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GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA

P. DELORME, P. HARINCK, AND S. SOUAIFI

ABSTRACT. Following a scheme suggested by B. Feigon, we investigate a local
relative trace formula in the situation of a reductive p-adic group G relative
to a symmetric subgroup H = H(F) where H is split over the local field F of
characteristic zero and G = G(F) is the restriction of scalars of H i relative
to a quadratic unramified extension E of F. We adapt techniques of the proof
of the local trace formula by J. Arthur in order to get a geometric expansion
of the integral over H X H of a truncated kernel associated to the regular
representation of G.
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INTRODUCTION

In this article, we investigate a local relative trace formula in the situation of
p-adic groups relative to a symmetric subgroup. This work is inspired by the recent
results of B. Feigon (see [F]), where she investigated what she called a local relative
trace formula on PGL(2) and a local Kuznetsov trace formula for U(2).

Before we describe our setting and results, we would like to explain on the toy
model of finite groups the framework of the formulas of Feigon. We even start with
the more general framework of the relative trace formula initiated by H. Jacquet
(cf. [Jac97]; see also [O] for an account of some applications of this relative trace
formula).

Let G be a finite group and let H, H’, T be subgroups of G. We endow any finite
set with the counting measure. We denote by r the right regular representation of
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G on L?(I'\G) and we consider the H-fixed linear form ¢ on L?(I'\G) defined by
(0.1) = Z drn,

heHNT\H

where drj, is the Dirac measure of the coset I'h or, in other words,

£() = $(Ch)dh, € L*(T\G).
HAT\H
We define similarly £’ relative to H'.

We view &, ¢ as elements of L?(I'\G) and we form the coefficient c¢¢/(g) =
(r(g)&,&'). Integrating against functions on G, it defines a “distribution” © on G
which is right invariant by H and left invariant by H’. The relative trace formula
in this context gives two expressions of ©(f) for f a function on G: the first one,
called the geometric side, in terms of orbital integrals, and the second one, called
the spectral side, in terms of irreducible representations of G.

First we deal with the geometric side. For this purpose we introduce suitable
orbital integrals. For v € T, we set [7] := (H' NT)y(H NT) and introduce two
subgroups of H' x H:

(H' x H), = {(W,h)|Wvh ' =4}, (H'NT x HNT), = (H' x H), N (L xT).
Then, we define the orbital integral of a function f on G by

I, f) = F(hW'yh=)dR' dh.

/(HIXH)’Y\(HIXH)
Let f be a function on G. Since 7(g)drs, = dppy-1, the definition of £ and &' gives

o) = Y 1900) = 3 10) s 7 sl T O 2 (B0
geG

geq heH h'eH'

Changing g in g~ 'h and using the fact that (rg, drp/) is equal to 1 for g € A’ and
to zero otherwise, one gets

1 1 ,
(02) o) = vol(T N H) vol('N H') Z Z Zf(h h)-

heH h'eH' ~eT

A simple computation of volumes leads to the geometric expression of © in terms
of orbital integrals:

03)  o(f) = > vol(H'NT x HNT),\(H" x H)y)I([7], f)-
[yYJeH'NI'\I'/TNH

Let us shift to the spectral side. We decompose L?(T'\G) into isotypic compo-
nents @__ 4 Hr, where G is the unitary dual of G. The restriction of £ and £’ to

TeG
Hr will be denoted &, and & respectively. The spectral formula for © is the simple
equality
(0.4) 0= ce,

Treé
Notice that it might also be interesting to decompose further the representation
into irreducible representations, and the restriction of ¢ to each of them will be
called a period.
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There is a third interpretation of the distribution ©. If f is a function on G,
then the operator r(f) on L*(T'\G) is an integral operator whose kernel K is the
function on T'\G x I'\G given by

Kp(z,y) =Y fla ).

yel’

By ([02), one gets easily the following expression of O(f):

(0.5) K (W', h)dl dh.

o= |

(H'NT\H')x (HNT'\ H)
This point of view is probably the best one. But it is important to have the
representation theoretic meaning of ©.

The toy model for the local relative trace formula of Feigon appears as a partic-
ular case of the above relative trace formula. In that case, the groups G, H, and
H' are products G1 x Gy, Hy x Hy, and H; x Hj respectively, and T is the diagonal
of G1 x G1. Then I'\G identifies with G1, and the right representation corresponds
to the representation R of G; x Gy on L?(G1) given by [R(x,y)9](g9) = ¢(x~1gy).
Hence we have

§() = . G(h)dh, € L*(Gh).
1

The spectral side is more concrete. If (m1,H,,) is an irreducible unitary repre-
sentation of Gy, then G1 x Gy acts on End(H,,) by an irreducible representation
denoted by w. It is unitary if we use the scalar product (-,-) associated to the
Hilbert-Schmidt norm. Moreover L?(G1) is canonically isomorphic to the direct
sum P & End(Hr, ), where G is the unitary dual of Gy. Let Py € Hr, be the
orthogonal projector onto the space of invariant vectors under H;. Then the period
map &, which is a linear form on End(#,,), is given by

x(T) = /H Tr(m(h)T)dh = (T, P;), T € End(Hy,).

One further decomposes &; by using an orthonormal basis (7, ;) of the space
of Hy-invariant vectors. We will use the identification of End(#H, ) with the tensor
product of H,, with its conjugate complex vector space. Under this identification,
one has

P, = anhi & Ny yie
7

We define similar notation for &’ relative to H'. Then, for two functions fi, fo on
G1, the spectral side of (4] can be written

O(f1 ® fa) = Z ZCWMW fi)e 777r1u77 (f2)

mEeG, B

For the geometric side, we define the orbital integral of a function f on G; by
1e.0)= [ £ gh™" )b,
(H/XHl) \H ><H1
which depends only on the double coset HjgH;. Then one gets by (03] the equality

Ofiwf)= > vlgllg )y, f),

g€H1\G1/H1
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where the v(g)’s are positive constants depending on volumes. Hence the final form
of the local relative trace formula is

Z v(9)I(g, f1)1(g, f2) = Z chnznw v (f1)e Ctey il 1,(f2)

gEH|\G1/H: m1€Gy b

This formula allows us to invert the orbital integrals I(g, f1) for any ¢ €
H{\G1/H,. For this purpose, one chooses g1 € G; and takes for fo the Dirac
measure at g;. Then I(g1, f2) = 1, and the other orbital integrals of fo are zero.

Hence
v(g1)I(g1, f1) = Z Z Crpry oo’ fi)e Crpry oo, (fz)

meG i
In order to make the formula more precise, one needs to compute the constants
CThrl ,1:777;1 i (f2)

The inversion of orbital integrals is one of our motivations for investigating a
local relative trace formula in the situation of p-adic groups relative to a symmetric
subgroup H, and we will take H = H'.

In this article, we consider a reductive algebraic group H defined over a non-
archimedean local field F of characteristic 0. We fix a quadratic unramified exten-
sion E of F and we consider the group G := Resg ,pH obtained by restriction of
scalars of H. Here H is considered as a group defined over E. We denote by H and
G the group of F-points of H and G respectively. Then G is isomorphic to H(E),
and H appears as the fixed points of G under the involution of G induced by the
nontrivial element of the Galois group of E /F. We assume that H is split over F
and we fix a maximal split torus Ay of H. The groups G and H correspond to G
and Hy = H] respectively in our example of a local relative trace formula for finite
groups.

The starting point of our study is the analogue to the expression (05). We
consider the regular representation R of G x G on L?(G) given by (R(g1, 92)¢)(z) =
Y(g9y 'zgz). Then for f = f1 @ fo where f; and f, are two smooth compactly
supported functions on G, the corresponding operator R(f) is an integral operator
on L?(G) with smooth kernel

Kf(flay)—/Gfl(xg)fz(gy)dg—/Gfl(g)fz(:v1gy)dg-

As H may not be compact, even modulo the split component Ay of the center
of H, we shall truncate this kernel to integrate it. We multiply this kernel by a
product of functions u(x, T)u(y,T) where u(-,T') is the characteristic function of a
large compact subset in Ag\H depending on a parameter T' € ag = Rat(Ag) @z R
(Rat(Ap) is the group of F-rational characters of Ag) as in [Ar3] (cf. (Z7)). As H
is split, we have Ay = Ag. Hence the kernel K is left invariant by the diagonal
diag(Ap) of Ay, and we can integrate the truncated kernel over diag(Ax)\H x H.
We set

KT(f) = / Ky(x1, z2)u(zr, T)u(xe, T)d(x1, z2).
diag(Ag)\(HxH)

n [Ar3], Arthur studies the integral of K(z,z)u(z,T) over Ag\G to obtain its
local trace formula on reductive groups.

We study the geometric expression of the distribution K7'(f) and its dependence
on the parameter 7. Our main results (Theorem[Z3]and Corollary 2TT]) assert that
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KT(f) is asymptotic as T' approaches infinity to another distribution J7 (f) of the
form

N
(0.6) TUF) =D pe (T, e+
k=0

where £, =0, ..., {y are distinct points of the dual space ia§ and each pe, (T, f) is
a polynomial function in 7. Moreover, the constant term J(f) := po(0, f) of JT(f)
is well-defined and uniquely determined by K7 (f). We give an explicit expression
of this constant term in terms of weighted orbital integrals.

These results are analogous to those of [Ar3] for the group case. Our proof follows
closely the study by Arthur of the geometric side of his local trace formula, which
we were able to adapt under our assumptions to the case of double truncations.

In the first section, we introduce notation on groups and on symmetric spaces
according to [RR]. The starting point of our study is the Weyl integration formula
established in [RR], which takes into account the (H, H)-double classes of o-regular
elements of G (cf. (L30) and ([I32)). These double classes are expressed in terms
of o-tori, which are tori whose elements are anti-invariant by o. Under our assump-
tions, there is a bijective correspondence S — S, between maximal tori of H and
maximal o-tori of G which preserves H-conjugacy classes.

Then the Weyl integration formula can be written in terms of Levi subgroups
M € L(Ap) of H containing Ay and M-conjugacy classes of maximal anisotropic

tori of M (cf. ([33):

/G f(g)dg

=Y S Y e / Aanl? [ F(h )

MeL(Ay)  SETM TmEks iag(An)\HxH

x d(h,l)d,

where kg is a finite subset of G, cj); and cg,,, are positive constants, 7Tps is a
suitable set of anisotropic tori of M, and A, is a jacobian.

A fundamental result for our proofs concerns the orbital integral M(f) of a
compactly supported smooth function f on G. It is defined on o-regular points by

M) @m) = 1A () [V /d F(h ) D),

iag(As)\HxH

where S is a maximal torus of H, x,, € kg, and v € S, such that z,,7 is o-regular.
As in the group case using the exponential map and the property that each root of
S, has multiciplity 2 in the Lie algebra of G, we prove that the orbital integral is
bounded on the subset of o-regular points of G (cf. Theorem [[2)).

In the second section, we explain the truncation process based on the notion
of (H, M)-orthogonal sets and prove our main results. Using the Weyl integration
formula, we can write

K'(f)= > ew >, >, CSwm/ K" (@, 7, f)d,

MEL(Ay)  SE€TM TmEks
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where

KT(xmf% f) = |Ao(xm'7) 11:‘/2 fl (yl_lxmfny)

/diag(AM)\HXH /diag(AM)\HXH

x fo(xy @y )uns (21, Y1, T2, yo, T)d(z1, 22)d(y1, y2)

and

up (21,91, 2,92, T) = / u(yy tazy, T)u(y; "axs, T)da.

The function JZ(f) is obtained in a similar way to KT (f), where we replace the
weight function ups (21, Y1, T2, y2, T') by another weight function vas (21, y1, 22, y2, T).
The weight function vy, is given by

o (z1, 91, 2,92, T) = / on(har(a), Var(z1,y1, 22, y2, T))da,
Ap\Am

where op(+,)) is the function defined in [Ar3, equation (3.8)] depending on an
(H, M)-orthogonal set Y and YVas(x1,y1, T2, y2,T) is an (H, M )-orthogonal set ob-
tained as the “minimum” of two (H,M)-orthogonal sets Yas(z1,y1,T) and
Yy (z2,y2,T) (cf. @4), Lemma 22 and @ZII). If )y and Vs are two (H, M)-
orthogonal positive sets, then the “minimum” Z of }; and ), satisfies the property
that the convex hull Sj;(Z) in ag\as of the points of Z is the intersection of the
convex hulls Sy (Y1) and Spr(Y2) in agr\ays of the points of Yy and Vs respectively.
If ||T| is large compared to ||z; |, ||y:|l,? = 1,2, then op (-, Yar(x1, 91, 22, y2,T))
is just the characteristic function of Syr(Var(x1,y1, 22,92, T)). In that case, this
function is equal to the product of ops (-, Yar(z1,y1,T)) and o (-, YV (z2, y2, T)).
A key step of our proof is a good estimate of

|UM($1,y17$27y27T) - UM(37173J1,£U271UQ7T)|

when z;,y;,1 = 1,2, satisfy f1(y; '@myy2) f2(x] ' Tmy2a) # 0 for some v € S, and
Ty € kKg. Then, using that orbital integrals are bounded, we deduce our result on
KT(f) = J7(f)].

This work is a first step towards a local relative trace formula. For the spectral
side, we have to prove that KT (f) is asymptotic to a distribution k7' (f) which is
of general form (L6) and constructed from spectral data. We hope that we can
express the constant term of k7 (f) in terms of regularized local period integrals
introduced by Feigon in [F] in the same way as Jacquet-Lapid-Rogawski regularized
period integrals for automorphic forms in [JLR]. In [DH], we have explicated the
spectral side of such a local relative trace formula for PGL(2).

1. PRELIMINARIES

1.1. Reductive p-adic groups. Let F be a non-archimedean local field of charac-
teristic 0 and odd residual characteristic g. Let |-|r denote the normalized valuation
on F.

For any algebraic variety M defined over F, we identify M with M (F), where F
is an algebraic closure of F, and we set M := M (F).
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We will use the same convention as in [W2]. One considers various algebraic
groups J defined over F, sentences such as

“let M be an algebraic group” will mean “let M be the F-points of an
(1.1) algebraic group M defined over F”,
' and “let A be a split torus” will mean “let A be the group of F-points
of a torus, A, defined and split over F”.

If J is an algebraic group, one denotes by Rat(J) the group of its rational characters
defined over F. If V is a vector space, V* denotes its dual. If V is real, V¢ refers
to its complexification.

Let G be an algebraic reductive group defined over F. We fix a maximal split
torus Ag of G and we denote by M its centralizer in G.

Let Ag be the maximal split torus of the center of G and let

ag := Homgz(Rat(G), R).

One has the canonical map hg : G — ag, which is defined by

(1.2) ehe@X) — |y (z)p, =€ G,y e Rat(G).
The restriction of rational characters from G to Ag induces an isomorphism
(1.3) Rat(G) ®z R ~ Rat(Aq) ®z R.
Notice that Rat(A¢g) appears as a generating lattice in the dual space af; of ag
and
(1.4) ag, ~ Rat(G) @z R.

The kernel G' of hg is the intersection over all characters x € Rat(G) of G of
the kernels of |x|r. The group G' is normal in G' and contains the derived group
Gger of G. Moreover, it is well-known that

(1.5)  the group G! is generated by the compact subgroups of G.

G. Henniart has communicated to us an unpublished proof of this result by N. Abe,
F. Herzig, G. Henniart, and M. F. Vigneras.

One denotes by ag r (resp. ag,r) the image of G (resp., Ag) by hq.

(1.6) Then G/G* is isomorphic to the lattice agF-

If P is a parabolic subgroup of G with Levi subgroup M, we keep the same
notation with M instead of G.

The inclusions Ag C Ayr C M C G determine a surjective morphism anrr —
acr (resp. an injective morphism, agy — darp) which extends uniquely to a
surjective linear map hpsg from apr to ag (resp. injective linear map between ag
and apr). The second map allows us to identify ag with a subspace of ajps, and the

kernel of the first one, a%, satisfies

(1.7) an :aﬁﬂaag.

For M = My, we set ag := apg, and a§ := aICQ}O. We fix a scalar product (-,-) on ag
which is invariant under the Weyl group W (G, Ag) of (G, Ap). Then a¢ identifies
with the fixed point set of ag by W (G, Ap), and a§ is an invariant subspace of
ag under W (G, Ap). Hence it is the orthogonal subspace to ag in ag. The space
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1822 P. DELORME, P. HARINCK, AND S. SOUAIFI

af, might be viewed as a subspace of aj by (7). Moreover, by definition of the
surjective map ag — ag, one deduces that

if mg € My, then hg(myp) is the orthogonal projection of kg, (mg) onto
ag.

From (7)) applied to (M, My) instead of (G, M), one obtains a decomposition
ap = ad! @ apr. From the W (G, Ag)-invariance of the scalar product on ag, one
gets:

(1.8)

The decomposition ag = al! @ ay is an orthogonal decomposition.
(1.9)  The space a}, appears as a subspace of af, and in the identification of
ap with af given by the scalar product, a}, identifies with aa;.

The decomposition ay; = a§; @ ag is orthogonal with respect to the restriction
to aps of the W (G, Ap)-invariant scalar product on ag, and the natural map hyra
is identified with the orthogonal projection of ap; onto ag.

In particular, ag r is the orthogonal projection of aps r onto ag. More-

(1.10) over, we have ag r = ag Nan,r (cf. [Ardl equation (1.4)]).

By a Levi subgroup of G, we mean a group M containing M, which is the Levi
component of a parabolic subgroup of G. If P is a parabolic subgroup containing
My, then it has a unique Levi subgroup denoted by Mp which contains M,. We
will denote by Np the unipotent radical of P.

For a Levi subgroup M, we write £(M) for the finite set of Levi subgroups of G
which contain M and we also let P(M) denote the finite set of parabolic subgroups
P with Mp = M.

Let K be the fixator of a special point in the apartment of Ay in the Bruhat-Tits
building of G. We have the Cartan decomposition

(1.11) G = KMyK.
If P = MpNp is a parabolic subgroup of G containing M, then
(1.12) G =PK = MpNpK.

If x € G, we can write

(1.13)  z=mp(x)np(x)kp(z), mp(x) € Mp, np(z) € Np, kp(z)ec K.
We set

(1.14) hp(x) := ha, (mp(z)).

The point mp(z) is defined up to multiplication by an element of K N Mp, but
hp(x) does not depend of this choice.

We introduce a norm || - || on G as in [W2], Section I.1] (called height function in
[W2]). Let Ag : G — GL,(F) be an algebraic embedding. For g € G, we write

Ao(9) = (aij)ij=1,ms  Dolg™") = (bij)ij=1,....n-

We set
(1.15) gl := sup sup(las ;|e, [bi;r)-
0
If A : G — GL4(F) is another algebraic embedding, then the norm || - ||s attached to
A as above is equivalent to || - || in the following sense: there are a positive constant

C and a positive integer dp such that
lglla < Callgll*.
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This allows us to use results of [W2] for estimates on norms.

The following properties of the norm || - || are immediate consequences of its
definition:
(1.16) 1<zl = a7, z€G,
(1.17) eyl < ll=lllyll, .y €G.

In order to have estimates, we introduce the following notation. Let r be a
positive integer. Let f and g be two positive functions defined on a subset W of
G".

We write f(z) < g(z), « € W, if and only if there are a positive
(1.18)  constant ¢ and a positive integer d such that f(z) < cg(x)? for all
reW.

We write f(x) =~ g(z), x € W, if f(z) < g(z),x € W, and ¢g(z) < f(x),
(1.19) e W,

If f1, fo, and f3 are positive functions on G”, we clearly have:
if fl(x) < f2(x)7$ € W7 and f2(x) < f3(.’L’)7:L‘ € W, then fl(x) < f3(.’L’)7:L‘ € W;
if fi(z) = fa(z),x € W, and fo(x) = f3(z),x € W, then f1(z) = f3(z),z € W.
Moreover, if f1, f2, g1 and g9 are positive functions on G" which take values greater
than or equal to 1, we obtain easily the following properties:

(1) for all positive integers d, we have fi(z) ~ fi(z)%,x € W;
(2) if f1(z) K g1(x),z € W, and fo(z) < g2(z),z € W, then
(1.20) (fif2)(z) < (9192) (%), z € W;
(3) if fi(z) = g1(x),z € W, and fo(z) = g2(x),z € W, then
(fif2)(z) =~ (9192)(x),z € W.

Since [[z]| = [leyy || < [leyllllyll and |lzy|| < |z][lyll, we obtain
(1.21) If Q is a compact subset of G, then |z|| = |Jzw|, z€ G, weQ.

Let P = MpNp be a parabolic subgroup of G containing My. Then each x € G
can be written = mp(z)np(z)k, where mp(z) € Mp,np(xz) € Np, and k € K.
By [Ar3, equation (4.5)], we then have

(1.22) [mp (@) + Inp(@)| < =], =<€G.
Recall that G is the kernel of hg : G — a@. Let us prove that
(1.23) lza|| = ||z|[lall, =€G*, ac Ag.

According to the Cartan decomposition (LI, if ¢ € G we denote by mg(g) an
element of My such that there exist k, k' € K with g = kmo(g)k’. Notice that
721, (mo(g))|| does not depend on our choice of mg(g). By (L2])), one has

(1.24) lgll = Imo(9)ll, 9 € G,
and, by [W2, equation 1.1(6)], we have
(1.25) [mo|| = ellfato Mol g e M.

Let * € G! and a € Ag. Then mg(z) € G' N My and mo(za) = mo(z)a. Thus,
one has hg(mo(x)) = 0. We deduce from (7)) and ([L8)) that kg, (mo(z)) belongs
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1824 P. DELORME, P. HARINCK, AND S. SOUAIFI

to a§ . Since hag, (mo(z)a) = har, (mo(z)) + has, (a) and hay, (a) € ag, we obtain by
orthogonality that

%(Itho(mo(w))H + 1har (@) < lhate (mo()a) | < lhar, (mo (@)l + 1has, (@)

Hence ([[23) follows from (24) and (25).

We denote by C2°(G) the space of smooth functions on G with compact support.
We normalize Haar measures according to [Ar3] Section 1]. Unless otherwise stated,
the Haar measure on a compact group will be normalized to have total volume 1.

Let M be a Levi subgroup of G. We fix a Haar measure on aj; so that the
volume of the quotient aps/anr equals 1.

Let P = MNp € P(M). We denote by dp the modular function of P given by

dp(mn) = e2er(har(m) =y e M, ne Np,

where 2pp is the sum of roots, with multiplicity, of (P, Ays). Let P = M Np be the
parabolic subgroup which is opposite to P. If dn is a Haar measure on Np, then
the integral

+(P) = / 206 (hp () gy
Np

is finite. Moreover, the measure v(P)~'dn is independent of the choice of dn and
thus defines a canonical Haar measure on Np.

If dm is a Haar measure on M, then there exists a unique Haar measure dg on
G, independent of the choice of the parabolic subgroup P, such that

/f /NP/ prnmn)ap( m)~Ydn dm dn,

for f € C°(G). If so, we say that dm and dg are compatible. Compatibility has
the obvious transitivity property with respect to Levi subgroups of M. Using the
Iwasawa decomposition ([LI12]), these measures satisfy

/Gf(g)dg = %P) /K/M - f(mnk)dn dm dk.

1.2. The symmetric space H\G. Let E be an unramified quadratic extension of
F. Then E = F[r] where 72 is not a square in F. We denote by o the nontrivial
element of the Galois group Gal(E /F) of E /F. The normalized valuation |- |g on
E satisfies |z|g = |z|2 for x € F.

If J is an algebraic group defined over F, then J is as usual its group of points
over F. Let J Xy E be the group, defined over E, obtained from J by extension of
scalars. We consider the group

J :=Resg /p(J xr E)

defined over F, obtained by restriction of scalars.

With our convention, one has .J = .J(F) and J is isomorphic to J(E).

Let H be a reductive group defined over F. Throughout this article, we assume
that H is split over F and we set G := H and G := H. We fix a maximal split torus
Ag of H. Then Ay is also a maximal split torus of G. We also have Ay = Ag.

The nontrivial element o of Gal(E / F) induces an involution of G defined over F
and denoted by the same letter. This automorphism o extends to an E-automor-
phism o on G Xy E.

Licensed to Universite de Strasbourg. Prepared on Wed Jan 9 16:42:24 EST 2019 for download from IP 130.79.108.4.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA 1825

We consider the canonical map ¢ defined over F from G to (H xpE) x (H xp E)
by ¢(9) = (9,9(9))-

Then ¢ extends uniquely to an isomorphism ¥ defined over E from
(1.26) G xp E to (H xp E) x (H xr E) such that ¥(g) = (g,0(g)) for all
g € G. Moreover, if ¥(g) = (g1, 92), then ¥(or(g)) = (92, 1)

Now we turn to the description of the geometric structure of the symmetric space
S = H\G according to [RR) Sections 2 and 3].

Let g be the Lie algebra of G and let g be the Lie algebra of its F-points. We
will say that g is the Lie algebra of G and the Lie algebra b of H consists of the
elements of g invariant by 0. We denote by g the space of anti-invariant elements
of g by 0. Thus one has g = h & q, and g may be identified with h ®p E.

As in [RR] Section 2], we say that a subspace ¢ of ¢ is a Cartan subspace of q if
¢ is a maximal abelian subspace of q (or equivalently a maximal abelian subalgebra
of q) made of semisimple elements. As E = F[r], the multiplication by 7 induces
an isomorphism between the set of Cartan subspaces of q and the set of Cartan
subalgebras of h which preserves H-conjugacy classes.

We denote by P the connected component of 1 in the set of x in G such that
o(z) = 271, Then the map p from G to P defined by p(x) = 270 (z) induces an
isomorphim of affine varieties, p: H\G — P. -

A torus A of G is called a o-torus if A is a torus defined over F contained in P.
Notice that such a torus is called a o-split torus in [RR]. We would rather change
the terminology, as o-tori are not necessarily split over F. Each o-torus is the
centralizer in P of a Cartan subspace of q or equivalently of a Cartan subalgebra
of b.

Let S be a maximal torus of H. We denote by S, the connected component of
SN7P. Then S, is a o-torus defined over F which identifies with the anti-diagonal
{(s,571);5 € S} of S x S by the isomorphism (L26). Thus S, is a maximal o-
torus, and each maximal o-torus arises in this way. The H-conjugacy classes of
maximal tori of H are in a bijective correspondence with the H-conjugacy classes
of maximal o-tori of G by the map S + S;. The roots of S (resp. S,,) in h = Lie(H)

(resp. g ®p F) are the restrictions of the roots of S in g = Lie(G).

Therefore, each root of S (resp. S, ) in g has multiplicity two. If S splits

over a finite extension F' of F, we denote by ®(S.,g’) (resp. ®(S’, "))
(1.27)  the set of roots of S_(F’) in g ®r F' (resp. S(F') in h ®@p F').

Let § be the Lie algebra of S. Then the differential of each root o of

®(S5’,¢') defines a linear form on 5§ ® F’ denoted by the same letter.

Let Gal(F/ F) be the Galois group of F/ F. By [RR] Section 3], the set of (H, S, )-
double cosets in HS_, NG are parametrized by the finite set I of cohomology classes
in H'(Gal(F/F),HNS,) which split in both H and S_. To each such class m, we
attach an element x,, € G of the form z,, = hy,a,,! with h,, € H and a,, € S,
such that m, = h'v(hm) = a;,'v(ay,) for all v € Gal(F/ F).

Lemma 1.1. Let x € G such that © = hs with h € H and s € S. Then xSz~ is
a mazimal torus of H, and there exists h' € H such that ¥’ = W'z centralizes the
split conmected component Ag of S.
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Proof. By replacing S by an H-conjugate if necessary, we may assume that A := Ag
is contained in the fixed maximal split torus Ay of H. Since H is split, Ay is also
a maximal split torus of G.

As ¢ = hs € G, the torus S’ := xSz~ ! is equal to hSh~! Cc H. Thus S’ is
defined over F and is contained in H. Hence we get the first assertion.

Let S’ := S'(F) and let A’ be the split connected component of S’. There exists
h1 € H such that hlA’hl_1 C Ag. We set 1 = hixz. Then we have A; := a:lel_l C
Ayp.

Let M = Zg(A) and My = Zg(A;) = lexfl. Then Ag and xlexfl are maxi-
mal split tori of M;. Therefore, there exists y; € M; such that ylmlexflyfl = Ay.
As H is split, the Weyl group of Ag in G coincides with the Weyl group of Ag in
H. Thus there exist hy € Ny (Ap) and v € Zg(Ap) such that z := y;21 = hav.

For a € A C A, one has zaz™! = hgahy' = yiziax; 'y, = zia2]! since
xlaxfl € Ay and y; € M;. One deduces that z’ := hglhlx centralizes A. O

This lemma allows us to state the following result.

For each maximal torus S of H, we can fix a finite set of representatives
ks = {Tm}mer of the (H, S,)-double cosets in HS,_ NG such that each
element x,, may be written z,, = hma,_n1 where h,, € H centralizes
Ag and a,, € S,. Hence z,, centralizes Ag.

(1.28)

1.3. Weyl integration formula and orbital integrals. We first recall basic
notions on the symmetric space according to [RR] Section 3]. An element z in G
is called o-semisimple if the double coset HxH is Zariski closed. This is equivalent
to saying that p(z) is a semisimple point of G. We say that a o-semisimple element
x is o-regular if this closed double coset HzH is of maximal dimension. This is
equivalent to saying that the centralizer of p(x) in q (resp. P) is a Cartan subspace
of q (resp. a maximal o-torus of G). -

We denote by G°~"%Y the set of o-regular elements of G.

For g € G, we denote by D¢g(g) the coefficient of the least power of ¢ appearing
nontrivially in det(¢ + 1 — Ad(g)). We define the H-bi-invariant function A, on G
by A,(z) = Dg(p(x)). Then, by [RRl Lemmas 3.2 and 3.3], the set of g € G such
that A, (g) # 0 coincides with G7~ "9,

Let S be a maximal torus of H with Lie algebra s. Then 5 := s ®p E identifies
with the Lie algebra of S. For g € x,,S, with x,, € kg, one has

(1.29) As(9) = Da(p(g)) = det(1 — Ad(p(9)))g/s-

By [RR| Theorem 3.4(1)], the set G777 is a disjoint union

o= | ) |J H((@wnS,)NGT9)H,
(1.30) {S}y Tm€Ers

where {S} g runs the H-conjugacy classes of maximal tori of H.
If z,,, € kg, then 2., = hyay, for some hy,, € H and an, € S,; hence p(z,,) = a,?
commutes with S and S,. Therefore for v € S, we have
—2

p(‘rm’Y) = p(l'm)’}/ and HCUmVS = me’%

Licensed to Universite de Strasbourg. Prepared on Wed Jan 9 16:42:24 EST 2019 for download from IP 130.79.108.4.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA 1827

We have the following Weyl integration formula (cf. [RRL Theorem 3.4(2)]).

Let f be a compactly supported smooth function on G. Then we have

/ f(y)dy
(131)  Je
= > > R / o () /S . / F(hamrl)dhdldy,

{S}H TmEKS

where the constants c&xm are explicitly given in [RR] Theorem 3.4(1)].

For our purpose, we need another version of this Weyl integration formula. Let
S be a maximal torus of H. We denote by Ag its split connected component.
Since the quotient Ag\S is compact, by our choice of measure, the integration over
S\H in the Weyl formula above can be replaced by an integration over Ag\H.
Moreover, it is convenient to change h into h=!. As every z,, € kg commutes with
Ag (cf. (L2])), one can replace the integration over (As\H) x H by an integration
over diag(Ag)\(H x H), where diag(Ag) is the diagonal of Ag. This gives the
following Weyl integration formula equivalent to (L3T):

(1.32)

/f

=>. > Saz/ o(Tm7) 1/2/ f(h ey )d(h, D dy.
diag(As)\(H x H)

{S}H TmERS

We will now describe the H-conjugacy classes of maximal tori of H in terms of
Levi subgroups M of H containing Ay (i.e., M € L(A)) and M-conjugacy classes
of some tori of M.

Let M € L(Ap) and let Ny (M) be its normalizer in H. If S is a maximal torus
of M, we denote by W (M, S) (resp. W(H,S)) its Weyl group in M (resp. H). We
choose a set Ty of representatives for the M-conjugacy classes of maximal tori S
in M such that Ap\S is compact. For M, M’ € L(Ap), we write M ~ M’ if M
and M’ are conjugate under H.

Let S be a maximal torus of H whose split connected component Ag is contained
in Ag. Then the centralizer M of Ag belongs to L(Ap) and S is a maximal torus of
M such that Ap/\S is compact. If S’ is a maximal torus H-conjugated to S such
that Ag/ is contained in Ag, then the centralizer M’ of Ag in H belongs to L£(Ag)
and M’ ~ M.

Since each maximal torus of H is H-conjugated to a maximal torus S such that
Ag C Ap, we obtain a surjective map S — {S}y from the set of S in Ty, where
M runs through a system of representatives of £(Ag),~, to the set of H-conjugacy
classes of maximal tori of H.

Let M € L(Ap). By [Kol equation (7.12.3)], the cardinal of the class of M in
L(Ap)/~ is equal to

(W (H, Ao)|
[W (M, Ao)||Ng (M) /M|’
where Ny (M) is the normalizer of M in H.

According to [Kol Lemma 7.1], if S is a maximal torus of M, then the number
of M-conjugacy classes of maximal tori S’ in M, such that S’ is H-conjugated to
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S, is equal to
|Nu (M)/M|[W (M, S)|
(W (H,5)|

Therefore, we can rewrite ([32)) as follows:

/f(g)dg = > e > > CSacm/ o (@m) ¢

(133) ¢ MeL(Ag) SETM TmERS
x f(h wml)d(h, D) dy,
diag(An )\HxH
where
[W (M, Ao)| \W(H,S)| ,

and  cgy,, =

= ——C .
W (H, Ao)| W (M, S)| Som

Let f € C°(G). We define the orbital integral M(f) of f on G779 as follows.
Let S be a maximal torus of H. For x,, € kg and v € S, such that z,,v € G777,
we set

Cnr =

M) @) = Do ()| / F (b 1))

(134) diag(As)\(HxH)

= A (zmy) [ / / F(hamyl)dhdl.
S\H

Our definition corresponds, up to a positive constant factor, to [RR], Definition 3.8].
Indeed, by definition of A,, we have A, (zp7) = Da(p(zmy)). Since we can write

= hm@m with h,, € H and a,, € S, we have Q(x_mfy) = Q(Jt:m)’f2 =a,*y?
for v € S,. Let F' be an extension of E such that S splits over F/ and a,, € S, (F").
Since each root o of S_(F') in g ®p F’ has multiplicity m(a) = 2, using notation of

(TZ10), we obtain
Ao(xmﬂ)/) = H (1 - (Im)a772a)2 = H (,_Ya _B(Im)aryia)?

ac®(S!,g) a€®(S;,9')
Hence
1/4 « a —aym(a)—11/2
Azl = T 16 = plam)®y )@y
(XE‘I?(S:,,Q')
(e} o, — 1/2
= II 16% =) )
acd(S,,g')

Then the Weyl integration formula (I31)) is given in terms of orbital integrals as
in [RR] p. 126] by

/ fdy=>" > smm/ o @m ) M) @m)dy.
{S}H TmERS
Theorem 1.2. Let f € C°(G) and S be a maximal torus of H. Let x,, € Kg.

(1) There exists a compact set Q) in Sy such that, for any v in the complemen-
tary of Q in S, with x,,y € G779, one has M(f)(xmy) = 0.
(2) One has

sup IM(f)(@m7)| < +o0.
YESs; TmYEGT T
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Proof. The proof follows the one of the group case (see [HC3, proof of Theorem
14]). We write it here for the convenience of the reader.

Let us first show (1). Let w be the support of f. We consider the set wg of
elements v in S, such that z,,7 is in the closure of HwH. For g € G, we consider
the polynomial function

(1.35) det(1 —t — Ad p(g)) = (=1)™" + gu_1(g)t" " + -+ @u(g)t',

where [ is the rank of G and n is its dimension. Each ¢; is an H x H bi-invariant
regular function on G and thus is bounded on x,,ws. Therefore, the roots of
det(1 — ¢t — Ad p(g)) are bounded on z,,ws.

For v € S,, we have p(zm7y) = p(zm)y~ 2. We choose a finite extension F’ of F
such that S splits over F’ and p(xy) € S,(F'). Using notation of (I27), the roots
of det(1—t—Ad p(zy,7)) are the numbers (1—p(a,,)*y2) for a € ®(S,,, ¢'). Since
these roots are bounded on z,,wg, we obtain that the maps v — v*, a € ®(S.,¢’),
are bounded on wg. This implies that wg is bounded, and hence the closure 2 of
wg satisfies the first assertion.

It remains to show (2). According to (1), if v ¢ Q, then M(f)(x,,y) = 0. Thus
it is enough to prove that, for each g € S5, there exists a neighborhood V., of o
in S, such that

(1.36) sup IM(f)(@m7)| < +o0.

YEVyg Emy €GT TS

Let yo := Q(xm%). Let us first assume that yg is central in G. Then we have
As(zmy0y) = Dalyoy™?) = Da(y™?) for v € S, and zmyoh(zmy0)~" € H for
h € H. We define the function fy on G by fo(g9) := f(ZmY0g). Then we have
M(fo)(7) = M(f)(@my07) for v € S;NG7~"¢9. Therefore we can restrict ourselves
to the case yp = 1. As in the group case, we use the exponential map “exp”, which
is well-defined in a neighborhood of 0 in g, since the characteristic of F is equal to
zero (cf. [HC4, Section 10]). As in [HCI| proof of Lemma 15], we can choose an
H-invariant open neighborhood Vj of 0 in h such that the map X € V — exp(7X)
is an isomorphism, and a homeomorphism onto its image, and such that there exists
an H-invariant function ap € C‘x’(f)) such that p(X) =1 for X € V. We define f
in C°(h) by f(X X) [ f(hexp(TX))dh.

Let s be the L1e algebra of S. For X € s, we set n(X) = [det(adX)y/s|r. We
consider a finite extension F’ of F such that S splits over F’ and p(xm) € S,(F'). We
use here notation introduced in ([L27)). Since each root of S/ in g’ has multiplicity
2, we have for X € Vj, regular in b,

|Ag (exp X))y 1/2 ‘DG/(eXp( 27X))|¢ 1/2 - Macasyy 11— e 2ra(X) |,

n(X) n(X) a Hae@(s”,h’) |a(X)[pr
Ny 4720(X)?
= 27l ] |1—m<X>+73f L
acd®(S,h) ’
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We can reduce Vj in such way that each term of this product is equal to 1. Thus
we obtain

M(f)(expTX) = |27’|‘qu(sl’h/)‘/277(X)1/2 /H/S(/Hf(heXpTAd(l)X)dh)dl

= 2r N x| FAd@)X)dL,
H/S
for X € Vg, regular in . Hence the estimate (L36]) follows from the result on the
Lie algebra given in [HC3, Theorem 13].
Now, if yo = p(zm70) is not central in G, we consider the centralizer Z of yq in

H. Let Z° be the identity component of Z. By [Bol Section IIL.9], the group Z°

is defined over F. As usual, we set ZO = ResE/F(go xy E) and we denote by j its
Lie algebra. By definition of 3, one has

|det(1 — Ad(yo))g/3F # O
Thus there exists a neighborhood V of 1 in S, such that, for all y € V,

(1.37) |det (1 — Ad(yoy ™)) g/l = |det(1 — Ad(y0))g/3lr # 0.

Let w be the support of f. From [HC3| Lemma 19], there exist a neighborhood
Vi of yo in S and a compact subset Cg of Z~O\G such that if ¢ € G satisfies
g 'VigNp(w) # 0, then its image § in Z°\G belongs to Cg.

We choose a neighborhood W of 1 in S, such that W C V and p(Tmy0y) =
Yoy 2 € Vi for all v € W. By [Bal Section II1.9.1], the quotient Z°\ H is a closed
subset of Z°\G. Hence

the set C':= C N Z°\H is a compact subset of Z°\H such that if
(1.38) I € H satisfies [7lypy 2l € p(w) for some v € W, then its image [ in

ZO\ H belongs to C.
Let v € W such that x,,v0y € G°~"9. One has

(1.39) / / f(hay,yoyl)dhdl = / / / f(hapmyoyEl)dhdédl.
S\H JH 20\H JSs\z0 JH
By our choice of W, the map

le Z0\H / f(hxpmyovEl)dhdé
s\z0 JH

vanishes outside C. We choose u € C¢°(H) such that the map u € C°(Z°\H),

defined by w(l) := [, u(él)dg, is equal to 1 on C. As u and f are compactly

supported, the map

fI>:z€z’§°»—>/ u(l)/ f(hamyozl)dhdl
H H

is well-defined.

Since yo = p(rmy0) = (TmY0) Lo (zmy0) and Z° centralizes vy, we have
E(@mr0) T o (@m0) = (Tmy0) o (2my0)€ for £ € 2% Thus zpy0(zmy0) " € H,
and ® is left invariant by Z°.

We claim that ® € C2°(£°\29). Indeed, fix [ in the support of u. If f(ham,7ozl)
is nonzero for some h € H and z € 29, then p(hxmyozl) = p(xmy0zl) belongs to

p(w). Since z commutes with yo = p(zm7y0), we have p(zmy0zl) = I~ yop(2)a(l).
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As u is compactly supported, we get that ®(z) = 0 when p(z) is outside a compact
set. Hence the map ® is a compactly supported function on ZO\Z’O.

By assumption, the function f is right invariant by a compact open subgroup of
G. Thus f is right invariant by some compact open subgroup of H. We denote by
7;f the right translate of f by an element [ € G. Since u is compactly supported,
the vector space generated by 7;f, when [ € H runs through the support of u, is
finite dimensional. Hence one can find a compact open subgroup J; of Z° such
that, for each [ in the support of u, the function 7; f is right invariant by J;. This
implies that ® is smooth, and our claim follows.

Therefore, there exists ¢ € C°(2°) such that

<1>(Z):/ZO @(fz)dﬁz/Hu(l)/Hf(hxmyozl)dhdl, ze 20
‘We obtain

/S\ZO /zo ©(&17&2)dE1dEs =/Hu(l)(/s\zo/Hf(hxmvovfgl)dhdfz)dl
- /zO\H /20 uead)( /S\zo /H J(hemroréabal)dhdgz) déydl

:/ZO\HE@(/S\ZOLf(hwmvov§2l)dhdé)di

The map u being equal to 1 on the compact set C, we obtain, using (I39) and the
definition of C' (cf. (I38))),

/ / p(&17ée)dérdés = / / f(hamyoyl)dhdl.
S\Z0 J 20 S\H JH
By ([37) and the choice of W, one has

1Da(yoy™?)|e = |Dz0(v?)[rldet(1 — Ad(yo))g/slr, v € W.
Then we get, for v € W satisfying z,,v0y € G~ "%,

M) (Em07) = [det(1 — Ad(yo))g 51X 41D 50 (v 2) / / (E17E2)de 1.

Since | D0 (7~ 2)|r coincides with the function |A,|p for the group Z° evaluated at
v (cf. (L29])), the estimate (I36]) for f is obtained by applying the first case to ¢
defined on Z°. O

2. GEOMETRIC SIDE OF THE LOCAL RELATIVE TRACE FORMULA

1. Truncation. In this section, we will recall some needed results of [Ar3], Section
3]. We keep the notation of Section [l for the group H. Since H is split, one has
My = Ag. We fix a Levi subgroup M € L(Ag) of H. Let P € P(M). We recall
that Aj; denotes the maximal split torus of the center of M.

Let X p be the set of roots of Ay, in the Lie algebra of P, let ¥ be the subset
of reduced roots, and let Ap be the subset of simple roots.

As usual, for 3 € Ap, the “co-root” 3 € ays is defined as follows: if P € P(Ap)
is a minimal parabolic subgroup, then 3 = 23/(8, 3), where a; identifies with ag
through the scalar product on ag. In the general case, we choose Py € P(Ap)
contained in P. Then there exists a unique a € Ap, such that 3 = «,,,. The
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“co-root” B is the projection of & onto ap; with respect to the decomposition
ag = ap @ ad)l. This projection does not depend on the choice of Py.

We denote by aJIS the positive Weyl chamber of elements X € aj; satisfying
a(X) >0 for all a € Xp.

Let M € L(Ap). A set of points in ays indexed by P € P(M),

Y=Vu:={Yp €an; P € P(M)},
is called an (H, M)-orthogonal set if, for any pair of adjacent parabolic subgroups
P, P! in P(M) whose chambers in ay; share the wall determined by the simple root
a € Ap N (—=Ap/), one has Yp — Ypr = rp p/& for some real number rp pr. The

orthogonal set is called positive if every number rp ps is nonnegative. For example,
this is the case when the number

(2.1) d(y) = inf{a(Yp);a eAp,Ype )Y, Pe P(M)}

is nonnegative.

One example is the set

{=hp(z); P € P(M)},

defined for any point © € H (see [LI4] and [[2] for the definiton of hp). Indeed, this
is a positive (H, M)-orthogonal set according to |Arll Lemma 3.6].
If L belongs to L(M) and @ is a group in P(L), we define Yy to be
the projection onto ay, of any point Yp, with P € P(M) and P C Q.
Then Yg, is independent of P and Yy, := {Yg;Q € P(L)} is an (H, L)-
orthogonal set.

We shall write Sy () for the convex hull in aps/ay of an (H, M)-orthogonal set
Y. Notice that Sy()) depends only on the projection onto all of each Yp € Y,
PeP(M).

If each Yp, for P € P(M), is in the positive Weyl chamber a}, (this condition is
equivalent to saying that d(}) is positive), we have a simple description of Sy ()N
a} (cf. [Ar3, Lemma 3.1]). We denote by (w!)yeap the set of weights, that is, the
dual basis in (al])* of the set of co-roots {¥;v € Ap}. Then we have

(2.3) Syu(V)Naf = {X € af;wl (X —Yp) <0,7 € Ap}.

(2.2)

We now recall a decomposition of the characteristic function of Sys(Y) valid
when Y is positive (cf. [Ar3] equation (3.8)]). Suppose that A is a point in aj; ¢
whose real part Ar € a}, is in general position. For P € P(M), let A% be the set
of simple roots a € Ap such that Ag(d&) < 0. Let ¢ be the characteristic function
of the set of X € ay such that w?(X) > 0 for each a € A% and wl(X) < 0 for
each « in the complementary of A% in Ap. We define

(2.4) ou(X, V)= > (DA (X - vp).
PEP(M)
Then:
By [Ar3l Section 3, p. 22], the function o (-, ) vanishes on the com-
(2.5)  plementary of Sps(Y) and is bounded. Moreover, if ) is positive, then
om(-,Y) is exactly the characteristic function of Sps(Y).
For P € P(M), we denote by (@1)yea, the set of co-weights, that is, the dual
basis in afl, of Ap.
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Lemma 2.1. Let P and P’ be two adjacent parabolic subgroups in P(M) whose
chambers in apr share the wall determined by the simple root o € Ap N (—Ap).
Then:
(1) For all B in Ap — {a}, there exists a unique B’ in Apr — {—a} such that
B' = B+ kga where kg is a nonnegative integer. Moreover, the map v+ [’
is a bijection between Ap — {a} and Apr — {—a}.
(2) For all B in Ap — {a}, one has LDIBD,/ =af.

Proof. We denote by N the set of nonnegative integers and by N* the subset of
positive integers.

We will first show (1). As P and P’ are adjacent, we have Xp = (Xp — {a}) U
{—a}. Let B € Ap—{a}. If § € Aps, then we set 8’ := 3. Assume that S is not in
Ap:. Since 3 € Xp, there exists © C Ap — {—a} such that § = 5. nsd — ksa,
where the n;’s are positive integers and kg is a nonnegative integer. Each ¢ in
© belongs to Xp. Therefore, there are nonnegative integers (rs,)nca, such that
0= Z”]EAP Tsyn. Set B = 5consd = B+ kga. Let v € Ap — {a}. If v # 3,
one has ,81(@5) = ,8(6&5) = 0. Thus, for each 6 € ©, we have 75, = 0. Hence
0 =1r580 4+ r5a00

On the other hand, one has f; (cbg)) = B((Dg) = 1. Thus, for all § € O, one has
Zée@ nsrs,3 = 1. Since ns € N* and 753 € N, one deduces that there exists a
unique dp € © such that r5, g # 0 and one has ns, = 75,3 = 1. This implies that
© = {60} and 8 = §y — kpa. We can take 3’ := §y. Hence we obtain the existence
of 8 in all cases.

If 3] € Ap: satisfies f] = 8+ kja, then 8/ = B] + (kg — kjy)a. Since the roots
B1, B and —a belong to the set Ap: of simple roots, we deduce that 5] = 8’. This
gives the unicity of §'.

Let v and /8 be in Ap such that ' = 3’. Then we have 8 = v+ (k, —kg)«. Since
v, 8, and « belong to Ap, the same argument as above leads to 8 = 7. Hence, the
map 3 +— [ is injective.

It now remains to show (2). Let 8 € Ap — {a}. By definition, we have g’ =
B+ kga € Apr — {—a} with kg € N. Thus a(of)g,l) = a(@f) = 0 and B(&)f;/) =
5/(@5//) =1.Ifye Ap—{p,a}, then v = v+ kya is different from 3’ by assertion
(1). Thus we have 7(&5) = 'y’((bgl) = 0. One deduces that d}g/ = of)g. O

The above lemma allows us to define the minimum between two orthogonal sets.

Let P € P(M). For Y' and Y2 in ay, we denote by inf”{Y!, Y2} the

(2.6)  unique element Z in af such that, for all ¥ € Ap, one has (&5, Z) =
inf{(@F, Y1), (&, Y2)}.

Lemma 2.2. Let Y = {Y}, P € P(M)} and Y?> = {Y3, P € P(M)} be two
(H, M)-orthogonal sets. Let Z := inf(Y*,V?) be the set of Zp = inf"{Y}, Y3, }
when P runs P(M).
(1) The set Z is an (H, M)-orthogonal set.
(2) If d()?) > 0 for j = 1,2, then d(Z) > 0. In this case, the convex hull
Srr(2) is the intersection of Spr(V1) and Sy (V?).

Proof. Let P and P’ be two adjacent parabolic subgroups in P(M) whose chambers
in aps share the wall determined by the simple root « € Apﬂ(—Ap/).‘ Let v € AP_
{a}. By definition of orthogonal sets, one has, for j =1 or 2, (@, Y}) = (@F,Y},).
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By Lemma R} we have &l = &)5'. Hence we obtain (0F, Zp) = ((115/', Zpr) and
(@5,, Zp) = (dzf, Zpr). Since the scalar product on ag identifies aps to a},, one
deduces that Zp — Zp/ is proportional to &. The assertion (1) then follows.

Let us show (2). Let j € {1,2} and P € P(M). By definition, we have d()7) > 0
if and only if a(Y2) > 0 for all @ € Ap. By [Ardl Corollary 2.2], this implies that

(ij,Y}];) >0 for all « € Ap. Let o € Ap. Writing
Y= @5 Y+ Y (@f,Y)B+XI,
peAp—{a}
with X7 € ag, the condition a(Y}) > 0 is equivalent to
Y (@5 V)8 a)] < (@, Vi) (e ).
BeAp—{a}

Since the real numbers (wﬁ, ) for 8 € Ap, and —(8, ), for a # B in Ap, are
nonnegative, one deduces that

> (@ Zp)=(80)]

BeAp—{a}
= Y inf (@, Y8),(@F,Y3)[-(8 )]
peAp—{a}
< imf( Y (@ YH-Bl Y (@ YR)-(8,0))
BeApf{Ot} ﬂEApf{Ot}

< inf ((@57 Yli)a (@57 Y}g))(aa o) = (@5’ Zp)(a, ).
This implies that a(Zp) > 0 for a € Ap, and thus d(Z) > 0.
To get the property of the convex hulls, it is enough to prove that, for all P €
P(M), abNSm(YY) NSy (Y?) = ah NSu(Z). By [Ar3 Lemma 3.1], one has

ap NSu(V7) = {X € af;w (X —Y}) <0,7 € Ap}.

Since @f = cvwff for v € Ap, where ¢, is a positive real number, the assertion

follows easily. ]

2.2. The truncated kernel. We consider the regular representation R of G x G
on L?(G) defined by

(R(y1,92)0) (x) = o(y; '2y2), ¢ € L*(G), wy1,y2 € G.

Consider f € C°(G x Q) of the form f(y1,y2) = f1(y1)f2(y2) with f1, fo € C°(G).
Then

R(f) 3=/G/Gfl(yl)f2(y2)R(y1,yz)dyldyz

is an integral operator with smooth kernel

Ky(z,y) = /G fi(zg) f2(g9y)dg = /G f1(9) f2(z"  gy)dg.

In our case (i.e., H is split), one has Ay = Ag, and the kernel Ky is invariant by
the diagonal diag(Ag) of Ay in H x H. Since H is not compact, we introduce
truncation to integrate this kernel on diag(Ag)\(H x H).

Recall that agr is the image of My by hg. We fix a point 7" in agr. Let Py €
P(Ap). According to [Bou, Chapter 5, Section 3, no. 3.3, Theorem 2|, the closure

(’zlﬁo of the positive Weyl chamber aJISO is a fundamental domain of the Weyl group
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W (H, Ag). We denote by Tp, the unique translate by the Weyl group W (H, Ag) of
T in @} . Then
0
Yr = {TPO;PQ S P(AQ)}
is an (H, Ap)-orthogonal set (see [Ar3] p. 20]). We shall assume that the number

d(T) := inf T
() aeAPO,lgoeP(Ao)a( Po)

is suitably large. This means that the distance from 7" to any of the root hyperplanes
in ag is large enough.

We denote by u(-,T) the characteristic function in Ag\H of the set of
points x such that

x =kiaky witha € Ag\Ao, ki,ke € K and ha,(a) € Sa,(Vr),
where H = K ApK is the Cartan decomposition of H.

(2.7)

We consider u(-,T) as an Apg-invariant function on H. Thus there is a compact
set Qp of H such that if u(z,T) # 0, then € AgQp. Let Q be a compact subset
of G containing the support of f; and f;. We consider ¢ € G and z1,29 € H
such that fl(g)fg(ml_lgxg)u(arl,T)u(mg,T) # 0. Hence there are wi,ws in Qp
and a1,a2 in Ay such that 1 = wia1, To = wsao, and we have g € ) and
xl_lg:zzg = wl_lgwgal_lag € Q since Ay = Ag. Therefore al_lag lies in a compact
subset of Ag. Hence the map (g,z1,72) — fi(g)fo(x]  gr2)u(zr, T)u(ze, T) is a
compactly supported function on G x diag(Ag)\(H x H), and we can define

KT(f) = Ky(z1, zo)u(zr, T)u(xe, T)d(x1, x2).

/diag(AH)\H x H

By Fubini’s Theorem, we have
K'n-[ [ f1(9) e ga)ular, Tu(es, T)dar, 22)dg.
G Jdiag(Ag)\HxH

By applying the Weyl integration formula (I33]), we get that

(2.8) Km:ZmQ:Zm%Wwww

MeL(Ap) SETM Tm€EERS

where, for S € Tas, T € ks, and almost v € S, KT (x,,,7, f) is given by

KT(mmv Y f) = |A0(x7n7)|11:‘/2/ fl (yl_lxmryy2>

diag(Aan )\HXxH ~/diag(AH)\H><H

x fo (27 'y e myyeza)u(zr, T)u(zs, T)d(z1, 22)d(y1, y2).

Let us recall that, for any S € Ty, each z,, in kg and « in S, commute with
Apr. We first replace (21,x2) by (y121,y2x2) in the integral over (x1,z2). The
resulting integral over diag(Am)\H x H can be expressed as a double integral
over a € Ag\Ap and (x1,22) € diag(Ap)\H x H, which depends on (y;,y2) €
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diag(An)\H x H. Since Ay commutes with z,, € kg and v € S,, we obtain that

2.9) KT (@m, 7, ) = | Ao (zmy) 1 T Emyye)

/diag(AM)\HxH /diag(AM)\HxH
Xf2($f1$m7$2)uM($1, Y1, w2, Y2, T)d(x1, 22)d(y1, y2),

where up (1,91, @2, y2,T) = / u(yy taxy, T)u(y; taze, T)da.
An\Am

Our goal is to prove that K7 (f) is asymptotic to another integral J7 (f), ob-
tained similarly to KT (f), where the weight function wuas(z1,y1, 22, y2,T) is re-
placed by another weight function vy (z1,y1, 22,92, T) defined as follows.

We fix M € L(Ap) and P € P(M). Let Py € P(Ap), contained in P, and let Tp
be the projection of T, on ay; with respect to the decomposition ag = ay @ ad.
From (2.2) and [2.2)), the set Y (T) := {Tp; P € P(M)} is an (H, M)-orthogonal
set independent of the choice of Py. Moreover, by [Ar3] equation (3.2)], we have
d(Ym(T)) > d(T) > 0. Thus Y (T) is a positive (H, M )-orthogonal set.

For z,y in H, set

YP(xayaT) = TP + hP(y) - hp(x)

By [Ar3] p. 30], Y (z,y,T) := {Yp(z,y,T); P € P(M)} is an (H, M)-orthogonal
set, which is positive when d(T) is sufficiently large relative to x and y.
For x1,29,y1, and ys in H, let

(2.10) Zp(x1,y1, 02,92, T) i=inf" (Yp(z1,91,T), Yp (22,2, 7)),
where inf” is defined in (Z6) and
(2.11) Yu(xr,y1, 22,92, T) == {Zp(x1,y1, 22,92, T); P € P(M)}.

By Lemmal[2.8] the set Vs (x1, y1, 2, y2,T) is an (H, M )-orthogonal set. Moreover,
when d(T) is large relative to a;, y;, for i = 1,2, one has d(Vpr (21, y1, %2, y2,T)) > 0.
Hence this set is a positive (H, M )-orthogonal set.

Let vy be the weight function defined by

(2.12) v (z1, 91, 22, y2,T) == / om(har(a), Var(x1, y1, 22, y2, T))da,
Ag\Am

where o)y is given by (2.4).
We set

213)  SN= 3 XY s, / T (s, ),
MEL(Ao)  SETu TmEks Ss

where
(2.14)

.]T(J,‘m7’y,f) = |Aa(xm’7) ;/2 fl(yflmm7y2)

/diag(AM)\HXH /diag(AM)\HXH

XfQ (x;1$m7$2)q)N[ (xla Y1,T2,Y2, T)d(il?l, :EQ)d(yla y2)
Our main result is the following. Its proof is postponed to Section 2.4l

Theorem 2.3. Let 6 > 0. Then there are positive numbers C' and & such that, for
al T € app with d(T) > §||T||, one has

(2.15) (KT (f) = T"(f)] < CeeITl,
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2.3. Preliminaries to estimates. We fix a norm || - || on G as in (ILI5). Let F’
be a finite extension of F. We set G’ := G x¢ F" and G’ := G'(F’). One can extend
the absolute value | - |r to F’ and the norm || - || to G’. For z,y in G’, we set

1, o)l == [yl

To obtain our estimates, we will use < and =~ defined respectively in ([LI8]) and
(TI9). As the norm takes values greater than or equal to 1, we can freely apply

the properties (20)).

Lemma 2.4. Let S be a mazimal torus of H and let M be the centralizer of As in
H. We fix x,y e GNMS, =M NMS,. Then one has

(2.16) Suelg (s, eq, s22) || < s’ehgl(fF’) |(s'z ey, 8'w0)||, 1,22 € H.
Proof. Since H' Ay is of finite index in H, we may assume, using (L21]), that ; and
79 belong to H'Ag. As Ag = Ag, using the invariance of the property ([2.16]) by
the left action of diag(Ag) on (x1,z2), it is enough to prove the result for z; € H*
and xp = asys with as € Ay and vy, € H'.

To establish (ZI0), we first assume that As = Ap, which implies that the
quotient Ay\S is compact. By ([L21]), there is a positive constant C' such that

1

Inf [|(s e, s22)| < C inf (0w, a)l-

We deduce from (II7) that

[(azy, wr, aza)l| < [l lllallaz|l 2|y
Taking the lower bound in a € Ay, there is a positive constant C; such that

(2.17) inf |[(s2y,' 1, 522)|| < Caflallas [yl

In the following, we will need [Ar3l Lemma 4.1], which we recall here.

If Sy is a maximal torus of H with Ag\Sy compact, then there exists
(2.18)  an element s € Sp such that

Iyl < lly tsoyll, ye H.

On one hand, we apply this result to Sp = S. As S(F') commutes with sg, one
deduces, using the property (LI7) of the norm, that

(2.19) ly2ll < lls"gel*llsoll, vz € HY, 5" € S(F).

On the other hand, as z,, € GNMS,_, Si := z,,Sz,,' is a maximal torus of H
which satisfies Ag, = Ay. Applying (ZI8) to Sy = S1, there exists s; € S such
that

(2.20) 1]l < oy emsizy aal, @1 € HY.
The same argument as above leads to

(2.21) |1l < 182 w1 l?ls1]l, @1 € HY, 8" € S(F).

Then, by (ZTI7), 219), and Z2T)), and applying the properties (L20), we deduce
that

(2.22) infees ||(sz, @1, sa2y2)| < 18"z, @]l s y2 || a2,
' s € S(F), wx,y2€ H'., as€ Apy.
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To obtain our result, we have to prove that
(2.23)
8"z a1 |8 yalllazll < |(s"ep 2, s"asye) ||, 8" €S(F),  x1,y2€HY, az€An.

We can write S = T Ay where T is a maximal torus of the derived group H,,, of
H. Weset T' := T(F') and A’ := Ay (F). Then T” is contained in H'!. Moreover,
the intersection of T and Ay is finite. Hence, one has the exact sequence

1-TNAy T xAy - S— 1.

Going to F'-points, the long exact sequence in cohomology implies that 7" A’; is of
finite index in S(F'). Thus, by (LZI)), it is enough to prove [Z23)) for s’ = t'a’ €
S(F') with ¢ € T" and o’ € AY. By ([LH), if z; € H', then z; € H'* C G’ and
ztex, € G As H is split, we have A}, = A,. Ast' € H'', (L23) gives

1

Ha't’x,}lxln ~~ ||a/t/3::nlx1:1:m|| ~|d ||tz vz, o €Ay, teET, cH!,

and
la't'ye]| ~ lla'[|t'well, o €Ay, t'€T', yreH"
Applying (L20), we deduce that

(2.24)
[t'a z || ||a't y2 ||| az |

||a2HIIG’HQIIt’w;flewmIIIIt’szI
llazllla’[[[[t'zn z12m |||t y2 |,
teT, do€Ay, wz,y2€H, ayeAp.

Q

Let us prove that

(2.25) la'lllla’az]| = [la"[laz]l, o' € Ay, az € An.

According to (CIT), one has [[a/as | < [l lazll. Then [[la/asl] < (|’ [llaz]|)?, as
1 < Jlaz|. Since [|a/|| = |aaza; || < [la’az|]|az]|, we have [|a’[[[laz]| < (la"az||az[)?,
and (220) follows. Applying (Z27) in (224), we deduce that

(2.26)

[ta'zy allat yalllazll ~ o/ [|[It'2n vrzm | [|a az|l][¢ v,
teT, de€dy, xz,y2€H, ay€Apy.
As x, ' H'z,, C G'* and A}, = A, we obtain from (L.23) that
& |||tz ey || & |tz oz, || = a2z ||, o € Ay, teT, xz,€HY,
and
la'az |||t y2|| = ||a’agt'ys||, o € Ay, t €T, as€ Ay, y2 € H.

Applying this in (Z206) and using (L20), we deduce that
It a'z | ||a't ya||||az|| < ||l@'t x| |a/ Y agya ||, o €AYy, €T, x1,y€H.

Then the property (2:23]) follows. This finishes the proof of the lemma when Ag\S
is compact.

We now prove ([2.I6]) for any maximal torus S of H. Let Ag be the maximal
split torus of S and let M be the centralizer of Ag in H. Thus we have A); = Ag
and Ap/\S is compact. Let P = M Np € P(M) and let K be a compact subgroup
of H such that H = PK. Each x € H can be written x = mp(z)np(x)k(z) with
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mp(z) € M,np(x) € Np, and k(zr) € K. Then there is a positive constant C such
that
(2.27)
infses ||(sz, 21, s22) ||

< Cinfoes (Jszmimp (@) lsmp@)) Inp@)llne @), @,es € H.
By assumption on z,,, there exist h,, € M and a,, € S, such that z,,, = hp,a,, €
M. Hence we can apply the first part of the proof to (M, S) instead of (H,S).
Therefore, we obtain

inf (2,1, 502) |

< elg(fF) (Is"z mp (z0)ll[|s mp () ) [Inp (@) Inp ()], z1,%2 € H.
s'TER

To compare the right-hand side of this inequality to the one of [2.16]), we will use the
Iwasawa decomposition (LI2) of H'. Let K’ be a compact subgroup of H’ such that
H' =P(F)K' = M(F')Np(F)K'. According to (II3)), each y in H’ can be written
y = mp(y)np(y)k with mp(y) € M(F'), n’s(y) € Np(F'), and k' € K'. Then,
for x € H and z € M(F'), we have zz = zmp(z)np(z)k = mp(22)n’p(22)k" with
ke K and k' € K'. We have mp(zz) € zmp(x)(K' N M') and n’p(z2) = np(z),
hence
il ()| ~ | (2) | and || (z2)Vert = [np(@)]|
Using ([I22)), it follows that
lzmp (@)l < llz2]] and |np(2)] < |lzzll, 2 € M(F), =€ H.

Hence, by (20,

(2.28) [zmp(x)|[[np()]| < l22), 2€ M(F), zeH.
‘We deduce that
(2.29) Is'mp(zo)||lnp(z2)l| < |s'22ll, s € S(F), xp € H.

Since ., = by, with by, € M and a,, € S, one has z,,,s'x,,' € MNH' = M(F)
for s’ € S(F'). Therefore, we deduce from (Z28) that
(2.30)  Nows'zy mp(z)linp(@)ll < |oms'ay v, 8" € S(F), a1 € H.

Since ||sx_1mp(x1)|| < e tllems e tmp(2y)|| and ||, s’z ey <

|z |l|s" 2 1], we deduce the estimate [Z.16) from [227), Z29), and Z30). ThlS

finishes the proof of the lemma.
The following lemma is the analogue of [Ar3, Lemma 4.2].

Lemma 2.5. Let S be a maximal torus of H and let x,, € ks. Then there is a
positive integer k with the property that, for any given compact subset 2 of G, there
ezists a positive constant Cq such that, for all v € S,, with .,y € G°~"%9 and all
x1,xo in H satisfying xflxm'yxg € Q, one has

i (s, 1, 522)]| < Col Ao (2m) "

Proof. Let F' be a finite extension of E such that S splits over F’. Recall that we
can write ., = hpay, with h,, € H and a,, € S,. Thus we may and will choose
F’ such that h,, € H(F') and a,, € S,(F"). For convenience, if J is an algebraic
variety defined over F, we set J' := J(F').
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According to Lemma[2.4] it is enough to prove the existence of a positive integer
k satisfying the property that, for any compact subset Q' of G'°~"¢9, there exists
Cqr > 0 such that

(2.31) Jnf, (Is"zm z1lllls"z2]) < CarlAg(@m)5"

for all 1,29 € H' and v € S, satisfying z,,v € G°~"%9 and $I1$m7$2 e .

Let B = S'N’ be a Borel subgroup of H’' containing S’ and K’ be a com-
pact subgroup of H' such that H' = S'N'K' = N'S’K’. We can also write
H = (hpnS'h; ) (hy N'h B (hey K'hY). By ([L21), one can reduce the proof to
the statement for z1 € (h,S'h;Y) (RN’ b) and 20 € S'N'.

Let 21 = hysinih,t and 29 = sysang with s1,s2 € S’ and ny,ne € N'. Since
Tm = NmQm, we have x,s120,1 = hy,s1ht. Hence, for any s’ € S’, we have
so tey = s'a topmsie, hni byt = s's12 thinna bt We thus obtain

Aot (lls'z wlllls'all) = inf (Ils"ey, hmna g |8 sanall)-
Notice that 7 'z yre = hpmny *hi amsy e e mys1sane = hny Yhi @ ysans.

Therefore, we are reduced to proving Z31)) for x1 = h,,nih,t with ny € N’,
zy € S'N’ = N'S’, and € S, such that x,,7 is o-regular and z; 'z, yzy € .
We write now xs = ngss (notice the change of notation). By the properties of the
norm, there is some positive constant C’ such that
(2.32)

Jnf (Is'zy zilllls"z2]l) < Cmallllsallllnzll, @1 = hmmahy's @2 = nass.
We want to estimate ||n1]|[|sz2]||nz2| when z1 = h,,nih,,! and 22 = nasy satisfy
acl_lxmvxg € Q. For this, we use the isomorphism ¥ from G’ to H' x H’ defined
in (L26). If z € H', then ¥(z) = (z,7), and if y € G satisfies y~! = o(y), then
U(y) = (y,y~"). Weset (y1,y2) := ¥(z] '2my2s). Then we have

Y1 = by L amymass = h (07 amyna(amy) ™) (amys2)

and

1 1 1 1

apty ngss = B (Y am'y” n27am)(am7)_152-

Since H' = N’S'K’, the condition z] 'z, yzo € Q' implies that there exist two
compact subsets Qx C N’ and Qg C S’ depending only on Q' such that

Y2 = hmnl_

1

~1 _ 11—
ny tamyna(any)"t € Qn,  ny ety Ineyan, € Qn,

amys2 € Qs and  (a,y) lss € Qs.

We deduce from the second property that so and v must lie in compact subsets of
S’. We set

1 1

vi(y,n1,n2) :=ny tamyna(amy) ™" and  va(y,n1,n2) = 0y (amy) T n2am Y.
We consider the map ¢ from N’ x N’ into itself defined by ¥(n1,n2) = (v1,v2).
Recall that ®(S’,h’) denotes the set of roots of S’ in the Lie algebra b’ of H'
(cf. (TZ7)). Let n’ be the Lie algebra of N'. For a € ®(5’, §’), we denote by X, € v’
a root vector in b’ corresponding to a. Then a,,y acts on X, by an = (am7y)*.
The differential d(,,, )% of ¢ at (n1,n2) € N’ x N' is given by d(,, n,) ¥ (X1, X2) =
(Ad(@nyny H(am1) Y1, Ad((m) "0 "apy)Ya), where

Y1 = —Ad('n1)X1 + Ad(am’y)Ad(ng)Xg
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and
Yy = —Ad(n1) X1 + Ad(amy) 'Ad(ng) Xo.
The map (X7, X5) — (Y1, Y2) is the composition of the map
(Xl, XQ) — (Ad(nl)Xl, Ad(TLQ)XQ),

whose determinant is equal to 1, with d.v, where e is the neutral point of N’ x N'.
We deduce that the jacobian of ¢ at (n1,n2) is independent of (ny,m2). At the
neutral point e € N’ x N’, we have d.¥(X,,0) = (— X4, —Xao) and de(0, X,,) =
(aaXa,a—0Xa). Hence, the jacobian of 4 is equal to

| I] el = a—sa)le = | det(Ad(amy))y e 6| det(l — Ad(amy) )y o[
acd®(S’,h’)

= |Da((am™)2) e

Recall that ,,7 is assumed to be o-regular. Thus, by ([[229), one has A, (x,,7) =
Dy (a,?y72) # 0 . Then, arguing as in [HC2l proof of Lemmas 10 and 11], we
deduce that the map 1 is an F’-rational isomorphism of N x N onto itself whose
inverse (v1,v2) — (n1,n2) := (n1(v,v1,va),n2(v,v1,v2)) is rational. Moreover,
there is a positive integer k£ such that the map

(y v, v2) = D ()" (na(y, v1,v),n2(y, v1, v2))

is defined by an F’-rational morphism between the algebraic varieties S x N x N
and N x N. Since vq, 9, and ~v lie in compact subsets depending only on ', one
deduces that there exists a constant Cqos > 0 such that

|(n1 (v, vi,v2),n2(y, v1,12))|| < Cor| D (a;27_2)|p_fk = Cor|Au (Tmy) 5"
The lemma then follows from ([2.32]) and the fact that so lies in a compact set. O

2.4. Proof of Theorem[2:3l Our goal is to prove that |KZ'(f)—J7T (f)| is bounded
by a function which approaches 0 as T approaches infinity. By definition, K7 (f) and
JT(f) are finite linear combinations of fSa KT (2,7, f)dy and fsc, I (2,7, f)dy
respectively, where M € L(Ap), S is a maximal torus of M satisfying Ag = Ay,
and z,, € kg (cf. 28) and (2I3)).

We fix M € L(Ap) and a maximal torus S of M such that Ag = Ay, Let
ZTm € Kg. To obtain our result, it is enough to establish the estimate (ZI3]) for
fSa |\ KT (20,7, f) — JT(Xm, 7y, T)|dy. This will be done in Corollary below.

For € > 0, we define

(2.33) So(e,T) := {7 € S,;0 < |Ag(zmy)|r < e cITI},

Lemma 2.6.

(1) There exists €9 > 0 such that the map v — |Ag(2,7)|p° is locally inte-
grable on S, .

(2) Let ¢ > 0. Let B be a bounded subset of S, and let p be a nonnegative
integer. Then there is a positive constant Cp , depending on B and p, such
that

el Tl

/ [log |Ag (zmy)|5 ' Pdy < Cppe” 2
Se (e, T)NB
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Proof. The proof of (1) follows from the one of the group case (cf. [HC3, Lemma
43]). We use the similar statement on Lie algebras and the exponential map. We
denote by s the Lie algebra of S. For X € s, we set 1(X) = |det(adX)y/s|r. By
[HC3, Lemma 44], there exists 9 > 0 such that X +— n(X)~2° is locally integrable
on s. To obtain the statement, it is sufficient to prove that

for each vy € S,, there exists a compact neighborhood Uy of 1 such

(2:34)  {hat the integral |Ag (zmy07) |~ dy converges.

Ug

If 2,70 is o-regular, then there is a compact neighborhood Uy of 1 in S, such that

A (ZmY0Y)|F = |Ac(@my0)|r # 0 for all v € Uy. Hence ([2:34) is clear.
Let us now assume that z,,7 is not o-regular. We choose an extension F’ of E

such that S splits over F” and p(rm) € S_(F'). We use notation of (L27). Let ®
be the set of roots o in ®(S,, g') such that p(z,,70)* = 1. We set

v(v) = 11 1= p(xmy0)*y > [f-
@€ (S].8) P

We have Ag (2m707) = Dar (p(2my0)y %) = det(1—Ad(p(zmy0)72))|g/5, and each
root of ®(S7,g’) has multiplicity 2. Hence, we obtain

|Ag (zm0y)|[Fr = v(vy H 11—~

acd
We choose a compact neighborhood W of 1 in S, such that v(y) = v(1) # 0 for
v € W. Let B = sup H |1 —y72%|%,. Then, for v € W, we have
TEW qea(sy,97) D0
BlAs (zmyomler = Br(1) T] 11 =7 = v(D)|A (1)]er-

a€dg

Consider the exponential map. There exist two open neighborhoods w and U of 0
in s and 1 in S, respectively such that the map X — exp(7X) is well-defined on w
and is an isomorphism and a homeomorphism onto U. For X € w regular in s, we
have

A, (exp(rX)) |7 11— 2
n(X) = 1l a(X)lp

We can choose a compact neighborhood wy C w of 0 in s such that the above
product is a positive constant ¢ and Uy := exp(7wy) is contained in W. Then

[ 8oz < (B [ 1800

Ug

= (%)Eoc/w n(X)"*0dX.

The right-hand side of this inequality is finite by our choice of €9. The assertion

234) follows.

To show (2), let us pick e >0 as in (1). We set

ae®(S;,9)

- [ log | Ay ()5 Pdr.
(e, T)NB
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If p is a positive integer, then there is positive constant C’ such that |logyP <
C'y0/2 for all y > 1. Since |A, (zm7)|p" > eflTI > 1 for all v € S, (¢,T), we get

hee Boln)l ™y < e [ |8g @l
So (e, T)NB 5
If p = 0, then, by definition of S, (e, T), one has
Iy = / |Aa($m'}/)|g50|Aa(.’13m7)|;‘od,y < efsso||T|| / |Ag(acmfy)|};€0d7.
S5 (e, T)NB :

In the two cases, the result follows from (1). O

Lemma 2.7. Let g9 > 0 as in Lemma 26l Given € > 0, we can choose a constant
¢ > 0 such that, for any T € aor, one has

/ (KT sy )|+ 177 @y, )]y < ce
So(e,T)

_ecollTll
4

Proof. We recall that for almost v € S, we have

KT @mrs /) = |Ag(@my)|? / / £ 2vye)
diag(An)\H x H Jdiag(An)\H x H

x fo(@7  Tmyaa ) un (21, Y1, 22, yo, T)d(z1, 22)d(y1, y2),

where
un (1,91, 2, y2,T) = / u(yy taxy, T)u(y; tazy, T)da.
An\Aum
We first establish an estimate of ups. Let x,y € H and a € Aps. According to
(LII) applied to H, we can write y~tax = kjaoks with ki, ks € K and ag € Ap.
By definition of the norm, there is a positive constant Cy such that

log [ly~"az|l < Co(llhay(ao) ]| + 1)

If u(y~taz,T) # 0, then, by definition of u(-, T') (cf. (7)), the projection of h 4, (ag)
in ag\ap belongs to the convex hull in ag\aps of the W(H, Ap)-translates of T
Thus, there is a constant C; > 0 such that

(2.35) inf log |y tzaz| < CL(|T|| +1).
z€EAH
We assume that ||T']| > 1. Taking Co = max(2Cy, 1) and using the property (17
of the norm, we obtain
(2.36) inf log [|zal| < Co([|T]| + log [[z[| + log [[y])-
zEAY

Applying this inequality to (x1,y1) and (z2,y2) such that u(y; *axy, T)u(ys ‘axs, T)
# 0, we get

Jnf log|lzal < Co(||T] +log ]| + log [ya[| +log 2] +log ly21))-

As ||z]| < ||zm]||z, 2] and 1 < ||T, and taking the integral over a € Ay\ Ay on
the above inequality, we deduce the following inequality:

(2.37)
un (21, Y1, %2, y2, T) < (IT|| + log ||z, @1 || + log ||z, y1 || + log ||| + log [|y21]),
T1,Y1,%2,y2 € H.
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The function ups(x1,y1, x2,y2, T) is invariant by the diagonal (left) action of A, on

(x1,22) and (y1,y2). As x,, commutes with Ag = Aps (cf. Lemma [[T]), we can re-

place log [, 21 || +log ||z and log ||z}, y1 | +1og [|ye|| by inf log [(azy, 21, azs) |
M

and 11}4f log ||(azx;, y1, ays)|| respectively. By assumption, the quotient Ap/\S is
acApnr

compact. Then, using (L21]), one has
. —1
inf |[(ax

nf (e,

Therefore, as ||T|| > 1, the inequality ([2.37) gives

z,az’)|| ~ Suelg |(sz)te, s2')||, =2’ € H.

up (21,91, 22,92, T) < ||T)| + log inf H(sx;llxl,sxg)ﬂ + log inf ||(s:s,_nly17syg)||7
seS seS
T1,Y1,T2,Y2 € H.

In other words, this means that there are a positive constant C3 and a positive
integer d such that, for all x1,y1,x2, and yo € H, one has

un (1, Y1, 22, Y2, T) < C3(||T'|| +1log Sllelg (| (s, w1, sx2)]| +log Slrelg (s w1, sy2) ).

Let © be a compact set containing the support of f; and fy. By Lemma 2.5 there
is a positive integer k (independent of Q) and a positive constant Cq such that if
Ty € 2m S, is a o-regular point with fi(y; ' @myye) fa(2] *emyas) # 0 for some
T1,%2,Y1, and yo in H, then

wn (@91, w2, 92, T) < Ca(|I T +1og | A (@my) )™
This inequality and the expression of KT (x,,,7, f) thus give that for v € S, with
Ty € G779, we have
(2.38) KT (@m., ) < CalllT|| +log |A (zmy) 7 *) M (1) (@mr) M(fo) (2m)],

where M(f;) is the orbital integral of f; defined in (I.34). By Theorem [[2] these
orbital integrals are bounded by a positive constant Cy on (z,,S,) NG~ "9. Hence,
we obtain

KT (2,7, f)| < CaC3(||T| +log | Ag (z,m7) 552
Let B be the set of 7y in S, such that z,,7 is o-regular and K7 (z,,,~, f) # 0. Then
B is bounded by Theorem [l and (Z38]). Using Lemma 2.0 we can find a constant
C > 0 such that

T Al
(2.39) | K (@, 7y, fldy < Ce™ 4
So(e,T)

If |T|| <1, then (Z35) implies that if u(z~tay,T) # 0, then

inf log ||zal| < 2C +log ||z|| + log [|y]|.

z€EAH
The same arguments used to get ([237)) thus imply that there is a positive constant
Cf > 1 such that
(2.40) unr(z1,y1, 22,52, T) < (C1+log |27, 21| +Hlog |27, 1 | +log || 22| +log [|y21]),
for z1,y1,x2, and ys in H. Replacing ||T|| by C} in the argument after (237, we

deduce that |KT (2,7, f)|dy is bounded. Hence, one obtains (239) for
|7 < 1.

We will now establish a similar estimate when K7 is replaced by J7. For this,
it is enough to prove that the weight function vy; has an estimate like ([2:37)). We
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will see that this follows easily from the definition of vy;. Indeed, for z1,y1, z2 and
yo in H, one has by definition

(1,91, 22, Y2, T) 1:/ on(har(a), Yar(x1,y1, 22,92, T))da,
Au\Anm

where opr(-, Var(21,91, 22,92, T)) is a bounded function which vanishes in the
complement of the convex hull Sy (Vas(x1,y1, 22, y2,T)) of the (H, M)-orthogonal
set Var(x1,y1,22,y2,T) (cf. @H)). As Vu(x1,y1,22,y2,T) is the set of points
Zp =inf" (Tp +hp(y1) —hp(x1), Tp 4+ hp(y2) — hp(xs)) for P € P(M) (cf. (ZII),
if opr (X, Yar (21,91, 22,92, 1)) # 0, then | X|| < ||Zp]| for P € P(M). By definition
of Tp, one has | Tp| < ||T||. Let us prove that, for any P € P(M), one has

(2.41) Ihp(@)] < 1+logllall, =€ H.

Let us first compare ||m| and ||has(m)| for any m € M. Let M = KpAoKy
be the Cartan decomposition of M where Kj; is a suitable compact subgroup
of M. Then each m € M can be written m = ka(m)k’, with k, k" € Kp and
a(m) € Ag. As Ky is compact, (LZI) gives the property ||m|| = ||a(m)|, m € M,
and this property does not depend on our choice of a(m). By ([25]), we have
la| = elPa0(@ll ‘g € Ay. Hence, there are a positive constant C' and a nonnegative
integer d such that el?o (@™l < C|m||4, m € M. Applying (L) to (M, Ap),
one has, for any a € Ao, that hps(a) is the orthogonal projection of ha,(a) onto
apr. Thus ||has(a)|| < ||hay(a)]l. As hpr(m) = har(a(m)) for any m € M, we then
obtain that there is a positive constant C’ such that

(2.42) 1har (M) < [[hag(a(m))]| < C'(1+log [[ml)), m € M.

By definition of mp and hp (cf. (LI3) and (LI4])), we have hp(z) = hy(mp(z))
for any x € H. Moreover, according to (L22), we have ||mp(z)|| < ||z|,z € H.
Thus our claim (241)) follows from ([2:42)).

Therefore, there are a positive constant C; and a positive integer d such that if
om(har(a), Yar(z1,y1, 22,92, T)) # 0, then

Ihar(a)ll < 1 Zp]l < CL(IT | +log |1 ]| +log [ly1 ]| + log [l2]| + log fly=1)".

As ||lz|| < llzmllllztx]| for any # € H, this gives the following estimate of vys
analogous to (Z37) and (240):
(2.43)
if ||T|| > 1, then
vn (21,91, 22,42, T) < || T + log [l 1| + log ||z || +log [|z2|] + log [|ye|],
r1,Y1,22,Y2 € H,

and
(2.44)
there is a positive constant C4 such that, for any || T|| < 1, one has
vn (21,91, 82,42, T) < €5 + log [t || + log [l wa | +log [|z2]| +log [lyz I,
T1,Y1,%2,Y2 € H.

Arguing exactly as we did above for KT, we deduce that there is a positive constant
C' such that

ceollTll
1

/ I (27, fldy < Ce™
So(e,T)

This finishes the proof of the lemma. O
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Lemma 2.8. Fix § > 0. Then there exist positive numbers C,e1, and €2 such
that, for all T € apr with d(T) > O||T|| and for all x1,y1,22 and y2 in the set
H., = {x € H;|z| < e=ITI}, one has

(2.45) lunr (21, Y1, T2, Y2, T) — var (21, Y1, 22, y2, T)| < Ce I

Proof. If ||T|| remains bounded, then, by 237), 240), 243) and (244), the

functions up; and vy are bounded and the result ([248) is trivial. Thus we have
only to prove the lemma for ||T'|| sufficiently large and d(T) > o||T|.

By [Ar3, equation (5.8)], we can choose €5 such that d(Vas(x,y,T)) > 0 for all
x,y € H.,. By the discussion of [Ar3, bottom of page 38 and top of page 39], there
is a constant Cy > 0 such that, for T' with d(T") > §||T|| and ||T|| > Co, x,y € He,,
and a € Ag\Ayp, one has

u(y tax, T) = op(hae(a), Vi (2, y, T)).
By Lemma 22 we have, for X € ayy,

om (X, Yz, 91, 22,92, 1)) = o (X, Y (21,91, T)) o (X, Yar (22, y2, T)).
Thus, one deduces that

on(har(a), Var(z1, 91, 22,92, T)) = u(yy tawy, T)uly; axs, T), a € Ap\An.
Hence, for T such that d(T') > §||T|| > dCy and z;,y; in H.,, we have

un (21,91, 2,92, T) = vpr (21, Y1, 22,92, T).

This finishes the proof of the lemma. O
Theorem 2.3] then follows from the corollary below.

Corollary 2.9. Fiz § > 0. There exist two positive numbers € and ¢ such that, for
all T with d(T) > 0||T||, one has

(2.46) | K ) = T . P d < eI,

Proof. By Lemma [2.7] it is enough to prove that we can find positive numbers e,
¢’, and Cj such that

(2.47) / (KT (2,7, ) = T (2,7, Fldy < Coe= =171,
So—S5(e,T)

where S, (e, T) is defined in ([Z33]).

Let £ > 0. Let Q be a compact subset of G which contains the supports of f; and
fo. We will estimate |ups(x1,y1,x2,y2,T) — var (21, Y1, T2, yo2, T)| for z1, 22, y1 and
yo in H satisfying 7 'z, y22 € Q and y; 'z, 7y € Q for some v € S, — Sy (e, T)
with x,,,v € G779, For this, we will use the invariance of the functions u,; and
vy by the diagonal left action of Aps on (z1,z2) and (y1,y2) respectively.

By Lemma 25 there are a positive integer k and a positive constant Cq (de-
pending only on §2) such that, for all v € S, — S, (e, T) with x,,,y € G779 and for
all z;,y; in H, i = 1,2, with xl_lacm'yasg and yflxmfyyg in €2, one has

(2.48) inf, (52, w1, 532) || < Calg(my) ™" < CoerlIT]
se€

and
inf [(sz,"y1, 592)[| < Caldg(@my) ™ < CaetI™l.
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As Ap\S is compact, we deduce from ([2)) and (2.48) that there is a constant

C¢, > 0 such that

inf ||(az; @y, azo)|| < ChLereITl.
a€An

Thus, for n > 0, there exists ag € Aps such that
(2.49) laoz ' z1 || |laozs] < Caer<ITlh 4 4.

Since Ap; = Ag, the point ag commutes with z,, by (L28]), and we have ||apz1| <
[T —-—

If ||T|| remains bounded, then |lagz;||, ¢ = 1,2, are bounded by a constant
independent of ||T'||. By the same arguments, there exists a; € Aps such that [Ja1y;],
i = 1,2, are bounded by a constant independent of ||T'||. Using the invariance of
upr and vy by the left action of diag(Aas) on (z1,22) and (y1,y2) respectively

and the estimates [237), (Z40), 243), and (ZZ4) for ups and vy, we deduce that
luns (1, Y1, 2, Y2, T) — var (21, Y1, 2, Y2, T)| is bounded by a constant independent

of T and of x;,y;, i = 1,2. Recall that, by Theorem [[.2] the constant

C = / M1 ) @) MU o) ()
So

is finite. We deduce that / \KT (2,7, f) = T (Xm, 7, f)|dy is bounded,;

So—S8s(e,T)
hence we obtain (247).
We assume that ||T|| is not bounded. Let e1,e3, and C be as in Lemma 2§
Taking ||T'|| to be sufficiently large and e such that ke is smaller than the constant
€9, we can assume by ([2.49) that

lagz;|| < eIl i=1,2.
The same arguments are valid for |ly;||, ¢ = 1,2. Thus there is a; € Aps such that
laryil < eI, i =1,2.

Using Lemma 2.8 and the invariance of uys and vas by the left action of the diagonal
of Ay on (21, x2) and (y1,y2) respectively, we deduce that, for all T with d(T") >
O||T|l, one has

lune (1, Y1, 22, Y2, T) — var (21, Y1, 02,90, T)| < Ce =171
Hence, we obtain

/ KT (@, ) = I (@, T)] < COre 71,
S—S,(e,T)

where C; := ng M| i) (@my)M(| f2])(@my)dy. This finishes the proof of the
corollary. O

2.5. The function JT(f). The goal of this section is to prove that JZ(f) is of the

form
N
(2:50) S pe(T s,
k=0
where §o = 0,&1, ..., &y are distinct points in iaf and each p (7, f) is a polynomial

function of T. Moreover, the constant term J(f) := po(0, f) is well-defined and is
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1848 P. DELORME, P. HARINCK, AND S. SOUAIFI

uniquely determined by K7 (f). Except for one detail, our arguments and calcula-
tions are the same as those of [Ar3] Section 6]. We give the details of the proof for
the convenience of the reader.

Recall that JT(f) is a finite sum of the distributions

I (@m, 1, ) = [A(zmy) E/Q/ /
diag(AM)\HxH diag(A]W)\HXH

X fo(ay ' wmym2)var (21,51, T2, Y2, T)d(21, 22)d(y1, y2),
where M € L(Ap), S is a maximal torus of M such that Ag = Ay, = €

fy  zmyy2)

ks, and var(z1, Y1, 22, 42, T) 1= i on(har(a), Var(z1,y1, 22,42, T))da, where
H M
Y (21,91, %2, y2,T) is defined in (2IT]).
We first study the weight function vys as a function of T. We fix M € L(Ap)
and x1,y1, 22 and yo in H. -
Let % := (amr + awm)/ag and Ly := (Am,r + apm)/am be the projection in
ans/ap of the lattices aprp and anrr respectively. According to (I10), one has

(251) an,F/dH,F :dM,F/dM,FﬁaH ’:g]\j{
For M = Ay, we replace the subscript Ag by 0. We denote by .#V := Hom(.%, 2miZ)
the dual lattice of a lattice .Z.

Let P € P(M). We introduce the following sublattice of Zs. For k € N, we set

Mok = klog(q)d, (OAS AP;
where ¢ is the order of the residual field of F and
Ly = Z Ly k-
acEAp
Then Zr is a lattice in aJI\{d ~ apr/ag independent of P, and, according to
[Ar2] Section 4], one can find k € N* such that, for all M € £(Ay), one has
f]y[’k C .,?;[

The set of points >, ca, Yakak With yo €] —1,0] is a fundamental domain of
2wk, which we denote by Dy .

(2.52) For X € v/ Ly and Y € apy/am, we denote by Xp(Y) the repre-
’ sentative of X in Zjs such that Xp(Y) —Y € Dy .

For A\ € a}; ¢, we set

(2.53) Opk(N) = vol(agy/ L)~ ] (1= e ),
aEAp
We fix T' € ag . By definition of oy (cf. (Z4))), the function vy, depends only
on the image of Tp in Zy;. Hence we can assume that T lies in the lattice %5. For
P € P(M), the map T — Tp sends surjectively £, onto the intersection of £y

with the closure a; of the chamber associated to P. Thus, we may restrict T to lie
at the intersection of %, with suitable regular points in some positive chamber aar
of ag\agp. Then the points Tp range over suitable regular points in £y N aJIS.

We recall that Yps (21, y1, 22, y2, T) is the set of points Zp := Zp(x1,y1, T2, y2,T)

defined in (ZI0). Thus, we can write
(254) Zp = TP + Z?p with Z?p = inP(hp(y1) - hﬁ($1), hp(yg) — hﬁ(l‘g))
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GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA 1849
Notice that the points Z% do not necessarily belong to the lattice Z;. It is the
only difference from [Ar3] Section 6] in what follows.

Lemma 2.10. There are a positive integer N independent of M and polynomial
functions q¢(T) for & € (%4)/ %y (depending on x1,y1, 2 and y2) such that

o (21,91, 22,42, T) = Z ge(T)es™),
(%21 %y
Moreover, the constant term Opr(z1,y1,%2,y2) = ¢o(0) of var(z1,y1,22,92,T) is
given by
. . _ (20 _
UM(ffhylaxz,yz):l{%( S Lu/ LTt D eI, (M),
PeP(M) XeLy /Ly k

Proof. The kernel of the surjective map hys : Ag\Ay — anpp/aur is a compact
group which has volume 1 by our convention of choice of measure. Thus, using

X010, we can write

v (@1, y1, 02,92, T) = Y on(X, Yar(w1, 01, 72,92, T)).
XeLyv
For our study, it is convenient to take a sum over .%);. The finite quotient
:2’?]\/4\/ /2y, can be identified with the character group of £/ :2’7]\/4 under the pairing

o VeV o v(X)
(I/,X)ngvj /nggM/gj\/[HG .
Hence, by the inversion formula on finite abelian groups, we obtain
o (71, Y1, 72,92, T)

= | Lae ) Lra| 7 > > om(X V(@ yr, w2, 2, T))e ).
VE%/:?XI XeLwv

Coming back to the definition of ops (cf. ([24)), we fix a small point A € (anr/an)g
whose real part A is in general position. One then has

A
om (X, Y (21,91, 22,92, T)) = Z (_1)|API<P%(X—ZP)
PEP(M) .
= 1{12% Z (—1)I2PlA (X — Zp)e ),
PEP(M)

By definition of <p’1\3, the function X — eAX) is rapidly decreasing on the support
of X — ¢%&(X — Zp). Hence the product of these two functions is summable over
X € 2. Therefore, we can write

_ ; T

(255) UM(xlay17x27y2aT) - NZ I{ILHO Z FP(Aa V)a
veZu’ |12y, PeP(M)

where

FEAw) = Lo/ Lal ™t Y (F1)APlph(X — Zp)e )0,

XeLv

The above discussion implies that

(2.56) the map A — Z FE(A,v) is analytic at A = 0.

PEP(M)
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1850 P. DELORME, P. HARINCK, AND S. SOUAIFI

We fix P € P(M). We want to express F£ (A, v) in terms of a product of geometric
series. For this, we write
(2.57)

— A

FE(Av) = |Lu/Lul™ > S ()PPl (X + X - Zp)
XeLrv /Ly X' €LY,k

oA+ (X+X")

Let X € L)L k. Recall that Xp(Y) is the representative of X in %), such
that Xp(Y) —Y € Dy . We set

Xp(Y):=Xp(Y)+ D flak-
aEAS

Thus X%(Y) is also a representative of X in .%),. Taking Y := Zp, we can set
ep(X + X' = Zp) = op(XB(Zp) + X' — Zp)

in 2Z57). The set of points X' € £k such that this characteristic function equals
1 is exactly the set

{ Z Nafto,k — Z Nalba,k; Mo € N}.

aEAY aEAp—AY
Therefore, a simple calculation as in [Ar3l top of p. 45] gives

(_1)|A’,}.\ Z ¢II§(X+X/ _ZP)G(A+V)(X+X’)

X'eLvk
(2.58) _ JA)(Xp(Zp) ] (1 - e @am)—,

aEAp

We have fixed the Haar measure on all ~ aj//ac with the property that the

quotient of aps/agy by the lattice E/[ has volume 1. Thus we have

| Lat ) Lra] H (1 — em W as Y=L = | Ly ) Lrg 1| T Op (A +v) 7L
aEAp

By the above equality, (Z57)) and (Z58]), we obtain

-1 Z e<A+V7XP(ZP)>9Pk(A+Z/)_1.
XGD%JVI/‘,?M,;C

Let X € ZLy/ZLrmk. We recall that Tp belongs to £y for P € P(M) and
Zp = Tp+Z% (cf. (2354)). By definition (cf. (Z52)), the point Xp(Zp) is the unique
representative of X in £y such that Xp(Zp)—Tp—2% € Dasy and (X — Tp)p(Z%)
is the unique representative of X — Tp in £y such that (X —Tp)p(Z2%) — 2% €
Dir,i;.- Hence we deduce that

(2.59)  FE(Av) =L/ Lok

(2.60) Xp(Zp) = (X —Tp) p(Zp) + Tp.
Replacing X by X — Tp in (Z59]), we obtain

(2.61) Fp(A ) = | Lo/ Larsl ™ Y Mt Xe @0y (A4 0) 7
XE_'ZM/E%JM,]C
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where Xp(Z%) is independent of T. Thus, by ([255), we have established that
v (21, Y1, %2, Y2, T) is equal to
(2.62)

. y < 0
Zue%/c&ﬂ]& lima o (ZPe”P(M) ‘XM/XM,k A+v,Tp+Xp(Z3))

- ZXEfM/fM,k e!
X@p,k(/\ + l/)_l).

Recall that the expression in brackets is analytic at A = 0 (cf. (Z356)). To analyze
this expression as a function of T, we argue as in [W1l, p. 315]. We give the details
for the convenience of the reader. We replace A by zA. The map z + 0p(2A+v) ™"
may have a pole at z = 0. Let r denotes the biggest order of this pole when P runs
over P(M). Then, using Taylor expansions, one deduces that

. -1 (A, Tp+Xp(Z%)) -1
lim ( Z |-<Lnt [ L k| Z e POp (A +v)" ")
PeP(M) XeLy /Ly ke

r om _
= D > O Y (eI
)

m=0 PcP(M XeLyv /Ly k
aT_m

X
Qzr—m

where C,,, = mloﬁw/ofmﬂ_l. But we have
am

ozm

(2"0p k(A +v) ") 2=,

(elAF Tt e (ZEN) o) = (A, Tp + Xp(Z))) el o+ Xr(Zr)

T—m

0
and w—im(zTﬁp,k(zA—l-u)_l)[z:o} is independent of Tp. Therefore, we deduce that
2

vp (1, Y1, 2, Y2, T) is a finite sum of functions
—V
apy(Tp)e" ™) ve Ly |2y, PeP(M),
where ¢p, is a polynomial function on a;.
Vv
Since .4y’ C % are lattices of the same rank, one can find a positive integer N

such that N fov C .%4)’. Therefore, by our choice of T and the above expression,
we can write
v (21,91, %2, y2, 1) = Z %(T)eg(T),
ce(x2y)/ <y

where ¢¢(T) is a polynomial function of T'. This gives the first part of the lemma.

Since the polynomials g¢(7") are obviously uniquely determined, the constant
term Upz(21, Y1, T2, Y2) = qo(0) is well-defined. To calculate it, we take the sum-
mand corresponding to v = 0 in ([Z:62)) and then set T'= 0. We obtain

~ . -_— X 0 —

On (21,91, %2, Y2) = /1\1310( Z |<Lv ) Lt ! Z €<A’XP(ZP)>9P,k(A) 1)-
PeP(M) X€Lr [ Lk

This finishes the proof of the lemma. O

We substitute the expression we have obtained for vy in Lemma 210 into the
expression ([2.I4) for JT (x,,,7, f). Hence we obtain the following similar decom-
position for JZ(f).

Corollary 2.11. There is a decomposition

JTH = Y. pT, D, TeLnag,
ce(N£5) /<%y
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where N is a positive integer and each pe(T, f) is a polynomial function of T.
Moreover, the constant term J(f) := po(0, f) of JT(f) is given by

T = > em >, CSI/ (@m, 7, f)dy,

MEL(Ag)  SETM TmEks

where

J(Tm. 7, f)

= | Do) / / £ ) fola7 )
diag(An )\H x H Jdiag(An)\HXH

X0 (21, Y1, T2, y2)d(w1, 22)d(Y1, Y2)-

APPENDIX A. SPHERICAL CHARACTER OF A SUPERCUSPIDAL REPRESENTATION
AS WEIGHTED ORBITAL INTEGRAL

Let (7, V) be a unitary irreducible admissible representation of G. We say that
7 is H-distinguished if the space V*¥ = Hompg(m, C) of H-invariant linear forms
on V is nonzero. In that case, a distribution me ¢/, called a spherical character, can
be associated to two H-invariant linear forms £, &’ on V' (cf. definition below). By
[Hal, Theorem 1], spherical characters are locally integrable functions on G, which
are smooth on the set of o-regular points of G.

From now on, we assume that Ay = {1}. We fix an H-distinguished supercus-
pidal representation (7,V') of G. We denote by d(7) its formal degree.

The aim of this appendix is to deduce from our main results the value mg ¢(g)
when g € G is o-regular and &, &' € V*H | in terms of weighted orbital integrals of a
matrix coefficient of 7 (cf. Theorem[A2]). This result is analogous to that of Arthur
in the group case (see [Ar2]). Notice that this result of Arthur can be deduced from
his local trace formula given in [Ar3], which was obtained later.

Let (-,-) be a G-invariant hermitian inner product on V. Since 7 is unitary, it
induces an isomorphism ¢ : v + (-,v) from the conjugate complex vector space V
of V and the smooth dual V of V, which intertwines the complex conjugate of 7
and its contragredient 7. If £ is a linear form on V, we define the linear form & on
V by &(u) == £(u).

For & and & two nonzero H-invariant linear forms on V, we associate the
spherical character mg, ¢, defined to be the distribution on G given by

Mg, & (f) = Z &1 (T(f)u)ma

ueB

where B is an orthonormal basis of V. Since 7(f) is of finite rank, this sum is
finite. Moreover, this sum does not depend on the choice of B. Indeed, let (T*, V)
be the dual representation of 7. For f € CZ°(G), we set f(9) == f(g™"). By
[R, Theorems I11.3.4 and 1.1.2], the linear form 7*(f)¢ belongs to V. Hence we can
write =1 (7*(f)€) = Y veB (T*(f){) (v) - v, where (A\,v) — X - v is the action of C
on V. Therefore, we deduce easily that one has

(A1) me, e (f) =& (7 (T (Hg).

Licensed to Universite de Strasbourg. Prepared on Wed Jan 9 16:42:24 EST 2019 for download from IP 130.79.108.4.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GEOMETRIC SIDE OF A LOCAL RELATIVE TRACE FORMULA 1853

Since 7 is a supercuspidal representation, we can define the H X H-invariant pairing
LonV xV by

L(u,v) := / (t(h)u,v)dh.
H
According to [Z, Theorem 1.5],

(A.2) theHmap v & s ur L(u,v) is a surjective linear map from V' onto
Vi,

For v,w € V, we denote by ¢, ,, the corresponding matrix coefficient defined by
cow(g) = (T(g)v,w), g € G.
Lemma A.1. Let &1,& € V¥ and v,w € V. Then we have

LIV (év,w) = d(T)_1§1 (U)§2(w)

Proof. By (A.2), there exist vy and vy in V' such that &; = &,, for j = 1,2. By
definition of the spherical character, for f € C2°(G) and B an orthonormal basis of
V', one has

mean(f) = 3 /H (r (B (fyu, v1)dh /H Ry, v2)dh

ueB
(u, 7(f)7(h1)v1) (7 (h2)ve, u)dhydhsy

ueB HxH
= (7(ha)vy, 7(f)7(h1)v1)dhydhs.
HxH
Hence we obtain
(A.3) e s () = / / £(9)(r(hagha)va, vy)dgdhy dhs.
HxHJG

Let f(g) = ¢yw(g) = (7(g)w,v). By the orthogonality relation of Schur, for
hi,he € H, one has

/G (r ()7 (ha)vn, 7(ha)or) (r(@)w, 0)dg = d(r) (v (ha)va, w) (v, 7(hy Yo ).
Thus we deduce that
Mes s (F) = A7) Eu(02)E (v) = d(r) ™61 (0) ().

For M € L(Ap), we define the weight function wys on H x H by

wa (Y1, y2) == 0m (L, y1, 1, 92),

where 0y is defined in Lemma and 1 is the neutral element of H. For f €
C® (@), we define the weighted orbital integral of f by

WM(f)(9) := |As(g) §/2 /H . Fyrgy2)war (1, y2)dyrdye, g € G779 N M.
X

Theorem A.2. Let M € L(Ag) and S € Ty. Let x,, € ks and v € S, be such

that x.,7y is o-reqular. Then, for v,w € V, we have

M S,z WM(Cow)(Tm) = me,, ¢, (Tm?)-
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Proof. Let f; be a matrix coefficient of 7 and let fo € C°(G). We set [ := f1 ® fo.
For = € G, we define

Flg) = /G fi(@u) fo(uga)du, g € G,
so that

Ky(z,y) = [p(yz~")F](e), where p is the right regular representation.

If 7 is a unitary irreducible admissible representation of G, one has

wlolyz VE) = [ i) falugy)e(o)dud
GxG
:/ f1(zu) fo(ug)m(u™ ugy ™) dudus
GxG

= / f1(ufl)fg(Ug)w(ulxuzy_l)duldug = w(fl)ﬁ(x)w(fg)w(y_l).
GxG

Since 7 is supercuspidal and f; is a matrix coefficient of 7, we deduce that
W(p(yx_l)F ) is equal to 0 if 7 is not equivalent to 7. Therefore, applying the
Plancherel formula [W2, Theorem VIIL1.1] to [p(yz~!)F], we obtain

Ky(z,y) = d(r)tr(r(f)7(2)7(f2)m(y ™).
We identify V ® V with a subspace of Hilbert-Schmidt operators on V. Taking an
orthonormal basis Brs(V) of V@V for the scalar product (S, S’) := tr(S5™), one
obtains
Kpw,y) = dnte(r(f)r@)r(f)r)) = do)(r(f)r@)r(f2), 7(4)
= dr) Y (r(for(@)r(f2), ST)(T(y), 5%)

= dr) Y te(r@)r(f)ST(f)tr(7(y)S),

where the sums over S are finite since 7(f) and 7(f;) are of finite rank. Therefore,
the truncated kernel K7 (f) is equal to

dr) Y PrFer(f)S)PI(S),
SeBus(V)

where
PT(S) = / tr(r(h)S)u(h,T)dh, SeEV®V.
H

For v ®@v € V @V, one has tr(7(h)(6 ® v)) = ¢z, (h). Since ¢;, is compactly sup-
ported, the truncated local period P (S) converges, when ||T'|| approaches infinity,
to

P, (S) = / tr(T(h)S)dh.
H
Therefore, we obtain

(A4) lim KT(f) =d(t)mp. p.(f),

T[] =00

where mp_ p_ is the spherical character of the representation ¥ ® 7 associated to
the H x H-invariant linear form P on V® V.
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Recall that J(f) is the constant term of J7(f). We deduce from Theorem
that

(A.5) d(r)mp, p, (f) = J(f).

We now express mp_ p_ in terms of H-invariant linear forms on V. Let Vi be the
orthogonal of V*# in V. Since &,(v) = &,(u) for u,v € V, the space Vj is the kernel
of v — &,. Let W be a complementary subspace of Vi in V. Then, the map v — &,
is an isomorphism from W to V*# and (u,v) ~— &,(u) is a nondegenerate hermitian
form on W. Let (ej,...,e,) be an orthogonal basis of W for this hermitian form.
We set &; := &, for i =1,...,n. Thus we have &;(e;) # 0.

We identify V and V by the isomorphism ¢. We claim that

n 1 .
A6 P.= L Q&
(A.6) ;&(ei)s ®¢

Indeed, we have Pr(v ® u) = &, (u) = £,(v). Hence, the two sides are equal to 0
onVe@Vg+Vg®@V + Vg ® Vg and take the same value &(e;) on ex ® e for
k,l € {1,...,n}. Hence, by definition of spherical characters, we deduce that

mep(AOR)= Y P(Ff)@r(f)ue)) P o)

u@VE 0.b.(VRV)

- Z Z &i(es

u®vE o0.b. (V®V ’LJ 1

g " _(f(fl)u)fi(T(fz)v)ﬁ_j(u)ﬁj(v),
i(e5)
where 0.b.(V ® V) is an orthonormal basis of V ® V. By definition of £ for ¢ € V*H,
one has &(7(f1)u) = &£(7(f1)@). Therefore, we obtain

(A7) mp_ P, fl ®f2 Zf 6 §iy§j(ﬁ)m£i7£j(f2)‘

=1 §J€J

Let v and w be in V. Let f; := ¢, so that fi= Cow- Ifv € Vyorwe
Vg, it follows from Lemma [Al that me, ¢,(f1) = 0 for 4,5 € {1,...,n}. Hence
mp..p,(f1 ® f2) = 0. Thus we deduce from (A.5]) that

(A.8) j(cvyw ®f)=0, veVyg or weVy.

Let k,1 € {1,...,n}. Let us take f; := ce, ¢,- Then fi = é, e, , and, by Lemma
[A1l one has me, ¢, (f1) = d(7)7'&(e1)€;(ex). Therefore, by (AF) and (A7), we

obtain

(A'9) j(cek,ez ® f2) = Mg & (f2)-

By sesquilinearity, one deduces from (AZ8) and (A9) that
(A.10) j(Cv w® fa) = Me, e (f2) v,weV.

Let (J,)n be a sequence of compact open subgroups whose intersection is equal
to the neutral element of GG. The characteristic function ¢, of J,z,,vJ, ap-
proaches the Dirac measure at x,,7 as n approaches +oco. Thus, if v,w € V, then
Mg, ¢, (gn) converges to me, ¢, (€m7y). Then, by Corollary 2111 the constant term
j(cvﬁw ® gn) converges to cprcs,z, WM(cy ) (Tmy). We thus deduce the theorem

from (AI0). O
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