F F′ (resp. S(F′) in h⊗F F′).

Let s̃ be the Lie algebra of S̃. Then the differential of each root α of
Φ(S̃′, g′) defines a linear form on s̃⊗F F′ denoted by the same letter.

Let Gal(F/F) be the Galois group of F/F. By [RR, Section 3], the set of (H,Sσ)-
double cosets in HSσ∩G are parametrized by the finite set I of cohomology classes
in H1(Gal(F/F), H ∩ Sσ) which split in both H and Sσ. To each such class m, we
attach an element xm ∈ G of the form xm = hma−1

m with hm ∈ H and am ∈ Sσ

such that mγ = h−1
m γ(hm) = a−1

m γ(am) for all γ ∈ Gal(F/F).

Lemma 1.1. Let x ∈ G such that x = hs with h ∈ H and s ∈ S̃. Then xSx−1 is
a maximal torus of H, and there exists h′ ∈ H such that x′ = h′x centralizes the
split connected component AS of S.
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Proof. By replacing S by an H-conjugate if necessary, we may assume that A := AS

is contained in the fixed maximal split torus A0 of H. Since H is split, A0 is also
a maximal split torus of G.

As x = hs ∈ G, the torus S′ := xSx−1 is equal to hSh−1 ⊂ H . Thus S′ is
defined over F and is contained in H . Hence we get the first assertion.

Let S′ := S′(F) and let A′ be the split connected component of S′. There exists
h1 ∈ H such that h1A

′h−1
1 ⊂ A0. We set x1 = h1x. Then we have A1 := x1Ax−1

1 ⊂
A0.

LetM = ZG(A) andM1 = ZG(A1) = x1Mx−1
1 . Then A0 and x1A0x

−1
1 are maxi-

mal split tori ofM1. Therefore, there exists y1 ∈ M1 such that y1x1A0x
−1
1 y−1

1 = A0.
As H is split, the Weyl group of A0 in G coincides with the Weyl group of A0 in
H. Thus there exist h2 ∈ NH(A0) and v ∈ ZG(A0) such that z := y1x1 = h2v.

For a ∈ A ⊂ A0, one has zaz−1 = h2ah
−1
2 = y1x1ax

−1
1 y−1

1 = x1ax
−1
1 since

x1ax
−1
1 ∈ A1 and y1 ∈ M1. One deduces that x′ := h−1

2 h1x centralizes A. �

This lemma allows us to state the following result.

(1.28)

For each maximal torus S of H, we can fix a finite set of representatives
κS = {xm}m∈I of the (H,Sσ)-double cosets in HSσ∩G such that each
element xm may be written xm = hma−1

m where hm ∈ H centralizes
AS and am ∈ Sσ. Hence xm centralizes AS .

1.3. Weyl integration formula and orbital integrals. We first recall basic
notions on the symmetric space according to [RR, Section 3]. An element x in G
is called σ-semisimple if the double coset HxH is Zariski closed. This is equivalent
to saying that p(x) is a semisimple point of G. We say that a σ-semisimple element
x is σ-regular if this closed double coset HxH is of maximal dimension. This is
equivalent to saying that the centralizer of p(x) in q (resp. P) is a Cartan subspace
of q (resp. a maximal σ-torus of G).

We denote by Gσ−reg the set of σ-regular elements of G.
For g ∈ G, we denote by DG(g) the coefficient of the least power of t appearing

nontrivially in det(t+ 1−Ad(g)). We define the H-bi-invariant function Δσ on G
by Δσ(x) = DG(p(x)). Then, by [RR, Lemmas 3.2 and 3.3], the set of g ∈ G such

that Δσ(g) �= 0 coincides with Gσ−reg.
Let S be a maximal torus of H with Lie algebra s. Then s̃ := s ⊗F E identifies

with the Lie algebra of S̃. For g ∈ xmSσ with xm ∈ κS , one has

(1.29) Δσ(g) = DG(p(g)) = det(1−Ad(p(g)))g/s̃.

By [RR, Theorem 3.4(1)], the set Gσ−reg is a disjoint union

(1.30)

Gσ−reg =
⋃

{S}H

⋃
xm∈κS

H
(
(xmSσ) ∩Gσ−reg

)
H,

where {S}H runs the H-conjugacy classes of maximal tori of H.

If xm ∈ κS, then xm = hmam for some hm ∈ H and am ∈ Sσ; hence p(xm) = a−2
m

commutes with S and Sσ. Therefore for γ ∈ Sσ, we have

p(xmγ) = p(xm)γ−2 and HxmγS = Hxmγ.
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We have the following Weyl integration formula (cf. [RR, Theorem 3.4(2)]).

(1.31)

Let f be a compactly supported smooth function on G. Then we have∫
G

f(y)dy

=
∑
{S}H

∑
xm∈κS

c0S,xm

∫
Sσ

|Δσ(xmγ)|1/2F

∫
S\H

∫
H

f(hxmγl)dhdl̄dγ,

where the constants c0S,xm
are explicitly given in [RR, Theorem 3.4(1)].

For our purpose, we need another version of this Weyl integration formula. Let
S be a maximal torus of H. We denote by AS its split connected component.
Since the quotient AS\S is compact, by our choice of measure, the integration over
S\H in the Weyl formula above can be replaced by an integration over AS\H.
Moreover, it is convenient to change h into h−1. As every xm ∈ κS commutes with
AS (cf. (1.28)), one can replace the integration over (AS\H)×H by an integration
over diag(AS)\(H × H), where diag(AS) is the diagonal of AS . This gives the
following Weyl integration formula equivalent to (1.31):

∫
G

f(y)dy

(1.32)

=
∑
{S}H

∑
xm∈κS

c0S,xm

∫
Sσ

|Δσ(xmγ)|1/2F

∫
diag(AS)\(H×H)

f(h−1xmγl)d(h, l)dγ.

We will now describe the H-conjugacy classes of maximal tori of H in terms of
Levi subgroups M of H containing A0 (i.e., M ∈ L(A0)) and M -conjugacy classes
of some tori of M .

Let M ∈ L(A0) and let NH(M) be its normalizer in H. If S is a maximal torus
of M , we denote by W (M,S) (resp. W (H,S)) its Weyl group in M (resp. H). We
choose a set TM of representatives for the M -conjugacy classes of maximal tori S
in M such that AM\S is compact. For M,M ′ ∈ L(A0), we write M ∼ M ′ if M
and M ′ are conjugate under H.

Let S be a maximal torus of H whose split connected component AS is contained
in A0. Then the centralizer M of AS belongs to L(A0) and S is a maximal torus of
M such that AM\S is compact. If S′ is a maximal torus H-conjugated to S such
that AS′ is contained in A0, then the centralizer M ′ of AS′ in H belongs to L(A0)
and M ′ ∼ M .

Since each maximal torus of H is H-conjugated to a maximal torus S such that
AS ⊂ A0, we obtain a surjective map S 
→ {S}H from the set of S in TM , where
M runs through a system of representatives of L(A0)/∼, to the set of H-conjugacy
classes of maximal tori of H.

Let M ∈ L(A0). By [Ko , equation (7.12.3)], the cardinal of the class of M in
L(A0)/∼ is equal to

|W (H,A0)|
|W (M,A0)||NH(M)/M | ,

where NH(M) is the normalizer of M in H.
According to [Ko , Lemma 7.1], if S is a maximal torus of M , then the number

of M -conjugacy classes of maximal tori S′ in M , such that S′ is H-conjugated to
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S, is equal to
|NH(M)/M ||W (M,S)|

|W (H,S)| .

Therefore, we can rewrite (1.32) as follows:

(1.33)

∫
G

f(g)dg =
∑

M∈L(A0)

cM
∑

S∈TM

∑
xm∈κS

cS,xm

∫
Sσ

|Δσ(xmγ)|1/2F

×
∫
diag(AM )\H×H

f(h−1xmγl)d(h, l)dγ,

where

cM =
|W (M,A0)|
|W (H,A0)|

and cS,xm
=

|W (H,S)|
|W (M,S)|c

0
S,xm

.

Let f ∈ C∞
c (G). We define the orbital integral M(f) of f on Gσ−reg as follows.

Let S be a maximal torus of H. For xm ∈ κS and γ ∈ Sσ such that xmγ ∈ Gσ−reg,
we set

(1.34)

M(f)(xmγ) := |Δσ(xmγ)|1/4F

∫
diag(AS)\(H×H)

f(h−1xmγl)d(h, l)

= |Δσ(xmγ)|1/4F

∫
S\H

∫
H

f(hxmγl)dhdl.

Our definition corresponds, up to a positive constant factor, to [RR, Definition 3.8].
Indeed, by definition of Δσ, we have Δσ(xmγ) = DG(p(xmγ)). Since we can write

xm = hmam with hm ∈ H and am ∈ Sσ, we have p(xmγ) = p(xm)γ−2 = a−2
m γ−2

for γ ∈ Sσ. Let F
′ be an extension of E such that S̃ splits over F′ and am ∈ Sσ(F

′).
Since each root α of Sσ(F

′) in g⊗F F′ has multiplicity m(α) = 2, using notation of
(1.27), we obtain

Δσ(xmγ) =
∏

α∈Φ(S′
σ,g

′)

(1− p(xm)αγ−2α)2 =
∏

α∈Φ(S′
σ,g

′)

(γα − p(xm)αγ−α)2.

Hence

|Δσ(xmγ)|1/4F′ =
∏

α∈Φ(S′
σ,g

′)

|(γα − p(xm)αγ−α)m(α)−1|1/2F′

=
∏

α∈Φ(S′
σ,g

′)

|(γα − p(xm)αγ−α)|1/2F′ .

Then the Weyl integration formula (1.31) is given in terms of orbital integrals as
in [RR, p. 126] by∫

G

f(y)dy =
∑
{S}H

∑
xm∈κS

c0S,xm

∫
Sσ

|Δσ(xmγ)|1/4F M(f)(xmγ)dγ.

Theorem 1.2. Let f ∈ C∞
c (G) and S be a maximal torus of H. Let xm ∈ κS.

(1) There exists a compact set Ω in Sσ such that, for any γ in the complemen-
tary of Ω in Sσ with xmγ ∈ Gσ−reg, one has M(f)(xmγ) = 0.

(2) One has

sup
γ∈Sσ ; xmγ∈Gσ−reg

|M(f)(xmγ)| < +∞.
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Proof. The proof follows the one of the group case (see [HC3, proof of Theorem
14]). We write it here for the convenience of the reader.

Let us first show (1). Let ω be the support of f . We consider the set ωS of
elements γ in Sσ such that xmγ is in the closure of HωH. For g ∈ G, we consider
the polynomial function

(1.35) det(1− t−Ad p(g)) = (−1)ntn + qn−1(g)t
n−1 + · · ·+ ql(g)t

l,

where l is the rank of G and n is its dimension. Each qj is an H ×H bi-invariant
regular function on G and thus is bounded on xmωS . Therefore, the roots of
det(1− t−Ad p(g)) are bounded on xmωS .

For γ ∈ Sσ, we have p(xmγ) = p(xm)γ−2. We choose a finite extension F′ of F

such that S̃ splits over F′ and p(xm) ∈ Sσ(F
′). Using notation of (1.27), the roots

of det(1−t−Ad p(xmγ)) are the numbers (1−p(xm)αγ−2α) for α ∈ Φ(S′
σ, g

′). Since
these roots are bounded on xmωS , we obtain that the maps γ → γα, α ∈ Φ(S′

σ, g
′),

are bounded on ωS . This implies that ωS is bounded, and hence the closure Ω of
ωS satisfies the first assertion.

It remains to show (2). According to (1), if γ /∈ Ω, then M(f)(xmγ) = 0. Thus
it is enough to prove that, for each γ0 ∈ Sσ, there exists a neighborhood Vγ0

of γ0
in Sσ such that

(1.36) sup
γ∈Vγ0

,xmγ∈Gσ−reg

|M(f)(xmγ)| < +∞.

Let y0 := p(xmγ0). Let us first assume that y0 is central in G. Then we have

Δσ(xmγ0γ) = DG(y0γ
−2) = DG(γ

−2) for γ ∈ Sσ and xmγ0h(xmγ0)
−1 ∈ H for

h ∈ H. We define the function f0 on G by f0(g) := f(xmγ0g). Then we have
M(f0)(γ) = M(f)(xmγ0γ) for γ ∈ Sσ∩Gσ−reg. Therefore we can restrict ourselves
to the case y0 = 1. As in the group case, we use the exponential map “exp”, which
is well-defined in a neighborhood of 0 in g, since the characteristic of F is equal to
zero (cf. [HC4, Section 10]). As in [HC1, proof of Lemma 15], we can choose an
H-invariant open neighborhood V0 of 0 in h such that the map X ∈ V0 
→ exp(τX)
is an isomorphism, and a homeomorphism onto its image, and such that there exists
an H-invariant function ϕ ∈ C∞

c (h) such that ϕ(X) = 1 for X ∈ V0. We define f̄
in C∞

c (h) by f̄(X) = ϕ(X)
∫
H
f(h exp(τX))dh.

Let s be the Lie algebra of S. For X ∈ s, we set η(X) = |det(adX)h/s|F. We

consider a finite extension F′ of F such that S̃ splits over F′ and p(xm) ∈ Sσ(F
′). We

use here notation introduced in (1.27). Since each root of S′
σ in g′ has multiplicity

2, we have for X ∈ V0, regular in h,

|Δσ(exp τX)|1/2F′

η(X)
=

|DG′(exp(−2τX))|1/2F′

η(X)
=

∏
α∈Φ(S′,h′) |1− e−2τα(X)|F′∏

α∈Φ(S′,h′) |α(X)|F′

= |2τ ||Φ(S′,h′)|
F′

∏
α∈Φ(S′,h′)

|1− τα(X) +
4τ2α(X)2

3!
+ · · · |F′ .
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We can reduce V0 in such way that each term of this product is equal to 1. Thus
we obtain

M(f)(exp τX) = |2τ ||Φ(S′,h′)|/2
F′ η(X)1/2

∫
H/S

( ∫
H

f(h exp τAd(l)X)dh
)
dl̄

= |2τ ||Φ(S′,h′)|/2
F′ η(X)1/2

∫
H/S

f̄(Ad(l)X)dl̄,

for X ∈ V0, regular in h. Hence the estimate (1.36) follows from the result on the
Lie algebra given in [HC3, Theorem 13].

Now, if y0 = p(xmγ0) is not central in G, we consider the centralizer Z of y0 in

H. Let Z0 be the identity component of Z . By [Bo, Section III.9], the group Z0

is defined over F. As usual, we set Z̃0
:= ResE /F(Z0 ×F E) and we denote by z̃ its

Lie algebra. By definition of z̃, one has

|det(1−Ad(y0))g/z̃|F �= 0.

Thus there exists a neighborhood V of 1 in Sσ such that, for all γ ∈ V ,

(1.37) |det(1−Ad(y0γ
−2))g/z̃|F = |det(1−Ad(y0))g/z̃|F �= 0.

Let ω be the support of f . From [HC3, Lemma 19], there exist a neighborhood

V1 of y0 in S̃ and a compact subset CG of Z̃0\G such that if g ∈ G satisfies

g−1V1g ∩ p(ω) �= ∅, then its image ḡ in Z̃0\G belongs to CG.
We choose a neighborhood W of 1 in Sσ such that W ⊂ V and p(xmγ0γ) =

y0γ
−2 ∈ V1 for all γ ∈ W . By [Bo, Section III.9.1], the quotient Z0\H is a closed

subset of Z̃0\G. Hence

(1.38)
the set C := CG ∩ Z0\H is a compact subset of Z0\H such that if
l ∈ H satisfies l−1y0γ

−2l ∈ p(ω) for some γ ∈ W , then its image l̄ in

Z0\H belongs to C.

Let γ ∈ W such that xmγ0γ ∈ Gσ−reg. One has

(1.39)

∫
S\H

∫
H

f(hxmγ0γl)dhdl̄ =

∫
Z0\H

∫
S\Z0

∫
H

f(hxmγ0γξl)dhdξ̄dl̄.

By our choice of W , the map

l̄ ∈ Z0\H 
→
∫
S\Z0

∫
H

f(hxmγ0γξl)dhdξ̄

vanishes outside C. We choose u ∈ C∞
c (H) such that the map u ∈ C∞

c (Z0\H),
defined by u(l̄) :=

∫
Z0 u(ξl)dξ, is equal to 1 on C. As u and f are compactly

supported, the map

Φ : z ∈ Z̃0 
→
∫
H

u(l)

∫
H

f(hxmγ0zl)dhdl

is well-defined.
Since y0 = p(xmγ0) = (xmγ0)

−1σ(xmγ0) and Z0 centralizes y0, we have

ξ(xmγ0)
−1σ(xmγ0) = (xmγ0)

−1σ(xmγ0)ξ for ξ ∈ Z0. Thus xmγ0ξ(xmγ0)
−1 ∈ H,

and Φ is left invariant by Z0.

We claim that Φ ∈ C∞
c (Z0\Z̃0). Indeed, fix l in the support of u. If f(hxmγ0zl)

is nonzero for some h ∈ H and z ∈ Z̃0, then p(hxmγ0zl) = p(xmγ0zl) belongs to

p(ω). Since z commutes with y0 = p(xmγ0), we have p(xmγ0zl) = l−1y0p(z)σ(l).
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As u is compactly supported, we get that Φ(z) = 0 when p(z) is outside a compact

set. Hence the map Φ is a compactly supported function on Z0\Z̃0.
By assumption, the function f is right invariant by a compact open subgroup of

G. Thus f is right invariant by some compact open subgroup of H. We denote by
τlf the right translate of f by an element l ∈ G. Since u is compactly supported,
the vector space generated by τlf , when l ∈ H runs through the support of u, is
finite dimensional. Hence one can find a compact open subgroup J1 of Z̃0 such
that, for each l in the support of u, the function τlf is right invariant by J1. This
implies that Φ is smooth, and our claim follows.

Therefore, there exists ϕ ∈ C∞
c (Z̃0) such that

Φ(z) =

∫
Z0

ϕ(ξz)dξ =

∫
H

u(l)

∫
H

f(hxmγ0zl)dhdl, z ∈ Z̃0.

We obtain∫
S\Z0

∫
Z0

ϕ(ξ1γξ2)dξ1dξ̄2 =

∫
H

u(l)
( ∫

S\Z0

∫
H

f(hxmγ0γξ2l)dhdξ̄2
)
dl

=

∫
Z0\H

∫
Z0

u(ξ1l)
( ∫

S\Z0

∫
H

f(hxmγ0γξ2ξ1l)dhdξ̄2
)
dξ1dl̄

=

∫
Z0\H

u(l̄)
( ∫

S\Z0

∫
H

f(hxmγ0γξ2l)dhdξ̄2
)
dl̄.

The map ū being equal to 1 on the compact set C, we obtain, using (1.39) and the
definition of C (cf. (1.38)),∫

S\Z0

∫
Z0

ϕ(ξ1γξ2)dξ1dξ̄2 =

∫
S\H

∫
H

f(hxmγ0γl)dhdl̄.

By (1.37) and the choice of W , one has

|DG(y0γ
−2)|F = |DZ̃0(γ

−2)|F|det(1−Ad(y0))g/z̃|F, γ ∈ W.

Then we get, for γ ∈ W satisfying xmγ0γ ∈ Gσ−reg,

M(f)(xmγ0γ) = |det(1−Ad(y0))g/z̃|1/4F |DZ̃0(γ
−2)|1/4F

∫
S\Z0

∫
Z0

ϕ(ξ1γξ2)dξ1dξ̄2.

Since |DZ̃0(γ−2)|F coincides with the function |Δσ|F for the group Z̃0 evaluated at
γ (cf. (1.29)), the estimate (1.36) for f is obtained by applying the first case to ϕ

defined on Z̃0. �

2. Geometric side of the local relative trace formula

2.1. Truncation. In this section, we will recall some needed results of [Ar3, Section
3]. We keep the notation of Section 1.1 for the group H. Since H is split, one has
M0 = A0. We fix a Levi subgroup M ∈ L(A0) of H. Let P ∈ P(M). We recall
that AM denotes the maximal split torus of the center of M .

Let ΣP be the set of roots of AM in the Lie algebra of P , let Σr
P be the subset

of reduced roots, and let ΔP be the subset of simple roots.
As usual, for β ∈ ΔP , the “co-root” β̌ ∈ aM is defined as follows: if P ∈ P(A0)

is a minimal parabolic subgroup, then β̌ = 2β/(β, β), where a∗0 identifies with a0
through the scalar product on a0. In the general case, we choose P0 ∈ P(A0)
contained in P . Then there exists a unique α ∈ ΔP0

such that β = α|aM
. The
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“co-root” β̌ is the projection of α̌ onto aM with respect to the decomposition
a0 = aM ⊕ aM0 . This projection does not depend on the choice of P0.

We denote by a+P the positive Weyl chamber of elements X ∈ aM satisfying
α(X) > 0 for all α ∈ ΣP .

Let M ∈ L(A0). A set of points in aM indexed by P ∈ P(M),

Y = YM := {YP ∈ aM ;P ∈ P(M)},
is called an (H,M)-orthogonal set if, for any pair of adjacent parabolic subgroups
P, P ′ in P(M) whose chambers in aM share the wall determined by the simple root
α ∈ ΔP ∩ (−ΔP ′), one has YP − YP ′ = rP,P ′α̌ for some real number rP,P ′ . The
orthogonal set is called positive if every number rP,P ′ is nonnegative. For example,
this is the case when the number

(2.1) d(Y) = inf{α(YP );α ∈ ΔP , YP ∈ Y , P ∈ P(M)}
is nonnegative.

One example is the set

{−hP (x);P ∈ P(M)},
defined for any point x ∈ H (see 1.14 and 1.2 for the definiton of hP ). Indeed, this
is a positive (H,M)-orthogonal set according to [Ar1, Lemma 3.6].

(2.2)

If L belongs to L(M) and Q is a group in P(L), we define YQ to be
the projection onto aL of any point YP , with P ∈ P(M) and P ⊂ Q.
Then YQ is independent of P and YL := {YQ;Q ∈ P(L)} is an (H,L)-
orthogonal set.

We shall write SM (Y) for the convex hull in aM/aH of an (H,M)-orthogonal set
Y . Notice that SM (Y) depends only on the projection onto aHM of each YP ∈ Y ,
P ∈ P(M).

If each YP , for P ∈ P(M), is in the positive Weyl chamber a+P (this condition is
equivalent to saying that d(Y) is positive), we have a simple description of SM (Y)∩
a+P (cf. [Ar3, Lemma 3.1]). We denote by (ωP

γ )γ∈ΔP
the set of weights, that is, the

dual basis in (aHM )∗ of the set of co-roots {γ̌; γ ∈ ΔP }. Then we have

(2.3) SM (Y)∩a+P = {X ∈ a+P ;ω
P
γ (X − YP ) ≤ 0, γ ∈ ΔP }.

We now recall a decomposition of the characteristic function of SM (Y) valid
when Y is positive (cf. [Ar3, equation (3.8)]). Suppose that Λ is a point in a∗M,C

whose real part ΛR ∈ a∗M is in general position. For P ∈ P(M), let ΔΛ
P be the set

of simple roots α ∈ ΔP such that ΛR(α̌) < 0. Let ϕΛ
P be the characteristic function

of the set of X ∈ aM such that ωP
α (X) > 0 for each α ∈ ΔΛ

P and ωP
α (X) ≤ 0 for

each α in the complementary of ΔΛ
P in ΔP . We define

(2.4) σM (X,Y) :=
∑

P∈P(M)

(−1)|Δ
Λ
P |ϕΛ

P (X − YP ).

Then:

(2.5)
By [Ar3, Section 3, p. 22], the function σM (·,Y) vanishes on the com-
plementary of SM (Y) and is bounded. Moreover, if Y is positive, then
σM (·,Y) is exactly the characteristic function of SM (Y).

For P ∈ P(M), we denote by (ω̃P
γ )γ∈ΔP

the set of co-weights, that is, the dual

basis in aHM of ΔP .
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Lemma 2.1. Let P and P ′ be two adjacent parabolic subgroups in P(M) whose
chambers in aM share the wall determined by the simple root α ∈ ΔP ∩ (−ΔP ′).
Then:

(1) For all β in ΔP − {α}, there exists a unique β′ in ΔP ′ − {−α} such that
β′ = β+kβα where kβ is a nonnegative integer. Moreover, the map β 
→ β′

is a bijection between ΔP − {α} and ΔP ′ − {−α}.
(2) For all β in ΔP − {α}, one has ω̃P ′

β′ = ω̃P
β .

Proof. We denote by N the set of nonnegative integers and by N∗ the subset of
positive integers.

We will first show (1). As P and P ′ are adjacent, we have ΣP ′ =
(
ΣP − {α}

)
∪

{−α}. Let β ∈ ΔP −{α}. If β ∈ ΔP ′ , then we set β′ := β. Assume that β is not in
ΔP ′ . Since β ∈ ΣP ′ , there exists Θ ⊂ ΔP ′ −{−α} such that β =

∑
δ∈Θ nδδ− kβα,

where the nδ’s are positive integers and kβ is a nonnegative integer. Each δ in
Θ belongs to ΣP . Therefore, there are nonnegative integers (rδ,η)η∈ΔP

such that
δ =

∑
η∈ΔP

rδ,ηη. Set β1 :=
∑

δ∈Θ nδδ = β + kβα. Let γ ∈ ΔP − {α}. If γ �= β,

one has β1(ω̃
P
γ ) = β(ω̃P

γ ) = 0. Thus, for each δ ∈ Θ, we have rδ,γ = 0. Hence
δ = rδ,ββ + rδ,αα.

On the other hand, one has β1(ω̃
P
β ) = β(ω̃P

β ) = 1. Thus, for all δ ∈ Θ, one has∑
δ∈Θ nδrδ,β = 1. Since nδ ∈ N∗ and rδ,β ∈ N, one deduces that there exists a

unique δ0 ∈ Θ such that rδ0,β �= 0 and one has nδ0 = rδ0,β = 1. This implies that
Θ = {δ0} and β = δ0 − kβα. We can take β′ := δ0. Hence we obtain the existence
of β′ in all cases.

If β′
1 ∈ ΔP ′ satisfies β′

1 = β + k1βα, then β′ = β′
1 + (kβ − k1β)α. Since the roots

β′
1, β

′ and −α belong to the set ΔP ′ of simple roots, we deduce that β′
1 = β′. This

gives the unicity of β′.
Let γ and β be in ΔP such that γ′ = β′. Then we have β = γ+(kγ−kβ)α. Since

γ, β, and α belong to ΔP , the same argument as above leads to β = γ. Hence, the
map β 
→ β′ is injective.

It now remains to show (2). Let β ∈ ΔP − {α}. By definition, we have β′ =

β + kβα ∈ ΔP ′ − {−α} with kβ ∈ N. Thus α(ω̃P ′

β′ ) = α(ω̃P
β ) = 0 and β(ω̃P ′

β′ ) =

β′(ω̃P ′

β′ ) = 1. If γ ∈ ΔP −{β, α}, then γ′ = γ+kγα is different from β′ by assertion

(1). Thus we have γ(ω̃P ′

β′ ) = γ′(ω̃P ′

β′ ) = 0. One deduces that ω̃P ′

β′ = ω̃P
β . �

The above lemma allows us to define the minimum between two orthogonal sets.

(2.6)
Let P ∈ P(M). For Y 1 and Y 2 in aM , we denote by infP {Y 1, Y 2} the
unique element Z in aHM such that, for all γ ∈ ΔP , one has (ω̃P

γ , Z) =

inf{(ω̃P
γ , Y

1), (ω̃P
γ , Y

2)}.

Lemma 2.2. Let Y1 = {Y 1
P , P ∈ P(M)} and Y2 = {Y 2

P , P ∈ P(M)} be two

(H,M)-orthogonal sets. Let Z := inf(Y1,Y2) be the set of ZP := infP {Y 1
P , Y

2
P , }

when P runs P(M).

(1) The set Z is an (H,M)-orthogonal set.
(2) If d(Yj) > 0 for j = 1, 2, then d(Z) > 0. In this case, the convex hull

SM (Z) is the intersection of SM (Y1) and SM (Y2).

Proof. Let P and P ′ be two adjacent parabolic subgroups in P(M) whose chambers
in aM share the wall determined by the simple root α ∈ ΔP ∩(−ΔP ′). Let γ ∈ ΔP−
{α}. By definition of orthogonal sets, one has, for j = 1 or 2, (ω̃P

γ , Y
j
P ) = (ω̃P

γ , Y
j
P ′).

Licensed to Universite de Strasbourg. Prepared on Wed Jan  9 16:42:24 EST 2019 for download from IP 130.79.108.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1834 P. DELORME, P. HARINCK, AND S. SOUAIFI

By Lemma 2.1, we have ω̃P
γ = ω̃P ′

γ′ . Hence we obtain (ω̃P
γ , ZP ) = (ω̃P ′

γ′ , ZP ′) and

(ω̃P ′

γ′ , ZP ′) = (ω̃P
γ , ZP ′). Since the scalar product on a0 identifies aM to a∗M , one

deduces that ZP − ZP ′ is proportional to α̌. The assertion (1) then follows.
Let us show (2). Let j ∈ {1, 2} and P ∈ P(M). By definition, we have d(Yj) > 0

if and only if α(Y j
P ) > 0 for all α ∈ ΔP . By [Ar1, Corollary 2.2], this implies that

(ω̃P
α , Y

j
P ) > 0 for all α ∈ ΔP . Let α ∈ ΔP . Writing

Y j
P = (ω̃P

α , Y
j
P )α+

∑
β∈ΔP−{α}

(ω̃P
β , Y

j
P )β +Xj ,

with Xj ∈ aH , the condition α(Y j
P ) > 0 is equivalent to∑

β∈ΔP−{α}
(ω̃P

β , Y
j
P )[−(β, α)] < (ω̃P

α , Y
j
P )(α, α).

Since the real numbers (ω̃P
β , Y

j
P ), for β ∈ ΔP , and −(β, α), for α �= β in ΔP , are

nonnegative, one deduces that∑
β∈ΔP−{α}

(ω̃P
β , ZP )[−(β, α)]

=
∑

β∈ΔP−{α}
inf

(
(ω̃P

β , Y
1
P ), (ω̃

P
β , Y

2
P )

)
[−(β, α)]

≤ inf
( ∑
β∈ΔP−{α}

(ω̃P
β , Y

1
P )[−(β, α)],

∑
β∈ΔP−{α}

(ω̃P
β , Y

2
P )[−(β, α)]

)
< inf

(
(ω̃P

α , Y
1
P ), (ω̃

P
α , Y

2
P )

)
(α, α) = (ω̃P

α , ZP )(α, α).

This implies that α(ZP ) > 0 for α ∈ ΔP , and thus d(Z) > 0.
To get the property of the convex hulls, it is enough to prove that, for all P ∈

P(M), a+P ∩ SM (Y1) ∩ SM (Y2) = a+P ∩ SM (Z). By [Ar3, Lemma 3.1], one has

a+P ∩ SM (Yj) = {X ∈ a+P ;ω
P
γ (X − Y j

P ) ≤ 0, γ ∈ ΔP }.
Since ω̃P

γ = cγω
P
γ for γ ∈ ΔP , where cγ is a positive real number, the assertion

follows easily. �

2.2. The truncated kernel. We consider the regular representation R of G×G
on L2(G) defined by(

R(y1, y2)φ
)
(x) = φ(y−1

1 xy2), φ ∈ L2(G), y1, y2 ∈ G.

Consider f ∈ C∞
c (G×G) of the form f(y1, y2) = f1(y1)f2(y2) with f1, f2 ∈ C∞

c (G).
Then

R(f) :=

∫
G

∫
G

f1(y1)f2(y2)R(y1, y2)dy1dy2

is an integral operator with smooth kernel

Kf (x, y) =

∫
G

f1(xg)f2(gy)dg =

∫
G

f1(g)f2(x
−1gy)dg.

In our case (i.e., H is split), one has AH = AG, and the kernel Kf is invariant by
the diagonal diag(AH) of AH in H × H. Since H is not compact, we introduce
truncation to integrate this kernel on diag(AH)\(H ×H).

Recall that a0,F is the image of M0 by h0. We fix a point T in a0,F. Let P0 ∈
P(A0). According to [Bou, Chapter 5, Section 3, no. 3.3, Theorem 2], the closure
ā+P0

of the positive Weyl chamber a+P0
is a fundamental domain of the Weyl group
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W (H,A0). We denote by TP0
the unique translate by the Weyl group W (H,A0) of

T in ā+P0
. Then

YT := {TP0
;P0 ∈ P(A0)}

is an (H,A0)-orthogonal set (see [Ar3, p. 20]). We shall assume that the number

d(T ) := inf
α∈ΔP0

, P0∈P(A0)
α(TP0

)

is suitably large. This means that the distance from T to any of the root hyperplanes
in a0 is large enough.

(2.7)

We denote by u(·, T ) the characteristic function in AH\H of the set of
points x such that

x = k1ak2 with a ∈ AH\A0, k1, k2 ∈ K and hA0
(a) ∈ SA0

(YT ),

where H = KA0K is the Cartan decomposition of H.

We consider u(·, T ) as an AH -invariant function on H. Thus there is a compact
set ΩT of H such that if u(x, T ) �= 0, then x ∈ AHΩT . Let Ω be a compact subset
of G containing the support of f1 and f2. We consider g ∈ G and x1, x2 ∈ H
such that f1(g)f2(x

−1
1 gx2)u(x1, T )u(x2, T ) �= 0. Hence there are ω1, ω2 in ΩT

and a1, a2 in AH such that x1 = ω1a1, x2 = ω2a2, and we have g ∈ Ω and
x−1
1 gx2 = ω−1

1 gω2a
−1
1 a2 ∈ Ω since AH = AG. Therefore a−1

1 a2 lies in a compact
subset of AH . Hence the map (g, x1, x2) 
→ f1(g)f2(x

−1
1 gx2)u(x1, T )u(x2, T ) is a

compactly supported function on G× diag(AH)\(H ×H), and we can define

KT (f) :=

∫
diag(AH)\H×H

Kf (x1, x2)u(x1, T )u(x2, T )d(x1, x2).

By Fubini’s Theorem, we have

KT (f) =

∫
G

∫
diag(AH)\H×H

f1(g)f2(x
−1
1 gx2)u(x1, T )u(x2, T )d(x1, x2)dg.

By applying the Weyl integration formula (1.33), we get that

(2.8) KT (f) =
∑

M∈L(A0)

cM
∑

S∈TM

∑
xm∈κS

cS,xm

∫
Sσ

KT (xm, γ, f)dγ,

where, for S ∈ TM , xm ∈ κS, and almost γ ∈ Sσ, K
T (xm, γ, f) is given by

KT (xm, γ, f) = |Δσ(xmγ)|1/2F

∫
diag(AM )\H×H

∫
diag(AH)\H×H

f1(y
−1
1 xmγy2)

×f2(x
−1
1 y−1

1 xmγy2x2)u(x1, T )u(x2, T )d(x1, x2)d(y1, y2).

Let us recall that, for any S ∈ TM , each xm in κS and γ in Sσ commute with
AM . We first replace (x1, x2) by (y1x1, y2x2) in the integral over (x1, x2). The
resulting integral over diag(AH)\H × H can be expressed as a double integral

over a ∈ AH\AM and (x1, x2) ∈ diag(AM )\H × H, which depends on (y1, y2) ∈
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diag(AM )\H ×H. Since AM commutes with xm ∈ κS and γ ∈ Sσ, we obtain that

KT (xm, γ, f) = |Δσ(xmγ)|1/2F

∫
diag(AM )\H×H

∫
diag(AM )\H×H

f1(y
−1
1 xmγy2)(2.9)

×f2(x
−1
1 xmγx2)uM (x1, y1, x2, y2, T )d(x1, x2)d(y1, y2),

where uM (x1, y1, x2, y2, T ) =

∫
AH\AM

u(y−1
1 ax1, T )u(y

−1
2 ax2, T )da.

Our goal is to prove that KT (f) is asymptotic to another integral JT (f), ob-
tained similarly to KT (f), where the weight function uM (x1, y1, x2, y2, T ) is re-
placed by another weight function vM (x1, y1, x2, y2, T ) defined as follows.

We fix M ∈ L(A0) and P ∈ P(M). Let P0 ∈ P(A0), contained in P , and let TP

be the projection of TP0
on aM with respect to the decomposition a0 = aM ⊕ aM0 .

From (2.2) and (2.2), the set YM (T ) := {TP ;P ∈ P(M)} is an (H,M)-orthogonal
set independent of the choice of P0. Moreover, by [Ar3, equation (3.2)], we have
d(YM (T )) ≥ d(T ) > 0. Thus YM (T ) is a positive (H,M)-orthogonal set.

For x, y in H, set

YP (x, y, T ) := TP + hP (y)− hP̄ (x).

By [Ar3, p. 30], YM (x, y, T ) := {YP (x, y, T );P ∈ P(M)} is an (H,M)-orthogonal
set, which is positive when d(T ) is sufficiently large relative to x and y.

For x1, x2, y1, and y2 in H, let

(2.10) ZP (x1, y1, x2, y2, T ) := infP (YP (x1, y1, T ), YP (x2, y2, T )),

where infP is defined in (2.6) and

(2.11) YM (x1, y1, x2, y2, T ) := {ZP (x1, y1, x2, y2, T );P ∈ P(M)}.
By Lemma 2.6, the set YM (x1, y1, x2, y2, T ) is an (H,M)-orthogonal set. Moreover,
when d(T ) is large relative to xi, yi, for i = 1, 2, one has d(YM (x1, y1, x2, y2, T )) > 0.
Hence this set is a positive (H,M)-orthogonal set.

Let vM be the weight function defined by

(2.12) vM (x1, y1, x2, y2, T ) :=

∫
AH\AM

σM (hM (a),YM (x1, y1, x2, y2, T ))da,

where σM is given by (2.4).
We set

(2.13) JT (f) :=
∑

M∈L(A0)

cM
∑

S∈TM

∑
xm∈κS

cS,xm

∫
Sσ

JT (xm, γ, f)dγ,

where
(2.14)

JT (xm, γ, f) = |Δσ(xmγ)|1/2F

∫
diag(AM )\H×H

∫
diag(AM )\H×H

f1(y
−1
1 xmγy2)

×f2(x
−1
1 xmγx2)vM (x1, y1, x2, y2, T )d(x1, x2)d(y1, y2).

Our main result is the following. Its proof is postponed to Section 2.4.

Theorem 2.3. Let δ > 0. Then there are positive numbers C and ε such that, for
all T ∈ a0,F with d(T ) ≥ δ‖T‖, one has

(2.15) |KT (f)− JT (f)| ≤ Ce−ε‖T‖.
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2.3. Preliminaries to estimates. We fix a norm ‖ · ‖ on G as in (1.15). Let F′

be a finite extension of F. We set G′ := G×F F′ and G′ := G′(F′). One can extend
the absolute value | · |F to F′ and the norm ‖ · ‖ to G′. For x, y in G′, we set

‖(x, y)‖ := ‖x‖‖y‖.
To obtain our estimates, we will use � and ≈ defined respectively in (1.18) and
(1.19). As the norm takes values greater than or equal to 1, we can freely apply
the properties (1.20).

Lemma 2.4. Let S be a maximal torus of H and let M be the centralizer of AS in
H. We fix xm ∈ G ∩MSσ = M̃ ∩MSσ. Then one has

(2.16) inf
s∈S

‖(sx−1
m x1, sx2)‖ � inf

s′∈S(F′)
‖(s′x−1

m x1, s
′x2)‖, x1, x2 ∈ H.

Proof. SinceH1AH is of finite index inH, we may assume, using (1.21), that x1 and
x2 belong to H1AH . As AG = AH , using the invariance of the property (2.16) by
the left action of diag(AH) on (x1, x2), it is enough to prove the result for x1 ∈ H1

and x2 = a2y2 with a2 ∈ AH and y2 ∈ H1.
To establish (2.16), we first assume that AS = AH , which implies that the

quotient AH\S is compact. By (1.21), there is a positive constant C such that

inf
s∈S

‖(sx−1
m x1, sx2)‖ ≤ C inf

a∈AH

‖(ax−1
m x1, ax2)‖.

We deduce from (1.17) that

‖(ax−1
m x1, ax2)‖ ≤ ‖x−1

m ‖‖a‖2‖a2‖‖x1‖‖y2‖.
Taking the lower bound in a ∈ AH , there is a positive constant C1 such that

(2.17) inf
s∈S

‖(sx−1
m x1, sx2)‖ ≤ C1‖x1‖‖a2‖‖y2‖.

In the following, we will need [Ar3, Lemma 4.1], which we recall here.

(2.18)

If S0 is a maximal torus of H with AH\S0 compact, then there exists
an element s0 ∈ S0 such that

‖y‖ � ‖y−1s0y‖, y ∈ H1.

On one hand, we apply this result to S0 = S. As S(F′) commutes with s0, one
deduces, using the property (1.17) of the norm, that

(2.19) ‖y2‖ � ‖s′y2‖2‖s0‖, y2 ∈ H1, s′ ∈ S(F′).

On the other hand, as xm ∈ G ∩ MSσ, S1 := xmSx−1
m is a maximal torus of H

which satisfies AS1
= AH . Applying (2.18) to S0 = S1, there exists s1 ∈ S such

that

(2.20) ‖x1‖ � ‖x−1
1 xms1x

−1
m x1‖, x1 ∈ H1.

The same argument as above leads to

(2.21) ‖x1‖ � ‖s′x−1
m x1‖2‖s1‖, x1 ∈ H1, s′ ∈ S(F′).

Then, by (2.17), (2.19), and (2.21), and applying the properties (1.20), we deduce
that

(2.22)
infs∈S ‖(sx−1

m x1, sa2y2)‖ � ‖s′x−1
m x1‖‖s′y2‖‖a2‖,

s′ ∈ S(F′), x1, y2 ∈ H1, a2 ∈ AH .
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To obtain our result, we have to prove that
(2.23)
‖s′x−1

m x1‖‖s′y2‖‖a2‖ � ‖(s′x−1
m x1, s

′a2y2)‖, s′∈S(F′), x1, y2∈H1, a2∈AH .

We can write S = TAH where T is a maximal torus of the derived group Hder of
H. We set T ′ := T (F′) and A′

H := AH(F′). Then T ′ is contained in H ′1. Moreover,
the intersection of T and AH is finite. Hence, one has the exact sequence

1 → T ∩ AH → T ×AH → S → 1.

Going to F′-points, the long exact sequence in cohomology implies that T ′A′
H is of

finite index in S(F′). Thus, by (1.21), it is enough to prove (2.23) for s′ = t′a′ ∈
S(F′) with t′ ∈ T ′ and a′ ∈ A′

H . By (1.5), if x1 ∈ H1, then x1 ∈ H ′1 ⊂ G′1 and
x−1
m x1xm ∈ G′1. As H is split, we have A′

H = A′
G. As t′ ∈ H ′1, (1.23) gives

‖a′t′x−1
m x1‖ ≈ ‖a′t′x−1

m x1xm‖ ≈ ‖a′‖‖t′x−1
m x1xm‖, a′∈A′

H , t′∈T ′, x1∈H1,

and

‖a′t′y2‖ ≈ ‖a′‖‖t′y2‖, a′ ∈ A′
H , t′ ∈ T ′, y2 ∈ H1.

Applying (1.20), we deduce that
(2.24)

‖t′a′x−1
m x1‖‖a′t′y2‖‖a2‖ ≈ ‖a2‖‖a′‖2‖t′x−1

m x1xm‖‖t′y2‖
≈ ‖a2‖‖a′‖‖t′x−1

m x1xm‖‖t′y2‖,
t′ ∈ T ′, a′ ∈ A′

H , x1, y2 ∈ H1, a2 ∈ AH .

Let us prove that

(2.25) ‖a′‖‖a′a2‖ ≈ ‖a′‖‖a2‖, a′ ∈ A′
H , a2 ∈ AH .

According to (1.17), one has ‖a′a2‖ ≤ ‖a′‖‖a2‖. Then ‖a′‖‖a′a2‖ ≤ (‖a′‖‖a2‖)2, as
1 ≤ ‖a2‖. Since ‖a′‖ = ‖a′a2a−1

2 ‖ ≤ ‖a′a2‖‖a2‖, we have ‖a′‖‖a2‖ ≤ (‖a′a2‖‖a2‖)2,
and (2.25) follows. Applying (2.25) in (2.24), we deduce that
(2.26)

‖t′a′x−1
m x1‖‖a′t′y2‖‖a2‖ ≈ ‖a′‖‖t′x−1

m x1xm‖‖a′a2‖‖t′y2‖,
t′ ∈ T ′, a′ ∈ A′

H , x1, y2 ∈ H1, a2 ∈ AH .

As x−1
m H1xm ⊂ G′1 and A′

H = A′
G, we obtain from (1.23) that

‖a′‖‖t′x−1
m x1xm‖ ≈ ‖a′t′x−1

m x1xm‖ ≈ ‖a′t′x−1
m x1‖, a′ ∈ A′

H , t′∈T ′, x1∈H1,

and

‖a′a2‖‖t′y2‖ ≈ ‖a′a2t′y2‖, a′ ∈ A′
H , t′ ∈ T ′, a2 ∈ AH , y2 ∈ H1.

Applying this in (2.26) and using (1.20), we deduce that

‖t′a′x−1
m x1‖‖a′t′y2‖‖a2‖�‖a′t′x−1

m x1‖‖a′t′a2y2‖, a′∈A′
H , t′∈T ′, x1, y2∈H1.

Then the property (2.23) follows. This finishes the proof of the lemma when AH\S
is compact.

We now prove (2.16) for any maximal torus S of H. Let AS be the maximal
split torus of S and let M be the centralizer of AS in H. Thus we have AM = AS

and AM\S is compact. Let P = MNP ∈ P(M) and let K be a compact subgroup
of H such that H = PK. Each x ∈ H can be written x = mP (x)nP (x)k(x) with
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mP (x) ∈ M,nP (x) ∈ NP , and k(x) ∈ K. Then there is a positive constant C such
that
(2.27)

infs∈S ‖(sx−1
m x1, sx2)‖

≤ C infs∈S

(
‖sx−1

m mP (x1)‖‖smP (x2)‖
)
‖nP (x1)‖‖nP (x2)‖, x1, x2 ∈ H.

By assumption on xm, there exist hm ∈ M and am ∈ Sσ such that xm = hmam ∈
M̃ . Hence we can apply the first part of the proof to (M,S) instead of (H,S).
Therefore, we obtain

inf
s∈S

‖(sx−1
m x1, sx2)‖

� inf
s′∈S(F′)

(
‖s′x−1

m mP (x1)‖‖s′mP (x2)‖
)
‖nP (x1)‖‖nP (x2)‖, x1, x2 ∈ H.

To compare the right-hand side of this inequality to the one of (2.16), we will use the
Iwasawa decomposition (1.12) of H ′. Let K ′ be a compact subgroup ofH ′ such that
H ′ = P (F′)K ′ = M(F′)NP (F

′)K ′. According to (1.13), each y inH ′ can be written
y = m′

P (y)n
′
P (y)k

′ with m′
P (y) ∈ M(F′), n′

P (y) ∈ NP (F
′), and k′ ∈ K ′. Then,

for x ∈ H and z ∈ M(F′), we have zx = zmP (x)nP (x)k = m′
P (zx)n

′
P (zx)k

′ with
k ∈ K and k′ ∈ K ′. We have m′

P (zx) ∈ zmP (x)(K
′ ∩M ′) and n′

P (zx) = nP (x),
hence

‖m′
P (zx)‖ ≈ ‖zmP (x)‖ and ‖n′

P (zx)V ert = ‖nP (x)‖.
Using (1.22), it follows that

‖zmP (x)‖ � ‖zx‖ and ‖nP (x)| � ‖zx‖, z ∈ M(F′), x ∈ H.

Hence, by (1.20),

(2.28) ‖zmP (x)‖‖nP (x)‖ � ‖zx‖, z ∈ M(F′), x ∈ H.

We deduce that

(2.29) ‖s′mP (x2)‖‖nP (x2)‖ � ‖s′x2‖, s′ ∈ S(F′), x2 ∈ H.

Since xm = hmam with hm ∈ M and am ∈ Sσ, one has xms′x−1
m ∈ M∩H ′ = M(F′)

for s′ ∈ S(F′). Therefore, we deduce from (2.28) that

(2.30) ‖xms′x−1
m mP (x1)‖‖nP (x1)‖ � ‖xms′x−1

m x1‖, s′ ∈ S(F′), x1 ∈ H.

Since ‖s′x−1
m mP (x1)‖ ≤ ‖x−1

m ‖‖xms′x−1
m mP (x1)‖ and ‖xms′x−1

m x1‖ ≤
‖xm‖|s′x−1

m x1‖, we deduce the estimate (2.16) from (2.27), (2.29), and (2.30). This
finishes the proof of the lemma. �

The following lemma is the analogue of [Ar3, Lemma 4.2].

Lemma 2.5. Let S be a maximal torus of H and let xm ∈ κS. Then there is a
positive integer k with the property that, for any given compact subset Ω of G, there
exists a positive constant CΩ such that, for all γ ∈ Sσ, with xmγ ∈ Gσ−reg and all
x1, x2 in H satisfying x−1

1 xmγx2 ∈ Ω, one has

inf
s∈S

‖(sx−1
m x1, sx2)‖ ≤ CΩ|Δσ(xmγ)|−k

F .

Proof. Let F′ be a finite extension of E such that S̃ splits over F′. Recall that we
can write xm = hmam with hm ∈ H and am ∈ Sσ. Thus we may and will choose
F′ such that hm ∈ H(F′) and am ∈ Sσ(F

′). For convenience, if J is an algebraic
variety defined over F, we set J ′ := J(F′).
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According to Lemma 2.4, it is enough to prove the existence of a positive integer
k satisfying the property that, for any compact subset Ω′ of G′σ−reg, there exists
CΩ′ > 0 such that

(2.31) inf
s′∈S′

(
‖s′x−1

m x1‖‖s′x2‖
)
≤ CΩ′ |Δσ(xmγ)|−k

F

for all x1, x2 ∈ H ′ and γ ∈ Sσ satisfying xmγ ∈ Gσ−reg and x−1
1 xmγx2 ∈ Ω′.

Let B′ = S′N ′ be a Borel subgroup of H ′ containing S′ and K ′ be a com-
pact subgroup of H ′ such that H ′ = S′N ′K ′ = N ′S′K ′. We can also write
H ′ = (hmS′h−1

m )(hmN ′h−1
m )(hmK ′h−1

m ). By (1.21), one can reduce the proof to
the statement for x1 ∈ (hmS′h−1

m )(hmN ′h−1
m ) and x2 ∈ S′N ′.

Let x1 = hms1n1h
−1
m and x2 = s1s2n2 with s1, s2 ∈ S′ and n1, n2 ∈ N ′. Since

xm = hmam, we have xms1x
−1
m = hms1h

−1
m . Hence, for any s′ ∈ S′, we have

s′x−1
m x1 = s′x−1

m xms1x
−1
m hmn1h

−1
m = s′s1x

−1
m hmn1h

−1
m . We thus obtain

inf
s′∈S′

(
‖s′x−1

m x1‖‖s′x2‖
)
= inf

s′∈S′

(
‖s′x−1

m hmn1h
−1
m ‖‖s′s2n2‖

)
.

Notice that x−1
1 xmγx2 = hmn−1

1 h−1
m xms−1

1 x−1
m xmγs1s2n2 = hmn−1

1 h−1
m xmγs2n2.

Therefore, we are reduced to proving (2.31) for x1 = hmn1h
−1
m with n1 ∈ N ′,

x2 ∈ S′N ′ = N ′S′, and γ ∈ Sσ such that xmγ is σ-regular and x−1
1 xmγx2 ∈ Ω′.

We write now x2 = n2s2 (notice the change of notation). By the properties of the
norm, there is some positive constant C ′ such that
(2.32)

inf
s′∈S′

(
‖s′x−1

m x1‖‖s′x2‖
)
≤ C ′‖n1‖‖s2‖‖n2‖, x1 = hmn1h

−1
m , x2 = n2s2.

We want to estimate ‖n1‖‖s2‖‖n2‖ when x1 = hmn1h
−1
m and x2 = n2s2 satisfy

x−1
1 xmγx2 ∈ Ω′. For this, we use the isomorphism Ψ from G′ to H ′ ×H ′ defined

in (1.26). If x ∈ H ′, then Ψ(x) = (x, x), and if y ∈ G satisfies y−1 = σ(y), then
Ψ(y) = (y, y−1). We set (y1, y2) := Ψ(x−1

1 xmγx2). Then we have

y1 = hmn−1
1 amγn2s2 = hm(n−1

1 amγn2(amγ)−1)(amγs2)

and

y2 = hmn−1
1 a−1

m γ−1n2s2 = hm

(
n−1
1 a−1

m γ−1n2γam
)
(amγ)−1s2.

Since H ′ = N ′S′K ′, the condition x−1
1 xmγx2 ∈ Ω′ implies that there exist two

compact subsets ΩN ⊂ N ′ and ΩS ⊂ S′ depending only on Ω′ such that

n−1
1 amγn2(amγ)−1 ∈ ΩN , n−1

1 a−1
m γ−1n2γam ∈ ΩN ,

amγs2 ∈ ΩS and (amγ)−1s2 ∈ ΩS .

We deduce from the second property that s2 and γ must lie in compact subsets of
S′. We set

ν1(γ, n1, n2) := n−1
1 amγn2(amγ)−1 and ν2(γ, n1, n2) := n−1

1 (amγ)−1n2amγ.

We consider the map ψ from N ′ × N ′ into itself defined by ψ(n1, n2) = (ν1, ν2).
Recall that Φ(S′, h′) denotes the set of roots of S′ in the Lie algebra h′ of H ′

(cf. (1.27)). Let n′ be the Lie algebra of N ′. For α ∈ Φ(S′, h′), we denote byXα ∈ n′

a root vector in h′ corresponding to α. Then amγ acts on Xα by aα := (amγ)α.
The differential d(n1,n2)ψ of ψ at (n1, n2) ∈ N ′×N ′ is given by d(n1,n2)ψ(X1, X2) =

(Ad(amγn−1
2 (amγ)−1)Y1,Ad((amγ)−1n−1

2 amγ)Y2), where

Y1 = −Ad(n1)X1 +Ad(amγ)Ad(n2)X2
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and

Y2 = −Ad(n1)X1 +Ad(amγ)−1Ad(n2)X2.

The map (X1, X2) 
→ (Y1, Y2) is the composition of the map

(X1, X2) 
→ (Ad(n1)X1,Ad(n2)X2),

whose determinant is equal to 1, with deψ, where e is the neutral point of N ′ ×N ′.
We deduce that the jacobian of ψ at (n1, n2) is independent of (n1, n2). At the
neutral point e ∈ N ′ × N ′, we have deψ(Xα, 0) = (−Xα,−Xα) and deψ(0, Xα) =
(aαXα, a−αXα). Hence, the jacobian of ψ is equal to

|
∏

α∈Φ(S′,h′)

aα(1− a−2α)|F′ = | det(Ad(amγ))h′/s′ |F′ | det(1−Ad(amγ)−2)h′/s′ |F′

= |DH′((amγ)−2)|F′ .

Recall that xmγ is assumed to be σ-regular. Thus, by (1.29), one has Δσ(xmγ) =
DH′(a−2

m γ−2) �= 0 . Then, arguing as in [HC2, proof of Lemmas 10 and 11], we
deduce that the map ψ is an F′-rational isomorphism of N × N onto itself whose
inverse (ν1, ν2) 
→ (n1, n2) := (n1(γ, ν1, ν2), n2(γ, ν1, ν2)) is rational. Moreover,
there is a positive integer k such that the map

(y, ν1, ν2) 
→ DH(y)k(n1(y, ν1, ν2), n2(y, ν1, ν2))

is defined by an F′-rational morphism between the algebraic varieties S × N × N
and N ×N . Since ν1, ν2, and γ lie in compact subsets depending only on Ω′, one
deduces that there exists a constant CΩ′ > 0 such that

‖(n1(γ, ν1, ν2), n2(γ, ν1, ν2))‖ ≤ CΩ′ |DH′(a−2
m γ−2)|−k

F′ = CΩ′ |Δσ(xmγ)|−k
F .

The lemma then follows from (2.32) and the fact that s2 lies in a compact set. �

2.4. Proof of Theorem 2.3. Our goal is to prove that |KT (f)−JT (f)| is bounded
by a function which approaches 0 as T approaches infinity. By definition, KT (f) and
JT (f) are finite linear combinations of

∫
Sσ

KT (xm, γ, f)dγ and
∫
Sσ

JT (xm, γ, f)dγ

respectively, where M ∈ L(A0), S is a maximal torus of M satisfying AS = AM ,
and xm ∈ κS (cf. (2.8) and (2.13)).

We fix M ∈ L(A0) and a maximal torus S of M such that AS = AM . Let
xm ∈ κS . To obtain our result, it is enough to establish the estimate (2.15) for∫
Sσ

|KT (xm, γ, f)− JT (xm, γ, T )|dγ. This will be done in Corollary 2.9 below.
For ε > 0, we define

(2.33) Sσ(ε, T ) := {γ ∈ Sσ; 0 < |Δσ(xmγ)|F ≤ e−ε‖T‖}.

Lemma 2.6.

(1) There exists ε0 > 0 such that the map γ 
→ |Δσ(xmγ)|−ε0
F is locally inte-

grable on Sσ.
(2) Let ε > 0. Let B be a bounded subset of Sσ and let p be a nonnegative

integer. Then there is a positive constant CB,p depending on B and p, such
that ∫

Sσ(ε,T )∩B

| log |Δσ(xmγ)|−1
F |pdγ ≤ CB,pe

− εε0‖T‖
2 .
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Proof. The proof of (1) follows from the one of the group case (cf. [HC3, Lemma
43]). We use the similar statement on Lie algebras and the exponential map. We
denote by s the Lie algebra of S. For X ∈ s, we set η(X) = |det(adX)|h/s|F. By

[HC3, Lemma 44], there exists ε0 > 0 such that X 
→ η(X)−2ε0 is locally integrable
on s. To obtain the statement, it is sufficient to prove that

(2.34)
for each γ0 ∈ Sσ, there exists a compact neighborhood U0 of 1 such

that the integral

∫
U0

|Δσ(xmγ0γ)|−ε0
F dγ converges.

If xmγ0 is σ-regular, then there is a compact neighborhood U0 of 1 in Sσ such that
|Δσ(xmγ0γ)|F = |Δσ(xmγ0)|F �= 0 for all γ ∈ U0. Hence (2.34) is clear.

Let us now assume that xmγ0 is not σ-regular. We choose an extension F′ of E
such that S̃ splits over F′ and p(xm) ∈ S̃σ(F

′). We use notation of (1.27). Let Φ0

be the set of roots α in Φ(S′
σ, g

′) such that p(xmγ0)
α = 1. We set

ν(γ) =
∏

α∈Φ(S′
σ,g

′)−Φ0

|1− p(xmγ0)
αγ−2α|2F′ .

We have Δσ(xmγ0γ) = DG′(p(xmγ0)γ
−2) = det(1−Ad(p(xmγ0)γ

−2))|g/s̃, and each
root of Φ(S′

σ, g
′) has multiplicity 2. Hence, we obtain

|Δσ(xmγ0γ)|F′ = ν(γ)
∏

α∈Φ0

|1− γ−2α|2F′ .

We choose a compact neighborhood W of 1 in Sσ such that ν(γ) = ν(1) �= 0 for

γ ∈ W . Let β = sup
γ∈W

∏
α∈Φ(S′

σ,g
′)−Φ0

|1− γ−2α|2F′ . Then, for γ ∈ W , we have

β|Δσ(xmγ0γ)|F′ = βν(1)
∏

α∈Φ0

|1− γ−2α|2F′ ≥ ν(1)|Δσ(γ)|F′ .

Consider the exponential map. There exist two open neighborhoods ω and U of 0
in s and 1 in Sσ respectively such that the map X 
→ exp(τX) is well-defined on ω
and is an isomorphism and a homeomorphism onto U . For X ∈ ω regular in s, we
have

|Δσ(exp(τX))|1/2F′

η(X)
=

∏
α∈Φ(S′

σ,g
′)

|1− e2τα(X)|F′

|α(X)|F′
.

We can choose a compact neighborhood ω0 ⊂ ω of 0 in s such that the above
product is a positive constant c and U0 := exp(τω0) is contained in W . Then∫

U0

|Δσ(xmγ0γ)|−ε0
F dγ ≤

(ν(1)

β

)−ε0
∫
U0

|Δσ(γ)|−ε0
F dγ

=
(ν(1)

β

)−ε0
c

∫
ω0

η(X)−2ε0dX.

The right-hand side of this inequality is finite by our choice of ε0. The assertion
(2.34) follows.

To show (2), let us pick ε0>0 as in (1). We set

Ip=

∫
Sσ(ε,T )∩B

| log |Δσ(xmγ)|−1
F |pdγ.
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If p is a positive integer, then there is positive constant C ′ such that | log y|p ≤
C ′yε0/2 for all y ≥ 1. Since |Δσ(xmγ)|−1

F ≥ eε‖T‖ ≥ 1 for all γ ∈ Sσ(ε, T ), we get

Ip ≤ C ′
∫
Sσ(ε,T )∩B

|Δσ(xmγ)|−ε0/2
F dγ ≤ C ′e−

εε0‖T‖
2

∫
B

|Δσ(xmγ)|−ε0
F dγ.

If p = 0, then, by definition of Sσ(ε, T ), one has

I0 =

∫
Sσ(ε,T )∩B

|Δσ(xmγ)|−ε0
F |Δσ(xmγ)|ε0F dγ ≤ e−εε0‖T‖

∫
B

|Δσ(xmγ)|−ε0
F dγ.

In the two cases, the result follows from (1). �

Lemma 2.7. Let ε0 > 0 as in Lemma 2.6. Given ε > 0, we can choose a constant
c > 0 such that, for any T ∈ a0,F, one has∫

Sσ(ε,T )

(
|KT (xm, γ, f)|+ |JT (xm, γ, f)|

)
dγ ≤ ce−

εε0‖T‖
4 .

Proof. We recall that for almost γ ∈ Sσ, we have

KT (xm, γ, f) = |Δσ(xmγ)|1/2
∫
diag(AM )\H×H

∫
diag(AM )\H×H

f1(y
−1
1 xmγy2)

×f2(x
−1
1 xmγx2)uM (x1, y1, x2, y2, T )d(x1, x2)d(y1, y2),

where

uM (x1, y1, x2, y2, T ) =

∫
AH\AM

u(y−1
1 ax1, T )u(y

−1
2 ax2, T )da.

We first establish an estimate of uM . Let x, y ∈ H and a ∈ AM . According to
(1.11) applied to H, we can write y−1ax = k1a0k2 with k1, k2 ∈ K and a0 ∈ A0.
By definition of the norm, there is a positive constant C0 such that

log ‖y−1ax‖ ≤ C0(‖hA0
(a0)‖+ 1).

If u(y−1ax, T ) �= 0, then, by definition of u(·, T ) (cf. (2.7)), the projection of hA0
(a0)

in aH\aM belongs to the convex hull in aH\aM of the W (H,A0)-translates of T .
Thus, there is a constant C1 > 0 such that

(2.35) inf
z∈AH

log ‖y−1zax‖ ≤ C1(‖T‖+ 1).

We assume that ‖T‖ ≥ 1. Taking C2 = max(2C1, 1) and using the property (1.17)
of the norm, we obtain

(2.36) inf
z∈AH

log ‖za‖ ≤ C2(‖T‖+ log ‖x‖+ log ‖y‖).

Applying this inequality to (x1, y1) and (x2, y2) such that u(y−1
1 ax1, T )u(y

−1
2 ax2, T )

�= 0, we get

inf
z∈AH

log ‖za‖ ≤ C2(‖T‖+ log ‖x1‖+ log ‖y1‖+ log ‖x2‖+ log ‖y2‖).

As ‖x‖ ≤ ‖xm‖‖x−1
m x‖ and 1 ≤ ‖T‖, and taking the integral over a ∈ AH\AM on

the above inequality, we deduce the following inequality:

uM (x1, y1, x2, y2, T ) � (‖T‖+ log ‖x−1
m x1‖+ log ‖x−1

m y1‖+ log ‖x2‖+ log ‖y2‖),
(2.37)

x1, y1, x2, y2 ∈ H.

Licensed to Universite de Strasbourg. Prepared on Wed Jan  9 16:42:24 EST 2019 for download from IP 130.79.108.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1844 P. DELORME, P. HARINCK, AND S. SOUAIFI

The function uM (x1, y1, x2, y2, T ) is invariant by the diagonal (left) action of AM on
(x1, x2) and (y1, y2). As xm commutes with AS = AM (cf. Lemma 1.1), we can re-
place log ‖x−1

m x1‖+log ‖x2‖ and log ‖x−1
m y1‖+log ‖y2‖ by inf

a∈AM

log ‖(ax−1
m x1, ax2)‖

and inf
a∈AM

log ‖(ax−1
m y1, ay2)‖ respectively. By assumption, the quotient AM\S is

compact. Then, using (1.21), one has

inf
a∈AM

‖(ax−1
m x, ax′)‖ ≈ inf

s∈S
‖(sx−1

m x, sx′)‖, x, x′ ∈ H.

Therefore, as ‖T‖ ≥ 1, the inequality (2.37) gives

uM (x1, y1, x2, y2, T ) � ‖T‖+ log inf
s∈S

‖(sx−1
m x1, sx2)‖+ log inf

s∈S
‖(sx−1

m y1, sy2)‖,

x1, y1, x2, y2 ∈ H.

In other words, this means that there are a positive constant C3 and a positive
integer d such that, for all x1, y1, x2, and y2 ∈ H, one has

uM (x1, y1, x2, y2, T ) ≤ C3(‖T‖+log inf
s∈S

‖(sx−1
m x1, sx2)‖+log inf

s∈S
‖(sx−1

m y1, sy2)‖)d.

Let Ω be a compact set containing the support of f1 and f2. By Lemma 2.5, there
is a positive integer k (independent of Ω) and a positive constant CΩ such that if
xmγ ∈ xmSσ is a σ-regular point with f1(y

−1
1 xmγy2)f2(x

−1
1 xmγx2) �= 0 for some

x1, x2, y1, and y2 in H, then

uM (x1, y1, x2, y2, T ) ≤ CΩ(‖T‖+ log |Δσ(xmγ)|−k
F )d.

This inequality and the expression of KT (xm, γ, f) thus give that for γ ∈ Sσ with
xmγ ∈ Gσ−reg, we have

(2.38) |KT (xm, γ, f)| ≤ CΩ(‖T‖+ log |Δσ(xmγ)|−k
F )d|M(f1)(xmγ)M(f2)(xmγ)|,

where M(fj) is the orbital integral of fj defined in (1.34). By Theorem 1.2, these
orbital integrals are bounded by a positive constant C4 on (xmSσ)∩Gσ−reg. Hence,
we obtain

|KT (xm, γ, f)| ≤ CΩC
2
4 (‖T‖+ log |Δσ(xmγ)|−k

F )d.

Let B be the set of γ in Sσ such that xmγ is σ-regular and KT (xm, γ, f) �= 0. Then
B is bounded by Theorem 1.2 and (2.38). Using Lemma 2.6, we can find a constant
C > 0 such that

(2.39)

∫
Sσ(ε,T )

|KT (xm, γ, f)|dγ ≤ Ce−
εε0‖T‖

4 .

If ‖T‖ ≤ 1, then (2.35) implies that if u(x−1ay, T ) �= 0, then

inf
z∈AH

log ‖za‖ ≤ 2C1 + log ‖x‖+ log ‖y‖.

The same arguments used to get (2.37) thus imply that there is a positive constant
C ′

1 ≥ 1 such that

(2.40) uM (x1, y1, x2, y2, T ) � (C ′
1+log ‖x−1

m x1‖+log ‖x−1
m y1‖+log ‖x2‖+log ‖y2‖),

for x1, y1, x2, and y2 in H. Replacing ‖T‖ by C ′
1 in the argument after (2.37), we

deduce that

∫
Sσ(ε,T )

|KT (xm, γ, f)|dγ is bounded. Hence, one obtains (2.39) for

‖T‖ ≤ 1.
We will now establish a similar estimate when KT is replaced by JT . For this,

it is enough to prove that the weight function vM has an estimate like (2.37). We
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will see that this follows easily from the definition of vM . Indeed, for x1, y1, x2 and
y2 in H, one has by definition

vM (x1, y1, x2, y2, T ) :=

∫
AH\AM

σM (hM (a),YM (x1, y1, x2, y2, T ))da,

where σM (·,YM (x1, y1, x2, y2, T )) is a bounded function which vanishes in the
complement of the convex hull SM (YM (x1, y1, x2, y2, T )) of the (H,M)-orthogonal
set YM (x1, y1, x2, y2, T ) (cf. (2.5)). As YM (x1, y1, x2, y2, T ) is the set of points

ZP = infP (TP +hP (y1)−hP̄ (x1), TP +hP (y2)−hP̄ (x2)) for P ∈ P(M) (cf. (2.11)),
if σM (X,YM (x1, y1, x2, y2, T )) �= 0, then ‖X‖ ≤ ‖ZP ‖ for P ∈ P(M). By definition
of TP , one has ‖TP ‖ ≤ ‖T‖. Let us prove that, for any P ∈ P(M), one has

(2.41) ‖hP (x)‖ � 1 + log ‖x‖, x ∈ H.

Let us first compare ‖m‖ and ‖hM (m)‖ for any m ∈ M . Let M = KMA0KM

be the Cartan decomposition of M where KM is a suitable compact subgroup
of M . Then each m ∈ M can be written m = ka(m)k′, with k, k′ ∈ KM and
a(m) ∈ A0. As KM is compact, (1.21) gives the property ‖m‖ ≈ ‖a(m)‖, m ∈ M ,
and this property does not depend on our choice of a(m). By (1.25), we have
‖a‖ ≈ e‖hA0

(a)‖, a ∈ A0. Hence, there are a positive constant C and a nonnegative
integer d such that e‖hA0

(a(m))‖ ≤ C‖m‖d, m ∈ M . Applying (1.8) to (M,A0),
one has, for any a ∈ A0, that hM (a) is the orthogonal projection of hA0

(a) onto
aM . Thus ‖hM (a)‖ ≤ ‖hA0

(a)‖. As hM (m) = hM (a(m)) for any m ∈ M , we then
obtain that there is a positive constant C ′ such that

(2.42) ‖hM (m)‖ ≤ ‖hA0
(a(m))‖ ≤ C ′(1 + log ‖m‖), m ∈ M.

By definition of mP and hP (cf. (1.13) and (1.14)), we have hP (x) = hM (mP (x))
for any x ∈ H. Moreover, according to (1.22), we have ‖mP (x)‖ � ‖x‖, x ∈ H.
Thus our claim (2.41) follows from (2.42).

Therefore, there are a positive constant C1 and a positive integer d such that if
σM (hM (a),YM (x1, y1, x2, y2, T )) �= 0, then

‖hM (a)‖ ≤ ‖ZP ‖ ≤ C1(‖T‖+ log ‖x1‖+ log ‖y1‖+ log ‖x2‖+ log ‖y2‖)d.
As ‖x‖ ≤ ‖xm‖‖x−1

m x‖ for any x ∈ H, this gives the following estimate of vM
analogous to (2.37) and (2.40):
(2.43)

if ‖T‖ > 1, then
vM (x1, y1, x2, y2, T ) � ‖T‖+ log ‖x−1

m x1‖+ log ‖x−1
m y1‖+ log ‖x2‖+ log ‖y2‖,

x1, y1, x2, y2 ∈ H,

and
(2.44)

there is a positive constant C ′
2 such that, for any ‖T‖ ≤ 1, one has

vM (x1, y1, x2, y2, T ) � C ′
2 + log ‖x−1

m x1‖+ log ‖x−1
m y1‖+ log ‖x2‖+ log ‖y2‖,

x1, y1, x2, y2 ∈ H.

Arguing exactly as we did above for KT , we deduce that there is a positive constant
C ′ such that ∫

Sσ(ε,T )

|JT (xm, γ, f)|dγ ≤ C ′e−
εε0‖T‖

4 .

This finishes the proof of the lemma. �
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Lemma 2.8. Fix δ > 0. Then there exist positive numbers C, ε1, and ε2 such
that, for all T ∈ a0,F with d(T ) ≥ δ‖T‖ and for all x1, y1, x2 and y2 in the set

Hε2 := {x ∈ H; ‖x‖ ≤ eε2‖T‖}, one has

(2.45) |uM (x1, y1, x2, y2, T )− vM (x1, y1, x2, y2, T )| ≤ Ce−ε1‖T‖.

Proof. If ‖T‖ remains bounded, then, by (2.37), (2.40), (2.43) and (2.44), the
functions uM and vM are bounded and the result (2.45) is trivial. Thus we have
only to prove the lemma for ‖T‖ sufficiently large and d(T ) ≥ δ‖T‖.

By [Ar3, equation (5.8)], we can choose ε2 such that d(YM (x, y, T )) > 0 for all
x, y ∈ Hε2 . By the discussion of [Ar3, bottom of page 38 and top of page 39], there
is a constant C0 > 0 such that, for T with d(T ) ≥ δ‖T‖ and ‖T‖ > C0, x, y ∈ Hε2 ,
and a ∈ AH\AM , one has

u(y−1ax, T ) = σM (hM (a),YM (x, y, T )).

By Lemma 2.2, we have, for X ∈ aM ,

σM (X,YM (x1, y1, x2, y2, T )) = σM (X,YM (x1, y1, T ))σM (X,YM (x2, y2, T )).

Thus, one deduces that

σM (hM (a),YM (x1, y1, x2, y2, T )) = u(y−1
1 ax1, T )u(y

−1
2 ax2, T ), a ∈ AH\AM .

Hence, for T such that d(T ) ≥ δ‖T‖ ≥ δC0 and xi, yi in Hε2 , we have

uM (x1, y1, x2, y2, T ) = vM (x1, y1, x2, y2, T ).

This finishes the proof of the lemma. �

Theorem 2.3 then follows from the corollary below.

Corollary 2.9. Fix δ > 0. There exist two positive numbers ε and c such that, for
all T with d(T ) ≥ δ‖T‖, one has

(2.46)

∫
Sσ

|KT (xm, γ, f)− JT (xmγ, f)| dγ ≤ ce−ε‖T‖.

Proof. By Lemma 2.7, it is enough to prove that we can find positive numbers ε,
ε′, and C0 such that

(2.47)

∫
Sσ−Sσ(ε,T )

|KT (xm, γ, f)− JT (xm, γ, f)|dγ ≤ C0e
−ε′‖T‖,

where Sσ(ε, T ) is defined in (2.33).
Let ε > 0. Let Ω be a compact subset of G which contains the supports of f1 and

f2. We will estimate |uM (x1, y1, x2, y2, T )− vM (x1, y1, x2, y2, T )| for x1, x2, y1 and
y2 in H satisfying x−1

1 xmγx2 ∈ Ω and y−1
1 xmγy2 ∈ Ω for some γ ∈ Sσ − Sσ(ε, T )

with xmγ ∈ Gσ−reg. For this, we will use the invariance of the functions uM and
vM by the diagonal left action of AM on (x1, x2) and (y1, y2) respectively.

By Lemma 2.5, there are a positive integer k and a positive constant CΩ (de-
pending only on Ω) such that, for all γ ∈ Sσ −Sσ(ε, T ) with xmγ ∈ Gσ−reg and for
all xi, yi in H, i = 1, 2, with x−1

1 xmγx2 and y−1
1 xmγy2 in Ω, one has

(2.48) inf
s∈S

‖(sx−1
m x1, sx2)‖ ≤ CΩΔσ(xmγ)−k ≤ CΩe

kε‖T‖

and

inf
s∈S

‖(sx−1
m y1, sy2)‖ ≤ CΩΔσ(xmγ)−k ≤ CΩe

kε‖T‖.
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As AM\S is compact, we deduce from (1.21) and (2.48) that there is a constant
C ′

Ω > 0 such that

inf
a∈AM

‖(ax−1
m x1, ax2)‖ ≤ C ′

Ωe
kε‖T‖.

Thus, for η > 0, there exists a0 ∈ AM such that

(2.49) ‖a0x−1
m x1‖‖a0x2‖ ≤ CΩe

kε‖T‖ + η.

Since AM = AS , the point a0 commutes with xm by (1.28), and we have ‖a0x1‖ ≤
‖xm‖‖x−1

m a0x1‖.
If ‖T‖ remains bounded, then ‖a0xi‖, i = 1, 2, are bounded by a constant

independent of ‖T‖. By the same arguments, there exists a1 ∈ AM such that ‖a1yi‖,
i = 1, 2, are bounded by a constant independent of ‖T‖. Using the invariance of
uM and vM by the left action of diag(AM ) on (x1, x2) and (y1, y2) respectively
and the estimates (2.37), (2.40), (2.43), and (2.44) for uM and vM , we deduce that
|uM (x1, y1, x2, y2, T )− vM (x1, y1, x2, y2, T )| is bounded by a constant independent
of T and of xi, yi, i = 1, 2. Recall that, by Theorem 1.2, the constant

C1 :=

∫
Sσ

M(|f1|)(xmγ)M(|f2|)(xmγ)dγ

is finite. We deduce that

∫
Sσ−Sσ(ε,T )

|KT (xm, γ, f)− JT (xm, γ, f)|dγ is bounded;

hence we obtain (2.47).
We assume that ‖T‖ is not bounded. Let ε1, ε2, and C be as in Lemma 2.8.

Taking ‖T‖ to be sufficiently large and ε such that kε is smaller than the constant
ε2, we can assume by (2.49) that

‖a0xi‖ ≤ eε2‖T‖, i = 1, 2.

The same arguments are valid for ‖yi‖, i = 1, 2. Thus there is a1 ∈ AM such that

‖a1yi‖ ≤ eε2‖T‖, i = 1, 2.

Using Lemma 2.8 and the invariance of uM and vM by the left action of the diagonal
of AM on (x1, x2) and (y1, y2) respectively, we deduce that, for all T with d(T ) ≥
δ‖T‖, one has

|uM (x1, y1, x2, y2, T )− vM (x1, y1, x2, y2, T )| ≤ Ce−ε1‖T‖.

Hence, we obtain∫
S−Sσ(ε,T )

|KT (xm, γ, f)− JT (xm, γ, T )| ≤ CC1e
−ε1‖T |,

where C1 :=
∫
Sσ

M(|f1|)(xmγ)M(|f2|)(xmγ)dγ. This finishes the proof of the
corollary. �

2.5. The function JT (f). The goal of this section is to prove that JT (f) is of the
form

(2.50)

N∑
k=0

pk(T, f)e
ξk(T ),

where ξ0 = 0, ξ1, . . . , ξN are distinct points in ia∗0 and each pk(T, f) is a polynomial

function of T . Moreover, the constant term J̃(f) := p0(0, f) is well-defined and is
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uniquely determined by KT (f). Except for one detail, our arguments and calcula-
tions are the same as those of [Ar3, Section 6]. We give the details of the proof for
the convenience of the reader.

Recall that JT (f) is a finite sum of the distributions

JT (xm, γ, f) = |Δσ(xmγ)|1/2F

∫
diag(AM )\H×H

∫
diag(AM )\H×H

f1(y
−1
1 xmγy2)

×f2(x
−1
1 xmγx2)vM (x1, y1, x2, y2, T )d(x1, x2)d(y1, y2),

where M ∈ L(A0), S is a maximal torus of M such that AS = AM , xm ∈
κS, and vM (x1, y1, x2, y2, T ) :=

∫
AH\AM

σM (hM (a),YM (x1, y1, x2, y2, T ))da, where

YM (x1, y1, x2, y2, T ) is defined in (2.11).
We first study the weight function vM as a function of T . We fix M ∈ L(A0)

and x1, y1, x2 and y2 in H.

Let LM := (aM,F + aH)/aH and L̃M := (ãM,F + aH)/aH be the projection in
aM/aH of the lattices aM,F and ãM,F respectively. According to (1.10), one has

(2.51) ãM,F/ãH,F = ãM,F/ãM,F ∩ aH � L̃M .

ForM = A0, we replace the subscript A0 by 0. We denote by L ∨ := Hom(L , 2πiZ)
the dual lattice of a lattice L .

Let P ∈ P(M). We introduce the following sublattice of LM . For k ∈ N, we set

μα,k := k log(q)α̌, α ∈ ΔP ,

where q is the order of the residual field of F and

LM,k :=
∑

α∈ΔP

Zμα,k.

Then LM,k is a lattice in aHM � aM/aH independent of P , and, according to
[Ar2, Section 4], one can find k ∈ N∗ such that, for all M ∈ L(A0), one has

LM,k ⊂ L̃M .

The set of points
∑

α∈ΔP
yαμα,k with yα ∈] − 1, 0] is a fundamental domain of

LM,k, which we denote by DM,k.

(2.52)
For X ∈ LM/LM,k and Y ∈ aM/aH , we denote by X̄P (Y ) the repre-
sentative of X in LM such that X̄P (Y )− Y ∈ DM,k.

For λ ∈ a∗M,C, we set

(2.53) θP,k(λ) = vol(aHM/LM,k)
−1

∏
α∈ΔP

(1− e−λ(μα,k)).

We fix T ∈ a0,F. By definition of σM (cf. (2.4)), the function vM depends only
on the image of TP in LM . Hence we can assume that T lies in the lattice L0. For
P ∈ P(M), the map T 
→ TP sends surjectively L0 onto the intersection of LM

with the closure a+P of the chamber associated to P . Thus, we may restrict T to lie

at the intersection of L0 with suitable regular points in some positive chamber a+0
of aH\a0. Then the points TP range over suitable regular points in LM ∩ a+P .

We recall that YM (x1, y1, x2, y2, T ) is the set of points ZP := ZP (x1, y1, x2, y2, T )
defined in (2.10). Thus, we can write

(2.54) ZP = TP + Z0
P with Z0

P := infP (hP (y1)− hP (x1), hP (y2)− hP (x2)).
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Notice that the points Z0
P do not necessarily belong to the lattice LM . It is the

only difference from [Ar3, Section 6] in what follows.

Lemma 2.10. There are a positive integer N independent of M and polynomial
functions qξ(T ) for ξ ∈ ( 1

N L ∨
0

)
/L ∨

0 (depending on x1, y1, x2 and y2) such that

vM (x1, y1, x2, y2, T ) =
∑

ξ∈( 1
N L ∨

0 )/L ∨
0

qξ(T )e
ξ(T ).

Moreover, the constant term ṽM (x1, y1, x2, y2) := q0(0) of vM (x1, y1, x2, y2, T ) is
given by

ṽM (x1, y1, x2, y2) = lim
Λ→0

( ∑
P∈P(M)

|LM/LM,k|−1
∑

X∈LM/LM,k

e〈Λ,X̄P (Z0
P )〉θP,k(Λ)

−1
)
.

Proof. The kernel of the surjective map hM : AH\AM → ãM,F/ãH,F is a compact
group which has volume 1 by our convention of choice of measure. Thus, using
(2.51), we can write

vM (x1, y1, x2, y2, T ) =
∑

X∈ ˜LM

σM (X,YM (x1, y1, x2, y2, T )).

For our study, it is convenient to take a sum over LM . The finite quotient

L̃M

∨
/L ∨

M can be identified with the character group of LM/L̃M under the pairing

(ν,X) ∈ L̃M

∨
/L ∨

M × LM/L̃M 
→ eν(X).

Hence, by the inversion formula on finite abelian groups, we obtain

vM (x1, y1, x2, y2, T )

= |LM/L̃M |−1
∑

ν∈ ˜L ∨
M/L ∨

M

∑
X∈LM

σM (X,YM (x1, y1, x2, y2, T ))e
ν(X).

Coming back to the definition of σM (cf. (2.4)), we fix a small point Λ ∈ (aM/aH)∗
C

whose real part ΛR is in general position. One then has

σM (X,YM (x1, y1, x2, y2, T )) =
∑

P∈P(M)

(−1)|Δ
Λ
P |ϕΛ

P (X − ZP )

= lim
Λ→0

∑
P∈P(M)

(−1)|Δ
Λ
P |ϕΛ

P (X − ZP )e
Λ(X).

By definition of ϕΛ
P , the function X 
→ eΛ(X) is rapidly decreasing on the support

of X 
→ ϕΛ
P (X − ZP ). Hence the product of these two functions is summable over

X ∈ LM . Therefore, we can write

(2.55) vM (x1, y1, x2, y2, T ) =
∑

ν∈ ˜LM
∨
/L ∨

M

lim
Λ→0

∑
P∈P(M)

FT
P (Λ, ν),

where

FT
P (Λ, ν) := |LM/L̃M |−1

∑
X∈LM

(−1)|Δ
Λ
P |ϕΛ

P (X − ZP )e
(Λ+ν)(X).

The above discussion implies that

(2.56) the map Λ 
→
∑

P∈P(M)

FT
P (Λ, ν) is analytic at Λ = 0.
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We fix P ∈ P(M). We want to express FT
P (Λ, ν) in terms of a product of geometric

series. For this, we write
(2.57)

FT
P (Λ, ν) = |LM/L̃M |−1

∑
X∈LM/LM,k

∑
X′∈LM,k

(−1)|Δ
Λ
P |ϕΛ

P (X +X ′ − ZP )

×e(Λ+ν)(X+X′).

Let X ∈ LM/LM,k. Recall that X̄P (Y ) is the representative of X in LM such
that X̄P (Y )− Y ∈ DM,k. We set

X̄Λ
P (Y ) := X̄P (Y ) +

∑
α∈ΔΛ

P

μα,k.

Thus X̄Λ
P (Y ) is also a representative of X in LM . Taking Y := ZP , we can set

ϕΛ
P (X +X ′ − ZP ) = ϕΛ

P (X̄
Λ
P (ZP ) +X ′ − ZP )

in (2.57). The set of points X ′ ∈ LM,k such that this characteristic function equals
1 is exactly the set

{
∑

α∈ΔΛ
P

nαμα,k −
∑

α∈ΔP−ΔΛ
P

nαμα,k;nα ∈ N}.

Therefore, a simple calculation as in [Ar3, top of p. 45] gives

(2.58)

(−1)|Δ
Λ
P |

∑
X′∈LM,k

ϕΛ
P (X +X ′ − ZP )e

(Λ+ν)(X+X′)

= e(Λ+ν)(X̄P (ZP ))
∏

α∈ΔP

(1− e−(Λ+ν)(μα,k))−1.

We have fixed the Haar measure on aHM � aM/aG with the property that the

quotient of aM/aH by the lattice L̃M has volume 1. Thus we have

|LM/L̃M |−1
∏

α∈ΔP

(1− e−(Λ+ν)(μα,k))−1 = |LM/LM,k|−1θP,k(Λ + ν)−1.

By the above equality, (2.57) and (2.58), we obtain

(2.59) FT
P (Λ, ν) = |LM/LM,k|−1

∑
X∈LM/LM,k

e〈Λ+ν,X̄P (ZP )〉θP,k(Λ + ν)−1.

Let X ∈ LM/LM,k. We recall that TP belongs to LM for P ∈ P(M) and
ZP = TP+Z0

P (cf. (2.54)). By definition (cf. (2.52)), the point X̄P (ZP ) is the unique

representative ofX in LM such that X̄P (ZP )−TP−Z0
P ∈ DM,k and (X − TP )P (Z

0
P )

is the unique representative of X − TP in LM such that (X − TP )P (Z
0
P ) − Z0

P ∈
DM,k. Hence we deduce that

(2.60) X̄P (ZP ) = (X − TP )P (Z
0
P ) + TP .

Replacing X by X − TP in (2.59), we obtain

(2.61) FP (Λ, ν)
T = |LM/LM,k|−1

∑
X∈LM/LM,k

e〈Λ+ν,TP+X̄P (Z0
P )〉θP,k(Λ + ν)−1,
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where X̄P (Z
0
P ) is independent of T . Thus, by (2.55), we have established that

vM (x1, y1, x2, y2, T ) is equal to
(2.62)∑

ν∈ ˜L ∨
M/L ∨

M
limΛ→0

(∑
P∈P(M) |LM/LM,k|−1

∑
X∈LM/LM,k

e〈Λ+ν,TP+X̄P (Z0
P )〉

×θP,k(Λ + ν)−1
)
.

Recall that the expression in brackets is analytic at Λ = 0 (cf. (2.56)). To analyze
this expression as a function of T , we argue as in [W1, p. 315]. We give the details
for the convenience of the reader. We replace Λ by zΛ. The map z 
→ θP,k(zΛ+ν)−1

may have a pole at z = 0. Let r denotes the biggest order of this pole when P runs
over P(M). Then, using Taylor expansions, one deduces that

lim
Λ→0

( ∑
P∈P(M)

|LM/LM,k|−1
∑

X∈LM/LM,k

e〈Λ+ν,TP+X̄P (Z0
P )〉θP,k(Λ + ν)−1

)

=

r∑
m=0

∑
P∈P(M)

Cm

∑
X∈LM/LM,k

∂m

∂zm
(e〈zΛ+ν,TP+X̄P (Z0

P )〉)[z=0]

× ∂r−m

∂zr−m
(zrθP,k(zΛ + ν)−1)[z=0],

where Cm = 1
m!(r−m)! |LM/LM,k|−1. But we have

∂m

∂zm
(e〈zΛ+ν,TP+X̄P (Z0

P )〉)[z=0] = (〈Λ, TP + X̄P (Z
0
P )〉)me〈ν,TP+X̄P (Z0

P )〉

and
∂r−m

∂zr−m
(zrθP,k(zΛ+ν)−1)[z=0] is independent of TP . Therefore, we deduce that

vM (x1, y1, x2, y2, T ) is a finite sum of functions

qP,ν(TP )e
ν(TP ), ν ∈ L̃M

∨
/L ∨

M , P ∈ P(M),

where qP,ν is a polynomial function on aM .

Since L ∨
0 ⊂ L̃0

∨
are lattices of the same rank, one can find a positive integer N

such that NL̃0

∨
⊂ L ∨

0 . Therefore, by our choice of T and the above expression,
we can write

vM (x1, y1, x2, y2, T ) =
∑

ξ∈( 1
N L ∨

0 )/L ∨
0

qξ(T )e
ξ(T ),

where qξ(T ) is a polynomial function of T . This gives the first part of the lemma.
Since the polynomials qξ(T ) are obviously uniquely determined, the constant

term ṽM (x1, y1, x2, y2) := q0(0) is well-defined. To calculate it, we take the sum-
mand corresponding to ν = 0 in (2.62) and then set T = 0. We obtain

ṽM (x1, y1, x2, y2) = lim
Λ→0

( ∑
P∈P(M)

|LM/LM,k|−1
∑

X∈LM/LM,k

e〈Λ,X̄P (Z0
P )〉θP,k(Λ)

−1
)
.

This finishes the proof of the lemma. �
We substitute the expression we have obtained for vM in Lemma 2.10 into the

expression (2.14) for JT (xm, γ, f). Hence we obtain the following similar decom-
position for JT (f).

Corollary 2.11. There is a decomposition

JT (f) =
∑

ξ∈( 1
N L ∨

0 )/L ∨
0

pξ(T, f)e
ξ(T ), T ∈ L0 ∩ a+0 ,
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where N is a positive integer and each pξ(T, f) is a polynomial function of T .

Moreover, the constant term J̃(f) := p0(0, f) of J
T (f) is given by

J̃(f) :=
∑

M∈L(A0)

cM
∑

S∈TM

∑
xm∈κS

cS,xm

∫
Sσ

J̃(xm, γ, f)dγ,

where

J̃(xm, γ, f)

= |Δσ(xmγ)|1/2F

∫
diag(AM )\H×H

∫
diag(AM )\H×H

f1(y
−1
1 xmγy2)f2(x

−1
1 xmγx2)

×ṽM (x1, y1, x2, y2)d(x1, x2)d(y1, y2).

Appendix A. Spherical character of a supercuspidal representation

as weighted orbital integral

Let (π, V ) be a unitary irreducible admissible representation of G. We say that
π is H-distinguished if the space V ∗H = HomH(π,C) of H-invariant linear forms
on V is nonzero. In that case, a distribution mξ,ξ′ , called a spherical character, can
be associated to two H-invariant linear forms ξ, ξ′ on V (cf. definition below). By
[Ha, Theorem 1], spherical characters are locally integrable functions on G, which
are smooth on the set of σ-regular points of G.

From now on, we assume that AH = {1}. We fix an H-distinguished supercus-
pidal representation (τ, V ) of G. We denote by d(τ ) its formal degree.

The aim of this appendix is to deduce from our main results the value mξ,ξ′(g)
when g ∈ G is σ-regular and ξ, ξ′ ∈ V ∗H , in terms of weighted orbital integrals of a
matrix coefficient of τ (cf. Theorem A.2). This result is analogous to that of Arthur
in the group case (see [Ar2]). Notice that this result of Arthur can be deduced from
his local trace formula given in [Ar3], which was obtained later.

Let (·, ·) be a G-invariant hermitian inner product on V . Since τ is unitary, it
induces an isomorphism ι : v 
→ (·, v) from the conjugate complex vector space V
of V and the smooth dual V̌ of V , which intertwines the complex conjugate of τ
and its contragredient τ̌ . If ξ is a linear form on V , we define the linear form ξ on
V by ξ(u) := ξ(u).

For ξ1 and ξ2 two nonzero H-invariant linear forms on V , we associate the
spherical character mξ1,ξ2 defined to be the distribution on G given by

mξ1,ξ2(f) :=
∑
u∈B

ξ1
(
τ (f)u

)
ξ2(u),

where B is an orthonormal basis of V . Since τ (f) is of finite rank, this sum is
finite. Moreover, this sum does not depend on the choice of B. Indeed, let (τ∗, V ∗)
be the dual representation of τ . For f ∈ C∞

c (G), we set f̌(g) := f(g−1). By
[R, Theorems III.3.4 and I.1.2], the linear form τ∗(f̌)ξ belongs to V̌ . Hence we can
write ι−1(τ∗(f̌)ξ) =

∑
v∈B

(
τ∗(f̌)ξ

)
(v) · v, where (λ, v) 
→ λ · v is the action of C

on V . Therefore, we deduce easily that one has

(A.1) mξ1,ξ2(f) = ξ2
(
ι−1(τ∗(f̌)ξ1)).
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Since τ is a supercuspidal representation, we can define the H×H-invariant pairing
L on V × V by

L(u, v) :=
∫
H

(τ (h)u, v)dh.

According to [Z, Theorem 1.5],

(A.2) the map v 
→ ξv : u 
→ L(u, v) is a surjective linear map from V onto
V ∗H .

For v, w ∈ V , we denote by cv,w the corresponding matrix coefficient defined by
cv,w(g) := (τ (g)v, w), g ∈ G.

Lemma A.1. Let ξ1, ξ2 ∈ V ∗H and v, w ∈ V . Then we have

mξ1,ξ2(čv,w) = d(τ )−1ξ1(v)ξ2(w).

Proof. By (A.2), there exist v1 and v2 in V such that ξj = ξvj for j = 1, 2. By
definition of the spherical character, for f ∈ C∞

c (G) and B an orthonormal basis of
V , one has

mξ1,ξ2(f) =
∑
u∈B

∫
H

(τ (h)τ (f)u, v1)dh

∫
H

(τ (h)u, v2)dh

=
∑
u∈B

∫
H×H

(u, τ (f̌)τ (h1)v1)(τ (h2)v2, u)dh1dh2

=

∫
H×H

(τ (h2)v2, τ (f̌)τ (h1)v1)dh1dh2.

Hence we obtain

(A.3) mξ1,ξ2(f) =

∫
H×H

∫
G

f(g)(τ (h1gh2)v2, v1)dgdh1dh2.

Let f(g) := čv,w(g) = (τ (g)w, v). By the orthogonality relation of Schur, for
h1, h2 ∈ H, one has∫

G

(τ (g)τ (h2)v2, τ (h1)v1)(τ (g)w, v)dg = d(τ )−1(τ (h2)v2, w)(v, τ (h1)v1).

Thus we deduce that

mξ1,ξ2(f) = d(τ )−1ξw(v2)ξv1(v) = d(τ )−1ξ1(v)ξ2(w).

�

For M ∈ L(A0), we define the weight function wM on H ×H by

wM (y1, y2) := ṽM (1, y1, 1, y2),

where ṽM is defined in Lemma 2.10 and 1 is the neutral element of H. For f ∈
C∞

c (G), we define the weighted orbital integral of f by

WM(f)(g) := |Δσ(g)|1/2F

∫
H×H

f(y1gy2)wM (y1, y2)dy1dy2, g ∈ Gσ−reg ∩ M̃.

Theorem A.2. Let M ∈ L(A0) and S ∈ TM . Let xm ∈ κS and γ ∈ Sσ be such
that xmγ is σ-regular. Then, for v, w ∈ V , we have

cMcS,xm
WM(cv,w)(xmγ) = mξw,ξv (xmγ).
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Proof. Let f1 be a matrix coefficient of τ and let f2 ∈ C∞
c (G). We set f := f1⊗f2.

For x ∈ G, we define

F (g) :=

∫
G

f1(xu)f2(ugx)du, g ∈ G,

so that

Kf (x, y) =
[
ρ(yx−1)F

]
(e), where ρ is the right regular representation.

If π is a unitary irreducible admissible representation of G, one has

π
(
ρ(yx−1)F

)
=

∫
G×G

f1(xu)f2(ugy)π(g)dudg

=

∫
G×G

f1(xu)f2(u2)π(u
−1u2y

−1)dudu2

=

∫
G×G

f1(u
−1
1 )f2(u2)π(u1xu2y

−1)du1du2 = π(f̌1)π(x)π(f2)π(y
−1).

Since τ is supercuspidal and f1 is a matrix coefficient of τ , we deduce that
π
(
ρ(yx−1)F

)
is equal to 0 if π is not equivalent to τ . Therefore, applying the

Plancherel formula [W2, Theorem VIII.1.1] to
[
ρ(yx−1)F̌ ], we obtain

Kf (x, y) = d(τ )tr
(
τ (f̌1)τ (x)τ (f2)τ (y

−1)
)
.

We identify V̌ ⊗ V with a subspace of Hilbert-Schmidt operators on V . Taking an
orthonormal basis BHS(V ) of V̌ ⊗ V for the scalar product (S, S′) := tr(SS′∗), one
obtains

Kf (x, y) = d(τ )tr
(
τ (f̌1)τ (x)τ (f2)τ (y)

∗
)
= d(τ )(τ (f̌1)τ (x)τ (f2), τ (y))

= d(τ )
∑

S∈BHS(V )

(τ (f̌1)τ (x)τ (f2), S
∗)(τ (y), S∗)

= d(τ )
∑

S∈BHS(V )

tr
(
τ (x)τ (f2)Sτ (f̌1)

)
tr

(
τ (y)S),

where the sums over S are finite since τ (f2) and τ (f̌1) are of finite rank. Therefore,
the truncated kernel KT (f) is equal to

d(τ )
∑

S∈BHS(V )

PT
τ (τ̌ ⊗ τ (f)S)PT

τ (S),

where

PT
τ (S) =

∫
H

tr
(
τ (h)S

)
u(h, T )dh, S ∈ V̌ ⊗ V.

For v̌ ⊗ v ∈ V̌ ⊗ V , one has tr
(
τ (h)(v̌⊗ v)

)
= cv̌,v(h). Since cv̌,v is compactly sup-

ported, the truncated local period PT
τ (S) converges, when ‖T‖ approaches infinity,

to

Pτ (S) =

∫
H

tr
(
τ (h)S

)
dh.

Therefore, we obtain

(A.4) lim
‖T‖→+∞

KT (f) = d(τ )mPτ ,Pτ
(f),

where mPτ ,Pτ
is the spherical character of the representation τ̌ ⊗ τ associated to

the H ×H-invariant linear form Pτ on V̌ ⊗ V .
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Recall that J̃(f) is the constant term of JT (f). We deduce from Theorem 2.15
that

(A.5) d(τ )mPτ ,Pτ
(f) = J̃(f).

We now express mPτ ,Pτ
in terms of H-invariant linear forms on V . Let VH be the

orthogonal of V ∗H in V . Since ξu(v) = ξv(u) for u, v ∈ V , the space VH is the kernel
of v 
→ ξv. Let W be a complementary subspace of VH in V . Then, the map v 
→ ξv
is an isomorphism from W to V ∗H and (u, v) 
→ ξv(u) is a nondegenerate hermitian
form on W . Let (e1, . . . , en) be an orthogonal basis of W for this hermitian form.
We set ξi := ξei for i = 1, . . . , n. Thus we have ξi(ei) �= 0.

We identify V and V̌ by the isomorphism ι. We claim that

(A.6) Pτ =

n∑
i=1

1

ξi(ei)
ξi ⊗ ξi.

Indeed, we have Pτ (v ⊗ u) = ξv(u) = ξu(v). Hence, the two sides are equal to 0
on V ⊗ VH + VH ⊗ V + VH ⊗ VH and take the same value ξk(el) on ek ⊗ el for
k, l ∈ {1, . . . , n}. Hence, by definition of spherical characters, we deduce that

mPτ ,Pτ
(f1 ⊗ f2) =

∑
u⊗v∈ o.b.(V̄ ⊗V )

Pτ

(
τ̄ (f1)⊗ τ (f2)(u⊗ v)

)
Pτ (u⊗ v)

=
∑

u⊗v∈ o.b.(V̄ ⊗V )

n∑
i,j=1

1

ξi(ei)ξj(ej)
ξi(τ̄(f1)u)ξi(τ (f2)v)ξj(u)ξj(v),

where o.b.(V̄ ⊗V ) is an orthonormal basis of V ⊗V . By definition of ξ for ξ ∈ V ∗H ,

one has ξ(τ(f1)u) = ξ(τ (f1)ū). Therefore, we obtain

(A.7) mPτ ,Pτ
(f1 ⊗ f2) =

n∑
i,j=1

1

ξi(ei)ξj(ej)
mξi,ξj (f1)mξi,ξj (f2).

Let v and w be in V . Let f1 := cv,w so that f1 = čv,w. If v ∈ VH or w ∈
VH , it follows from Lemma A.1 that mξi,ξj (f1) = 0 for i, j ∈ {1, . . . , n}. Hence
mPτ ,Pτ

(f1 ⊗ f2) = 0. Thus we deduce from (A.5) that

(A.8) J̃(cv,w ⊗ f2) = 0, v ∈ VH or w ∈ VH .

Let k, l ∈ {1, . . . , n}. Let us take f1 := cek,el . Then f1 = čel,ek , and, by Lemma

A.1, one has mξi,ξj (f1) = d(τ )−1ξi(el)ξj(ek). Therefore, by (A.5) and (A.7), we
obtain

(A.9) J̃(cek,el ⊗ f2) = mξl,ξk(f2).

By sesquilinearity, one deduces from (A.8) and (A.9) that

(A.10) J̃(cv,w ⊗ f2) = mξw,ξv (f2) v, w ∈ V.

Let (Jn)n be a sequence of compact open subgroups whose intersection is equal
to the neutral element of G. The characteristic function gn of JnxmγJn ap-
proaches the Dirac measure at xmγ as n approaches +∞. Thus, if v, w ∈ V , then
mξw,ξv (gn) converges to mξw,ξv (xmγ). Then, by Corollary 2.11, the constant term

J̃(cv,w ⊗ gn) converges to cMcS,xm
WM(cv,w)(xmγ). We thus deduce the theorem

from (A.10). �

Licensed to Universite de Strasbourg. Prepared on Wed Jan  9 16:42:24 EST 2019 for download from IP 130.79.108.4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1856 P. DELORME, P. HARINCK, AND S. SOUAIFI

Acknowledgments

We warmly thank Bertrand Lemaire for his answers to our many questions on
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