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Let Z be a unimodular real spherical space. We develop a theory of constant terms for

tempered functions on Z, which parallels the work of Harish-Chandra. The constant

terms fI of an eigenfunction f are parametrized by subsets I of the set S of spherical

roots that determine the fine geometry of Z at infinity. Constant terms are transitive

i.e., (fJ)I = fI for I ⊂ J, and our main result is a quantitative bound of the difference

f − fI , which is uniform in the parameter of the eigenfunction.

1 Introduction

Real spherical spaces are the natural algebraic homogeneous structures Z = G/H

attached to a real reductive group G. Formally, one defines real spherical by the

existence of a minimal parabolic subgroup P ⊂ G with PH open in G. On a more informal

level, one could define real spherical spaces as the class of algebraic homogeneous

spaces Z = G/H, which allow a uniform treatment of spectral theory, i.e., admit explicit

Fourier analysis for L2(Z).

Real spherical spaces provide a wide class of algebraic homogeneous spaces.

Important examples are the group G itself, viewed as a homogeneous space under its
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both sided symmetries G � G×G/ diag(G), and, more generally, all symmetric spaces. In

case H is reductive, a classification of all infinitesimal real spherical pairs (Lie G, Lie H)

was recently obtained and we refer to [26, 27] for the tables.

Harmonic analysis on spherical spaces was initiated by Sakellaridis and

Venkatesh in the context of p-adic absolutely spherical varieties of wavefront type [39].

In particular, they developed a theory of asymptotics for smooth functions generalizing

Harish-Chandra’s concept of constant term for real reductive groups.

Harish-Chandra’s approach to the Plancherel formula for L2(G), a cornerstone

of 20th century mathematics (cf. [19]), was based on his theory of the constant term

[17, 18] and his epochal work on the determination of the discrete series [15, 16].

In more precision, constant terms were introduced in [17] and then made uniform

in the representation parameter in [18] by using the strong results on the discrete

series in [15, 16]. Also in Harish-Chandra’s approach towards the Plancherel formula

for p-adic reductive groups, the constant term concept played an important role and

we refer to Waldspurger’s work [40] for a complete account (the constant term in

[40] is called weak constant term). Likewise, the Plancherel theory of Sakellaridis and

Venkatesh for p-adic spherical spaces is founded on their more general theory of

asymptotics.

Carmona introduced a theory of constant term for real symmetric spaces [7]

parallel to [17, 18], with the uniformity in the representation parameter relying on the

description of the discrete series by Oshima-Matsuki [37]. This concept of constant term

then crucially entered the proofs of Delorme [11] and van den Ban–Schlichtkrull [2] of

the Plancherel formula for real symmetric spaces.

Motivated by [39], we develop in this paper a complete theory of constant term

for real spherical spaces generalizing the works of Harish-Chandra [17, 18] and Carmona

[7]. Let us point out that our results hold in full generality for all real spherical

spaces, i.e., in contrast to [39], we are not required to make any limiting geometric

assumptions on Z such as absolutely spherical or of wavefront type. Further, we do

not need to make any assumptions on the discrete spectrum as in [39]. This is because

of the recently obtained spectral gap theorem for the discrete series on a real spherical

space [33], which then implies the uniformity of the constant term approximation in

the representation parameter. The results of this paper then will be applied in the

forthcoming paper [12], where we derive the Bernstein decomposition of L2(Z), which

is a major step towards the Plancherel formula for Z.

Let us describe the results more precisely. In this introduction, G is the group

of real points of a connected reductive algebraic group G defined over R, and H = H(R)
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for an algebraic subgroup H of G defined over R. Furthermore, we assume that Z is

unimodular, i.e., Z carries a positive G-invariant Radon measure. We will say that A is a

split torus of G if A = A(R), where A is a split R-torus of G.

Central to the geometric theory of real spherical spaces Z = G/H is the local

structure theorem (cf. [30, Theorem 2.3] and Section 2.1), which associates a parabolic

subgroup Q ⊃ P, said Z-adapted to P, with Levi decomposition Q = LU.

Let A be a maximal split torus of G, which we choose to be contained in L and

set AH := A ∩ H. We define AZ to be the identity component of A/AH and recall the

spherical roots S as defined in e.g., Section 3.2[31] or Section 2.2. Suitably normalized

the spherical roots are the simple roots for a certain root system on aZ = Lie AZ and give

rise to the co-simplicial compression cone a
−
Z := {X ∈ aZ | α(X) ≤ 0, α ∈ S}, see [25]. Set

A−
Z := exp(a−

Z ) ⊂ AZ.

We move on to boundary degenerations hI of h, which are parametrized by

subsets I ⊂ S. These geometric objects show up naturally in the compactification

theory of Z (see [28], [25] and Section 3), which in turn is closely related to the polar

decomposition (see (1.1) below). In more detail, let aI = ⋂
α∈I Ker α ⊂ aZ and pick

X ∈ a
−−
I = {X ∈ aI | α(X) < 0, α ∈ S \ I}. Let HI be the analytic subgroup of G with

Lie algebra

Lie HI = lim
t→+∞ et ad XLie H ,

where the limit is taken in the Grassmannian Gr(g) of g = Lie G and does not depend

on X. If we denote by z0 = H the standard base point of Z, then one can view HI (up

to components) as the invariance group of the asymptotic directions γX(t) := exp(tX) ·
z0 for t → ∞ and X ∈ a

−−
I . Phrased more geometrically, ZI := G/HI is (up to cover)

asymptotically tangent to Z in direction of the curves γX , X ∈ a
−−
I .

As a deformation of Z, the space ZI is real spherical. Further, one has AZI
= AZ

naturally, but the compression cone a
−
ZI

= {X ∈ aZ | α(X) ≤ 0, α ∈ I} becomes larger. In

particular, aI is the edge of the cone a
−
ZI

, which translates into the fact that AI = exp(aI)

acts on ZI from the right, commuting with the left action of G.

The general concept of “constant term” is to approximate functions f on Z

in directions γX , X ∈ a
−−
I , by functions fI , called constant terms, on ZI . The notion

“constant” then refers to the fact that fI should transform finitely under the right action

of AI .

The appropriate class of functions for which this works are tempered eigenfunc-

tions on Z. In order to define them, we need to recall the polar decomposition, which
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asserts

Z = �A−
Z W · z0 , (1.1)

for a compact subset � ⊂ G and a certain finite subset W of G, which parametrizes the

open P-orbits in Z (see Lemma 2.7 and Remark 2.11 for more explicit expressions of the

elements of W).

Let ρQ be the half sum of the roots of a in Lie U. Actually, as Z is unimodular,

ρQ ∈ a∗
Z.

For f ∈ C∞(Z) and N ∈ N, we set

qN(f ) = sup
g∈�,w∈W ,a∈A−

Z

a−ρQ(1 + ‖ log a‖)−N |f (gaw · z0)|

and define C∞
temp,N(Z) as the space of all f ∈ C∞(Z) such that, for all u in the enveloping

algebra U(g) of the complexification gC of g,

qN,u(f ) := qN(Luf )

is finite. The semi-norms qN,u induce a Fréchet structure on C∞
temp,N(Z) for which the

G-action is smooth and of moderate growth (in [4], these are called SF-representations).

We define the space of tempered functions C∞
temp(Z) = ⋃

N∈N C∞
temp,N(Z) and endow it

with the inductive limit topology.

We denote by Z(g) the center of U(g) and define Atemp(Z), resp. Atemp,N(Z), as the

subspace of C∞
temp(Z), resp. C∞

temp,N(Z), consisting of Z(g)-finite functions.

Remark 1.1. Functions f ∈ Atemp(Z) can be described suitably in terms of represen-

tation theory. A variant of Frobenius reciprocity implies that elements f ∈ Atemp(Z) can

be expressed as generalized matrix coefficients

f (gH) = mη,v(gH) := η(π(g)−1v) ,

for v ∈ V∞, where (π , V∞) is a Z(g)-finite SF-representation of G and η : V∞ → C a

H-invariant continuous functional. If V−∞ denotes the continuous dual of V∞, then an

element η ∈ (V−∞)H is called Z-tempered provided mη,v ∈ Atemp(Z) for all v ∈ V∞. We

denote the corresponding subspace by (V−∞)H
temp.
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For I ⊂ S, we choose a set WI ⊂ G parametrizing the open P-orbits on ZI . Then

it is the content of Section 2 that there is a map m : WI → W obtained from a natural

matching of open P-orbits on ZI with open P-orbits on Z. As ZI is a real spherical space,

we can define C∞
temp,N(ZI) and Atemp,N(ZI) as before.

For J a finite codimensional ideal of the center Z(g) of U(g) we denote by

Atemp,N(Z : J ) the space of elements of Atemp,N(Z), which are annihilated by J . Note

that, by definition, there exists for each f ∈ Atemp,N(Z) a co-finite ideal J such that

Atemp,N(Z : J ).

The main result of this paper is the following (cf. Remark 6.6 and Theorem 6.9

for (i)–(iii) and Theorem 8.10 for (iv)).

Theorem 1.2. Let J ⊂ Z(g) be an ideal of finite co-dimension. Let I ⊂ S. Then there

exists an NJ ∈ N such that for all N ∈ N there exists a continuous G-equivariant linear

map

CTI,N : Atemp,N(Z : J ) → Atemp,N+NJ (ZI : J ), f �→ fI

with the following properties for all g ∈ G and XI ∈ a
−−
I :

(i) If we interpret f , resp. fI , as functions on G that are right invariant under H,

resp. HI , then

lim
t→+∞ e−tρQ(XI )

(
f (g exp(tXI)) − fI(g exp(tXI))

) = 0 .

(ii) The assignment

R  t �→ e−tρQ(XI )fI(g exp(tXI))

defines an exponential polynomial with unitary characters, i.e., it is of the

form
∑n

j=1 pj(t)e
iνjt, where the pj’s are polynomials and the νj’s are real

numbers.

Conditions (i) and (ii) determine the constant term morphism CTI,N uniquely. Moreover,

(iii) For each wI ∈ WI with w = m(wI) ∈ W, and any compact subsets CI ⊂ a
−−
I ,

� ⊂ G, there exists ε > 0 and a continuous semi-norm p on Atemp,N(Z) such
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that for all f ∈ Atemp,N(Z : J ) one has:

|(aZ exp(tXI))
−ρQ

(
f (gaZ exp(tXI)w · z0) − fI(gaZ exp(tXI)wI · z0,I)

) |
≤ e−εt(1 + ‖ log aZ‖)Np(f ), aZ ∈ A−

Z , XI ∈ CI , g ∈ �, t ≥ 0 .

(iv) The bound in (iii) is uniform for all J of codimension 1, i.e., J = ker χ for a

character χ of Z(g).

Given f ∈ Atemp(Z) and I ⊂ S, we call fI ∈ Atemp(ZI) the constant term of f

associated to I. Note that properties (i) and (ii) in Theorem 1.2 determine fI uniquely as

a smooth function on ZI . Furthermore, we may interpret Theorem 1.2(iii) in such a way

that fI controls the normal asymptotics of f in direction of a−−
I emanating from the base

points w · z0 for certain w ∈ W.

Remark 1.3. (a) Theorem 1.2 can be phrased differently in the language of rep-

resentation theory and it is worthwhile to mention this reformulation. Let V be a

Harish-Chandra module and V∞ its unique SF-completion. The subgroups H, HI being

real spherical implies that the invariant spaces (V−∞)H and (V−∞)HI are both finite

dimensional (cf. [35]). Inside, we find the subspaces of tempered functionals (V−∞)H
temp

and (V−∞)
HI
temp. Then Theorem 1.2 defines a linear map

(V−∞)H
temp → (V−∞)

HI
temp, η �→ ηI

such that, for all v ∈ V∞, the matrix coefficient f = mη,v is approximated by fI = mηI ,v

in the sense of Theorem 1.2(iii). As AI normalizes HI , we obtain an action of aI on the

finite dimensional space (V−∞)
HI
temp. It is easy to see that temperedness implies that

SpecaI
(V−∞)

HI
temp ⊂ ρQ

∣∣
aI

+ ia∗
I ,

which in turn translates into the behavior of fI as exponential polynomial as recorded

in Theorem 1.2(ii).

(b) It is possible to develop a constant term theory for all Z(g)-finite eigenfunc-

tions on Z, i.e., the assumption of temperedness is not really necessary. This was carried

out in [34, Th. 7.1] in case where Z is wavefront.

Parts (i)–(iii) of Theorem 1.2 generalize the work of Harish-Chandra in the group

case (see [17, Sections 21 to 25], also the work of Wallach [42, Chapter 12], where the
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constant term is called leading term) and the one of Carmona for symmetric spaces

(see [7]). The uniformity in (iv) generalizes the uniform results of Harish-Chandra in the

group case (cf. [18, Section 10]) and Carmona for symmetric spaces (cf. [7, Section 5]).

As a corollary of Theorem 1.2, we obtain a characterization of tempered eigen-

functions f in the discrete series by the vanishing of their constant terms fI , I � S (see

Theorem 6.12). Again it is analogous to a result of Harish-Chandra. For this, we use in a

crucial manner some results on discrete series from [31, Section 8].

The proof of Theorem 1.2 is inspired by the work of Harish-Chandra for real

reductive groups G, [17, 18], who associates to a tempered eigenfunction f on G certain

systems of linear differential equations. The main technical difficulty here is to set

up the correct first order system (5.26) of differential equations on AI associated to

a function f ∈ Atemp(Z). This is based on novel insights on the algebra of invariant

differential operators on Z. With the solution formula for the first order differential

system (5.26), one then obtains, as in [17], for each f ∈ Atemp(Z), a unique smooth

function fI ∈ C∞(ZI) with properties (i), (ii) in Theorem 1.2 and also (iii) for wI = w = 1.

A main difficulty in this paper was to show that fI is in fact tempered, which translates

into the assertions in (iii) for all wI ∈ WI . This, we deduce from Proposition 3.1 on

geometric asymptotics related to the natural matching map m : WI → W. Let us

point out further that our treatment in Section 8 of the uniformity in Theorem 1.2(iv)

constitutes a simplification to the so far existing state of the art in [42, Chapter 12].

Earlier versions of this article needed the assumption that Z is of wavefront

type. This was mainly due to the lack of a better understanding of the algebra D(Z) of G-

invariant differential operators on Z and their behavior under boundary degenerations,

i.e., overlooking that there is a natural map D(Z) → D(ZI) originating from Knop’s work

[24]. This was observed by Raphaël Beuzart-Plessis and is now recorded in Appendix C.

With this insight, we could remove the wavefront assumption and make the paper valid

in the full generality of real spherical spaces.

2 Notation

In this paper, we will denote (real) Lie groups by upper case Latin letters and their Lie

algebras by lower case German letters. If R is a real Lie group, then R0 will denote its

identity component. Furthermore, if Z is an algebraic variety defined over R and k is

any field containing R, then we denote by Z(k) the k-points of Z.

Let G be a connected reductive algebraic group defined over R and let G := G(R)

be its group of real points.
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Remark 2.1. More generally, we could define G as an open subgroup of the real Lie

group G(R). The main analytic result of this paper (i.e., Theorem 1.2) is not affected by

this more general assumption but we do not supply a complete proof here.

For an R-algebraic subgroup R of G, we set R := R(R) and note that R ⊂ G is a

closed subgroup.

Let now H ⊂ G be an R-algebraic subgroup. Having G and H, we form the

homogeneous variety Z = G/H. We note that Z(C) = G(C)/H(C) and denote by z0 = H(C)

the standard base point of Z(C). Set Z = G/H and record the G-equivariant embedding

Z → Z(C), gH �→ g · z0 .

In the sequel, we consider Z as a submanifold of Z(C) and, in particular, identify z0 with

the standard base point H of Z = G/H as well.

Remark 2.2. Note that Z is typically strictly smaller than Z(R), which is a finite union

of G-orbits. An instructive example is the space of invertible symmetric matrices Z =
GLn/On, which features Z(R) = ⋃

p+q=n GL(n,R)/ O(p, q). In particular, Z(R) � Z = G/H =
GL(n,R)/ O(n).

As a further piece of notation, we use, for an algebraic subgroup R ⊂ G defined

over R, the notation RH := R ∩ H and, likewise, RH := R ∩ H. In the sequel, we use the

letter P to denote a minimal R-parabolic subgroup of G. The unipotent radical of P is

denoted by N.

2.1 The local structure theorem

From now on, we assume that Z is real spherical, that is, there is a choice of P such that

P · z0 is open in Z.

Remark 2.3. Notice that P(C)H(C) is Zariski open and hence dense in G(C) as G was

assumed to be connected. Thus, any other choice P′ of P, with P′ · z0 open, is conjugate

to P under H.

We now recall the local structure theorem for real spherical varieties (cf. [30,

Theorem 2.3] or [25, Corollary 4.12]; see also [6, 23] for preceding versions in the complex

case), which asserts that there is a unique parabolic subgroup Q ⊃ P endowed with a
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Levi decomposition Q = L � U, defined over R, such that

QH = PH, (2.1a)

QH = LH , (2.1b)

LH ⊃ Ln, (2.1c)

where Ln denotes the connected normal subgroup of L generated by all unipotent

elements defined over R.

Remark 2.4. (a) The Lie algebra ln is the sum of all non-compact simple non-abelian

ideals of l.

(b) As mentioned above, Q is the unique parabolic subgroup containing P with

properties (2.1a)–(2.1c). Slightly differently, we could have defined Q via [28, Lemma 3.7],

which asserts

Q(C) = {g ∈ G(C) | gP(C) · z0 = P(C) · z0} .

The group LH is uniquely determined by Q and we recall from [25, Lemma 13.5] that LH

is an invariant of Z, i.e., its H-conjugacy class is defined over R. In contrast to LH , the

Levi subgroup L is only unique up to conjugation with elements from U, which stabilize

LH . In this regard, we note that it is quite frequent that LH is trivial and then L could be

an arbitrary Levi of Q. For later purposes of compactifications, we will only use those

choices of L that are obtained from the constructive proof of the local structure theorem

(cf. [30, Sect. 2.1] or [25, Sect. 4]). In case Z is quasi-affine, this means that l is defined

as the centralizer of a generic hyperbolic element of g∗, which is contained in (h + n)⊥

(see the constructive proof of the local structure theorem in [30] or [25]).

Example 2.5. (The triple space) Let Go := SL(2) with Go = SL(2,R) and form G :=
Go × Go × Go. With H := diag Go we obtain a real spherical space Z = G/H, the so-called

triple space. It features Z = Z(R) as one deduces from the standard identification

Z = G/H → Go × Go, (g1, g2, g3)H �→ (g1g−1
3 , g2g−1

3 ),

which a G-isomorphism of varieties where G acts on Go × Go as

(g1, g2, g3) · (x, y) = (g1xg−1
3 , g2yg−1

3 ) (g1, g2, g3, x, y ∈ Go) .
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Let go = ko + so be the standard Cartan decomposition with ko = so(2,R). Let further

X1, X2 ∈ so be linearly independent elements, set X3 := −(X1 + X2) and define

a1 := RX1, a2 = RX2, a3 = RX3 .

Then a := a1 × a2 × a3 defines a Cartan subspace of g = go × go × go. We set Ai = exp(ai)

and then A = A1 × A2 × A3. Observe that

h⊥ := {(Y1, Y2, Y3) ∈ g | Y1 + Y2 + Y3 = 0}

and thus

X0 := (X1, X2, X3) ∈ a ∩ h⊥ .

Let now Pi ⊂ Go be any minimal parabolic subgroup of Go above Ai. With P = P1 ×P2 ×P3

we then obtain a minimal parabolic of G such that PH ⊂ G is open. For later purpose we

record P1 ∩ P2 ∩ P3 = {±1} equals the center Z(H) of H. This entails that PH/H � P/Z(H)

and thus Q = P.

If we write Pi = MiAiNi, then Mi = Z(Go) with N = N1 × N2 × N3 and therefore

X0 ∈ (h+n)⊥ is in accordance with the constructive proof of the local structure theorem.

A parabolic subgroup Q as above in (1.1) will be called Z-adapted to P.

Let AL be the maximal split torus of the center of L and A be a maximal split

torus of P ∩ L. Note that AL ⊂ A. Define AZ := A/AH and let (by slight abuse of notation)

AZ := (A/AH)0 � A0/(AH)0. From the fact that Ln ⊂ LH and A = AL(A ∩ Ln), we obtain

AZ � (AL)0/(AL)0 ∩ H with aZ � aL/aL ∩ h.

We choose a section s : AZ → (AL)0 of the projection (AL)0 → AZ, which is a (2.2)

morphism of Lie groups. We will often use ã instead of s(a), ãZ instead of s(aZ) etc.

Note that ZG(A) = MA where M ⊂ P is a maximal anisotropic subgroup. Moreover, MA,

as a Levi of P, is connected (recall that Levi subgroups of connected algebraic groups

are connected). Notice that M commutes with A and P = MAN. Observe that M∩A equals

the 2-torsion points A2 of A.
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From (2.1a)–(2.1b), we obtain PH/H = QH/H � U × L/LH , and, taking real points,

we get

[P · z0](R) � U × (L/LH)(R) .

Next, we collect some elementary facts about (L/LH)(R). To begin with, we define

M̂H := {m ∈ M | m · z0 ⊂ AZ(R)}

and note that MH is a cofinite normal 2-subgroup of M̂H , see Proposition B.2. We denote

by FM := M̂H/MH this finite 2-group. Since the action of the P-Levi MA ⊂ L on L/LH is

transitive, we obtain for the real points, by Proposition B.2,

(L/LH)(R) = [M/MH ] ×FM AZ(R) . (2.3)

From that, we derive the local structure theorem in the form

[P · z0](R) = U × [
[M/MH ] ×FM AZ(R)

]
, (2.4)

which we will use later. Let us denote by AZ(R)2 � {−1, 1}r the 2-torsion elements in

AZ(R) � (R×)r and note that AZ(R)2 naturally parametrizes the connected components of

AZ(R), that is, the AZ-orbits in AZ(R). In particular, we record the natural isomorphism

of Lie groups

AZ(R) � AZ × AZ(R)2 .

Observe that FM naturally acts on AZ(R)2. Hence, if we denote by (P\Z(R))open

the set of open P-orbits in Z(R), then we obtain from (2.4) and Corollary B.3 that:

Lemma 2.6. The map

AZ(R)2/FM → (P\Z(R))open, FMaZ �→ PaZ

is a bijection.

If we intersect (2.4) with Z, we obtain

[P · z0](R) ∩ Z = U × [
[M/MH ] ×FM AZ,R

]
(2.5)
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with AZ,R := AZ(R) ∩ Z. Observe that AZ,R might not be a group and is in general only a

AZ-set. With AZ,2 := AZ(R)2 ∩ AZ,R, we then obtain

AZ,R = AZAZ,2 � AZ × AZ,2 .

Note that FM acts on AZ,2 and thus we obtain, in analogy to Lemma 2.6, that the map

AZ,2/FM → (P\Z)open, FMaZ �→ PaZ

is a bijection. Next, we wish to find suitable representatives of the open P-orbits of Z in

G, i.e., find, for each FMaZ with aZ ∈ AZ,2, an element w ∈ G such that PaZ = Pw · z0. For

that, we consider the exact sequence

1 → AH → A → AZ = A/AH → 1 .

Now, note that this sequence stays, in general, only left exact when taking real points

1 → AH(R) → A(R) → AZ(R) .

In particular, we typically do not find a preimage of a torsion element t ∈ AZ,2 ⊂ AZ(R)

in A = A(R). However, if we set T := exp(ia) ⊂ A(C) and TZ := exp(iaZ) ⊂ AZ(C), then

T → TZ is surjective. In particular, each t ∈ AZ,2 has a lift t̃ ∈ T, which can even be

chosen in exp(iãZ) ⊂ T. In this way we extend the lift s : AZ → (AL)0 from (2.2) to a map

AZ(R) → AL exp(iãZ), also denoted by s in the sequel. Thus, we have shown that

Lemma 2.7. There exists a set W ⊂ G of representatives of (P\Z)open such that any

element w ∈ W has a factorization in G(C) of the form

w = t̃h, where t̃ ∈ exp(iãZ) and h ∈ H(C) such that t := t̃ · z0 ∈ AZ,2.

In particular, if a ∈ AH , aw · z0 = w · z0.

In the sequel, W ⊂ G is a choice of representatives of (P\Z)open as in Lemma 2.7,

assumed to contain 1 as a representative of P · z0.

Example 2.8. (a) (Group case) Let G = G′ × G′. In the group case, i.e.,

Z = G′ × G′/ diag G′ � G′ ,
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one has only one open P = P′ × P′-orbit in Z by the Bruhat decomposition of G′. Hence

W = {1} in this case.

(b) (Triple case) We recall the triple space Z = Go×Go×Go/ diag Go from Example

2.5. We recall that P · z0 � P/Z(H) with Z(H) = {±1} the center of H. Further we have

FM = M/MH in this case so that AZ(R)2/FM consists in fact of two elements. Hence

W = {1, w} has two elements in this case. If we were to consider disconnected PGL(2,R)

instead of Go = SL(2,R), then W = {1} would be trivial.

2.2 Spherical roots and polar decomposition

Let K ⊂ G be a maximal compact subgroup associated to a Cartan involution θ of g with

θ(X) = −X for all X ∈ a. Furthermore, let κ be an Ad G and θ-invariant bilinear form on g

such that the quadratic form X �→ ‖X‖2 = −κ(X, θX) is positive definite. We will denote

by ( · , · ) the corresponding scalar product on g. It defines a quotient scalar product and

a quotient norm on aZ that we still denote by ‖ · ‖.

For later reference, we record that K is algebraic, i.e., K = K(R), and further,

M ⊂ K as we requested θ
∣∣
a

= − ida.

Let  be the set of roots of a in g. If α ∈ , let gα be the corresponding weight

space for a. We write u (resp. n) ⊂  for the set of a-roots in u (resp. n) and set

u− = ∑
α∈u

g−α, i.e., the nilradical of the parabolic subalgebra q− opposite to q with

respect to a.

Let (l ∩ h)⊥l be the orthogonal complement of l ∩ h in l with respect to the scalar

product ( · , · ). One has:

g = h ⊕ (l ∩ h)⊥l ⊕ u . (2.6)

Let T be the restriction to u− of minus the projection from g onto (l ∩ h)⊥l ⊕ u parallel to

h. Let α ∈ u and X−α ∈ g−α. Then (cf. [31,equation (3.3)])

T(X−α) =
∑

β∈u∪{0}
Xα,β , (2.7)

with Xα,β ∈ gβ ⊂ u if β ∈ u and Xα,0 ∈ (l ∩ h)⊥l .

Let M ⊂ N0[u] be the monoid generated by:

{α + β | α ∈ u, β ∈ u ∪ {0} such that there exists X−α ∈ g−α with Xα,β �= 0}. (2.8)



14 P. Delorme et al.

The elements of M vanish on aH so M is identified with a subset of a∗
Z. We define

a
−−
Z = {X ∈ aZ | α(X) < 0, α ∈ M}

and a
−
Z = {X ∈ aZ | α(X) ≤ 0, α ∈ M}.

Following e.g., [31,Section 3.2], we recall that a−
Z is a co-simplicial cone, and our

choice of spherical roots S consists of the irreducible elements of M, which are extremal

in R≥0M. Here, an element of M is called irreducible if it cannot be expressed as a sum

of two nonzero elements in M.

Example 2.9. (Triple case continued) In the triple case of Example 2.5 we had a =
a1 × a2 × a3 and accordingly a = 1 � 2 � 3 with i = {±αi} and αi corresponding to

Ni ⊂ Pi ⊂ Go. Let now 0 �= Y ∈ g
−α1
o and expand it as Y = Y0 + Y+ + Y− for Y0 ∈ ai and

Y± ∈ g
±αi
o for i = 2, 3. Then a simple computation shows that Y0 �= 0 and thus α1 ∈ M.

Likewise we obtain α2, α3 ∈ M and thus S = {α1, α2, α3}.

Later, we will also need the edge of aZ

aZ,E := a
−
Z ∩ (−a

−
Z ) = {X ∈ aZ | α(X) = 0, α ∈ S} .

Note that aZ,E (more precisely s(aZ,E)) normalizes h and, likewise, AZ,E := exp(aZ,E) ⊂ AZ.

We turn to the polar decomposition for Z. Set A−
Z := exp(a−

Z ) and A−
Z,R = AZ,2A−

Z ⊂
AZ,R. By the definition of W, we then record that

A−
Z,R = A−

Z W · z0 .

Lemma 2.10 (Polar decomposition). There exists a compact subset � ⊂ G such that

Z = �A−
Z,R . (2.9)

Proof. Recall the group of 2-torsion points AZ(R)2 of AZ(R). According to [25,Theorem

13.2 with Remark 13.3(ii)] (building up on the earlier work [28,Theorem 5.13]), we have

Z(R) = � ·AZ(R)2A−
Z , for some compact subset � of G. Note that A−

Z AZ(R)2 ∩Z = A−
Z,R and

the assertion follows. �

Remark 2.11 (Passage to H connected). An analytically more general setup would be

to work with connected H, i.e., with Z0 = G/H0 instead of Z = G/H. For that, only some

adjustments are needed. In detail, by right-enlarging W with a set FH of representatives
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for H/H0(H ∩ M), we obtain with W0 := WFH a set, which is in bijection with the set of

the open P × H0-double cosets in G. Similarly, one obtains a polar decomposition for Z0

as Z0 = �A−
Z W0 · z0 with z0 = H0, now denoting the base point of Z0.

In order not to introduce further notation and maintain readability, the main

text is kept in the algebraic framework. At various places, we will comment on the

necessary adjustments needed for H connected.

The polar decomposition is closely related to compactification theory of Z, which

we summarize in the next section.

Example 2.12. In some cases it is possible to have a very specific choice of �, for

example in the group case Z = G′ × G′/ diag G′ � G′ one can take � = K′ × K′. Interesting

is also the triple case. Here one has in fact Z = KAZ for K = Ko × Ko × Ko by [10,Th. 3.2],

but Z � KA−
Z,R as a consequence of [10,Th. 4.1].

3 Boundary degenerations and quantitative geometry at infinity

For a real spherical subalgebra h ⊂ g and any subset I ⊂ S, there is natural deformation

of hI of h, see (3.1) below for the straightforward definition. We define HI = 〈exp(hI)〉 as

the analytic subgroup of G with Lie algebra hI and define the boundary degenerations

of Z as ZI := G/HI . Let us mention that ZI identifies (up to cover) with an open

cone-subbundle in the normal bundle of a certain G-boundary orbit in a smooth

compactification of Z. This more elaborate point of view will be taken in the forthcoming

work [12], but is not the topic of this paper.

The compactification theory is reviewed here shortly in Section 3.3, but only

as a tool to give a short proof of Proposition 3.1, which is the main result of this

section. In more detail, let WI be the set of open P-orbits in the deformed space ZI .

We introduce a natural matching map m : WI → W for open P-orbits. The definition of

m involves certain sequences and the contents of Proposition 3.1 is about the rapid (i.e.,

exponentially fast) convergence of these sequences.

3.1 Boundary degenerations of Z

Let I be a subset of S and set:

aI = {X ∈ aZ | α(X) = 0, α ∈ I}, AI = exp(aI) ⊂ AZ ,

a
−−
I = {X ∈ aI | α(X) < 0, α ∈ S \ I}, A−−

I = exp(a−−
I ) .
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Then there exists an algebraic Lie subalgebra hI of g such that, for all X ∈ a
−−
I , one has:

hI = lim
t→+∞ ead tXh (3.1)

in the Grassmannian Grd(g) of g, where d := dim (h) (cf. [31,equation (3.9)]).

Notice that ãI normalizes hI , and hence

ĥI := hI + ãI

defines a subalgebra of g that does not depend on the section s.

Let HI be the analytic subgroup of G with Lie algebra hI and set ZI = G/HI . Then

ZI is a real spherical space for which:

(i) PHI is open,

(ii) Q is ZI-adapted to P,

(iii) aZI
= aZ and a

−
ZI

= {X ∈ aZ | α(X) ≤ 0, α ∈ I} contains a
−
Z

(cf. [31,Proposition 3.2]). Similarly to (2.6), one has:

g = hI ⊕ (l ∩ h)⊥l ⊕ u .

Let TI : u− → (l ∩ h)⊥l ⊕ u be the restriction to u− of minus the projection of g onto

(l ∩ h)⊥l ⊕ u parallel to hI . Furthermore, let 〈I〉 ⊂ N0[S] be the monoid generated by I. Let

XI
α,β = Xα,β if α + β ∈ 〈I〉 and zero otherwise. It follows from [31,equation (3.12)] that

X−α + ∑
β∈u∪{0} XI

α,β ∈ hI . This implies that, for α ∈ u,

TI(X−α) =
∑

β∈u∪{0}
XI

α,β .

Let A−
ZI

= exp a
−
ZI

. Similarly to Z, the real spherical space ZI has a polar decomposition:

ZI = �IA
−
ZI
WI · z0,I , (3.2)

where z0,I = HI , �I ⊂ G compact and WI ⊂ G finite (cf. Lemma 3 and Remark 5 for

the choice of WI as HI is defined to be connected). In more detail, the Lie algebra hI is

algebraic and we let HI be the corresponding connected algebraic subgroup of G. Using
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Lemma 2 applied to the real spherical space G(R)/HI(R), we can make, using Remark 5,

a choice for WI such that elements wI ∈ WI are of the form

wI = t̃IhI , for some t̃I ∈ exp(iãZ) and hI ∈ HI(C) . (3.3)

We fix such a choice in the following, requesting in addition that 1 ∈ WI .

3.2 Quantitative escape to infinity

Let I ⊂ S. Let us pick XI ∈ a
−−
I , i.e., XI ∈ aI and α(XI) < 0 for all α ∈ S \ I. For s ∈ R, let

as := exp(sXI) . (3.4)

Fix wI = t̃IhI ∈ WI . According to [31,Lemma 3.9], there exists w ∈ W (uniquely

determined by XI ) and s0 > 0 with

PwIãsH = PwH, s ≥ s0 . (3.5)

Note that (cf. Lemma 2):

w = t̃h, for some t̃ ∈ exp(iãZ) and h ∈ H(C) . (3.6)

A priori, w might depend on XI , say w(XI). On the other hand, the limit (3.1) is locally

uniform in compact subsets of a
−−
I . In particular, the set of Y ∈ a

−−
I such that w(Y) =

w(XI) is open and closed. Hence, w is independent of XI . Given wI ∈ WI and w ∈ W such

that (3.5) holds, we say that w corresponds to wI and note that this correspondence sets

up a natural map m : WI → W.

According to [31,Lemma 3.10], there exist elements us ∈ U, bs ∈ AZ and ms ∈ M

such that:

wIãs · z0 = usmsb̃sw · z0 s ≥ s0 ,

lim
s→+∞(asb

−1
s ) = 1,

lim
s→+∞ us = 1 ,

lim
s→+∞ ms = mwI

, for somemwI
∈ M .

(3.7)

Notice that in case wI = 1 we have w = 1 by (3.5) and our request that 1 ∈ W; also note

mwI
= 1 for wI = 1.
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The goal of this section is to give a quantitative version of the convergence in

(3.7). For that, we first refer to Appendix A for the definition and basic properties of

rapid convergence.

Recall the finite 2-group FM = M̂H/MH defined before (2.4) and fix with F̃M ⊂ M

a set of its representatives containing 1. Then we have the following result:

Proposition 3.1. The families (asb : s−1) and (us) converge rapidly to 1 and one can

choose the family (ms) such that (ms) converges rapidly to mwI
∈ F̃M .

Remark 3.2. (a) Proposition 3.1 allows us to change the representatives wI to m−1
wI

wI

without losing the special form wI = t̃IhI with t̃I ∈ exp iãZ. This is because of FMAZ ⊂
AZ,R ⊂ exp(iãZ)A · z0 Hence, we may and will assume in the sequel that mwI

= 1 for all

wI ∈ WI .

(b) For H replaced by connected H0, Proposition 3.1 stays valid with F̃M right-

enlarged by representatives of the component group MH/(M ∩ H0). However, this causes

that we possibly cannot take mwI
= 1 as in (a).

(c) In order to give a shorter proof of Proposition 3.1, we use the compactification

theory of Z(R), which we review in the next paragraph. In particular, it yields the

framework to consider ẑ0,I := lims→∞ ãs · z0 as an appropriate rapid limit in a suitable

smooth compactification of Z.

Geometrically, compactification theory provides (up to cover) a first order

approximation of ZI to Z at the vertex ẑ0,I at infinity. This first order approximation

then yields readily us → 1 rapidly and ms → mwI
∈ F̃M rapidly. However, first order

approximation can only give asb : s−1 → 1 and to show that asb
−1
s → 1 indeed rapidly,

we need to use finer tools from finite dimensional representation theory.

3.3 Smooth equivariant compactifications

By an equivariant compactification of Z(R), we understand here a G-variety Ẑ, defined

over R, such that Ẑ(R) is compact and contains Z(R) as an open dense subset. In this

context, we denote by ∂Z the boundary of Z in Ẑ(R).

Suitable (i.e., smooth and equivariant) compactifications exist:

Proposition 3.3. Let Z = G/H be an algebraic real spherical space. Then there exists

a smooth equivariant compactification Ẑ(R) of Z(R) with the following property: for all

I ⊂ S and X ∈ a
−−
I , the limit zX := lims→∞(exp(sX) · z0) exists in ∂Z and the convergence

is rapid. If hX is the stabilizer Lie subalgebra of zX in g, then hI ⊂ hX ⊂ ĥI .
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The proof of this result is implicit in the proof of [25,Theorem 13.2]. Since the

constructive proof is of relevance for us, we allow ourselves to repeat the fairly short

proof.

Proof. The starting point is the local structure theorem for the open P-orbit on Z as

in (2.4)

(P · z0)(R) = U ×
[
[M/MH ] ×FM AZ(R)

]
. (3.8)

One of the main results in [25], see loc.cit., Theorem 7.1, was that the compacti-

fication theory of Z can be reduced, via the local structure theorem, to the partial toric

compactification theory of AZ. Let us be more precise and denote by � the character

group of AZ. Note that � � Zn with n = dim AZ. If we denote by N the co-character

group of AZ, then there is a natural identification of aZ with N ⊗Z R. Further, the

compression cone a
−
Z identifies as a co-simplicial cone (in [25], one uses the rational

valuation cone, denoted Zk(X): take k = R and X = Z. Then a
−
Z = R ⊗Q Zk(X)). The set

of spherical roots S ⊂ � are then the primitive (in �) extremal elements, co-spanning

a
−
Z . Best possible compactifications (a.k.a. wonderful compactifications) exist when

#S = dim aZ and S is a basis of the lattice �. In general, this is not satisfied and

we proceed as follows: we choose a complete fan F ⊂ aZ, supported in a
−
Z , which is

generated by simple simplicial cones C1, . . . , CN , i.e.,

• ⋃
Ci = a

−
Z ,

• Ci ∩ Cj is a face of both Ci and Cj for all 1 ≤ i, j ≤ N,

• Ci = {X ∈ aZ | dψij(X) ≤ 0, 1 ≤ j ≤ n} for (ψij)1≤j≤n a basis of the lattice �.

For the existence of such a subdivision, we refer to [9,Th. 11.1.9]. Now, attached

to the fan F , we construct the toric variety AZ(F) expanding AZ along F . Note that

the toric variety AZ(F) is smooth, as the fan consists of simple cones (third bulleted

property). Thus, we obtain a smooth variety

Z0(F) := U × [
[M/MH ] ×FM AZ(F)

]
, (3.9)

which can be enlarged to a smooth G-variety Z(F) := G · Z0(F), containing Z0(F) as an

open subset. This is the content of [25,Theorem 7.1]. Now, set Ẑ(R) := Z(F)(R) and note

that Ẑ(R) is compact by [25,Corollary 7.12] as F was assumed to be complete.

We now claim that the limit lims→∞(exp(sX) · z0) exists in AZ(F)(R) and that the

convergence is rapid. For that, we pick a cone Ci, which contains X, and let Fi be the
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complete fan supported in Ci, which is generated by Ci. Notice that AZ(Fi)(C) � Cn is

open in AZ(F)(C). More specifically, the embedding of AZ(C) ↪→ Cn is obtained by

AZ(C)  a �→ (ψij(a))1≤j≤n ∈ (C∗)n ⊂ Cn . (3.10)

Given the definition of Ci as the negative dual cone to the ψij’s, j = 1, . . . , n, the claim

now follows.

Note that the stabilizer of zs := exp(sX) · z0 in G is given by Hs :=
exp(sX)H exp(−sX) with Lie algebra hs := es ad Xh. Since zs → zX in the smooth manifold

Ẑ(R), we obtain that the vector fields corresponding to elements of lims→∞ hs = hI

vanish at zX . This shows that hI ⊂ hX . Finally the property hX ⊂ ĥI is derived from

[25,Theorem 7.3]. �

We end this subsection with further remarks and explanations of the construc-

tion in the proof above.

Remark 3.4. (a) It is quite instructive to consider the special case of Z = G = A.

Here A−
Z = AZ = A = AZ,E with S = ∅. Upon identifying aZ with Rn via the character

lattice �, there are two standard choices for the complete fan F generated by the cones

C1, . . . , CN . The first one is for N = 2n and the cones given by the orthants: Cσ = σ(R≥0)n

for σ ∈ {−1, 1}n. This fan leads to AZ(F)(R) � P1(R)n, the n-fold copy of the projective

line. The other standard choice is obtained via the identification Rn � Rn+1/Re with

e = e1 + . . . + en+1, where (e1, . . . , en+1) is the canonical basis of Rn+1, and has N = n + 1

cones given by:

Ci = [(
n+1⊕

j=1s.t.j �=i

R≥0ej) + Re]/Re 1 ≤ i ≤ n + 1 .

This fan leads to the projective space AZ(F)(R) � Pn(R).

(b) In the previous example, we have seen that there are exactly N fixed points

for G in the compactification Ẑ(R), paramatrized by the cones Ci and explicitly given

by limits ẑ∅,i := limt→∞(exp(tX) · z0), for some X ∈ int Ci. This feature is not limited to

this specific example but general: the compactification Ẑ(R) features exactly N closed

G(R)-orbits through the various ẑ∅,i’s. This is in contrast to wonderful compactifications

[25,Def. 11.4], where one has exactly one closed orbit [25,Th. 11.1]. For wonderful

compactifications, one has aZ,E = {0} and S is a basis of the lattice �. If one of these
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two conditions fails, one is in need of a further subdivision of a−
Z into simple simplicial

cones Ci.

(c) Let X ∈ a
−−
I and F ∈ F be the smallest face in the fan that contains X. Then

spanR F ⊂ aI and hX = hI + spanR F. In particular, for X ∈ a
−−
I generic, we have hX = ĥI .

(d) (cf. [25,Section 11]) In case H = NG(H) is self-normalizing, one obtains a

wonderful compactification Ẑ(R) by closing up Z(R) in the Grassmannian Grd(g) of

d := dim h-dimensional subspaces of g. The embedding is given by g · z0 �→ Ad(g)h

and, given the definition of hI as a limit (cf. (3.1)), one derives easily that the stabilizer

ĤI of ẑ0,I in G has Lie algebra ĥI .

3.4 Proof of Proposition 3.1

We choose a smooth compactification Ẑ(R) = Z(F)(R) as constructed in the previous

section. To begin with, we note that the limit

ẑ0,I := lim
s→∞ ãs · z0 (3.11)

exists. Moreover, ẑ0,I ∈ AZ(F)(R) and the convergence is rapid. Further, we deduce from

the fact that ẑ0,I is fixed by HI(C) and wI = t̃IhI that lims→∞ wIãs ·z0 = t̃I · ẑ0,I ∈ AZ(F)(R)

is rapid. On the other hand, wIãs · z0 = usmsb̃sw · z0 = usmsb̃st̃ · z0, which, in local

coordinates as given by (3.9), translates into:

wIãs · z0 = (us, [ms, t̃b̃s · z0]) ∈ U × [
[M/MH ] ×FM AZ(F)(R)

]
. (3.12)

Since lims→∞ wIãs · z0 = (1, [1, t̃ · ẑ0,I ]) is rapid, we thus deduce that lims→∞ us = 1 is

rapid as well. Next, we use the smooth projection [M/MH ]×FM AZ(F)(R) → M/MHFM and

obtain that ms(MHFM)
rapid−−−→
s→∞ 1(MHFM) ∈ M/MHFM . In particular, we may assume that

ms
rapid−−−→
s→∞ mwI

∈ MHFM . Notice that we are free to replace ms by elements of the form

msmH with mH ∈ MH as we have

msmHb̃sw · z0 = msmHb̃st̃ · z0 = msb̃st̃ · z0 = msb̃sw · z0 .

Thus, we may even assume that m := mwI
∈ F̃M (which was defined just before

Proposition 3.1).
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We remain with showing bsa
−1
s

rapid−−−→
s→∞ 1. Using the techniques from above, it

is immediate that d(as, bs) → 0 rapidly for any Riemannian metric d on Ẑ(R). However,

the statement a−1
s bs → 1 rapidly is a considerably finer assertion and difficult to obtain

working with only one compactification. Thus, we change the strategy of proof and work

with (varying) finite dimensional spherical representations instead. The representations

give us various morphisms of Z into affine spaces.

We assume first that Z is quasi-affine. The representations we work with are

finite dimensional irreducible representations (π , V) of G(C) featuring two properties:

• The representation is H(C)-spherical, that is, there exists a vector vH �= 0

such that π(h)vH = vH for all h ∈ H(C).

• Each N(C)-fixed vector is fixed by M(C).

We remark that the second property is equivalent to the representation being

K(C)-spherical (Cartan–Helgason theorem). In particular, each of these representations

is self-dual, its highest weight λ is an element of a∗ and its lowest weight is given by −λ.

We write �Z for the set of highest weights of all H(C) and K(C)-spherical irreducible

representations.

Given λ ∈ �Z, we let (π , V) be such an irreducible representation of G(C)

of highest weight λ. Furthermore, we fix a highest weight vector v∗ in the dual

representation V∗ of V. From the fact that PH is open in G, we then deduce v∗(vH) �= 0

and, in particular, VH = CvH is one-dimensional. Moreover, it follows that �Z ⊂ a∗
Z.

We expand vH into a-weight vectors

vH =
∑

μ∈�π

v−λ+μ ,

with �π := {μ ∈ a∗ | v−λ+μ �= 0}. As vH is aH-fixed, we have �π ⊂ a∗
Z and, by [28,Lemma

5.3], we obtain:

μ
∣∣
a

−−
Z

< 0 , μ ∈ �π\{0} . (3.13)

Set

vH,s := aλ
sπ(ãs)vH s ≥ 0
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and note, as vH is H-invariant, that this expression is independent of the choice of the

particular section s. From the definition, we then get

vH,s =
∑

μ∈�π

aμ
s v−λ+μ . (3.14)

If we define

vH,I :=
∑

μ∈�π s.t.μ(XI )=0

v−λ+μ ,

then it is immediate from (3.13) and (3.14) that

vH,s → vH,I rapidly for s → ∞ . (3.15)

Recall v∗ ∈ V∗, a highest weight vector in the dual representation. Then we

obtain from wIãs · z0 = usmsb̃st̃ · z0 with t = t̃ · z0 ∈ AZ,2 (cf. Lemma 2) that:

v∗(π(wI)vH,s) = aλ
s

(
v∗(π(usmsb̃st̃)vH)

)
= (asb

−1
s )λt−λ

(
v∗(vH)

)
. (3.16)

By (3.15), we thus obtain from (3.16) that:

(asb
−1
s )λ = tλ

v∗(π(wI)vH,s)

v∗(vH)
→ tλ

v∗(π(wI)vH,I)

v∗(vH)
rapidly for s → ∞ . (3.17)

We now employ [31,Lemma 3.10] for the simple convergence asb
−1
s → 1. Thus,

(3.17) implies tλ v∗(π(wI )vH,I )

v∗(vH )
= 1 with

(asb
−1
s )λ → 1 rapidly fors → ∞, λ ∈ �Z . (3.18)

Assume for the moment that Z is quasi-affine. We claim that the set �Z spans a∗
Z. In fact,

this is as a consequence of [30,Lemma 3.4 and (3.2)] as in the notation of op. cit. each

f ∈ C(Z)χ is a quotient f = f1/f2 for some fi ∈ C[Z]χi
corresponding to characters �Z in

the notation of this article. From the claim and (3.18) we then get asb
−1
s → 1 rapidly.

If Z is not quasi-affine, then matters are reduced to the quasi-affine case via

the so-called cone construction from algebraic geometry: we extend G(C) to G′(C) :=
G(C) × C∗ and, for a character ψ : H(C) → C∗ defined over R, we set H ′(C) := {(h, ψ(h)) |
h ∈ H(C)} .
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In this way, we obtain a real spherical space Z′ := G′/H ′, which projects

G′-equivariantly onto Z. According to [25,Corollary 6.10], there is compatibility of

compression cones:

a
′−
Z = a

−
Z ⊕ R . (3.19)

Furthermore, according to Chevalley’s quasiprojective embedding theorem for homo-

geneous spaces [21,Sect. 11.2], we find such a ψ such that Z′ is quasi-affine and we

complete the reduction to the quasi-affine case as follows: we lift the identity (3.6) to Z′

and obtain

wIã
′
s · z′

0 = usmsb̃
′
sw · z′

0 s ≥ s0 ,

with ã′
s ∈ ãs(1×R×) ∈ G′ and likewise for b̃′

s ∈ b̃s(1×R×) ∈ G′. Because of (3.19), we obtain

the rapid convergence b′
s(a

′
s)

−1 → 1 in the quasi-affine environment of Z′. Projecting to

Z then completes this final reduction step.

4 Z-tempered H-fixed continuous linear forms and the space Atemp(Z)

In this section, we introduce the function space Atemp(Z) of tempered Z(g)-

eigenfunctions on Z. Via Frobenius reciprocity, these functions can naturally be

interpreted as matrix coefficients of smooth representations of G, which are of moderate

growth (SF-representations for short). This section starts with a brief digression on SF-

representations and then provides the definition of Atemp(Z).

4.1 SF-representations of G

Let us recall some definitions and results of [4].

A continuous representation (π , E) of a Lie group G on a locally convex complex

topological vector space E is a representation such that the map:

G × E → E, (g, v) �→ π(g)v, is continuous.

If R is a compact subgroup of G and v ∈ E, we say that v is R-finite if π(R)v generates a

finite dimensional subspace of E. Let V(R) denote the vector space of R-finite vectors in
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E. Let η be a continuous linear form on E and v ∈ E. Let us define the generalized matrix

coefficient associated to η and v by:

mη,v(g) := 〈η, π(g−1)v〉, g ∈ G . (4.1)

Let G be a real reductive group and ‖·‖ be a norm on G (cf. [41,Section 2.A.2] or [4,Section

2.1.2]). A continuous representation (π , E) of G is called a Fréchet representation with

moderate growth if E is a Fréchet space and if, for any continuous semi-norm p on E,

there exist a continuous semi-norm q on E and N ∈ N such that:

p(π(g)v) ≤ q(v)‖g‖N , v ∈ E, g ∈ G. (4.2)

This notion coincides with the notion of F-representations given in [4,Definition 2.6] for

the large scale structure corresponding to the norm ‖ · ‖. We will adopt the terminology

of F-representations.

Let (π , E) be an F-representation. A smooth vector in E is a vector v such that

g �→ π(g)v is smooth from G to E. The space E∞ of smooth vectors in E is endowed with

the Sobolev semi-norms that we define now. Fix a basis X1, . . . , Xn of g and k ∈ N. Let p

be a continuous semi-norm on E and set

pk(v) =
⎛
⎝ ∑

m1+···+mn≤k

p(π(Xm1
1 · · · Xmn

n )v)2

⎞
⎠

1/2

, v ∈ E∞ . (4.3)

We endow E∞ with the topology defined by the semi-norms pk, k ∈ N, when p varies

in the set of continuous semi-norms of E, and denote by (π∞, E∞) the corresponding

sub-representation of (π , E).

An SF-representation is an F-representation (π , E), which is smooth, i.e., such

that E = E∞ as topological vector spaces. Let us remark that if (π , E) is an F-

representation, then (π∞, E∞) is an SF-representation (cf. [4,Corollary 2.16]).

Recall our fixed maximal compact subgroup K ⊂ G.

Following [4], we call an SF-representation E admissible provided that E(K) is

a Harish-Chandra module with respect to the pair (g, K), that is, a (g, K)-module with

finite K-multiplicities, which is finitely generated as a U(g)-module.

An admissible SF-representation will be called an SAF-representation of G.

It is a fundamental theorem of Casselman–Wallach (cf. [8], [42,Chapter 11] or

[4]) that every Harish-Chandra module V admits a unique SF-completion V∞, i.e., an
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SF-representation V∞ of G, unique up to isomorphism in the SF-category, such that:

V∞
(K) �(g,K) V .

In particular, all SAF-representations of G are of the form V∞ for a Harish-Chandra

module V.

4.2 The spaces C∞
temp,N(Z) and Atemp,N(Z)

From now on and for the remainder of this paper, we will assume that Z is unimodular.

Let ρQ be the half sum of the roots of a in u. Let us show that

ρQ is trivial on aH .

As l ∩ h-modules,

g/h = u ⊕ (l/l ∩ h) .

But the action of aH = a ∩ h on (l/l ∩ h) is trivial. Since Z is unimodular, the action of aH

has to be unimodular. Our claim follows.

Hence ρQ can be defined as a linear form on aZ.

We have the notion of weight functions on a homogeneous space X of a locally

compact group G (cf. [3,Section 3.1]). This is a function w : X → R>0 such that, for every

ball B of G (i.e., a compact symmetric neighborhood of 1 in G), there exists a constant

c = c(w, B) such that

w(g · x) ≤ cw(x), g ∈ B, x ∈ X . (4.4)

One sees easily that, if w is a weight function, then 1/w is also a weight function.

Let � ⊂ G be a compact subset in accordance with the polar decomposition in

Lemma 3. Then weight function v and w on Z are defined by

v(z) := volZ(Bz) and w(z) := 1 + sup
a∈A−

Z s.t. z∈�aW ·z0

‖ log(a)‖ ,

where B is some ball of G and ‖ · ‖ refers to the quotient norm on aZ = a/aH . It is then

clear that v is a weight function and w is a weight function by [29,Proposition 3.4].
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Recall that the equivalence class of v does not depend on B (see op. cit. Lemma 4.1 and

beginning of Section 3 for the definition of the equivalence relation).

For any N ∈ N, we define a norm pN on Cc(Z) by

pN(f ) := sup
z∈Z

(
w(z)−Nv(z)1/2|f (z)|

)
. (4.5)

From the polar decomposition of Z (cf. (9)), one has

pN(f ) = sup
g∈�,a∈A−

Z ,w∈W

(
w(gaw · z0)−Nv(gaw · z0)1/2|f (gaw · z0)|

)
.

From the fact that v and w are weight functions on Z and from [29,Propositions 3.4(2)

and 4.3], one then sees that:

The norm pN is equivalent to the norm

f �→ qN(f ) := sup
g∈�,a∈A−

Z ,w∈W

(
a−ρQ(1 + ‖ log a‖)−N |f (gaw · z0)|

)
. (4.6)

Moreover, due to the fact that v and 1/w are weight functions on Z, one gets that G acts

by left translations on (Cc(Z), pN) and, for any compact subset C of G, by changing z into

z′ = g−1 · z in (4.5), one sees that:

There exists c > 0 such that

pN(Lgf ) ≤ cpN(f ), g ∈ C, f ∈ Cc(Z) . (4.7)

This is in essence what is needed to identify

C∞
temp,N(Z) := {f ∈ C∞(Z) | pN,k(f ) < ∞, k ∈ N} (4.8)

as an SF-module for G. Here, the pN,k, k ∈ N, are as in (4.3), with p replaced by pN and

(π , E) by the SF-representation (L, C∞
temp,N(Z)). Further, we endow the increasing union

C∞
temp(Z) := ⋃

N∈NC∞
temp,N(Z), with the inductive limit topology. We call C∞

temp(Z) the space

of smooth tempered functions on Z.

Inside of C∞
temp(Z), we define Atemp(Z) as the subspace of Z(g)-finite functions.

Likewise we define Atemp,N(Z).
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4.3 Z-Tempered functionals

Let (π , E) be an SF-representation and E′ its strong dual. An element η ∈ (E′)H will be

called Z-tempered provided

There exists N ∈ N such that, for all v ∈ E, one has mη,v ∈ C∞
temp,N(Z). (4.9)

The Z-tempered functionals then define a subspace (E′)H
temp of (E′)H . Frobenius

reciprocity then asserts for an SF-representation (π , E) the following isomorphism of

vector spaces:

Hom(E, C∞
temp(Z)) � (E′)H

temp , (4.10)

which can be established as in [36,Lemma 6.5] via the Grothendieck factorization

theorem for topological vector spaces.

In case E = V∞ is an SAF-representation, we adopt the more common ter-

minology V−∞ := (V∞)′ and recall the finiteness result for real spherical spaces (cf.

[35,Theorem 3.2]):

dim (V−∞)H < ∞ . (4.11)

For a finite codimensional ideal J of Z(g), let

Atemp,N(Z : J ) := {f ∈ Atemp,N(Z) | f is annihilated by J } (4.12)

and denote by Atemp(Z : J ) the subspace of Atemp(Z) annihilated by J .

Proposition 4.1. There exists an N0 ∈ N such that Atemp(Z : J ) = Atemp,N0
(Z : J ). In

particular, Atemp(Z : J ) is an SAF-representation of G.

The proof of Proposition 4.1 is preceded by two lemmas.

Lemma 4.2. There exists a Harish-Chandra module VJ annihilated by J such that any

Harish-Chandra module annihilated by J is a quotient of a finite direct sum of copies

of VJ .

Proof. According to Harish-Chandra [14,Thm. 7], there exist only finitely many isomor-

phism classes V1, . . . , Vn of irreducible Harish-Chandra modules that are annihilated
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by J . We can find a finite set F ⊂ K̂ of isomorphism classes of irreducible K-

representations such that, for each 1 � i � n, the (g, K)-module Vi is generated by

its δ-isotypic component for some δ ∈ F. Then every Harish-Chandra module, which is

annihilated by J is generated by the sum of its δ-isotypic components for every δ ∈ F.

Let R(K) be the algebra (for convolution) of K-finite functions on K and IF ⊂ R(K)

the ideal of elements, which acts by zero in δ for any δ ∈ F. Let R(g, K) be the “Hecke

algebra” of Knapp–Vogan [22,Section I.4], i.e., the algebra of K-finite distributions on

G, which are supported in K. Then R(g, K) is generated as a U(g)-module (either on the

left or on the right) by R(K) and moreover the category of (g, K)-module is naturally

equivalent to the category of non-degenerate (also called approximately unital by

Knapp–Vogan) R(g, K)-modules. Setting VJ = R(g, K)/(R(g, K)IF + R(g, K)J ) we see that

VJ is a (g, K)-module, which is generated by any supplement subspace of IF in R(K)

and annihilated by J . Hence, by another result of Harish-Chandra, VJ is in fact a

Harish-Chandra module, see [4,Th. 4.3] for a short proof. Moreover, it is clear that

any Harish-Chandra module annihilated by J is a quotient of a finite sum of copies

of VJ . �

Lemma 4.3. Let f ∈ Atemp,N(Z) be a K-finite element. Set Ef := spanC L(G)f , with

the closure taken in C∞
temp,N(Z). Then Ef is an SAF-representation, i.e., Ef

(K) is a Harish-

Chandra module.

Proof. We consider the (g, K)-module Vf := U(g)f . Since f is Z(g)-finite, the same holds

for Vf . Now, as a finitely generated and Z(g)-finite module, Vf is a Harish-Chandra

module by a theorem of Harish-Chandra, see [4,Th. 4.3] for a short proof. Note that Ef is

an F-representation of G containing the Harish-Chandra module Vf . Hence the closure

Vf in Ef is a continuous G-representation. On the other hand Ef was generated by the

G-translates of f . Hence Vf = Ef and thus Vf �(g,K) Ef
(K). �

Proof of Proposition 4.1 Let EJ = V∞
J be the SAF-globalization of VJ where VJ is as

in Lemma 4.2. We will actually show that Atemp(Z : J ) is precisely the image of

(E′
J )H

temp ⊗ EJ → Atemp(Z) (4.13)

η ⊗ v �→ mη,v .

Indeed, since (E′
J )H

temp is of finite dimension (cf. (4.11)), the image of (4.13) is contained

in Atemp,N0
(Z : J ) for some N0 � 0 and, by unicity of the SAF-globalization, this
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image is closed in Atemp,N(Z : J ) for every N � N0. Hence, it suffices to show that

it is also dense in Atemp,N(Z : J ) for every N � N0. Let f be any K-finite function

f ∈ Atemp,N(Z : J ). By Lemma 4.3 Ef is an SAF-representation annihilated by J and as

such a quotient of finitely many copies of EJ by Lemma 4, i.e., there exists a surjective

morphism
⊕n

j=1 EJ → Ef . Hence ((Ef )′)H
temp → ⊕n

j=1(E′
J )H

temp injects and thus every K-

finite function f ∈ Atemp,N(Z : J ) is in the image of (4.13). Since K-finite functions are

dense in Atemp,N(Z : J ), this completes the proof. �

We conclude this section with an illustration of invariant functionals for our

guiding example.

Example 4.4. (Triple space continued) In this case G = Go × Go × Go and Harish-

Chandra modules for (g, K) are of the form V = V1 ⊗ V2 ⊗ V3 with Vi Harish-Chandra

modules for (go, Ko). Likewise one has V∞ = V∞
1 ⊗̂V∞

2 ⊗̂V∞
3 . We denote by Ṽ3 the Harish-

Chandra module dual to V3. Note that

((V∞)′)H = HomGo
(V∞

1 ⊗̂V∞
2 ⊗̂V∞

3 ,C)

and thus

((V∞)′)H � HomGo
(V∞

1 ⊗̂V∞
2 , Ṽ∞

3 )

by a standard argument: First HomGo
(V∞

1 ⊗̂V∞
2 ⊗̂V∞

3 ,C) � HomGo
(V∞

1 ⊗̂V∞
2 , (V∞

3 )′) by

Grothendieck’s theory of tensor products for nuclear Fréchet spaces, and then, by

the use of the Grothendieck factorization theorem, deduce that the image of some

T ∈ HomGo
(V∞

1 ⊗̂V∞
2 , (V∞

3 )′) lies in fact in some Banach completion of Ṽ3. Thus we

see that H-invariant functionals are related to branching problems of tensor product

representation V∞
1 ⊗V∞

2 for Go. There is a vast literature on this subject, see for instance

[38] or [5].

5 Ordinary differential equation for Z(g)-eigenfunctions on Z

Let f ∈ Atemp(Z). The goal of this section is to show that f
∣∣
AI

gives a certain system of

ordinary differential equations on AI . In more precision, f is by definition annihilated

by an ideal J ⊂ Z(g) of finite codimension. We construct out of f a certain vector valued

function �f on AI with values in a finite dimensional vector space Uf with dimension

bounded by dim Z(g)/J . The function f
∣∣
AI

is then recovered by contracting �f with a
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vector in Uf . The function �f in turn satisfies a first order linear differential system

recorded in (5.30).

This section starts with a basic estimate for functions f ∈ C∞
temp,N(Z), which will

be crucial in the sequel: in a nutshell, we show that derivatives in direction of hI have

decreasing decay in direction of A−
I . After that, we have a short algebraic subsection

on invariant differential operators on Z, where we review in particular the contents

of Appendix C. With these preparatory subsections, we then derive the differential

equation (5.30) for �f . From the solution formula for �f in Lemma 5.7, we then derive a

variety of basic growth estimates for �f .

5.1 Differentiating tempered functions in direction of hI

Recall the basic notions about boundary degenerations related to subsets I ⊂ S of

spherical roots. Let us fix I ⊂ S throughout this section. We define a piecewise linear

functional on aI by

β̃I(X) = max
α∈S\I

α(X), X ∈ aI , (5.1)

and note that β̃I(X) < 0 if X ∈ a
−−
I . If a ∈ AI with a = exp X, we set aβ̃I = eβ̃I (X).

We begin this section with a crucial estimate:

Lemma 5.1. Let Y ∈ hI and N ∈ N. There exists a continuous semi-norm on C∞
temp,N(Z),

p, such that

|(LYf )(a)| ≤ aρQ+β̃I (1 + ‖ log a‖)Np(f ), a ∈ A−−
I , f ∈ C∞

temp,N(Z) .

Proof. On one hand, if Y ∈ l ∩ h,

(LYf )(a) = 0, a ∈ AI .

Hence, the conclusion of the Lemma holds for Y ∈ l ∩ h.

On the other hand, from the definition of TI (cf. beginning of Section 3.1), l ∩ h

and the elements

Y−α = X−α + TI(X−α) ∈ hI ,
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for α varying in u and X−α in g−α, generate hI as a vector space. By linearity, it then

remains to get the result for Y = Y−α.

Let a ∈ AI and ã = s(a) (cf. (2.2) for the definition of s). Then let us show that

Ad(ã)Y−α = ã−αY−α .

One has Ad(ã)X−α = ã−αX−α and Ad(ã)Xα,β = ãβXα,β . But α + β ∈ 〈I〉. Hence, ãα+β = 1 as

a ∈ AI . Our claim follows.

Let us get the statement for (LY−α
f )(a), a ∈ A−−

I and f ∈ Ctemp,N(Z). One has:

(LY−α
f )(a) = (Lã−1(LY−α

f ))(z0) = ãα(LY−α
Lã−1f )(z0) .

Recall that M is the monoid in N0[u] defined in (2.8) and 〈I〉 denotes the monoid in

N0[S] generated by I. Let us notice that:

Y−α +
∑

β∈u∪{0}s.t. α+β /∈〈I〉
Xα,β ∈ h .

Hence one has:

(LY−α
f )(a) = −ãα

∑
β∈u∪{0}s.t. α+β /∈〈I〉(LXα,β

Lã−1f )(z0)

= −∑
β∈u∪{0}s.t. α+β /∈〈I〉 ãα+β(Lã−1LXα,β

f )(z0) .

But ãα+β = aα+β as a ∈ AI ⊂ AZ and α + β ∈ S. Then, as (Lã−1LXα,β
f )(z0) = LXα,β

f (a), one

has:

(LY−α
f )(a) = −

∑
β∈u∪{0}s.t. α+β /∈〈I〉

aα+β(LXα,β
f )(a) . (5.2)

If α + β /∈ 〈I〉 as above and LXα,β
f �= 0, one has α + β ∈ M \ 〈I〉 and, from the definition of

βI (cf. (5.1)):

aα+β ≤ aβ̃I , a ∈ A−−
I .

Then

|(LY−α
f )(a)| ≤ aβ̃I

∑
β∈u∪{0}s.t. α+β /∈〈I〉

|(LXα,β
f )(a)| .
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Hence, we get the inequality of the Lemma for Y = Y−α by taking

p =
∑

β∈u∪{0}s.t. α+β /∈〈I〉
qN,Xα,β

,

with qN,X(f ) := qN(LXf ). �

5.2 Algebraic preliminaries

For a real spherical space Z = G/H, we denote by D(Z) the algebra of G-invariant

differential operators. We recall the deformations ZI = G/HI of Z, which were defined

with HI to be connected. In particular, we point out that HS = H0 and that ZS → Z is

possibly a proper covering. However, we have D(Z) ⊂ D(ZS) naturally by Remark C.2.

Next we describe D(ZI) as in Appendix C.

Let R denote the right regular representation of G on C∞(G). Differentiating R

yields an algebra representation of the universal enveloping algebra U(g) of gC:

R : U(g) → End(C∞(G)), u �→ R(u) .

Set b := a + m + u and note that b ⊂ g is a subalgebra with g = b + hI for all I ⊂ S. Note

that b ∩ hI = aH + mH for all I ⊂ S, where mH = m ∩ h. Let bH := aH + mH . With

UI(b) := {u ∈ U(b) | Xu ∈ U(g)hI , X ∈ hI} , (5.3)

we obtain a subalgebra of U(b), which features U(b)bH as a two-sided ideal. Next, we

explain the natural isomorphism

D(ZI) � UI(b)/U(b)bH (5.4)

from (C1). For that, we denote for fI ∈ C∞(ZI) by f̃I ∈ C∞(G) its natural lift to a right HI-

invariant function in G. Then, with regard to the quotient map π : U(b) → U(b)/U(b)bH ,

we take ũ ∈ U(b) to be any lift of u ∈ UI(b)/U(b)bH ⊂ U(b)/U(b)bH . Then we can define

(RI(u)fI)(gHI) := (R(ũ)f̃I)(g), g ∈ G ,

as the right hand side is independent of the particular choice of the lift ũ of u and the

representative g of the coset gHI . With this notion of RI , the isomorphism in (5.4) is
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implemented by the assignment

UI(b)/U(b)bH  u → RI(u) ∈ D(ZI) . (5.5)

For f ∈ C∞(Z) ⊂ C∞(ZS) and u ∈ D(Z) ⊂ D(ZS), we use the abbreviated notation R(u)f

without specifying any further index.

In the sequel, we consider D(ZI) as a subspace of U(b)/U(b)bH for any I ⊂ S.

Notice that U(b)/U(b)bH is naturally a module for AZ under the adjoint action, which

yields us a notion of aZ-weights of elements u ∈ U(b)/U(b)bH .

Recall the center aZ,E = aS of Z, which has the property that AZ,E normalizes

H and as such acts on Z from the right, commuting with the left G-action on Z. In

particular, we obtain a natural embedding S(aZ,E) ↪→ D(Z). When applied to the real

spherical space ZI = G/HI , I ⊂ S, we note that aI = aZI ,E and record the inclusion

S(aI) ↪→ D(ZI).

We rephrase Theorem C.5 from Appendix C as:

Lemma 5.2. For I ⊂ S, the following assertions hold:

1. For any u ∈ D(Z) ⊂ U(b)/U(b)bH and X ∈ a
−−
I , the limit

μI(u) := lim
t→∞ et ad Xu

exists in the vector space U(b)/U(b)bH , lies in the subspace U(b)I/U(b)IbH

and defines via RI (see (5.5)) and defines an injective algebra morphism

μI : D(Z) → D(ZI), which does not depend on X.

2. For any non-zero u ∈ D(Z), the aZ-weights of μI(u) and u are non-positive on

a
−
Z and the aZ-weights of μI(u) − u are negative on a

−−
I .

This Lemma shows that we can view D(ZI) as a subalgebra of D(Z∅). Since h∅ =
l ∩ h + ū is of a particular simple shape, i.e., close to a parabolic, the algebra D(Z∅) can

be described easily. For that, let MH := exp(mH) < M and keep in mind the standard

isomorphim

D(M/MH) � U(m)MH /(U(m)mH ∩ U(m)MH ) . (5.6)
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Lemma 5.3. The natural map

� : S(aZ) ⊗
[
U(m)MH /(U(m)mH ∩ U(m)MH )

]
→ U∅(b)/U(b)bH , u ⊗ v �→ uv + U(b)bH

is an isomorphism. In particular, via (5.4) and (5.6), we obtain a natural isomorphim of

algebras

D(Z∅) � S(aZ) ⊗ D(M/MH) . (5.7)

Proof. In the absolutely spherical case, this is found in [24,Section 6] (what is called

Xh, the horospherical deformation of a G-variety X, would correspond to our Z∅). The

slightly more general case is an easy adaptation. In the following proof, we replace

from (5.8) onwards H∅ by its algebraic closure, which is legitimate by Remark C.2(b).

Recall that

U∅(b) = {u ∈ U(b) | [X, u] ∈ U(g)h∅, X ∈ h∅} .

In particular, U∅(b) is ad a-invariant and we obtain a spectral decomposition

U∅(b) =
∑
λ∈a∗

U∅(b)λ .

For λ = 0, we further have

U∅(b)0 = U∅(b) ∩ U(a + m) = U(a)(U(m)MH + U(m)mH) ,

from which we easily derive that � is injective.

It remains to be seen that � is surjective. For that, it suffices to show that

[U∅(b)/U(b)bH ]λ � D(Z∅)λ = 0 for λ �= 0. To verify that, we pass to the graded level

and first note that the symbol map gives an embedding

grD(Z∅) ↪→ Pol(T∗Z∅)G , (5.8)

with Pol(T∗Z∅) := C[T∗Z∅] the regular (polynomial) functions on the quasi-affine variety

T∗Z∅. We identify the cotangent bundle T∗Z∅ with G ×H∅ (g/h∅)∗ and obtain Pol(T∗Z∅)G �
Pol((g/h∅)∗)H∅ . Thus we have grD(Z∅) ⊂ Pol((g/h∅)∗)H∅ naturally. Recall the invariant

non-degenerate bilinear form κ on g. This form yields a G-equivariant identification of

g with its dual g∗ and induces an H∅-equivariant identification of (g/h∅)∗ with h⊥
∅ := {X ∈
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g | κ(X, Y) = 0, Y ∈ h∅}. The proof of the Lemma will then be completed by showing that

the restriction map

Pol(h⊥
∅ )H∅ → Pol(b⊥m+a

H )

is injective, where b
⊥m+a

H := {X ∈ m+ a | κ(X, Y) = 0, Y ∈ bH}. This is now fairly standard.

Note that h⊥
∅ = b

⊥m+a

H + ū. Next let X = Xa + Xm ∈ a + m with Xa ∈ a and Xm ∈ m. Suppose

further that α(Xa) > 0 for α ∈ (a, u). Then, by a slight modification of [30,Lemma 2.5],

we have

Ad(Ū)X = X + [X, ū] = X + ū. (5.9)

Now Ū ⊂ H∅ and the fact that Z (and hence Z∅) is unimodular implies that there exists

an element Xa as above which lies in a
⊥a

H (see Lemma 5.4 below). It follows then from

(5.9) that any f ∈ Pol(h⊥
∅ )H∅ is constant in the ū-variable of h⊥

∅ , i.e., the restriction map

above is injective. This completes the proof of the Lemma. �

Lemma 5.4. Let Z be a unimodular real spherical space. Then the following assertions

hold:

1. Z is quasi-affine, i.e., Z(C) = G(C)/H(C) is a quasi-affine algebraic variety.

2. There exists an X ∈ a
⊥a

H � aZ such that α(X) > 0 for all α ∈ u.

Proof. [12,Example 12.6 and Lemma 12.7]. �

Let us denote by Z(Z∅) the center of D(Z∅). We then obtain from (5.7) that

Z(Z∅) � S(aZ) ⊗ Z(M/MH) . (5.10)

We wish to describe the image of the natural map Z(g) → Z(Z∅) ⊂ D(Z∅) more

closely, i.e., derive a slight extension of [24,Lemma 6.4].

In order to do so, we have to recall first the construction of the Harish-Chandra

homomorphism and then relate it to the Knop homomorphism for Z(M/MH).

We begin with a short summary on the Harish-Chandra homomorphims. The

natural inclusion Z(g) ⊂ U(a)Z(m) ⊕ U(g)n yields, via projection to the first summand,

an injective algebra morphism

γ0,a+m : Z(g) → U(a) ⊗ Z(m) .
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With t ⊂ m a maximal torus (which will be specified more closely below), we obtain with

j := a + t a Cartan subalgebra of g. We choose a positive system of roots +(jC) of the

the root system of gC with respect to jC such that the nonzero restrictions to a yield the

root spaces of n. Note that all roots are real-valued on jR := a + it and we denote by

ρj ∈ j∗R the corresponding half sum. Then, similar to what was just explained, we obtain,

by projection along the negative mC-root spaces with respect to tC, an injective algebra

morphism γ0,m : Z(m) → U(t). Putting matters together, we obtain with

γ0 := (IdS(a) ⊗ γ0,m) ◦ γ0,a+m

an injective algebra morphism γ0 : Z(g) → U(j). If we identify U(j) = S(j) with the

polynomials C[j∗C] on j∗C, the Harish-Chandra isomorphism γ : Z(g) → U(j)Wj is then

obtained by twisting γ0 with the ρj-shift, i.e., γ (z)(·) = γ0(z)(· + ρj) as polynomials on

j∗C. For our purpose we are in fact more interested in the unnormalized Harish-Chandra

morphism γ0 : Z(g) → S(j) � U(j).

Next we recall the Knop homomorphism for Z(M/MH). Set tH := t ∩ h and

tZ := t/tH . Note that M/MH is affine, i.e., the complexification MC/(MH)C is an affine

homogeneous space. We will request, from our choice of t, that the complexification of tZ
is a flat for MC/(MH)C, i.e., compatible with the local structure theorem (cf. [25,Theorem

4.2] applied to Y = X = MC/(MH)C and k = C). Set ρm := ρj

∣∣
it and let WM be the little

Weyl group of the affine space MC/(MH)C. Then [24,Theorem in the Introduction part(a)]

yields the Knop isomorphism

k : Z(M/MH) → C[t∗Z,C + ρm]WM .

For our purpose it is easier to work with the unnormalized Knop homomorphism, which

yields us an algebra monomorphism:

k0 : Z(M/MH) → S(t)/S(t)tH

The important thing to notice here is that the Knop homomorphism k0 is compatible

with the unnormalized Harish-Chandra homomorphism γ0,m : Z(m) → S(t) in the sense
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that the diagram

(5.11)

is commutative, see [24,Lemma 6.4]. To summarize, we obtain from (5.7), the just

explained construction of the Harish-Chandra homomorphism and (5.11) an injective

algebra morphism

j0 : Z(Z∅) → S(j)/S(j)(aH + tH) (5.12)

together with the following commutative diagram

(5.13)

In this diagram, the upper lower horizontal arrow is obtained from the natural Z(g)-

module structure of Z(Z∅) and the lower horizontal arrow is the natural projection S(j) →
S(j)/S(j)(aH + tH).

Example 5.5. (Triple space continued) For the triple space Z = Go ×Go ×Go/ diag Go we

have g = go × go × go and thus Z(g) = C[C1, C2, C3] with Ci the Casimir operator of the i-th

go-factor in g. Also we have j = a and the Brion-Knop little Weyl group WZ coincides with

the Weyl group Wa � (Z/2Z)3. Thus, by the Knop isomomorphism, we have D(Z) � Z(g).

Now Z(Z∅) = S(a) � C[z1, z2, z3] with zi the co-root coordinates and the above algebra

inclusion

Z(g) = C[C1, C2, C3] ↪→ Z(Z∅) = C[z1, z2, z3]

is given by the assignment

Ci �→ 1

4
z2

i − 1

2
zi .
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Note that D(ZI) is naturally a module for Z(g), the center of U(g). We define by

D(ZI) the commutative subalgebra of D(Z), which is generated by S(aI) and the image of

Z(g) in D(ZI).

Lemma 5.6. The Z(g)-module Z(Z∅) is finitely generated. In particular, D(ZI) is a

finitely generated Z(g)-module for all I ⊂ S.

Proof. Since S(j) is a module of finite rank over S(j)Wj (Chevalley’s theorem), we obtain

from (5.13) and im γ = S(j)Wj that Z(Z∅) is a finitely generated Z(g)-module. Since D(ZI)

is naturally a submodule of D(Z∅) via the injective algebra morphism μI of Lemma 5.2,

the second assertion follows from the fact that Z(g) � S(j)Wj is a polynomial ring (again

by Chevalley) and hence noetherian. �

Let us denote by D0(Z) the image of Z(g) in D(Z∅) ⊂ D(Z). As we will see later,

some aspects become simpler if we work with the slightly smaller algebra D0(Z). It

follows from Lemma 5.6 that D(ZI) is a finitely generated μI(D0(Z))-module.

Fix now I ⊂ S. Since D(ZI) is finitely generated over μI(D0(Z)), there exists a

finite dimensional vector subspace U of D(ZI) containing 1 such that the map

μI(D0(Z)) ⊗ U −→ D(ZI)

v ⊗ u �−→ vu
(5.14)

is a linear surjective map.

Let I be a finite codimensional ideal of D0(Z) and let I ′ := μI(I). Let C = C(I) be a

finite dimensional vector subspace of μI(D0(Z)) containing 1 such that μI(D0(Z)) = C+I ′.
Hence:

D(ZI) = (C + I ′)U = CU + I ′U , (5.15)

where I ′U (resp. CU) is the linear span of {vu | v ∈ I ′, u ∈ U} (resp. {vu | v ∈ C, u ∈ U}).
Since I ′ is an ideal on D0(Z), we obtain that:

I ′U = I ′μI(D0(Z))U = I ′D(ZI) = D(ZI)I ′ . (5.16)

Hence, (5.15) implies that:

D(ZI) = CU + D(ZI)I ′ . (5.17)
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In case I is a one codimensional ideal of D0(Z), one may and will take C = C1,

and then CU = U.

In general, we choose a finite dimensional subspace UI ⊂ CU, possibly

depending on I, such that the sum in (5.17) becomes direct:

D(ZI) = UI ⊕ D(ZI)I ′ . (5.18)

Let sI , resp. qI , be the linear map from D(ZI) to UI , resp. D(ZI)I ′, deduced from this

direct sum decomposition. The algebra D(ZI) acts on UI by a representation ρI defined

by:

ρI(v)u = sI(vu), v ∈ D(ZI), u ∈ UI . (5.19)

In fact:

The representation (ρI , UI) is isomorphic to the natural representation of D(ZI)

on D(ZI)/D(ZI)I ′.
We notice that, for v ∈ D(ZI) and u ∈ UI ,

vu = ρI(v)u + qI(vu). (5.20)

If (ui)i=1,...,n is a basis of U, then we obtain, from D(ZI)I ′ = μI(I)U = UμI(I) (see (5.16)),

elements zi = zi(v, u, I) ∈ I, not necessarily unique, such that:

qI(vu) =
n∑

i=1

uiμI(zi) . (5.21)

Moreover, we record from Lemma 5.2(ii) that:

μI(zi) − zi has aZ-weights non-positive on a
−
Z and negative on a

−−
I . (5.22)

In order to use it later, we denote by F = F(I) the (finite) set of all these aZ-

weights that occur when v describes aI ⊂ D(ZI) and u describes UI . Let us define a

piecewise linear functional on aZ by:

βI(X) := max
λ∈F∪(S\I)

λ(X), X ∈ aZ . (5.23)

Note that βI

∣∣
a

−
Z

≤ 0 and βI

∣∣
a

−−
I

< 0.
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5.3 The function �f on AZ and related differential equations

Fix N ∈ N and I a finite codimensional ideal in D0(Z). Recall the surjective morphism

Z(g) → D0(Z) and let J be the corresponding preimage of I. Set

Atemp(Z : I) := Atemp(Z : J ) ,

with Atemp(Z : J ) defined in (4.12).

Recall that we identified for any I ⊂ S the algebra D(ZI) as a subspace of

U(b)/U(b)bH . Now given f ∈ C∞(Z), we denote by f̃ ∈ C∞(G) its lift to a right H-invariant

smooth function on G. For u ∈ U(b)/U(b)bH we let further ũ ∈ U(b) be any lift. Then, for

all aZ ∈ AZ the notion

(Ruf )(aZ) := (R(ũ)f̃ )(ãZ)

is defined, i.e., independent of the lift ũ and the section s.

Recall that (ρI , UI) is the finite dimensional D(ZI)-module defined in (5.19) and

in particular UI ⊂ D(ZI) ⊂ U(b)/U(b)bH . For any f ∈ Atemp,N(Z : I), let us define a

function �f : AZ → U∗
I by:

〈�f (aZ), u〉 := (Ruf )(aZ), u ∈ UI , aZ ∈ AZ . (5.24)

Hence, for X ∈ aI ⊂ D(ZI),

〈(RX�f )(aZ), u〉 = (RXuf )(aZ), aZ ∈ AZ, u ∈ UI . (5.25)

Hence, by using (5.20) and (5.21) for Xu, one gets

RX�f = tρI(X)�f + �f ,X , X ∈ AI , (5.26)

where �f ,X : AZ → U∗
I is given by:

〈�f ,X(aZ), u〉 :=
∑

i

(RuiμI (zi)
f )(aZ), aZ ∈ AZ, u ∈ UI , (5.27)

with zi = zi(X, u, I) given by (5.21).
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Since Rzi
f = 0 as zi ∈ I and f is annihilated by I, one then has:

〈�f ,X(aZ), u〉 =
∑

i

(Rui(μI (zi)−zi)
f )(aZ), aZ ∈ AZ, u ∈ UI . (5.28)

One sets:

�I(X) = tρI(X), X ∈ aI . (5.29)

Hence, we arrive at the fundamental first order ordinary differential equation:

RX�f = �I(X)�f + �f ,X , X ∈ aI . (5.30)

Notice that �I is a representation of the abelian Lie algebra aI on U∗
I .

For λ ∈ a∗
I,C, one denotes by U∗

I,λ the space of joint generalized eigenvectors of U∗
I

by the endomorphisms �I(X), X ∈ aI , for the eigenvalue λ. Let QI be the (finite) subset

of λ ∈ a∗
I,C such that U∗

I,λ �= {0}. One has:

U∗
I =

⊕
λ∈QI

U∗
I,λ . (5.31)

If λ ∈ QI , let Eλ be the projector of U∗
I onto U∗

I,λ parallel to the sum of the other U∗
I,μ’s.

Define, for λ ∈ QI ,

�f ,λ := Eλ ◦ �f .

We conclude this subsection with the solution formula for the system (5.30) (see

the next Lemma 5.7) and with two elementary estimates for �f and �f ,X in Lemma 5.8

below.

Lemma 5.7. Let f ∈ Atemp(Z : I). One has,

(i) for all aZ ∈ AZ, t ∈ R, X ∈ aI ,

�f (aZ exp(tX)) = et�I (X)�f (aZ) +
∫ t

0
e(t−s)�I (X)�f ,X(aZ exp(sX)) ds ,

(ii) for all aZ ∈ AZ, t ∈ R, X ∈ aI , λ ∈ QI ,

�f ,λ(aZ exp(tX)) = et�I (X)�f ,λ(aZ) +
∫ t

0
Eλe(t−s)�I (X)�f ,X(aZ exp(sX)) ds .
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Proof. The equality (i) is an immediate consequence of (5.30). Indeed, we apply the

elementary result on first order linear differential equation to the function s �→ F(s) =
�f (aZ exp(sX)), whose derivative F ′(s) = (RX�f )(aZ exp(sX)) satisfies

F ′(s) = �I(X)F(s) + �f ,X(aZ exp(sX)) .

The equality (ii) follows by applying Eλ to both sides of the equality of (i). �

We recall the definition of βI from (5.23).

Lemma 5.8. Let N ∈ N.

(i) There exists a continuous semi-norm on C∞
temp,N(Z), p, such that

‖Lv�f (aZ)‖ ≤ aρQ
Z (1 + ‖ log aZ‖)Np(Lvf )

for all v ∈ U(a), aZ ∈ A−
Z and f ∈ Atemp,N(Z : I).

(ii) There exists a continuous semi-norm q on C∞
temp,N(Z) such that, for all

compact subset �A ⊂ AZ, there exists a constant C = C(�A) > 0 with:

‖Lv�f ,X(aZ)‖ ≤ CaρQ+βI
Z (1 + ‖ log aZ‖)N‖X‖q(Lvf )

for aZ ∈ �AA−
Z , X ∈ aI and f ∈ Atemp,N(Z : I).

Proof. (i) We first consider the case of v = 1. Let u �→ ut denote the principal anti-

automorphism of U(g).

Let u ∈ D(ZI) ⊂ U(aZ + mZ + u). One has:

(Ruf )(aZ) = (L(Ad(aZ)u)t f )(aZ) .

Since Ad(a−
Z ) contracts the aZ-weights of u (see Lemma 5.2(ii)), the assertion for v = 1

follows from the continuity of the left regular action of U(g) on C∞
temp,N(Z). The more

general case is obtained by the fact that the assignment f �→ �f is A-equivariant for the

left regular representation of A on functions on Z, resp. AZ.

(ii) We recall from (5.28) that:

〈�f ,X(aZ), u〉 =
∑

i

(Rui(μI (zi)−zi)
f )(aZ), aZ ∈ AZ, u ∈ UI ,
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with zi = zi(X, u, I). In particular, this identity readily reduces to the case of v = 1 as

left and right regular representation commute.

Since the aZ-weights of ui are non-positive on a
−
Z (see Lemma 5.2(ii)), we obtain

that ui(μI(zi) − zi) decomposes into a finite sum over F − (a−
Z )� of aZ-weight vectors:

ui(μI(zi) − zi) =
∑
λ

vi,λ .

Here, (a−
Z )� denotes the dual cone of a−

Z . Then:

〈�f ,X(aZ), u〉 = ∑
i
∑

λ(L(Ad(aZ)(vi,λ))t f )(aZ)

= ∑
i
∑

λ aλ
Z(Lvt

i,λ
f )(aZ) .

Let k := maxu∈UI ,X∈aI
(deg(vi,λ)). Assume first that �A = {1} and ‖X‖ = 1. Then it follows

from the continuity of the left action of U(g) on C∞
temp,N(Z) and the definition of βI that

there is an appropriate Sobolev norm q = pN,k such that the bound in (ii) holds for C = 1.

In general, if u ∈ U(g), a ∈ �A and aZ ∈ A−
Z , one has:

(Luf )(aaZ) = La−1(LAd(a−1)uf )(aZ)

and the assertion follows from:

q(La−1f ) ≤ Cq(f ), f ∈ C∞
temp,N(Z), a ∈ �A .

�

5.4 The decomposition of �f into eigenspaces

We recall the representation �I : aI → End(U∗
I) of the abelian Lie algebra aI from (5.29)

and QI the set of its generalized aI-eigenvalues.

We endow U∗
I with a scalar product and, if T ∈ End(U∗

I), we denote by ‖T‖ its

Hilbert–Schmidt norm. It is clear that, for any λ ∈ QI , the projector Eλ defined just after

(5.31) commutes with the operators �I(X), X ∈ aI . For λ ∈ QI , we set

Eλ(X) := e−λ(X)
(
Eλ ◦ e�I (X)

)
, X ∈ aI .

As Eλ ◦ [�I(X) − λ(X)IdU∗
I

] is nilpotent, one readily obtains that:
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Lemma 5.9. Let λ ∈ QI . We can choose c ≥ 0 such that:

‖Eλ(X)‖ ≤ c(1 + ‖X‖)NI , X ∈ aI ,

where NI is the dimension of UI .

Next, we decompose QI into three disjoints subsets Q+
I , Q0

I and Q−
I as follows:

(1) λ ∈ Q+
I if Re λ(XI) > ρQ(XI) for some XI ∈ a

−−
I ,

(2) λ ∈ Q0
I if Re λ(XI) = ρQ(XI) for all XI ∈ a

−−
I ,

(3) λ ∈ Q−
I if λ /∈ Q+

I ∪Q0
I , i.e., for all XI ∈ a

−−
I , Re λ(XI) ≤ ρQ(XI) and there exists

XI ∈ a
−−
I such that Re λ(XI) < ρQ(XI).

The next two propositions will be central for the definition of the constant term

in the next section. We first state the results and then provide the proofs in a sequence

of lemmas. The proofs of these results follow closely the work of Harish-Chandra (cf.

[17,Section 22]): to see the analogy replace M+
1 in [17] by A−

Z and M1 by A−
ZI

.

Proposition 5.10. Let λ ∈ Q0
I and f ∈ Atemp(Z : I). Then, for XI ∈ a

−−
I , the following

limit

lim
t→+∞ e−t�I (XI )�f ,λ(aZ exp(tXI)), aZ ∈ AZ ,

exists and is independent of XI ∈ a
−−
I .

For λ ∈ Q0
I and f ∈ Atemp(Z : I), we now set

�f ,λ,∞(aZ) := lim
t→+∞ e−t�I (XI )�f ,λ(aZ exp(tXI)), aZ ∈ AZ . (5.32)

Further we define

�f ,λ,∞(aZ) := 0, aZ ∈ AZ, λ ∈ Q+
I ∪ Q−

I , f ∈ Atemp(Z : I) . (5.33)
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Proposition 5.11. Let λ ∈ QI and f ∈ Atemp(Z : I). Then there exists δ > 0 such that

for all aZ ∈ AZ, XI ∈ a
−−
I and t ≥ 0:

‖�f ,λ(aZ exp(tXI)) − �f ,λ,∞(aZ exp(tXI))‖

≤et(ρQ+δβI )(XI )
(
‖Eλ(tXI)‖‖�f (aZ)‖

+
∫ ∞

0
e−s(ρQ+βI/2)(XI )‖Eλ((t − s)XI)‖‖�f ,XI

(aZ exp(sXI))‖ ds
)

.

5.4.1 Proof of Proposition 5.10

We say that an integral depending on a parameter converges uniformly if the absolute

value of the integrand is bounded by an integrable function independently of the

parameter.

Lemma 5.12. Let λ ∈ QI and XI ∈ a
−−
I be such that Re λ(XI) > (ρQ + βI)(XI). Then

(i) The integral

∫ ∞

0
Eλe−s�I (XI )�f ,XI

(aZ exp(sXI)) ds

converges uniformly on any compact subset of AZ.

(ii) The assignment

aZ �→
∫ ∞

0
Eλe−s�I (XI )�f ,XI

(aZ exp(sXI)) ds

is a well-defined map on AZ. Its derivative along u ∈ S(aZ) is given by

derivation under the integral sign.

Proof. One has

Eλe−s�I (XI ) = e−sλ(XI )Eλes(λ(XI )−�I (XI )) = e−sλ(XI )Eλ(−sXI) .

Hence, from Lemma 5.9, one has:

‖Eλe−s�I (XI )‖ ≤ c(1 + ‖sXI‖)NIe−sRe λ(XI ) . (5.34)

Using Lemma 5.8(ii), (5.34) and the assumption Re λ(XI) > (ρQ + βI)(XI), we obtain that

the integral in (i) converges uniformly on compact subsets of AZ.
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The assertion from (ii) follows in the same way and using the theorem on

derivatives of integral depending of a parameter. �

Fix N ∈ N such that f ∈ Atemp,N(Z : I) and λ ∈ QI and put, for XI as in

Lemma 5.12, i.e., XI ∈ a
−−
I such that Re λ(XI) > (ρQ + βI)(XI):

�f ,λ,∞(aZ, XI) := lim
t→+∞ e−t�I (XI )�f ,λ(aZ exp(tXI)), aZ ∈ AZ . (5.35)

It follows from Lemmas 5.7(ii) and 5.12 that this limit exists and is C∞ on AZ. Moreover

�f ,λ,∞(aZ, XI) = �f ,λ(aZ) +
∫ ∞

0
Eλe−s�I (XI )�f ,XI

(aZ exp(sXI)) ds, aZ ∈ AZ . (5.36)

Lemma 5.13. Let X1, X2 ∈ a
−−
I and suppose that

Re λ(Xi) > (ρQ + βI)(Xi), i = 1, 2 .

Then

�f ,λ,∞(aZ, X1) = �f ,λ,∞(aZ, X2), aZ ∈ AZ .

Proof. Same as the proof of [17,Lemma 22.8]. We give it for sake of completeness. Let

aZ ∈ AZ. Applying Lemma 5.7(ii) to aZ exp(t1X1) instead of aZ, X2 instead of X and t2

instead of t, one gets:

e−�I (t1X1+t2X2)�f ,λ(aZ exp(t1X1) exp(t2X2))

=e−t1�I (X1)�f ,λ(aZ exp(t1X1))

+
∫ t2

0
Eλe−�I (t1X1+s2X2)�f ,X2

(aZ exp(t1X1 + s2X2)) ds2 ,

for t1, t2 > 0. From Lemmas 5.9 and 5.8(ii) applied to X = t1X1 + s2X2 and (X, aZ) =
(X2, aZ exp(t1X1 + s2X2)) respectively, one sees that:

∫ ∞

0
‖Eλe−�I (t1X1+s2X2)‖‖�f ,X2

(aZ exp(t1X1 + s2X2))‖ ds2
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tends to 0 when t1 → +∞. Hence:

lim
t1,t2→+∞ e−�I (t1X1+t2X2)�f ,λ(aZ exp(t1X1 + t2X2))

= lim
t1→+∞ e−�I (t1X1)�f ,λ(aZ exp(t1X1))

=�f ,λ,∞(aZ, X1) .

Since the first limit on the above equality is symmetrical in X1 and X2, one then deduces

that:

�f ,λ,∞(aZ, X1) = �f ,λ,∞(aZ, X2).

�

Proof of Proposition 5.10 If λ ∈ Q0
I , the hypothesis of (5.35) is satisfied. Together with

the preceeding Lemma, it shows the proposition. �

5.4.2 Proof of Proposition 5.11

Lemma 5.14. For XI ∈ a
−−
I such that Re λ(XI) > ρQ(XI), one has:

�f ,λ,∞(aZ, XI) = 0, aZ ∈ AZ .

Proof. One has

‖e−t�I (XI )�f ,λ(aZ exp(tXI))‖ ≤ e−tRe λ(XI )‖Eλ(−tXI)‖‖�f (aZ exp(tXI))‖ .

From Lemmas 5.9 and 5.8(i), one then has

‖e−t�I (XI )�f ,λ(aZ exp(tXI))‖ ≤ CaρQ
Z (1 + ‖ log aZ‖)N(1 + ‖tXI‖)N+NIet(ρQ−Re λ)(XI ) .

The right hand side of the inequality tends to zero as t → +∞. Hence, the Lemma follows

from the definition (5.35) of �f ,λ,∞(aZ, XI). �

Lemma 5.15. Assume λ ∈ Q+
I and XI ∈ a

−−
I such that Re λ(XI) > (ρQ +βI)(XI). Then, for

any aZ ∈ AZ,

�f ,λ,∞(aZ, XI) = 0
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and

�f ,λ(aZ exp(tXI)) = −
∫ ∞

t
Eλe(t−s)�I (XI )�f ,XI

(aZ exp(sXI)) ds , t ∈ R .

Proof. Since λ ∈ Q+
I , there exists X0 ∈ a

−−
I such that Re λ(X0) > ρQ(X0). Then, from

Lemma 5.14, �f ,λ,∞(aZ, X0) = 0, and, from Lemma 5.13, as Re λ(X0) > ρQ(X0) > (ρQ +
βI)(X0), one has �f ,λ,∞(aZ, XI) = �f ,λ,∞(aZ, X0) for any XI ∈ a

−−
I such that Re λ(XI) >

(ρQ + βI)(XI). This proves the first part of the Lemma. The second part follows from

(5.36) by change of variables and when we replace aZ by aZ exp(tXI). �

Corollary 5.16. Let λ ∈ Q+
I and XI ∈ a

−−
I be such that Re λ(XI) ≥ (ρQ + βI/2)(XI). Then,

for aZ ∈ AZ and t ≥ 0,

‖�f ,λ(aZ exp(tXI))‖ ≤
∫ ∞

t
e(t−s)(ρQ+βI/2)(XI )‖Eλ((t − s)XI)‖‖�f ,XI

(aZ exp(sXI))‖ ds .

Proof. Since βI(XI) < 0 and Re λ(XI) ≥ (ρQ+βI/2)(XI), one has, in particular, Re λ(XI) >

(ρQ + βI)(XI). Then one can see, from Lemmas 5.15 and 5.12, that:

‖�f ,λ(aZ exp(tXI))‖ ≤
∫ ∞

t
e(t−s) Re λ(XI )‖Eλ((t − s)XI)‖‖�f ,XI

(aZ exp(sXI))‖ ds .

Our assertion follows, since Re λ(XI) ≥ (ρQ + βI/2)(XI) implies that (t − s) Re λ(XI) ≤
(t − s)(ρQ + βI/2)(XI) for s ≥ t. �

Lemma 5.17. Let XI ∈ a
−−
I be such that Re λ(XI) ≤ (ρQ + βI/2)(XI). Then

‖�f ,λ(aZ exp(tXI))‖ ≤ et(ρQ+βI/2)(XI )
(
‖Eλ(tXI)‖‖�f (aZ)‖

+
∫ ∞

0
e−s(ρQ+βI/2)(XI )‖Eλ((t − s)XI)‖‖�f ,XI

(aZ exp(sXI))‖ ds
)
,

t ≥ 0, aZ ∈ AZ .

Proof. We use Lemma 5.7(ii) and the inequality (t − s)Re λ(XI) ≤ (t − s)(ρQ + βI/2)(XI)

for s ≤ t to get an analogue of the inequality of the Lemma, where
∫ ∞

0 is replaced by
∫ t

0 .

The Lemma follows. �
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Like in [17,after the proof of Lemma 22.8], one sees that one can choose 0 < δ ≤
1/2 such that:

Re λ(XI) ≤ (ρQ + δβI)(XI), XI ∈ a
−−
I , λ ∈ Q−

I . (5.37)

Lemma 5.18. Let λ ∈ Q−
I and XI ∈ a

−−
I . Then, for aZ ∈ AZ, t ≥ 0,

‖�f ,λ(aZ exp(tXI))‖ ≤ et(ρQ+δβI )(XI )
(
‖Eλ(tXI)‖‖�f (aZ)‖

+
∫ ∞

0
e−s(ρQ+βI/2)(XI )‖Eλ((t − s)XI)‖‖�f ,XI

(aZ exp(sXI))‖ ds
)

.

Proof. This is proved like Lemma 5.17, using that Re λ(XI) ≤ (ρQ + δβI)(XI) and

0 < δ ≤ 1/2. �

Notice now that, if λ ∈ Q0
I , it follows from Lemma 5.13 and the definition of βI

(cf. (5.23)) that:

For aZ ∈ AZ, �f ,λ,∞(aZ, XI) is independent of XI ∈ a
−−
I .

We will denote it by �f ,λ,∞(aZ).

Lemma 5.19. Assume λ ∈ Q0
I and let XI ∈ a

−−
I . Then one has, for t ≥ 0 and aZ ∈ AZ,

‖�f ,λ(aZ exp(tXI)) − �f ,λ,∞(aZ exp(tXI))‖
≤ et(ρQ+δβI )(XI )

∫ ∞

0
e−s(ρQ+βI/2)(XI )‖Eλ((t − s)XI)‖‖�f ,XI

(aZ exp(sXI))‖ ds .

Proof. From (5.36), one deduces:

�f ,λ,∞(aZ exp(tXI)) = �f ,λ(aZ exp(tXI)) +
∫ ∞

t
Eλe(t−s)�I (XI )�f ,XI

(aZ exp(sXI)) ds .

The Lemma now follows from the fact that (t − s)βI(XI) ≥ 0 whenever s ≥ t. �

We recall that we have defined:

�f ,λ,∞(aZ) := 0, aZ ∈ AZ, λ ∈ Q+
I ∪ Q−

I .

Proof of Proposition 5.11 If λ ∈ Q0
I ∪ Q−

I , our assertion follows from Lemmas 5.18

and 5.19. On the other hand, if λ ∈ Q+
I , we can apply Lemmas 5.15 and 5.17, and

Corollary 5.16. �
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6 Definition and properties of the constant term

In this section, we define the constant term fI of a function f ∈ Atemp(Z) in terms of

the �f ,λ,∞ from the previous section. At first, fI is defined as a smooth function on

AZ but then will be extended to a smooth function on ZI = G/HI . The main difficulty

then is to show that the function fI ∈ C∞(ZI) is indeed tempered. For that, we need to

show certain consistency relations of fI with respect to the matching map m : WI → W,

see Proposition 6.7. The consistency relations are immediate from our strong results of

rapid convergence in Proposition 3.1. As an application, we characterize the functions

of the discrete series as those with all constant terms vanishing, see Theorem 6.12.

Throughout this section, we fix a subset I of S and a finite codimensional ideal

I in D0(Z).

6.1 Definition of the constant term

For f ∈ Atemp(Z : I) let us define fI as the function on AZ by:

fI(aZ) :=
∑

λ∈Q0
I

〈�f ,λ,∞(aZ), 1〉, aZ ∈ AZ , (6.1)

where �f ,λ,∞ has been defined in (5.32) and (5.33). From Lemma 6.2 and since the

eigenvalues of Eλ(�I(X)), for any X ∈ aI , are contained in ρQ(X) + iR if λ ∈ Q0
I , one

has that:

For any X ∈ aI , the map t �→ e−tρQ(X)fI(exp(tX)) is an

exponential polynomial with unitary characters. (6.2)

We will soon extend fI to a smooth function on G, which is right invariant under HI , i.e.,

fI descends to a smooth function on ZI . This will be prepared with a few estimates in

the next subsection.

6.2 Some estimates

In this subsection, we establish some estimates analogous to the ones given in

[17,Section 23].
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Lemma 6.1. Let N ∈ N. There exists a continuous semi-norm q on C∞
temp,N(Z) such that,

for all λ ∈ QI , aZ ∈ A−
Z , XI ∈ a

−−
I , t ≥ 0 and f ∈ Atemp,N(Z : I),

‖�f ,λ(aZ exp(tXI)) − �f ,λ,∞(aZ exp(tXI))‖

≤ (aZ exp(tXI))
ρQetδβI (XI )(1 + ‖ log aZ‖)N(1 + t‖XI‖)dim UIq(f ) .

Proof. The assertion of the Lemma follows from Proposition 5.11, Lemmas 5.8 and 5.9,

and the fact that aβI
Z ≤ 1 for aZ ∈ A−

Z . �

Lemma 6.2. For all X ∈ aI , aZ ∈ AZ, λ ∈ QI and f ∈ Atemp(Z : I) one has

�f ,λ,∞(aZ exp X) = e�I (X)�f ,λ,∞(aZ), .

Proof. According to (5.33), one may assume λ ∈ Q0
I . From Lemma 5.7(ii) applied with

t = 1, one has, for aZ ∈ AZ, X ∈ aI ,

e−�I (X)�λ(aZ exp X) = �λ(aZ) +
∫ 1

0
Eλe−s�I (X)�X(aZ exp(sX)) ds .

Let Y ∈ a
−−
I . Replacing aZ by aZ exp(tY) and multiplying by e−t�I (Y), one gets:

e−�I (X+tY)�λ(aZ exp(X + tY)) = e−�I (tY)�λ(aZ exp(tY))

+
∫ 1

0
Eλe−�I (sX+tY)�X(aZ exp(sX + tY)) ds .

Since λ ∈ Q0
I , we obtain, from (5.34) and Lemma 5.8(ii), that the integral in this equality

tends to 0 for t → ∞. Recalling the definition of �f ,λ,∞ (cf. (5.35)), one gets

e−�I (X)�f ,λ,∞(aZ exp X) = �f ,λ,∞(aZ), X ∈ aI , aZ ∈ AZ .

�

Lemma 6.3. Let N ∈ N. There exists a continuous semi-norm p on C∞
temp,N(Z) such that,

for all f ∈ Atemp,N(Z : I), λ ∈ Q0
I ,

‖�f ,λ,∞(aZI
)‖ ≤ aρQ

ZI
(1 + ‖ log aZI

‖)N+dim UIp(f ), aZI
∈ A−

ZI
.
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Proof. We fix X ∈ a
−−
I . Let aZI

∈ A−
ZI

. If t is large enough, aZI
exp(tX) ∈ A−

Z . More

precisely, if aZI
= exp Y with Y ∈ a

−
ZI

, t has to be such that α(Y + tX) ≤ 0 for all α ∈ S \ I.

For this, it is enough that t ≥ |α(Y)
α(X)

| for all α ∈ S \ I. But |α(Y)
α(X)

| is bounded above by C‖Y‖
for some constant C > 0. We will take:

t = C‖Y‖ (6.3)

and write aZI
= aZ exp(−tX) with aZ = aZI

exp(tX) ∈ A−
Z . Since λ ∈ Q0

I and exp(−tX) =
a−1

Z aZI
, one has, from Lemma 6.2,

‖�f ,λ,∞(aZI
)‖ = ‖Eλe−t�I (X)�f ,λ,∞(aZ)‖ = aρQ

ZI
a−ρQ

Z ‖Eλ(−tX)�f ,λ,∞(aZ)‖ . (6.4)

We know from Lemma 5.9 that ‖Eλ(−tX)‖ is bounded by a constant times (1 + t‖X‖)NI ,

where NI is the dimension of UI . Using (6.3) and as X is fixed, one concludes that there

exists C1 > 0 such that:

‖Eλ(−tX)‖ ≤ C1(1 + ‖ log aZI
‖)NI .

We remark that ‖ log aZ‖ ≤ ‖ log aZI
‖+‖tX‖ is bounded by some constant times ‖ log aZI

‖
because t = C‖Y‖ and ‖X‖ is fixed. Then, using (6.4), the Lemma follows from Lemma

6.1 (applied with t = 0) and Lemma 5.8(i). �

We recall that �f ,λ,∞ = 0 for λ ∈ Q+
I ∪ Q−

I (cf. (5.33)). We obtain then, from

Lemma 6.1, that:

Lemma 6.4. Let N ∈ N. There exists a continuous semi-norm q on Atemp,N(Z) such that,

for any f ∈ Atemp,N(Z : I), aZ ∈ A−
Z , XI ∈ a

−−
I and t ≥ 0,

|(aZ exp(tXI))
−ρQ

[
f (aZ exp(tXI)) − fI(aZ exp(tXI))

] |

≤ etδβI (XI )(1 + ‖ log aZ‖)N(1 + t‖XI‖)dim UIq(f ) .

Note that the Lemma implies that:

lim
t→∞ (aZ exp(tXI))

−ρQ [f (aZ exp(tXI)) − fI(aZ exp(tXI))] = 0, aZ ∈ A−
Z , XI ∈ a

−−
I . (6.5)
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6.3 The constant term as a smooth function on ZI

Let us first start by the following general remark:

If an exponential polynomial function of one variable, P(t), with

unitary characters, satisfies: lim
t→+∞ P(t) = 0 ,

then P ≡ 0. (6.6)

We define some linear forms η and ηI on Atemp(Z : I) by:

〈η, f 〉 = f (z0),

〈ηI , f 〉 = fI(z0,I), f ∈ Atemp(Z : I) .

Let us remark that η is a continuous linear form on Atemp,N(Z : I) for any N ∈ N.

Note that we obtain from the definition (4.1) that:

mηI ,f (aZ) = fI(aZ), aZ ∈ AZ .

Lemma 6.5. Let N ∈ N. The linear form ηI is the unique linear form on Atemp,N(Z : I)

such that:

(i) For any f ∈ Atemp,N(Z : I) and XI ∈ a
−−
I ,

lim
t→∞ e−tρQ(XI )[mη,f (exp(tXI)) − mηI ,f (exp(tXI))] = 0 .

(ii) For any f ∈ Atemp,N(Z : I) and X ∈ aI , t �→ e−tρQ(X)mηI ,f (exp(tX)) is an

exponential polynomial with unitary characters.

(iii) Moreover, ηI is continuous on Atemp,N(Z : I) and HI-invariant.

Proof. The assertion (i) is (6.5) and (ii) is (6.2).

To prove the unicity of such an ηI satisfying (i) and (ii), we use (6.6). If η′
I is

another linear form satisfying (i) and (ii), then, for any f ∈ Atemp,N(Z : I),

mηI ,f (exp(tXI)) − mη′
I ,f

(exp(tXI)) = 0, XI ∈ a
−−
I , t ∈ R .

This equality applied to t = 0 implies that ηI = η′
I .
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Let us show the continuity of ηI . By taking aZ = 1 in the inequality of Lemma

6.4, one gets:

|f (z0) − fI(z0,I)| ≤ Cq(f ), i.e.,|〈η, f 〉 − 〈ηI , f 〉| ≤ Cq(f ) .

Moreover η is a continuous map on Atemp,N(Z : I). This implies that ηI is continuous on

Atemp,N(Z : I).

It remains to get that ηI is HI-invariant. From (6.5), for any XI ∈ a
−−
I ,

lim
t→∞ e−tρQ(XI )[f (exp(tXI)) − fI(exp(tXI))] = 0 .

One applies this to LYf , Y ∈ hI and gets:

lim
t→∞ e−tρQ(XI )

[
(LYf )(exp(tXI)) − (LYf )I(exp(tXI))

] = 0 . (6.7)

On the other hand, from Lemma 5.1, one has:

lim
t→∞ e−tρQ(XI )(LYf )(exp(tXI)) = 0 . (6.8)

Hence, one gets, from (6.7) and (6.8), that:

lim
t→∞ e−tρQ(XI )(LYf )I(exp(tXI)) = 0 .

But t �→ e−tρQ(XI )(LYf )I(exp(tXI)) is an exponential polynomial with unitary characters

(cf. (6.2)). Hence, from (6.6), it is identically equal to 0. This implies that:

ηI(LYf ) = 0 .

Then ηI is continuous and hI-invariant, and hence HI-invariant. This completes the proof

of (iii). �

Let N ∈ N be fixed. For f ∈ Atemp,N(Z : I), since ηI is continuous, we obtain with

g �→ fI(g) := mηI ,f (g), g ∈ G , (6.9)

a smooth extension of fI previously defined on AZ. Note that, as ηI is HI-invariant, fI

defines a smooth function on ZI denoted by the same symbol. Further, note that the
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assignment f �→ fI is G-equivariant, in symbols:

(Lgf )I = LgfI , g ∈ G . (6.10)

Remark 6.6. As a consequence of Lemma 6.5 and the above equivariance relation

(6.10), for all g ∈ G and XI ∈ a
−−
I ,

lim
t→∞ e−tρQ(XI )[f (g exp(tXI)) − fI(g exp(tXI))] = 0 .

and X �→ e−ρQ(X)fI(g exp X) is an exponential polynomial on aI with unitary characters.

Moreover, fI is the unique smooth function on G with these two properties.

6.4 Consistency relations for the constant term

Let wI ∈ WI and w ∈ W. Set HI,wI
= wIHIw

−1
I and Hw = wHw−1. Consider the real

spherical spaces Zw = G/Hw and ZI,wI
= G/HI,wI

, and put zw
0 = Hw ∈ Zw and zwI

0,I =
HI,wI

∈ ZI,wI
= G/HI,wI

. Then (cf. [31,Corollary 3.8]) Q is Zw-adapted to P and AZw
= AZ

with A−
Zw

= A−
Z .

For f ∈ C∞(Z), let us define f w by:

f w(g · zw
0 ) = f (gw · z0), g ∈ G .

In the same way, one defines φwI for φ ∈ C∞(ZI). Then f w ∈ C∞(Zw) and φwI ∈ C∞(ZI,wI
).

Proposition 6.7 (Consistency relations for the constant term). Let wI ∈ WI and w =
m(w) ∈ W. Let f ∈ Atemp,N(Z : I). Then f w ∈ Atemp,N(Zw : I) and

(fI)
wI (aZ) = (f w)I(aZ), aZ ∈ AZ .

Here, f w ∈ Atemp(Zw : I), (f w)I ∈ C∞(Zw,I), fI ∈ C∞(ZI), f wI
I ∈ C∞(ZI,wI

), and,

from [31,Proposition 3.2(5) and Corollary 3.8], one has:

AZw,I
= AZw

= AZ ,

AZI,wI
= AZI

= AZ .

Hence, both sides of the equality are well-defined on AZ.

The proof of Proposition 6 is prepared by a simple technical lemma. Recall the

elements as = exp(sXI) for XI ∈ a
−−
I .
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Lemma 6.8. Let (g′
s) be a family in G, which converges rapidly to g ∈ G. Let f ∈

Atemp,N(Z). Then there exist C > 0 and ε > 0 such that:

|(L(g′
s)

−1f )(as) − (Lg−1f )(as)| ≤ CaρQ
s e−εs, s ≥ s0 .

Proof. As (g′
s) converges rapidly to g when s tends to +∞, there exists s′

0, C′, ε′ strictly

positive and (Xs) ⊂ g such that, for all s ≥ s′
0,

g′
s = g exp Xsand‖Xs‖ ≤ C′e−ε′s . (6.11)

As Lg−1 preserves Atemp,N(Z), one is reduced to prove, for all f ∈ Atemp,N(Z), that there

exist C, ε, s0 > 0 such that:

|f (exp(Xs)as) − f (as)| ≤ CaρQ
s e−εs .

But, by the mean value theorem, if a ∈ AZ and X ∈ g,

|f (exp(X)a) − f (a)| ≤ sup
t∈[0,1]

|(L−Xf )(exp(tX)a)|‖X‖ .

From (6.11), one then sees that it is enough to prove that, if ‖X‖ is bounded by a constant

C′′ > 0, there exists a constant C′′′ > 0 such that:

sup
t∈[0,1]

|(L−Xf )(exp(tX)a)| ≤ C′′′aρQ(1 + ‖ log a‖)N , a ∈ A−
Z . (6.12)

Decomposing −X in a basis (Xi) of g and using the continuity of the endomorphisms LXi

of Atemp,N(Z), one sees that there exists a continuous semi-norm such that:

|(L−Xf )(a)| ≤ aρQ(1 + ‖ log a‖)Nq(f ), a ∈ A−
Z .

But f �→ sup‖X‖≤C′′ q(Lexp(−tX)f ) is a continuous semi-norm on Atemp,N(Z). Hence, as L−X

and Lexp(−tX) commute, (6.12) follows. This achieves to prove the Lemma. �

Proof of Proposition 6.7 If a ∈ A, one has:

[(Laf )w]I = [La(f w)]Ias(Laf )w = Laf w .
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Hence, it is enough to prove the identity of the Proposition for aZ = z0. Then, using (6.6)

and Remark 6.6, it is enough to prove that s �→ (fI)
wI (as) is an exponential polynomial

with unitary characters satisfying:

lim
s→+∞ a−ρQ

s [f w(as) − (fI)
wI (as)] = 0 . (6.13)

But, from (3.7),

ãsw · z0 = (ãsb̃
−1
s m−1

s u−1
s )(usmsb̃sw) · z0 = gswIãs · z0 ,

for s ≥ s0, where gs = ãsb̃
−1
s m−1

s u−1
s . Then one has:

f w(as) = Lw−1
I g−1

s
f (as) .

On the other hand, from [31,Lemma 3.5] for Z = ZI , as AZI ,E = AI (cf. loc.cit., equation

(3.13)), one has:

ãswI · z0,I = wIãs · z0,I , (6.14)

which implies that:

(Lw−1
I

fI)(ãs · z0,I) = (fI)
wI (as) . (6.15)

Now, according to Proposition 3.1 – this is the key ingredient! –, the sequence (gswI)

converges rapidly to wI . Hence, we can apply Lemma 6.8 with g′
s = gswI and find

C′, ε′, s′
0 > 0 such that:

a−ρQ
s |(Lw−1

I g−1
s

f )(as) − (Lw−1
I

f )(as)| ≤ C′e−ε′s, s ≥ s′
0 . (6.16)

Using Lemma 6.4, one has, for some C′′, ε′ > 0,

a−ρQ
s |(Lw−1

I
f )(as) − (Lw−1

I
fI)(as)| ≤ C′′e−ε′s, s ≥ s′

0 .

Hence, from (6.15) and (6.16), one deduces (6.13). It remains to prove that:

s �→ (fI)
wI (as) = fI(aswI · z0,I)
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is an exponential polynomial with unitary characters. But, from [31,Lemma 3.5] applied

to ZI ,

(fI)
wI (as) = fI(wIas) .

Hence, our claim follows from (6.14). This achieves the proof of the Proposition. �

6.5 Constant term approximation

Now we turn to the main Theorem of this section.

Theorem 6.9 (Constant term approximation). Let I ⊂ S and I be a finite codimensional

ideal of D0(Z).

(i) For all N ∈ N, the map f �→ fI is a continuous linear map from Atemp,N(Z : I)

to Atemp,N+dim UI (ZI : μI(I)).

(ii) Let N ∈ N and CI be a compact subset of a−−
I . For wI ∈ WI let w = m(wI) ∈ W.

Then there exist ε > 0 and a continuous semi-norm p on C∞
temp,N(Z) such that,

for all f ∈ Atemp,N(Z : I),

|(aZ exp(tX))−ρQ
(
f (gaZ exp(tXI)w · z0) − fI(gaZ exp(tXI)wI · z0,I)

) |

≤ e−εt(1 + ‖ log aZ‖)Np(f ), aZ ∈ A−
Z , XI ∈ CI , g ∈ �, wI ∈ WI , t ≥ 0 .

Proof. We first show (i). In view of (4.6), it suffices to prove that, for any wI ∈ WI ,

there exists a continuous semi-norm p on Atemp,N(Z : I) such that:

sup
g∈�,aZI ∈A−

ZI

|a−ρQ
ZI

(1 + ‖ log aZI
‖)−(N+dim UI )fI(gaZI

wI)| ≤ p(f ), f ∈ Atemp,N(Z : I) .

For wI = 1, one has w = m(wI) = 1. Our claim then follows from (6.10), (6.1) and Lemma

6.3 and the continuity of the left regular representation of G on C∞
temp,N(Z) (see (4.7)).

For general wI , one uses Proposition 6 to get fI(aZI
wI) = (f w)I(aZI

) and the above

inequality for Hw instead of H. This shows (i).

Using Proposition 6, one is reduced to prove (ii) for wI = w = 1, by changing

H into Hw. Moreover, from (6.10) and (4.7), one is reduced to show (ii) for g = 1. In that

case, (ii) follows from (5.24) (applied with u = 1), (6.1) and Lemma 6.1 by choosing ε > 0

and p in the following way.
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Set NI := dim UI . Let us consider the continuous function ϕ : (XI , t) �→
etδβI (XI )/2(1 + t‖XI‖)NI on aI × R, which is smooth on the second variable and positive

on aI ×R≥0. Recall that δβI(XI) < 0 for any XI ∈ a
−−
I . Since CI is a compact subset of a−−

I ,

by continuity, C := maxXI∈CI
ϕ(XI , −2NI/δβI(XI) − 1/‖XI‖) and ε := −δ/2[maxXI∈CI

(βI(XI))]

exist and ε > 0. Moreover, ϕ has values ≤ C on CI × R. Hence C > 0 and, by Lemma 6.1, ε

yields the inequality in (ii) for t ≥ 0 by setting p := Cq. �

Remark 6.10 (Statement for H0 connected). Theorem 6.1 remains valid for H replaced

by H0: exchange the expression fI(gaZ exp(tX)wI · z0,I) by fI(gm−1
wI

aZ exp(tX)wI · z0,I) for

certain mwI
∈ M, see Remark 5(b). Likewise, this will hold for Theorem 8.1 below, which

generalizes Theorem 6.1.

Remark 6.11. Reformulation of Theorem 6.1 in terms of representation theory

Let (π , V∞) be an SAF-representation of G, for example V∞ = Atemp(Z : I) (see

Proposition 4.1). Then Theorem 6.1(i) gives rise to a linear map

(V−∞)H
temp −→ (V−∞)

HI
temp, η �→ ηI

and correspondingly, for every v ∈ V∞, an approximation of the matrix coefficient g �→
f (g · z0) = mη,v(g) by g �→ fI(g · z0,I) = mηI ,v(g) as in Theorem 6.1(ii). In this language, the

consistency relations from Proposition 6 then translate into

(w · η)I = wI · ηI wI ∈ WI , w = m(wI) ,

where, for an element ξ ∈ V−∞ and g ∈ G, we use the notation g · ξ = ξ(g−1·) for the dual

action.

6.6 Application to the relative discrete series for Z

Let χ be a normalized unitary character of AZ,E = exp(aZ,E), i.e., dχ|aZ,E
= ρQ|aZ,E

.

We recall that, if a ∈ AZ,E and w ∈ W,

ãwH = waH (6.17)

(cf. [31,Lemma 3.5]).
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As ÃZ,E normalizes H, there is a right action (a, z) �→ z·a of AZ,E on Z. Let C∞(Z, χ)

be the space of C∞ functions on Z such that:

f (z · a) = χ(a)f (z), a ∈ AZ,E , z ∈ Z

and observe that

|a−ρQf (z · a)| = |f (z)|, a ∈ AZ,E , z ∈ Z , (6.18)

as χ was requested to be normalized unitary.

If f ∈ C∞(Z, χ), u ∈ U(g) and N ∈ N, then (6.17) and (6.18) allow us to define

rN,u(f ) = sup
g∈�,a∈A−

Z /AZ,E ,w∈W
|a−ρQ(1 + ‖ log a‖)N(Luf )(gaw · z0)| ,

with ‖ · ‖ refering to the quotient norm on aZ/aZ,E . Moreover, we set

C(Z, χ) = {f ∈ C∞(Z, χ) | rN,u(f ) < ∞, N ∈ N, u ∈ U(g)} .

Since ÃZ,E normalizes H, we obtain a closed subgroup Ĥ := HÃZ,E (not depending

on the section s) and a real spherical space Ẑ = G/Ĥ. We extend χ trivially to H and then

define a character of Ĥ still denoted χ . Let us define L2(̂Z; χ) as in [31,Section 8.1].

Let w ∈ W. We recall that Hw = wHw−1 and Zw = G/Hw. Let f be in C∞(Z, χ).

Recall that fw defined by fw(g) = f (gwH), g ∈ G, is right Hw-invariant and defines

an element of C∞(Zw) and even of C∞(Zw, χ) by using the relation (6.17). This element

will still be denoted fw. Moreover, by “transport of structure”, if f is Z-tempered, fw is

Zw-tempered.

Let η be a Z-tempered H-fixed linear form on V∞. Let w ∈ W. Then aZw
= aZ

and w · η is Hw-invariant and Zw-tempered by “transport of structure”. By [31,Corollary

3.8], Q is Zw-adapted to P. Moreover, the set of spherical roots for Zw is equal to S (see

[31,equation (3.2), definition of S in the beginning of Section 3.2 and Lemma 3.7]). Hence,

one can define (w · η)I , w ∈ W.

Theorem 6.12. Let (π , V∞) be an SAF-representation of G, with V its associated

Harish-Chandra module, and η be a Z-tempered continuous linear form on V∞, which
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transforms under a unitary character χ of AZ,E . Then the following assertions are

equivalent:

(i) For all v ∈ V, mη,v ∈ L2(̂Z; χ).

(ii) For all proper subsets I of S and w ∈ W, (w · η)I = 0.

(iii) For all v ∈ V∞, mη,v ∈ C(Z, χ).

Proof. Let us assume (i). We may assume that V ⊂ L2(̂Z; χ) via the embedding v �→ mη,v.

Let H be the unitary completion of V in L2(̂Z; χ). Then V∞ = H∞ and this implies that

the statement is independent of the particular choice of the maximal compact subgroup

K. We choose now K as in [31,Sect. 6]. In particular we obtain an open neighborhood UA

of 1 in A such that all mη,v, v ∈ V admit absolutely convergent power series expansions

[31,(6.2)]

mη,v(aw) =
l∑

j=1

∑
α∈N0[S]

a�j+αqα,j,w(log a) (a ∈ UA · AZ, w ∈ W), (6.19)

where �j ∈ a∗
Z,C, 1 ≤ j ≤ l, and qα,j,w are polynomials on aZ. Let S = {σ1, . . . , σs} and

ω1, . . . , ωs ∈ aZ be such that:

σi(ωj) = δi,j, i, j = 1, . . . , s

ωi ⊥ aZ,E , i = 1, . . . , s .

Here we use the scalar product on aZ defined before (2.7). According to [31,Theorem 8.5]

the condition that all mη,v ∈ L2(̂Z; χ) implies that

Re(�k − ρQ)(ωj) > 0, j = 1, . . . , s, k = 1, . . . , l . (6.20)

Now (6.19) in combination with (6.20) imply the existence of an ε > 0 such that for all

v ∈ V there exists a constant Cv > 0 such that

|mη,v(aw)| ≤ Cva(1+ε)ρQ (a ∈ A−
Z ) . (6.21)

On the other hand by the constant term approximation (Lemma 6.5(i) applied to

Zw and η replaced by w · η) we obtain that

lim
t→∞ etρQ(XI )

(
mw·η,v(exp(tXI)) − m(w·η)I ,v(exp(tXI))

)
= 0
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for all X ∈ a
−−
I ⊂ a

−
Z . Moreover t �→ m(w·η)I ,v(exp(tX)) is the unique exponential

polynomial with unitary characters having this approximation property by Lemma

6.5(ii). Hence (6.21) implies that this exponential polynomial is zero. In particular,

〈(w · η)I , v〉 = m(w·η)I ,v(1) = 0 for all v ∈ V, and hence, by density of V in V∞, (w · η)I = 0,

that is (ii).

Let us assume that (ii) holds. Let I be an ideal of Z(g), which annihilates V or

V∞. It is of finite codimension. Since η is Z-tempered, there exists N0 ∈ N such that, for

all v ∈ V∞, mη,v ∈ Atemp,N0
(Z : I) (cf. (4.9)). Let v ∈ V∞ and set f = mη,v. Then one can

apply Theorem 6.1 to Zw and fw for wI equal to 1: Let I � S, C be a compact subset of a−−
I ,

�1 be a compact subset of G and u ∈ U(g). Then there exists a continuous semi-norm p

on C∞
temp,N0

(Z), ε > 0 such that:

|(aZ exp(tX))−ρQ(Luf )(gaZ exp(tX)w · z0)|

≤ e−εt(1 + ‖ log aZ‖)N0p(f ), aZ ∈ A−
Z /AZ,E , X ∈ C, g ∈ �1, w ∈ W, t ≥ 0 .

(6.22)

Note, as η transforms under a unitary character for AZ,E (see (6.17)), the left hand side

in (6.22) depends only on aZ exp(tX) mod AZ,E .

Let S1 be the unit sphere in aZ/aZ,E and let X̃0 ∈ S1 ∩ a
−
Z /aZ,E . Let �0 be an open

neighborhood of X̃0 in S1 ∩ a
−
Z /aZ,E such that, for all X̃ ∈ �0, α(X̃) ≤ α(X̃0)/2, α ∈ S.

Let I be the set of α ∈ S such that α(X̃0) = 0. One has I �= S as we may assume that

S �= ∅. Let X0 ∈ aI be a lift of X̃0 and note that X0 ∈ a
−−
I . Let Y ∈ �0 and t ≥ 0. Then

t(Y − X0/2) ∈ a
−
Z /aZ,E and exp(tY) = exp t(Y − X̃0/2) exp(tX̃0/2) ∈ AZ/AZ,E . Using (6.22)

for X = X0/2 and aZ = exp t(Y − X̃0/2) ∈ A−
Z /AZ.E one gets: For any N ∈ N there exists a

c > 0, depending on N, ε, f , �0 and �1 such that

|(exp(tY))−ρQ(Luf )(g exp(tY)w · z0)|

≤ e−εt(1 + t‖Y − X̃0/2‖)N0p(f ) ≤ c(1 + t)−N , Y ∈ �0, g ∈ �1, w ∈ W, t ≥ 0 ,

One deduces easily from this that, for any u ∈ U(g) and N ∈ N:

sup
g∈�1,w∈W ,a∈exp(R+�0)

a−ρQ(1 + ‖ log a‖)N |(Luf )(gaw · z0)| < +∞ .

Using a finite covering of the compact set S1 ∩ a
−
Z /aZ,E , one deduces from this that f ∈

C(Z, χ). This achieves to prove that (ii) implies (iii).
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To prove that (iii) implies (i), one proceeds as in the proof that (ii) implies (i) in

[31,Theorem 8.5]. �

7 Transitivity of the constant term

Recall that Atemp(Z) consists of Z(g)-finite functions. In particular, for each f ∈ Atemp(Z)

there exists a co-finite ideal J ⊂ Z(g) such that f ∈ Atemp(Z : J ). Hence constant terms

fI are defined for all f ∈ Atemp(Z).

Proposition 7.1 (Transitivity of the constant term). Let I ⊂ J be two subsets of S. Then,

if f ∈ Atemp(Z),

fI = (fJ)I .

Proof. By G-equivariance of the maps:

Atemp(Z) → Atemp(ZI)

f �→ fI

and
Atemp(ZJ) → Atemp(ZI)

f �→ fI

,

it is enough to show that, if f ∈ Atemp(Z), fI(z0,I) = (fJ)I(z0,I). Recall that aZJ
= aZ and

a
−−
I = {X ∈ aI : α(X) < 0, α ∈ S \ I}, a

−−
I,J = {X ∈ aI : α(X) < 0, α ∈ J \ I} .

As aI = {X ∈ aZ : α(X) = 0, α ∈ I} and aJ = {X ∈ aZ : α(X) = 0, α ∈ J}, one has:

aJ ⊂ aI , a
−−
I ⊂ a

−
Z , a

−−
I,J ⊂ a

−
Z .

One remarks that a−−
I ⊂ a

−−
I,J . Let X ∈ a

−−
J and Y ∈ a

−−
I . Then X + Y ∈ a

−−
I .

Using Theorem 6.1(ii) applied successively to (Z, I, f , X + Y, 1), (Z, J, f , X, exp(tY))

and (ZJ , I, fJ , Y, exp(tX)) instead of (Z, I, f , X, aZ), one gets that there exist C > 0 and ε > 0

such that, for all t ≥ 0,

αt|f (exp(t(X + Y))) − fI(exp(t(X + Y)))| ≤ Ce−εt ,

αt|f (exp(tY) exp(tX)) − fJ(exp(tY) exp(tX))| ≤ Ce−εt ,

αt|fJ(exp(tX) exp(tY)) − (fJ)I(exp(tX) exp(tY))| ≤ Ce−εt ,



The Constant Term of Tempered Functions 65

where αt = e−tρQ(X+Y). Hence, one concludes from the three inequalities above that:

αt|fI(exp(t(X + Y))) − (fJ)I(exp(t(X + Y)))| ≤ 3Ce−εt, t ≥ 0 .

Hence, αt[fI(exp(t(X + Y))) − (fJ)I(exp(t(X + Y)))] tends to zero when t goes to +∞. But,

each term of this difference is an exponential polynomial in t with unitary characters.

Hence, according to (6.6), the difference of the two occurring exponential polynomials is

identically zero. It implies, taking t = 0, that fI(z0,I) = (fJ)I(z0,I). �

7.1 Application: Tempered embedding theorem

From the constant term approximation in Th. 6.9, the consistency relations (Prop. 6.7)

and the transitivity of the constant term (Prop. 7.1) one can quite easily derive an

extension of the tempered embedding theorem [31, Th. 9.11] to all real spherical spaces.

The details are carried out in [12, Th. 11.12] and we record for later reference:

Theorem 7.2 (Tempered embedding theorem). Let V be an irreducible Harish-Chandra

module contained in C∞
temp(Z). Then there exists I ⊂ S, w ∈ W and a unitary character χ

of AI such that there is an (g, K)-embedding

V ↪→ L2((̂Zw)I , χ) .

8 Uniform estimates

The goal of this section is to obtain a parameter independent version of the main result

Theorem 6.9: the bounds become uniform if we restrict ourselves to ideals I of D0(Z) of

codimension one. The crucial ingredient is a recent result that infinitesimal characters

of tempered representations have integral real parts (see [33] and summarized in

Lemma 8.8 below).

Recall the Cartan subalgebra j = a ⊕ t ⊂ g with real form jR = a ⊕ it ⊂ jC,

associated Weyl group Wj and half sum of roots ρj. Note that ρj

∣∣
aH

= ρ
∣∣
aH

= ρQ

∣∣
aH

= 0

as Z was requested to be unimodular. In particular ρj

∣∣
a

factors through aZ and coincides

with ρQ.

If � ∈ j∗C/Wj, let χ� be the character of Z(g) corresponding to � via the Harish-

Chandra isomorphism γ : Z(g) → S(j)Wj . More precisely,

χ�(u) = (γ (u))(�), u ∈ Z(g) .
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Further, we set J� := ker χ�. We also recall the untwisted Harish-Chandra homomor-

phism γ0 : Z(g) → S(j) and set J�,0 := γ0(J�).

According to Chevalley’s theorem, S(j) is a free module of finite rank over S(j)Wj �
γ0(Z(g)). Hence, we obtain a subspace U0 ⊂ S(j) such that the natural map:

γ0(Z(g)) ⊗ U0 → S(j), v ⊗ u �→ vu

is an isomorphism. Thus, for any � ∈ j∗C/Wj, we obtain with γ0(Z(g)) = J�,0 + C1 that

S(j)/S(j)J�,0 � U0 as vector spaces. The natural representation of S(j) on S(j)/S(j)J�,0 �
U0 gives then rise to a S(j)-representation:

σ� : S(j) → End(U0) .

For � ∈ j∗C/Wj, let us fix a representative λ ∈ j∗C such that � = Wj · λ.

Lemma 8.1. The following assertions hold:

1. The representation (σ�, U0) is polynomial in �, i.e., for all v ∈ S(j), the

assignment � �→ σ�(v) is polynomial.

2. One has Spec(σ�) = ρj + Wj · λ.

Proof. We prove both assertions together. Consider the auxiliary S(j)-module

S(j)/S(j)J� and call the corresponding representation of S(j) by σ ′
�. We have Spec(σ ′

�) =
Wj · λ. Recall the complement U0 ⊂ S(j) and let U1 = U0(· + ρj) ⊂ S(j) obtained from

ρj-shift. We model σ ′
� on U1 and claim that v �→ σ ′

�(v) is polynomial in �. It suffices to

verify the assertion for v of the form v = γ (z)u with z ∈ Z(g) and u ∈ U1. Now

v = u(γ (z) − χ�(z)) + χ�(z)u

with the first sum in the ideal S(j)J�. The claim follows. It remains to relate the

representation σ� to σ ′
�, which is given by σ�(v) = σ ′

�(v(· + ρj)) via the algebra

automorphism S(j) → S(j), v �→ v(· + ρj) obtained by the ρj-shift upon identification

S(j) � C[j∗C]. �

Recall that there is a surjective algebra morphism p : Z(g) → D0(Z). Given a

codimension one ideal I in D0(Z), its preimage J = p−1(I) is of codimension one in

Z(g), hence, of the form J�, for some � ∈ j∗C/Wj.
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Denote by X ⊂ j∗C/Wj the set of �’s obtained that way. For � ∈ X, we set I� :=
p(J�).

Next we wish to describe the set X more closely. Since D0(Z) is a finitely

generated C-algebra without nilpotent elements, its maximal spectrum specmax(D0(Z))

is an affine variety and naturally identifies with X. The surjective algebra morphism

p : Z(g) → D0(Z) gives rise to the closed embedding:

p∗ : X = specmax(D0(Z)) ↪→ j∗C/Wj = specmax(Z(g)) .

We recall our choice of t and tH before Lemma 5.6.

Lemma 8.2. The affine subvariety X ⊂ j∗C/Wj is given by

X = {� ∈ j∗C/Wj | ∃μ ∈ � = Wj · λ such that (ρj + μ)
∣∣
aH+tH

= 0} (8.1)

To prepare the proof of this Lemma, we need to develop a little bit of general

theory, which is used later on as well.

We recall that Lemma 5.6 implies that D(ZI) is a finitely generated C-

algebra without nilpotent elements and thus corresponds to an affine variety YI =
specmax(D(ZI)). It follows from Lemma 5.2 that the algebra morphism μI : D0(Z) →
D(ZI) is injective, hence μI,∗ : YI → X is a dominant morphism of affine algebraic

varieties. Moreover, since D(ZI) is a module of finite type over D0(Z), it follows in

addition that μI,∗ is a finite surjective morphism with uniformly bounded finite fibers

(by the going up property in ring theory, see [1,Theorem 5.10] or [32,Proposition 3.2.4]).

Define γ00 : Z(g) → S(j)/S(j)(aH +tH), obtained from the composition of γ0 and the

projection S(j) → S(j)/S(j)(aH + tH). We recall from (5.12) the injective algebra morphism

j0 : Z(Z∅) → S(j)/S(j)(aH + tH) .

Now j0 composed with the natural inclusion D(Z∅) ↪→ Z(Z∅) gives rise the injective

morphism

ι∅ : D(Z∅) → S(j)/S(j)(aH + tH) .

Next, we recall that D(ZI) is naturally a subalgebra of D(Z∅) via the monomorphism

D(ZI) ↪→ D(Z∅) of Lemma 5.2 applied to Z = ZI . Composing this injection with ι∅ we
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obtain a monomorphism

ιI : D(ZI) → S(j)/S(j)(aH + tH) .

With (5.13), we thus arrive at the following commutative diagram of finite module

extensions

(8.2)

with the middle vertical arrow ι0 uniquely determined by the injectivity of μI . In

particular, ι0 is injective. On the level of affine varieties, this corresponds to the

commutative diagram

(8.3)

where (aH + tH)⊥ ⊂ j∗C. Since all vertical arrows in (7.2) are injective and represent

finite module extensions, it follows that all vertical arrows in (7.3) are surjective (by

application of the going down property as above).

Proof of Lemma 8.2 Immediate from the surjectivity of the vertical maps in the

commutative diagram (8.3). �

Recall the decomposition

D(ZI) = U� ⊕ D(ZI)I ′
� ,

from (5.18), with U� := UI�
and I ′

� := μI(I�).

Recall that U� ⊂ U (where U is the finite dimensional subspace of D(ZI)

independent of � satisfying (5.14)) and thus n := max�∈X dim U� ≤ dim U < ∞. For

every 0 ≤ j ≤ n, we now set

Xj := {� ∈ X | dim U� = j}
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and get X = ∐n
j=0 X

j. Now, for every � ∈ Xj, the set

X� := {x ∈ X | U� ⊕ D(ZI)I ′
x = D(ZI)}

is a subset of Xj.

Lemma 8.3. The following assertions hold:

1. For any 0 ≤ j ≤ n, the set
⋃

k≤j X
k is Zariski-open in X. In particular, Xj is

locally closed in X.

2. For � ∈ Xj, the set X� is Zariski-open in Xj.

Proof. Note that D0(Z) = O(X) is the coordinate ring of the affine variety X. For any

x ∈ X, we denote by mx ⊂ O(X) the corresponding maximal ideal. Since O(YI) = D(ZI)

is a finite module of O(X), we find a finite dimensional subspace Ux ⊂ O(YI) such that

O(YI) = Ux ⊕ O(YI)mx. The Nakayama lemma implies that there exists an f ∈ O(X) with

f (x) �= 0 such that O(YI)f = O(X)f Ux. In particular, we have, for all z ∈ X with f (z) �= 0,

that O(YI) = Ux + O(YI)mz. This implies that:

X → N0, x �→ dim O(YI)/O(YI)mx

is upper semi-continuous and, in particular, for any 1 ≤ j ≤ n, we have that
⋃

k≤j X
k is

Zariski-open in X and (i) follows.

For (ii), we just saw that, for � ∈ Xj, we have, for z ∈ X�, that there exists

f ∈ O(X) such that f (z) �= 0 and {y ∈ Xj | f (y) �= 0} ⊂ X�. Hence, X� is Zariski-open

in Xj. �

As quasi-affine varieties are quasi-compact for the Zariski topology, it follows

that there exists finitely many � ∈ X, say �1, . . . , �s, such that:

X =
s⋃

j=1

X�j
.

For any 1 ≤ j ≤ s, we define a fixed finite dimensional vector space Uj := U�j
as above.

This gives us a direct sum decomposition

D(ZI) = Uj ⊕ D(ZI)I ′
�, � ∈ X�j

, (8.4)
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and, upon the identification Uj � D(ZI)/I ′
�, a representation

ρ� : D(ZI) → End(Uj) .

Lemma 8.4. The following assertions hold:

1. Fix 1 ≤ j ≤ s. For any v ∈ D(ZI), the map

X�j
→ End(Uj), � �→ ρ�(v)

is regular, i.e., locally the restriction to X�j
of a rational function on X. In

particular, there exists an open covering X = ⋃s
j=1 Xj with Xj ⊂ X�j

such

that, for all v ∈ D(ZI), there exists a constant Cv > 0 such that

‖ρ�(v)‖ ≤ Cv(1 + ‖�‖)N (� ∈ Xj) , (8.5)

for some N ∈ N independent of v. Here, ‖·‖ on the left hand side of (7.5) refers

to the operator norm of End(Uj).

2. With S(aI) ⊂ D(ZI), one has:

SpecaI
(ρ�) ⊂ (ρQ + Wj · �)|aI

.

Proof. Recall the terminology we introduced in the proof of Lemma 8.3. Since the

assertion is local, we may assume that X = X�j
, for some j and U = Uj, is such that

O(YI) = O(X)U = U ⊕ O(YI)mx for all x ∈ X. This decomposition defines a projection

px : O(YI) → U for any x ∈ X. Moreover, note that the natural map

O(X) ⊗ U → O(YI), g ⊗ u �→ gu

is an isomorphism. Accordingly, every f ∈ O(YI) can be expressed uniquely as f =∑
i gi ⊗ ui for a fixed basis (ui) of U. Then

px(f ) =
∑

i

gi(x)ui

is regular in x ∈ X. This proves the first assertion of (i) and the second assertion in (i) is

an immediate consequence thereof.
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(ii) Geometrically, it might happen that the fiber of the morphism μI,∗ : YI → X

over � ∈ X is not reduced, i.e., D(ZI)I ′
� is not a radical ideal in D(ZI). However, the set

of �’s, with reduced fibers, is open dense in X. In view of the continuity showed in (i), it

suffices to show that SpecaI
(ρ�) ⊂ (ρj + W · λ)

∣∣
aI

for generic �, i.e., � reduced.

Next, we recall the diagram (8.3) with all vertical arrows surjective and all fibers

being finite. Now, as the fiber μ−1
I,∗ (�) was assumed to be reduced, it has dim (U�)

elements as the corresponding affine algebra to this finite variety is just the aI-module

D(ZI)/I ′
�. In particular, μ−1

I,∗ (�) consists of the aI-weights of U� � D(ZI)/I ′
�.

From (8.3), we obtain the the fiber diagram:

(8.6)

Hence (ii) follows from the aI-equivariance of ιI,∗. �

The section s we use in the sequel is the one where we identify aZ with the

subspace a
⊥aL
H ⊂ aL, the orthogonal being taken with respect to the form κ introduced at

the beginning of Section 2.2. Let J(C) ⊂ G(C) be the Cartan subgroup with Lie algebra jC

and L := Hom(J(C),C∗) be its character group. In the sequel, we identify L with a lattice

in j∗. We call a subspace V ⊂ j∗ rational provided that V = R(V ∩ L). Likewise, we call

a discrete subgroup � ⊂ (j∗, +) rational if � = � ∩ QL. Using the dual lattice L∨ ⊂ j, we

obtain a notion of rationality for subspaces and discrete subgroups of j as well.

Finally, we may and will request that κ
∣∣
j×j

is rational, i.e., with respect to a basis

of j, which lies in L∨, its matrix entries are rational.

Lemma 8.5. The following subspaces of j are all rational: aH , aZ and aI for I ⊂ S.

Proof. The subspace aH is rational as it corresponds to the Lie algebra of the subtorus

(AL ∩ H)0 ⊂ J. Since the form κ
∣∣
j×j

is rational, we obtain that aZ ⊂ a ⊂ j is rational as

well. Finally, we obtain from (2.8) that S ⊂ QL and this gives us the rationality of aI for

any I ⊂ S. �

We recall that Q� denotes the set of aI-weights of ρ� and (cf. Lemma 8.4(ii))

Q� ⊂ {(ρQ + w�)
∣∣
aI

| w ∈ Wj} , (8.7)
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where we identify aI as a subspace of a as above. For λ ∈ Q�, we recall the projectors Eλ :

U∗
� → U∗

�,λ to the generalized common eigenspace along the supplementary generalized

eigenspaces.

In the sequel, we abbreviate and write Atemp(Z : �) instead of Atemp(Z : J�).

The key to obtain uniform estimates for the constant term approximation is at

the core related to polynomial bounds for the truncating spectral projections Eλ.

Proposition 8.6. Let 1 ≤ j ≤ s. There exist constants C, N > 0 such that, for all � ∈ Xj

with Atemp(Z : �) �= {0}, one has

‖Eλ‖ ≤ C(1 + ‖�‖)N , λ ∈ Q� ,

with ‖Eλ‖ the operator norm on the fixed finite dimensional vector space End(Uj).

The proof of the Proposition is preceded by two lemmas:

Lemma 8.7. Let 0 < ν ≤ 1, N ∈ N and A ∈ MatN(C) with Spec(A) = {λ1, . . . , λr} such

that Re λ1 ≤ . . . ≤ Re λr. For every 1 ≤ j ≤ r, let Vj ⊂ Cn be the generalized eigenspace

of A associated to the eigenvalue λj. For every 1 ≤ k ≤ r, we let Ek = ⊕k
j=1 Vj and

Pk : CN → Ek be the projection along
⊕r

j=k+1 Vj. Suppose, for some 1 ≤ k ≤ r − 1, that

Re λk+1 − Re λk ≥ ν. Then there exists a constant C = C(ν, N) > 0 such that

‖Pk‖ ≤ C(1 + ‖A‖)N .

Proof. [34,Lemma 6.4]. �

Lemma 8.8. There exists a Wj-stable rational lattice �Z in the vector space j∗ such

that

Re � ∈ �Z (8.8)

for all � ∈ j∗C with Atemp(Z : �) �= {0}.

Proof. Let 0 �= f ∈ Atemp(Z : �) be a K-finite element that generates an irreducible

Harish-Chandra module, say V. According to Theorem 7.1 V embeds into a twisted

discrete series of some (Zw)I . Now, we apply [33,Theorem 1.1] and obtain a Wj-invariant

lattice �(Zw)I
, called �(Zw)I

in [33], with property (8.8). The lattice is indeed rational by



The Constant Term of Tempered Functions 73

[33,Theorem 8.3] combined with [33,Lemma 3.4]. The asserted lattice is then obtained by

taking the rational lattice generated by the rational lattices �ZwI
, i.e.

�Z = 〈v ∈ �Z,wI
: I ⊂ S, w ∈ W〉Z−mod

�

Proof of Proposition 8.6 According to Lemma 8.5, aI is a rational subspace of a ⊂ j.

Now, we keep in mind the following general fact: if U ⊂ j is a rational subspace and

� ⊂ j∗ is a rational lattice, then �
∣∣
U is a rational lattice in U∗. In particular, it follows

that �Z,I := �Z

∣∣
aI

is a rational lattice in a∗
I . Next, observe that Lemma 8.8 combined

with (8.7) implies that ReQ� ⊂ ρQ

∣∣
aI

+ �Z,I for all tempered infinitesimal characters �.

Denote by �∨
Z,I ⊂ aI the dual lattice of ρQ

∣∣
aI

+ �Z,I . Since a
−
I is a rational cone, we find

elements X1, . . . , Xk of a−
I ∩ �∨

Z,I such that:

a
−
I =

k∑
j=1

R≥0Xj .

We identify Uj with CN and define matrices Ai := ��(Xi) = tρ�(Xi). Let λ ∈ Q�.

Write Eλ,i for the spectral projection to the generalized eigenspace of Ai with eigenvalue

λ(Xi). Since the matrices Ai commute with each other and the Xi span aI , we obtain that:

Eλ = Eλ,1 ◦ . . . ◦ Eλ,k . (8.9)

Hence, we are reduced to prove a polynomial bound for each Eλ,i. As

Spec(Ai) ⊂ (ρQ + Wj · �)(Xi) ,

we get Re Spec(Ai) ⊂ Z. Hence, we can apply Lemma 8.7 to the matrices Ai, with ν = 1,

and obtain ‖Eλ,i‖ ≤ C(1 + ‖Ai‖)N . Now, we recall from (7.5) that

‖��(X)‖ ≤ C‖X‖(1 + ‖�‖)N ,

after possible enlargement of C and N. This gives the asserted norm bound for ‖E�,i‖
and then for Eλ via (8.9). �
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For λ ∈ Q�, we recall the notation

Eλ(X) = e−λ(X)Eλ(e
��(X)), X ∈ aI ,

and recall, from Lemma 5.7(ii), the starting identity:

�f ,λ(aZ exp(tXI)) = et��(XI )�f ,λ(aZ)

+
∫ t

0
Eλe(t−s)��(XI )�f ,XI

(aZ exp(sXI)) ds ,

aZ ∈ AZ, XI ∈ aI , t ∈ R .

Lemma 8.9. Let N ∈ N. There exist a continuous semi-norm q on C∞
temp,N(Z) and m ∈ N

such that, for all � ∈ j∗C/Wj and f ∈ Atemp,N(Z : �),

‖�f ,λ(aZ exp(tXI)) − �f ,λ,∞(aZ exp(tXI))‖

≤ (aZ exp(tXI))
ρQetδβI (XI )(1 + ‖ log aZ‖)N(1 + t‖XI‖)dim U(1 + ‖�‖)mq(f ),

λ ∈ QI , aZ ∈ A−
Z , XI ∈ a

−−
I , t ≥ 0 .

Proof. The statement is a uniform version of Lemma 6.1, which rested on Lemma 5.8,

Lemma 5.9 and Proposition 5.11. Now Proposition 8.6 makes the bound in Lemma 5.8 for

the norm of the spectral projections Eλ uniform at the cost of an additional polynomial

factor, a power of (1 + ‖�‖). This takes care of the uniform estimates for the Eλ in

Proposition 5.11. It remains to obtain uniform estimates for �f and �f ,X in Lemma 5.8.

This Lemma was obtained for a fixed ideal I and fixed complement UI . Now, by Lemma

8.4 we can in fact get by with finitely many choices of complements U1, . . . , Us at the

cost of another polynomial factor of a power of (1 + ‖�‖). As a result the estimate in

Lemma 6.1 becomes uniform at the cost of a polynomial factor of the type (1 + ‖�‖)m,

which is recored at the right hand side of the asserted estimate. �

Having said all that, it is now clear that all bounds from Sections 5 and 6 become

uniform at the cost of an extra polynomial factor in ‖�‖. Polynomial behavior in ‖�‖ can

be subsumed in raising the Sobolev order of the corresponding semi-norms. In more
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detail, if p is a continuous semi-norm on an SF-module V∞ with infinitesimal character

�, then we claim that there exists C > 0, k ∈ N independent of p, V and � such that

(1 + ‖�‖)p(v) ≤ Cpk(v) (v ∈ V) , (8.10)

where pk denotes the k-th Sobolev norm of p with respect to a fixed basis of g. For that

we first note that

|χ�(z)|p(v) = p(zv) ≤ Czpdeg z(v), v ∈ V∞ , (8.11)

for all z ∈ Z(g) and a constant Cz > 0. Now for any X ∈ jC we define a Wj-invariant

polynomial function on j∗C by fX(�) := ∏
w∈Wj

�(w · X). Note that for any � �= 0 we find

an X ∈ jC such that fX(�) �= 0, i.e. choose X ∈ jC \⋃
w∈Wj

ker �◦w. By the homogeneity of

the fX and the compactness of the unit sphere in j∗C we thus find finitely many X1, . . . , Xm

such that

max
1≤j≤m

|fXj
(�)| ≥ c‖�‖|Wj| (� ∈ j∗C) . (8.12)

Let now z1, . . . , zm ∈ Z(gC) be such that χ�(zj) = fXj
(�) for all � ∈ j∗C. Thus, combining

(8.11) and (8.12) we obtain the claim (8.10) for k = |Wj|.
The preceding reasoning now implies the following parameter independent

version of Theorem 6.9:

Theorem 8.10 (Uniform constant term approximation). Let N ∈ N, I ⊂ S and CI be a

compact subset of a
−−
I . Let wI ∈ WI and w = m(wI) ∈ W. Then there exist ε > 0 and a

continuous semi-norm p on C∞
temp,N(Z) such that, for all f ∈ Atemp,N(Z : �), � ∈ j∗C/Wj:

(aZ exp(tX))−ρQ |f (gaZ exp(tX)w · z0) − fI(gaZ exp(tX)wI · z0,I)|

≤ e−εt(1 + ‖ log aZ‖)Np(f ), aZ ∈ A−
Z , X ∈ CI , g ∈ �, t ≥ 0 .

Moreover, let N1 := max� dim (D(ZI)/D(ZI)μI(I�)) ∈ N and q be a continuous semi-norm

on C∞
temp,N+N1

(ZI). Then there exists a continuous semi-norm p on C∞
temp,N(Z) such that:

q(fI) ≤ p(f ), f ∈ Atemp,N(Z : �), � ∈ j∗C/Wj .
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A Rapid convergence

Definition A.1. Let a ≥ 0 and (xs) be a family of elements of a normed vector space

with s ∈ [a, +∞[. One says that (xs) converges rapidly to l if

there exist ε > 0, C > 0, s0 ∈ [a, +∞[ such that, for any s ≥ s0, ‖xs − l‖ ≤ Ce−εs.

To shorten, we will write xs
rapid−−−→
s→∞ l.

Lemma A.2. Let a ≥ 0, E, F be two Euclidean spaces and l ∈ E. Let φ be an F-valued

map of class C1 on a neighborhood U of l and such that the differential dφ(l) of φ at l

is injective. If (xs)s∈[a,+∞[ is a family of elements of E such that φ(xs)
rapid−−−→
s→∞ φ(l) and (xs)

converges to l when s tends to +∞, then

xs
rapid−−−→
s→∞ l .

Proof. Choose a left inverse A ∈ Hom(F, E) to dφ(l) and replace φ by A ◦ φ. In this way

we reduce to the case where E = F with dφ(l) an isomorphism. By the inverse function

theorem we may, after shrinking U, assume further that φ : U → E is diffeomorphic

onto its open image φ(U) ⊂ E. Applying the Taylor expansion of φ−1 at φ(l), one has for

s large enough such that xs ∈ V:

‖xs − l‖ = ‖φ−1(φ(xs)) − φ−1(φ(l))‖
≤ ‖dφ−1(φ(l))‖ ‖φ(xs) − φ(l)‖ + o(‖φ(xs) − φ(l)‖) .

Our claim follows from the rapid convergence of (φ(xs)). �

Definition A.3. Let a ≥ 0, X be a d-dimensional smooth manifold and (xs)s∈[a,+∞[ be

a family of elements of X. One says that (xs) converges rapidly in X if there exist l ∈ X

and a chart (U, φ) around l such that:

(φ(xs)) converges rapidly to φ(l).

Remark A.4. This notion is independent of the choice of the chart (U, φ). Indeed, let

(Ũ, φ̃) be another chart around l. Then, from Lemma A.2, ((φ ◦ φ̃−1)−1(φ(xs))) converges

rapidly to φ̃(l), which means that (φ̃(xs)) converges rapidly to φ̃(l). Also if � : X → Y is

a differentiable map between C∞ manifolds and (xs) converges rapidly to x in X, then

�((xs)) converges rapidly to �(x) in Y.
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B Real points of elementary group actions

We assume that G is a reductive group defined over R and let H be an R-algebraic

subgroup of G. We form the homogeneous space Z = G/H and our concern is to what

extent Z(R) coincides with G(R)/H(R).

We say that G is anisotropic provided G(R) is compact and recall from

[25,Proposition 13.1] the following fact:

Lemma B.1. If G is anisotropic, then Z(R) = G(R)/H(R).

In the sequel, we assume that G is a connected elementary group (defined over

R), that is:

• G = MA for normal R-subgroups A and M,

• M is anisotropic,

• A is a split torus, i.e., A(R) � (R×)n.

Consider now Z = G/H, with G elementary. We set MH := M ∩ H and, likewise,

AH := A ∩ H. Furthermore, we set AZ := A/AH and MZ := M/MH , which we view

as subvarieties of Z. From Lemma B.1, we already know that MZ(R) = M(R)/MH(R).

Consider now the fiber bundle

AZ → Z → G/HA

and take real points

AZ(R) → Z(R) → (G/HA)(R) . (B.1)

We claim that the natural map

MZ(R) × AZ(R) → Z(R) (B.2)

is surjective. In fact, observe that G/HA � M/(M ∩ (HA)) is homogeneous for the

anisotropic group M. Hence, (G/HA)(R) � M(R)/(M ∩ (HA))(R) and our claim follows

from (B1).

We remain with the determination of the fiber of the map (B2). Since M and A

commute, we obtain with

M̂H := {m ∈ M | mH ∈ AZ ⊂ Z}

a closed R-subgroup of M, which acts on AZ by morphisms (translations). The kernel

of this action is MH and this identifies MH as a normal subgroup of M̂H . In particular,
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we obtain an embedding M̂H/MH → AZ and, taking real points, we obtain, as M is

anisotropic and M̂H is closed in M, a closed embedding

FM(R) := M̂H(R)/MH(R) → AZ(R) .

The image of FM(R) is compact, hence, a 2-group of AZ(R) � (R×)k. In summary, we have

shown:

Proposition B.2. Let Z = G/H be a homogeneous space for an elementary group G =
MA with respect to an R-algebraic subgroup H. Then FM(R) is a finite 2-group and the

map

[M(R)/MH(R)] ×FM(R) AZ(R) → Z(R), [mMH(R), aZ] �→ maZ

is an isomorphism of real manifolds.

Corollary B.3. Under the assumptions of Proposition B.2, the G(R)-orbits in Z(R) are

in bijection with AZ(R)2/FM(R), where AZ(R)2 is the group of 2-torsion points in AZ(R).

The isomorphism is given explicitly by:

AZ(R)2/FM(R) → G(R)\Z(R), FM(R)aZ �→ G(R)aZ .

C Invariant differential operators on Z and ZI (by Raphaël Beuzart-Plessis)

In the beginning we let Z = G/H be a general homogeneous space attached to a Lie group

G and a closed subgroup H ⊂ G. A bit later we specialize to real spherical spaces as in

the main body of the text. Our concern is with the algebra of G-invariant differential

operators D(Z) and we start with a recall of the standard description of D(Z) in terms

of the universal enveloping algebra U(g) of gC. As usual, we denote the right regular

representation of G on C∞(G) by R and, by slight abuse of notation, the induced action

of the enveloping algebra U(g) by the same letter; in symbols:

R : U(g) → End(C∞(G)) .

Now, for an element u ∈ U(g), the operator R(u) descends to a differential operator on Z

if and only if u ∈ UH(g), where

UH(g) := {u ∈ U(g) | Ad(h)u − u ∈ U(g)h, h ∈ H} .

Notice that UH(g) ⊂ U(g) is a subalgebra of U(g), which features U(g)h ⊂ UH(g) as a

two-sided ideal. The following Lemma goes back to Helgason in case there exists an

Ad(H)-stable vector complement to h in g. The general case is an easy adaption and
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probably known to a larger part in the community. Since we could not find a reference

we include a proof.

Lemma C.1. The right regular action induces a natural isomorphism

D(Z) � UH(g)/U(g)h , (C.1)

Proof. (Compare [20,Proof of Lemma 16]) Let π : G → Z be the natural projection. For

every function f ∈ C∞(Z), we set π∗f = f ◦ π ∈ C∞(G). The map f �→ π∗f induces an

isomorphism C∞(Z) � C∞(G)H with the space of H-right-invariant functions in C∞(G).

Let u ∈ UH(g). Then, R(u) preserves C∞(G)H and therefore induces an endomorphism of

C∞(Z) obviously given by a G-invariant differential operator. Thus, we have an algebra

homomorphism

u ∈ UH(g) �→ Du ∈ D(Z) (C.2)

characterized by the property that

R(u)π∗f = π∗(Duf ) (C.3)

for every u ∈ UH(g), f ∈ C∞(Z). It remains to show that this morphism is onto with kernel

U(g)h.

First we show that

{u ∈ U(g) | R(u)π∗C∞(Z) = 0} = U(g)h. (C.4)

Note that this fact immediately implies that the kernel of (C2) is U(g)h.

Choose a complementary subspace m of h in g and let

Symm : S(g) → U(g)

be the symmetrization map. By Poincaré-Birkhoff-Witt, we have

U(g) = Symm(S(m)) ⊕ U(g)h.

Hence, we just need to show that if u ∈ Symm(S(m)) is such that R(u)π∗C∞(Z) = 0 then

u = 0. Let u be such an element. It can be written as u = Symm(v) for some v ∈ S(m). If

U is a sufficiently small open neighborhood of 0 in m, the map

ψ : X ∈ U �→ π(exp(X)) ∈ Z

is an open embedding. Therefore,

ψ∗C∞(Z) = C∞(U). (C.5)
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On the other hand, by a well-known characterization of the symmetrization map (see

[20,eq. (3.9)]), we have

(R(u)π∗f )(1) = (∂(v)ψ∗f )(0)

for every f ∈ C∞(Z) where ∂(v) is the differential operator with constant coefficients on

m associated to v. By (C5), this last equality implies v = 0 hence u = 0 and this ends the

proof of (C4).

It only remains to prove that (C2) is surjective. Let D ∈ D(Z). As ψ is an open

embedding, there exists v ∈ S(m) such that

(Df )(z0) = (∂(v)ψ∗f )(0)

for every f ∈ C∞(Z) where z0 = π(1) is the natural base-point of Z. Set u = Symm(v). As

before, the above identity can be rewritten as

(Df )(z0) = (R(u)π∗f )(1).

Since D is G-invariant, it follows that

(Df )(gz0) = (DL(g−1)f )(z0) = (R(u)π∗L(g−1)f )(1) = (L(g−1)R(u)π∗f )(1) = (R(u)π∗f )(g)

for all f ∈ C∞(Z) and g ∈ G. Otherwise said, we have

π∗(Df ) = R(u)π∗(f ), f ∈ C∞(Z). (C.6)

Since R(h)π∗(f ) = π∗(f ) for every h ∈ H and f ∈ C∞(Z), we deduce that R(Ad(h)u −
u)π∗C∞(Z) = 0, hence Ad(h)u − u ∈ U(g)h by (C4). This shows that u ∈ UH(g) and

comparing (C3) with (C6) we have D = Du. Therefore, the map (C2) is surjective. �

For u ∈ UH(g)/U(g)h, we denote by RH(u) ∈ D(Z) the correponding invariant

differential operator. Suppose furthermore that there is a subalgebra b ⊂ g such that

g = b+h (not necessarily direct). Then Poincaré-Birkhoff-Witt (PBW) implies that U(g) =
U(b) + U(g)h and setting UH(b) = U(b) ∩ UH(g), we obtain from (C1) an isomorphism

D(Z) � UH(b)/U(b)(h ∩ b) . (C.7)

Remark C.2. (a) Recall that we expressed by H0 the identity component of H. It is then

clear that UH(g) ⊂ UH0
(g). Hence, we obtain from Lie H = Lie H0 and (C1) that

D(Z) ⊂ D(G/H0)
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naturally. Moreover, we record that

UH0
(g) = {u ∈ U(g) | [X, u] ∈ U(g)h, X ∈ h}

= {u ∈ U(g) | Xu ∈ U(g)h, X ∈ h} .

(b) Assume that G = G(R) is the group of R-points of a linear algebraic group G

over R. Let Halg be the Zariski closure of H in G and assume that Halg and H have the

same Lie algebra (this happens, e.g., if H has finite index in the group of R-points of an

algebraic subgroup of G). Then, by (C7),

D(Z) = D(G/Halg) .

We now return to the spherical setup and request from now that Z = G/H is

real spherical and unimodular where as in the main body of the text, G = G(R) is the

group of R-points of a connected real reductive group and H is open in the R-points of

an algebraic subgroup of G. The topic of this section is then to study the relationship

of D(Z) to D(ZI) for I ⊂ S. Recall that the authors of this paper have defined HI to be

connected. We abbreviate notation and write RI for RHI
and UI(g) = UHI

(g) etc. With

b := a + m + u ,

we obtain a subalgebra of g such that g = b + hI for all I ⊂ S. Further, we have b ∩ hI =
aH + mH =: bH . In particular, we obtain an algebra isomorphism

pI : UI(b)/U(b)bH → D(ZI), u �→ RI(u) . (C.8)

Via this algebra isomorphism, we identify from now on D(ZI) with UI(b)/U(b)bH .

Remark that, as AI normalizes HI , we obtain a natural inclusion S(aI) ↪→ D(ZI) induced

from the right action of AI on ZI . Note that ZS = G/H0 and aS = aZ,E .

Lemma C.3. The symmetric algebra S(aS) embeds in the center of D(ZS).

Proof. By slight abuse of notation, let us denote by H the algebraic closure of H0 in G

and let H = H(R). In view of Remark C.2(b), we may replace H0 by H in the following.

Let Z(C) = G(C)/H(C). Since Z is unimodular, Z(C) is a quasi-affine algebraic

variety (see Lemma 5.4) and there is a natural embedding

D(Z) ↪→ EndG(C[Z(C)]) �
⊕

V

End(VH) ,

where the direct sum runs over all isomorphism classes of algebraic finite dimensional

irreducible G-modules. Moreover, the image of S(aS) in End(VH) by this morphism



82 P. Delorme et al.

corresponds to the natural action of aS on VH . Therefore, we only need to show that

this action is scalar for every finite dimensional irreducible G-module V. Set V(U) = uV.

Then V(U) is a proper Q-submodule of V and the quotient V/V(U) is an irreducible L-

module on which the split center aL acts by a certain weight μ ∈ a∗
L. Identify aS with a

subspace of aL through the choice of a splitting of aZ in aL. Then the claim would follow

if we can show that the only weight of aS in VH is the restriction of μ. We have

VH ∩ V(U) = 0. (C.9)

Indeed, if v ∈ VH ∩ V(U) then Q(C)H(C).v ⊂ V(U) and, as Q(C)H(C) is Zariski dense

in G(C), this implies that the G(C)-invariant subspace generated by v is included in

V(U) hence v = 0 since V is irreducible and V(U) �= V. By (C9), the restriction of the

projection V → V/V(U) yields an injective aS-equivariant morphism VH ↪→ V/V(U). The

result follows. �

In the sequel, we view UI(b)/U(b)bH as a subspace of U(b)/U(b)bH , which is

naturally a module for A/AH , hence for AZ. In particular, we can speak of the aZ-weights

of an element in UI(b)/U(b)bH . Recall that aS = aZ,E ⊂ aI for all I ⊂ S.

Let I ⊂ S and (a∗
I )

+ be the cone of elements λ ∈ a∗
I such that

λ(X) � 0, X ∈ a
−
I .

Let uS ∈ US(b)/U(b)bH and uS = ∑
λ∈a∗

I
uS,λ be its decomposition (in U(b)/U(b)bH ) into

aI-eigenvectors. Let WI(uS) be the set of λ ∈ a∗
I such that uS,λ �= 0. Then there exists a

unique minimal subset WI(uS)max of WI(uS) such that

conv(WI(uS)max + (a∗
I )

+) = conv(WI(uS) + (a∗
I )

+) ,

where conv(D) denotes the convex hull of a subset D ⊂ a∗
I (indeed, WI(uS)max is just

the set of extremal points of conv(WI(uS) + (a∗
I )

+); this follows from a version of the

Krein–Milman theorem for convex subsets invariant by a cone, see, e.g., [13]).

Lemma C.4. Let λmax ∈ WI(uS)max. Then uS,λmax
∈ UI(b)/U(b)bH .

Proof. Choose, for every λ ∈ a∗
I , a lift ũS,λ ∈ US(b) of uS,λ, which is again an aI-

eigenvector of weight λ and with ũS,λ = 0 if uS,λ = 0. Set

ũS =
∑
λ∈a∗

I

ũS,λ
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(a lift of uS). Then we want to show that ũS,λmax
∈ UI(b). By the choice of λmax, there

exists X ∈ a
−−
I such that λ(X) < λmax(X) for every λ ∈ a∗

I with ũS,λ �= 0 and λ �= λmax.

Therefore, we have

lim
t→∞ e−tλmax(X)et ad XũS = ũS,λmax

.

Since lim
t→∞ et ad Xh = hI in the Grassmannian Gr(g), we easily check that for every n � 0

the limit lim
t→∞ et ad XUS(g)�n in the Grassmannian Gr(U(g)�n) (which always exists) is a

subspace of UI(g)�n. Since ũS ∈ US(g), this shows that ũS,λmax
∈ UI(g) ∩ U(b) = UI(b). �

Notice that, for every I ⊂ S, we have a morphism Z(g) → D(ZI) induced by the

“right” action of Z(g) on smooth functions on ZI . We can now state the main theorem of

this appendix.

Theorem C.5. For every uS ∈ US(b)/U(b)bH , the limit

uI = lim
t→∞ et ad XuS (C.10)

exists in U(b)/U(b)bH for every X ∈ a
−−
I and is independent of X. The map u �→ uI induces

an injective morphism of algebras

μI : US(b)/U(b)bH = D(ZS) −→ D(ZI) = UI(b)/U(b)bH .

Moreover, the following assertions hold:

1. a. the aZ-weights of uS are non-positive on a
−
Z ,

b. the aZ-weights of uI − uS are negative on a
−−
I .

2. The morphism μI fits into commutative squares

where the vertical arrows in the first and second diagrams are the natural

ones.

Proof. By Lemma C.3 (applied to ZI instead of Z) and Lemma C.4, we see that, for

any nonzero uS ∈ US(b)/U(b)bH , we have WI(uS)max = {0} (in particular, uS,0 �= 0). This

implies that the limit in (C10) exists, is independent of X and is nonzero if uS �= 0. This

readily implies that μI is a monomorphism of algebras. Moving on to (i), we deduce (a)

and (b) from the fact that the limit (C10) exists.
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The second square of assertion (ii) is commutative since the image of S(aS) in

U(b)/U(b)bH is obviously in the 0-weight space of aI . It only remains to show that the

first square of (ii) is commutative. Let z ∈ Z(g). Let z̃S ∈ U(b) and z̃S ∈ U(g)h be such that

z = z̃S + z̃S. Then z̃S ∈ US(b) and through our identification D(ZS) � US(b)/U(b)bH , z gets

mapped to the image zS of z̃S in US(b)/U(b)bH . By (i), up to translating z̃S by an element

of U(b)bH , we may assume that the limit

z̃I = lim
t→∞ et ad Xz̃S

exists in U(b) for every X ∈ a
−−
I and that it is independent of X. Moreover, z̃I ∈ UI(b) and

its image zI in UI(b)/U(b)bH coincides with the image of zS by μI . As z is fixed by any

inner automorphism, the limit

z̃I = lim
t→∞ et ad Xz̃S

also exists in U(g) for every X ∈ a
−−
I , is independent of X and z = z̃I + z̃I . Since z̃S ∈ U(g)h

and lim
t→∞ et ad Xh = hI in the Grassmannian Gr(g), we have z̃I ∈ U(g)hI . Therefore, by

definition of the identification D(ZI) � UI(b)/U(b)bH , zI is also the image of z in D(ZI).

The commutativity of the first square follows. �
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