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Abstract

Let S(X) be the Schwartz space of compactly supported smooth functions on
the p-adic points of a spherical variety X, and let ¥ (X) be the space of Harish-
Chandra Schwartz functions. Under assumptions on the spherical variety, which
are satisfied when it is symmetric, we prove Paley—Wiener theorems for the two
spaces, characterizing them in terms of their spectral transforms. As a corollary,
we get relative analogs of the smooth and tempered Bernstein centers — rings of
multipliers for S(X) and €(X). When X = a reductive group, our theorem for
%' (X) specializes to the well-known theorem of Harish-Chandra, and our theorem
for S(X) corresponds to a first step — enough to recover the structure of the Bern-
stein center — towards the well-known theorems of Bernstein [Ber] and Heiermann

[Heio1].
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1. INTRODUCTION 1

1. Introduction

The goal of this paper is to characterize the spectral transform of the spaces of
Schwartz (i.e. smooth, compactly supported) and Harish-Chandra Schwartz func-
tions on the points of a homogeneous spherical variety over a p-adic field, and
produce rings of multipliers, that is, G-endomorphisms, which generalize the (tem-
pered and smooth) Bernstein centers. We do it under some assumptions on the
variety, the main one being that the variety and its associated “Levi varieties” are
“factorizable” — this is a condition that allows one to continuously vary the central
character of a representation appearing in the space of functions on the variety by
multiplying by characters of the group. This condition restricts us to a slightly
larger setting than that of symmetric spaces. (In the non-symmetric case, there are
some other conditions for which we have no general proof, and have to be checked
“by hand” in each case; but we expect them to hold in general.) Our assumptions
are explained in §2.1] and the range of their validity is discussed in detail, including
some examples, in Appendix [Al

Let X be a spherical variety for a group G over a non-Archimedean local field F
satisfying those assumptions. We will be denoting X (F') simply by X (and similarly
for other varieties), when this causes no confusion. We assume that X = X(F)
is endowed with a G-eigenmeasure, and normalize the action of G on L?(X) (and
other spaces of functions on X) so that it is unitary. The maximal split torus
Z(X) of G-automorphisms of X is the (split) center of X. To X one associates
some “simpler” spherical G-spaces Xg with more symmetries, called the boundary
degenerations, parametrized by standard Levi subgroups in the “dual group” of X,
whose Weyl group we denote by Wx. When G is not split then we demand that X
is symmetric, and these symbols refer to their “relative” versions, cf. §2.5

1.1. Paley—Wiener for the Harish-Chandra Schwartz space. The defi-
nition of the Harish-Chandra Schwartz space € (Xg) (including the case Xg = X)
is recalled in §2.61 It is a topological vector space (more precisely: an LF-space, i.e.
countable strict direct limit of Fréchet spaces) of functions which plays a central
role in the derivation of the Plancherel formula for the group by Harish-Chandra,
cf. [Wal03]. On the other hand, the method of proof of the Plancherel formula
introduced in [SV17] and adopted in [Dell8| directly leads to the L?-Plancherel
formula, without having to characterize the spectral transform of Harish-Chandra
Schwartz functions; thus, this problem remained open.

In §5 it is shown that %' (Xe) has a direct summand, the intersection with
the “discrete-modulo-center” part L?(Xg)aisc of L?(Xe), which we will denote by
% (Xo)aisc. That carries an action of a ring of multipliers 5diSC(X(f)), the “discrete
center” of Xg 2 which is isomorphic to the ring of C* functions on the “discrete

spectrum” )/(g of Xo (to be explained below):

—disc

35°(XS) == (X
By [SV17.Del18], for each © one has a canonical “Bernstein map”:
Lo : L*(Xe) — L*(X).

Moreover, for each w € Wx (€2, ©), i.e. each element of Wx which takes a standard
Levi © of the dual group to a standard Levi €2, there is a canonical “scattering

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2 1. INTRODUCTION

99

map
Sy L*(Xe) = L*(Xq),

which is w-equivariant with respect to the “centers” (i.e. G-automorphism groups)

of these spaces and such that we have a decomposition:

(1.1) tHte = Z Sw-
weWx (2,0)

Notice that, despite the notation, the scattering operators are not parametrized by
elements of Wy, but by triples (0, Q,w € Wx (£, ©)).

The main theorem [SV17| Theorem 7.3.1], [Del18| Theorem 6] on the Plancherel
decomposition of L?(X) states:

1.2. THEOREM. Let %,disc denote the map 1§ composed with projection to the
discrete spectrum. The sum:

Lo dise . 7o 2
(12) L* = — . L (X) i (—BL (X@)diSC7
%] Ve(©) C]
where ¢(O) is the number of “Weyl chambers” associated to © (= #{w € Wx|wO <
Ax}), is an isometric isomorphism of L*(X) onto

(@ L2(X@)disc> )
©

the subspace consisting of collections (fo)e such that for all triples (0,Q,w €
Wx(2,0)) we have: Sy fo = fa.

Our first version of the Paley—Wiener theorem for the Harish-Chandra Schwartz
space reads:

1.3. THEOREM (cf. Theorem[I3.5). The scattering maps Sy, restrict to 395¢(X§)-
equivariant isomorphisms (of LF-spaces) on the discrete part of the Harish-Chandra
Schwartz spaces

(1.3) Sw: C(Xe)dise — €(Xa)disc:
where 345¢(X§) acts on € (Xq)aisc via the isomorphism:
(1.4) 3(XS) = 37 (XG)

induced by w.
The sum ([[L2)) restricts to an isomorphism of topological G-modules:

(15) D %(X) — (@ %(X@)disc> .
(S]

There is also a more explicit version of this theorem, in terms of “normalized
Eisenstein integrals” and “normalized constant terms”. Let w be an irreducible
smooth representation of G. One defines the space of m-coinvariants S(X),, the
largest m-isotypic quotient of S(X); equivalently:

S(X)x = Homg(S(X), 7)* @ .

1In Theorem 3.8 we extend this statement to the whole Harish-Chandra Schwartz space,
but this is not necessary for formulating the Paley—Wiener theorem and only comes as a corollary
of it.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1. INTRODUCTION 3

Its smooth dual can be identified with a canonical submodule C*(X)™ of C*(X).
One defines various subspaces Cg, (X)™, Cg,(X)™ corresponding to the condition
of square integrability, resp. compact support modulo center, and denotes the sets
of unitary irreducible representations which appear discretely, resp. cuspidally, by

Xdisc regp. XusP. Dually, we have the corresponding quotients:
S(X)ﬂ' - S(X)Tr,disc - S(X)TK‘,CuSp‘

The same definitions can be given for any boundary degeneration Xg, but tak-
ing into account that this space is “parabolically induced” from a “Levi spherical
variety” Xé for a Levi subgroup Lg, i.e.:

Xo ~ X§ xPe @,

The corresponding coinvariants are also parabolically induced, and indexed by rep-
resentations of Lg.

—disc

As o varies over the set X5 of those representations which appear discretely-
mod-center, the spaces Lo, := S(Xo)o.disc are the fibers of a complex algebraic
vector bundle (actually, a countable direct limit of such) %o over the complexifica-

—disc
tion of Xé , and the canonical quotient maps give rise to a surjective morphism:
—disc
(1.6) S(Xe) = CIXE . Zo],

where C[e, o] denotes regular (polynomial) sections of the given vector bundle. In
Theorem we show that this extends continuously to an isomorphism (via the
orthogonal quotient map € (X) — €' (X )aisc) of LF spaces:

—disc
(17) %(XG))disc - COO(Xé 736)
(smooth sections). The aforementioned action of the discrete center 395¢(X%) on

—disc
the left is, by definition, the natural action of C*(X§ ) on the right.
It follows from their 345¢( X §)-equivariance that the operators S,, act fiberwise
on these vector bundles; more precisely, it turns out that there are elements:

—disc

yw el <Xé ,Homg(,f@,w*,fg)) 5
where I' denotes rational sections whose poles do not meet the unitary set (cf. §32)),
such that the following diagram of isomorphisms commutes:

—disc

€ (Xo)dise —= C*(X§ %)

Ny .

—disc

C(Xa)aise —= CP(XE , %).

Similarly, the Bernstein maps tg are explicitly given by normalized Eisenstein in-
tegrals associated to discrete data, which are explicitly defined maps:

Eoodise : Lo = C*(Xo6)fiue = C*(X)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4 1. INTRODUCTION

[ee]

(where ~ denotes smooth dual), varying rationally with o. If f € L?(Xe)%,. admits

the decomposition:
£ (@)
X%

with f7 € C*(Xg)J;.., then its image under the Bernstein map is the wave packet:

(18) L@f = f/\disc E@,o’,discf&d0—7
x§

cf. [SV17, Theorem 15.6.1], [Dell8, Theorem 7]. We use the L2-continuity of g
to prove that the normalized Eisenstein integrals (which are a priori rational in o)
have no poles on the imaginary axis, thus dually we get normalized constant terms
(often called normalized Fourier transforms in the literature on symmeric spaces):

—disc
(19) Eg,disc : S(X) - F(Xé 7$@)7

representing ¢§ 4., where by I'(e, ¢) we denote again rational sections whose poles
do not meet the unitary set. Combining all of this with Theorem [[3] we get the
following explicit Paley—Wiener theorem for the Harish-Chandra Schwartz space:

1.4. THEOREM (cf. Theorem[I3:6). The normalized constant terms ([L9) extend
to an isomorphism of LF-spaces:

(1.10) (X)) > (@ Cw(ff\gdisc,.z@)> ,
€]

where ™V here denotes .%,,-invariants, i.e. collections of sections (fo)e such that
for all triples (0,Q,w e Wx(Q,0)) we have: Sy fo = fa.

In the group case, this theorem is part of the Plancherel formula of Harish-
Chandra, appearing in Waldspurger [Wal03]. However, our proof is new, starting
from a priori knowledge of the L?>-maps (LZ) and their properties.

We remark that (L), in combination with the fact that ¢*; is the identity on
Sy-invariants, provide an explicit way to invert this map by means of normalized
FEisenstein integrals. Notice that we do not explicitly identify the scattering maps;
this can be the object of further research, with a number-theoretic flavor since their
poles are often related to L-functions. We only describe their relation to normalized
Eisenstein integrals in (I0.19), and give a few examples of those scattering operators
in 151

A corollary of this theorem (or its previous version [[3)) is the existence of a ring
of multipliers on €' (X). Notice that each w € Wx (9, ©) induces the isomorphism
([L4) between discrete centers. Let:

(111) §P(X) = (6—)3‘““(&%))

e
denote the invariants of these isomorphisms, for all triples (0,Q,w € Wx (£, ©)).
One can call this ring the tempered center of X — it is the relative analog of the
tempered center of Schneider and Zink [SZ08| (whose structure can also be inferred
directly from the Plancherel theorem of Harish-Chandra [Wal03]).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1. INTRODUCTION 5

1.5. COROLLARY (s. Corollary [37)). There is a canonical action of 3*°™P(X)
by continuous G-endomorphisms on € (X).

This action, by definition, corresponds to the obvious action of 3**™P(X) on the

right hand sides of (3], (TI0).

1.6. Paley—Wiener for the Schwartz space. We now come to a Paley—
Wiener theorem for the Schwartz space S(X) of compactly supported smooth func-
tions on X. In analogy with the previous case, this has a distinguished direct sum-
mand S(X)cusp, its “cuspidal part”, consisting of those functions f € S(X) such
that for any open compact subgroup J, the Hecke module H(G, J) - f is a finitely
generated module under Z(X) (s. section [B). The (orthogonal) complement of
S(X)eusp in S(X) consists of those functions which are orthogonal to any of the
spaces Cing, (X)™ introduced before.

The same definitions hold for the boundary degenerations Xg, and the space

S(Xo)cusp comes equipped with the action of a “cuspidal center” 3°P(XJ), iden-
——cusp —disc
tified with the ring of polynomial functions on the subset X§ — < X§

——cusp
(1.12) FUP(X) =C[XE ]
Here we have the “equivariant exponential maps”:
(1.13) €e :S(X@) —>S(X),

whose transposes:
eq : CP(X) - C*(Xo)

are a convenient way to generalize the classical theory of asymptotics of matrix
coefficients (see [SV17, §5]). The name “exponential maps” is due to the fact
that the space Xg can be identified with the open G-orbit in a normal bundle
to some orbit g in a compactification of X, and on characteristic functions of
sets close to o0g the map eg coincides with a physical “exponential” map, that
is, a p-adic analytic map whose differential is the identity, cf. [SV17, §5]. For an
explicit formula for the maps eg, cf. (LI9) below. The space S(X) is the sum of
all GQS(X@)CUSPZ

1.7. THEOREM (s. Theorem [I41]). We have:

S(X) = Z e@S(XG)cusp-
OcAx

We note that this fails to be true without the assumption that X is strongly
factorizable, cf. Remark [[4.2} interesting phenomena await the researcher who will
work on the general case!

A basic element in our analysis is a similar to the unitary case decomposition
into “smooth scattering maps” when © and () are conjugateé

(1.14) e?ile@‘s(X@)cusp = Z 6“”
weWx (©2,0)

where the maps &, : S(Xo)eusp — CP(Xq)cusp are 3°%P(X&)-equivariant when
this ring acts on C'*(Xgq)cusp via the isomorphism:

(1.15) 3P (XE) = 5P (XE)

2 Again, these maps are initially defined only on cuspidal summands, but a posteriori extended
to the whole space, cf. Theorem [TZ7]

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 1. INTRODUCTION

induced by w. Note that in this case neither the scattering maps nor the isomor-
phisms between cuspidal spectra of X(f) and X& are provided by the L2-theory: all
these are results that we need to establish.

The adjoint e (“smooth asymptotics map”) of eq does not preserve compact
support, therefore the maps S,, have image in some subspace of C*(Xgq). If we let
ST (Xgq) denote the space generated by the images of those S, (for all associates
O of 2 and all w € Wx(Q,0)), then (cf. Theorem 0.2) each scattering map S,
extends canonically to an isomorphism:

Bw : S+(X@) = SJr(XQ)
The first version of our Paley—Wiener theorem for the Schwartz space reads:

1.8. THEOREM (cf. Theorem [I4.4). Let €§ .., denote the map e§ composed
with projection to the cuspidal summand. The sum:

(1.16) e* 1= Zegmp :S(X) > P ST(Xo)eusp
® ©

is an isomorphism into the (S, ) -invariants of the space on the right, i.e. the sub-
space consisting of collections (fo)eo such that for all triples (©,Q,w e Wx(Q,0))
we have: Sy, fo = fa.

Again there is a more explicit version of this theorem. Consider the bundle Lg
whose fibers are the cuspidal coinvariants Lo, 1= S(Xe)s,cusp; it is a (countable
direct limit of) complex algebraic vector bundle(s) over the complexification of the

——cusp —disc

subset X é c Xé where these spaces are non-zero.

In analogy to (7)), the canonical quotient maps give rise to isomorphisms:

—cusp
(1.17) S(Xo)eusp — C[XE Lol
——cusp
The action of the cuspidal center 3°"P(X§) is nothing but the action of C[X§ ]
on the right hand side.
For the space 8T (Xg)cusp this extends to an identification with a “fractional
ideal” (i.e. a subspace of the space of rational sections which, when multiplied by

—cC

p
a suitable element of C[X§ |, becomes regular):

—cusp

(1.18) ST (Xo)eusy > CHXEL  Lo] c C(XE . Lo),

but this identification needs some explanation. The “fractional ideal” will not
be identified (except in specific examples); this seems to be a number-theoretic
question, as in all known examples it involves L-functions. We only know that it is
obtained by inverting “linear polynomials” (see §3.4] for the definition of “linear”).
Despite the notation, it does not only depend on the isomorphism class of Xg,
but it actually depends on X itself. It can, in principle, be computed by ([I0.19)
whenever the normalized Eisenstein integrals can.

Using the isomorphism ([LI8), the smooth scattering maps S, can be expressed
in terms of the same fiberwise scattering maps %, as before (but restricted, of
course, to the subbundle Lg of % which they turn out to preserve). Namely, the
isomorphism (I8) fits into a commuting diagram:

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1. INTRODUCTION 7

——cusp

ST (Xe)ewsp —=CT[X§ , Lo]

. B

——cusp
ST(Xa)eusp —> CH[XE , La].

Although the fiberwise scattering maps %, are the same as before, the inversion
of ([II8) is not given by the same fiberwise formula as the inversion of (I7): the
latter is inverted by an integral over the unitary spectrum, and the former as an
integral over a translate of the unitary spectrum, cf. ([@4) and ([@3). Thus, the
smooth scattering maps S,, do not coincide, as maps between spaces of functions,
with the unitary scattering maps S,,, despite the fact that their spectral transforms
are expressed in terms of the same operators .7,.

Similarly, the explicit version of the equivariant exponential map eg is given
by normalized Eisenstein integrals (as was the case for the Bernstein map tg), but
using shifted wave Cggﬂupckets this time. More precisely, if we fix a Haar-Plancherel

measure do on X§ and use it to write f € S(Xg)cusp as:

= JXA 17 (2)do

with f7 € C*(Xe)%y, = Lo.o, then by ([LIT) f° extends polynomially to non-

cusp
unitary ¢’s and we have:

(1.19) eof(z) = J — cusp E@,o,cuspf&(x)da'
wlxg

for every “sufficiently positive” character w, cf. Theorem [[4l (For symmetric
spaces, the fact that shifted wave packets are compactly supported can also be
proved using the results of [CD14] and a technique due to Heiermann in the group

case [HeiO1].)

Dually, this gives an expression of €5 cusp S @ normalized constant term:

(1.20) S(X) >T(XLE ' Le),

which is the same map as (L9) composed with the natural quotient Lo — Lo.
The explicit version of our Paley—Wiener theorem for the Schwartz space reads:

1.9. THEOREM (cf. Theorem [[45). The morphisms ([(L20)) give rise to an iso-
morphism:

(1.21) S(X) > (@ cHxL £@]> ,
€]

where ™ here denotes ., -invariants.

A corollary of this theorem (or its previous version (LJ]) is the existence of a
ring of multipliers on S(X). Notice that each w € Wx (€, 0) induces the isomor-
phism (LI5) between cuspidal centers. Let:

(X)) = (@3“5‘)()(5))
©

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



8 1. INTRODUCTION

denote the invariants of these isomorphisms, for all triples (©,, w € Wx (2, 0)).
One can call this ring the smooth center of X — it is the relative analog of the
Bernstein center (cf. §I6.1]). Then:

1.10. COROLLARY (s. Corollary M4.0). There is a canonical action of 33 (X)
by G-endomorphisms on S(X).

This action, by definition, corresponds to the obvious action of 33 (X) on the
right hand sides of (I8, (2I). Note that this ring of multipliers is, in general,
larger than the ring induced by the Bernstein center. Indeed, there are many known
examples of relatively cuspidal representations which are not cuspidal for the group,
cf. [Murl7]; the simplest example is the Steinberg representation for the variety
X =T\ PGLqy, where T is a split torus.

In section we discuss the example of X = a reductive group H under the
G = H x H-action by left and right multiplication. We show that the multiplier
ring 3™ (X) that we described above provides an alternative proof for the structure
of the Bernstein center as the algebra of polynomials on the “space” of cuspidal
supports. We also discuss the relationship of our Paley—Wiener theorem with those
of Bernstein [Ber| and Heiermann [HeiO1]: in this case, our work is analogous to
part A of [Hei01)], and one needs to apply part B, which is the hardest part of that
paper, to obtain the usual Paley—Wiener theorem. This is a good point to reflect
on what our theorem really represents: It represents a reduction of the study of
smooth functions on X to (relatively) cuspidal spectra plus the study of scattering
operators; it does not, however, reveal much about the nature of these operators,
which can be the object of further research.

However, this reduction is not straightforward, as there are facts that are “ob-
vious” in the case of a group, but not in the relative case. The most important
of those is to show why a relatively supercuspidal representation for a boundary
degeneration Xg “scatters” as a relatively supercuspidal in an associate direction
Xq. (In the group this is obvious by the description of cuspidality in terms of
coinvariants under unipotent subgroups.) This is one of the goals of the scattering
theorems described in Section[d and its proof is based on one of the main technical
results of the paper, Proposition [Z.Il If we may try to encode its proof in one
sentence, we would say that “a priori knowledge that the asymptotics maps eg
preserve compact support does not allow the scattering maps to break the cusp-
idality condition”. This proposition generalizes results of Carmona and Delorme
[CD14] in the symmetric case, which used a completely different proof exploiting
the structure of symmetric spaces.

We now come a more detailed description of the contents of this paper, and
the main steps in our proofs.

1.11. Proofs. After introducing the necessary structure theory of spherical
varieties in sectionPland the bundles of discrete and cuspidal coinvariants in sections
Bland [ the first step is to show that the discrete, resp. cuspidal summand of ' (X),
resp. S(X), is a direct summand. This is relatively easy to do, and is done in sections
and [6l

The spectral characterization of € (X)aqisc (L) and S(X)cusp (LIT) is the next
step, and the basis for those is the surjection ([ILG]); this follows from the definition of
the bundle %o, and an application of Nakayama’s lemma (Proposition [45]). After
this, (L) follows from the analogous statement for abelian groups (we use here
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the assumption that X, and later X5, are all factorizable, cf. §2)), and (LI7) is
immediate by projection from discrete to cuspidal.

The unitary scattering operators S, were introduced in [SV17], but here we
need to prove that they preserve Harish-Chandra Schwartz spaces (at least their
discrete summands). The explicit expression (L8)) for 1o allows us to relate the
fiberwise versions .7, of the scattering maps to the asymptotics of normalized
Eisenstein integrals and normalized constant terms, hence deducing their rationality
in the parameter by a linear algebra argument, Proposition Essentially, the
operator .7, for w € Wx (£, ©), is the “w-equivariant part” of the asymptotics eg
of the normalized Eisenstein integral Eg qisc. A priori knowledge of L?-boundedness
of the operators S,,, together with the “linear” form of the poles of Eisenstein
integrals B3] cf. also [BDOS8]|, allow us to show that their poles do not meet the
unitary spectrum, Theorem [0.3] and since they are unitary it follows from (7))
that S, for w € Wx (€, 0), maps € (Xo)disc isomorphically onto €(Xq)disc-

Using this fact, and a characterization of the Bernstein maps tg from [SV17],
we are able to prove that (g maps € (Xe)disc into € (X) (Proposition [31]). This
is essentially the fact that some wave packets are in the Harish-Chandra Schwartz
space (cf. [DH14]| for a result of this type for symmetric spaces). Vice versa, the
description of tg in terms of normalized Eisenstein integrals (IL8]), together with the
regularity of normalized Eisenstein integrals on the unitary spectrum, proves that
L& aise continuously sends the space €'(X) into ¢(Xe)disc (Proposition [3.2), and
this is enough to prove the Paley—Wiener theorems [[.3] 4] for the Harish-Chandra
Schwartz space.

To construct the smooth scattering operators S,, one needs to study properties
of the compositions efeg restricted to cuspidal summands, and more precisely that
the restriction of this composition to S(Xe)cusp is zero if © does not contain an
associate of O, has cuspidal image if € is associate to © and has image in the
orthogonal complement of the cuspidal summand if ) strictly contains an associate
of ©, Theorem The proofs of these facts are accomplished in section The
proof relies in a crucial way on a theorem in [SV17] (which in turn was based on
a theorem of Bezrukavnikov and Kazhdan [BK15]) which says that the support of
e f for f e S(X), is bounded, i.e. of compact closure in a (fixed) affine embedding
of Xg; this allows to prove the vanishing of certain “exponents” of the normalized
Eisenstein integrals which by (I9) spectrally decompose the maps eg. By totally
different methods these results were obtained by Carmona-Delorme [CD14] for
symmetric spaces, via an explicit description of the constant term of Eisenstein
integrals, starting from cuspidal data, in terms of “C-functions”.

As was mentioned in Proposition [ the space S(X) is the sum of all “shifted
cuspidal wave packets”, i.e. the sum of all e6S(Xg)cusp. Then (II4) can be un-
derstood as a decomposition of the asymptotics of shifted wave packets. The proof
of Theorem [[9 rests mainly on (TI4).

1.12. Acknowledgments. We are very grateful to the referee for numerous
corrections and suggestions. The third author would like to thank David Kazhdan
for a very motivating conversation.
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Structure, notation and
preliminaries
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2. Boundary degenerations, exponents, Schwartz and Harish-Chandra
Schwartz spaces

2.1. Assumptions. We let X be a homogeneous, quasi-affine spherical variety
for a reductive group G over a non-Archimedean local field F' in characteristic zero.
We will generally denote the points of a variety Y over our fixed non-Archimedean
field F' simply by Y, when this creates no confusion. The assumption on charac-
teristic is in order to use the results of [SV17] which freely applied the structure
theory of spherical varieties in characteristic zero. With minor modifications, those
results should work in positive characteristic, and then the results of the current
paper will directly extend. We notice that for symmetric spaces, [Dell8] only re-
quired that the characteristic of the field be different than 2; thus, we can already
relax the assumption on the characteristic in that case.

We will make the following assumptions on X:

If G is not split, X is symmetric. The symmetric condition (whether G is
split or not) subsumes all the conditions that follow, but should be con-
sidered as a provisional assumption in order to use the non-split analogs
of spherical root systems used in [Dell8| (cf. §23). Our methods do
not depend otherwise on the structure of symmetric spaces, and once the
analogs of [Del18| are extended to the broader setting of spherical vari-
eties satisfying the assumptions below, our results immediately extend.

If G is split, we assume:

(wf): X is wavefront;

(sf): X is strongly factorizable (cf. below for both of these notions);

(gi): X satisfies a strong version of the “generic injectivity” condition (cf.
).

Up to now, our assumptions guarantee the validity of the full
Plancherel decomposition of [SV17, Theorem 7.3.1], [Dell8, Theorem
6]. Finally, we require the validity of the explicit Plancherel formula in
terms of normalized Eisenstein integrals:

(ep): The explicit Plancherel formula of [SV17, Theorem 15.6.2], [Del18|
Theorem 8] holds; this is the case, for instance, if the “small Mackey
restriction” of [SV17, §15.5] is generically injective.

We repeat that all these conditions are satisfied if X is symmetric; for the
strong version of the generic injectivity assumption in the symmetric case, which
was not used in the aforementioned references, we prove this in JI0.71 We expect
condition (sf) to be the only crucial condition for the methods of this paper to work.
(Without it, results for the Schwartz space have to be modified, cf. Remark [4.2])
Condition (wf) is used because we need the theory of asymptotics of [SV17] (which
should hold without this condition), and we expect conditions (gi) and (ep) to hold
in general (but for now they have to be checked “by hand” in any non-symmetric
case that one is interested in). In Appendix [A] we check those assumptions for a
couple of non-symmetric examples.

2.2. Whittaker-induction. Our results also hold for a “variety” that is
“Whittaker-induced” from one as above, at least when G is split, where the nec-
essary results on which this paper is based have been proven in [SV17]. That is,
in a certain setting one can consider, instead of the spaces of functions that we
will encounter, also spaces of sections of a line bundle defined by a character of a

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



BOUNDARY DEGENERATIONS, EXPONENTS, SCHWARTZ... 13

unipotent group. The precise setting was explained in loc.cit. §2.6, and we repeat
it here:

Let P~ be a parabolic subgroup of GG, with a Levi decomposition P~ = L X
Up-. Suppose that XT is a spherical L-variety which, for the purposes of this
paper, we will assume to satisfy the assumptions of the previous subsection. Let
V = Hom(Up-,G,), and assume that we are given an L-equivariant morphism
A : X — V with Zariski open image. Finally, let ¢ : F — C* be a non-trivial
unitary character.

We let X = X© xP" G be the corresponding “parabolically induced” vari-
ety, and denote by C*(X, Ly) the space of smooth functions on the F-points of
XL L G which satisfy f(z,ug) = U, (u)f(x,g) for every u € Up—, where W, is the
composition of 1 with A(x).

The contents of the present paper apply to the space C®(X,Ly) (and the
subspaces S(X, Ly), (X, Ly)) without modification, once one has the correct
notion of “Weyl group”. This Weyl group is explained in [SV17, §2.6], and is
different from the Weyl group of X viewed as a G-variety; for example, for the
Whittaker model of a split group G this is the full Weyl group of G. For notational
simplicity, we will not be writing C* (X, Ly) anywhere — the notation in the paper
is referring to sections of the trivial line bundle, and the immediate reformulations
necessary to cover this case are left to the reader.

2.3. The split case. We start by giving definitions when the group G is split.
We will then modify them for non-split G, when the space X is symmetric (following
[Del1g]).

Given a spherical variety X for a group G, we define the (connected) center of
X as the connected component of its G-automorphism group:

Z(X) := Autg(X)°.

It is known to be a torus, and we assume throughout (as we may, without loss of
generality, by enlarging G if necessary), that the natural map is surjective:

(2.1) Z2(@)° - Z(X),

where Z(G)° denotes the connected center of G. For any fixed Borel subgroup, we
denote by X the open Borel orbit on X.

Our varieties will be homogeneous, X = H\G, and we let X" be the homoge-
neous variety under the abelianization G®" of G' which is obtained by dividing X
by the action of the commutator group [G,G]. If we choose a point z € X with
stabilizer H and let H2b be the image of H in G, then as algebraic varieties:
Xab _ Gab/Hab.

We call X factorizable if dim X*” = dim Z(X); all symmetric varieties have
this property. If X is factorizable then as algebraic varieties (but not necessarily
in terms of their F-points):

X ~Z(X) X',

where X' = H n [G,G]\[G,G]. This, of course, depends on the choice of base
point definining the isomorphism X ~ H\G, and if we choose different such points
x1,Ta,... we get different subvarieties X, X5, .. ..
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14 BOUNDARY DEGENERATIONS, EXPONENTS, SCHWARTZ...

Then, at the level of F-points, there are a finite number of points x; such that
X is the disjoint union of open-closed subsets:

(2.2) X(P) = | 2(X)(F) - X{(P).

The non-canonical subvarieties X/ will never appear in the statements, but will
sometimes be used in the proofs.

The group of unitary complex characters of the F-points of the torus X?2P
will be denoted by X aband its complexification (which can be identified with the
group of not necessarily unitary characters) by X(gb. The identity component of
X ab i e. the group of unramified unitary characters, will be denoted by X unr s and
this notation ( "™) will be used more generally to denote groups of unramified
characters.

To every spherical variety X one associates its set of (simple) spherical roots
Ax and the “little Weyl group” Wy, cf. [SV17, §2]. The spherical roots live in
the lattice X'(X) of characters of a Borel subgroup which are trivial on stabilizers
of generic points, and Wx acts by automorphisms on X(X). There are actually
various normalizations for the spherical roots, depending on the application that one
has in mind; for a certain normalization, they are part of the root data of the “dual
group” Gx of X; for another (the standard one in the theory of spherical varieties),
they determine the structure of certain compactifications. These two normalizations
were referred to as “normalized” and “unnormalized” roots in [SV17, §2.1, 2.2],
and both of them define a root system in the usual sense. The precise choice of
normalization will not be of particular concern to us, in general, and when does
matters we will clarify which definition we are referring to. In any case, the action
of Wx on X(X), together with the dominant chamber determined by those sets of
simple spherical roots, is independent of the chosen normalization of their lengths.

What is important for us is that one has the following set of data:

e Boundary degenerations: For every subset © c Ay, a spherical G-variety
Xg of the same dimension, with the property that

dim (£2(Xe)) = dim (Z(X)) + |Ax \ ©O].
We interchangeably denote:
Ax e = Z(Xo).
Under the convention that Z(G)? - Z(X) that we are using, X is called
wavefront if for every © the variety Xg is parabolically induced from a

spherical variety X§ (called Levi variety) for the Levi quotient Lg of a
parabolic Py :

(2.3) Xo ~ X§& xPe @

such that the action of Z(Xg) is induced from the action of the con-
nected center of Lg on X§. Only the conjugacy class of Pg is canonically
defined (and then XCE) is the fixed point set of its unipotent radical on
Xo); thus, whenever we use those Levi varieties we will be careful that
no non-canonical choice of a representative for Py affects our statements.
The isomorphism (Z3) shows that X§ can also be identified as the quo-
tient of the open Pg-orbit on Xg (where Pg is in the class of parabolics
opposite to Pg ) by the (free) action of the unipotent radical Ug of Pg.
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Since )%P@/U@ ~ X@P(_)/U@ canonically [SV17| Lemma 2.8.1], the Levi
variety is also identified with the analogous quotient for X (the quotient
of its open Pg-orbit by the Ug-action).

A wavefront spherical variety is called strongly factorizable if all of its
Levi varieties are factorizable. Symmetric varieties are strongly factoriz-
able [SV17, Proposition 9.4.2], and these are the main source of examples.
In Appendix [A]l we characterize strongly factorizable varieties in terms of
combinatorial data attached to the spherical variety, and give a few ex-
amples of non-symmetric, strongly factorizable spherical varieties.

2.4. REMARK. Note that the Levi variety attached to the whole set
of spherical roots is not equal to X, if X is parabolically induced. For
example, if X = N1\G1, where N; is maximal unipotent in G1, under the
G = A; x Gy-action (where Ay = By/N;, with B; the Borel subgroup
normalizing N7), then X is wavefront, Ax = ¢J, but Xﬁx = XL = 4,
under an A; x Aj-action. This creates the paradox that some varieties
(such as this example) are “strongly factorizable” without being “factoriz-
able”, but this is only a minor nuisance, since for a parabolically induced
variety all spaces of functions that we are interested in are parabolically
induced, s. §.61— thus, one can work directly with the Levi variety X ﬁx,
which is factorizable. To avoid extra notation, however, instead of writing
X ﬁx we will at several points in this paper assume, implicitly, that X is
factorizable.

For © = J the variety Xg is horospherical, i.e. stabilizers contain
maximal unipotent subgroups of G. More precisely, stabilizers contain
the commutator subgroup of a parabolic in the class of Pé, which in
this case we denote by P(X)~. Its opposite P(X) is the parabolic which
stabilizes the open Borel orbit on X. (Again, of course, only its class is
defined.) We denote Ax g simply by Ax — it is the “universal Cartan”
of X; its character group has a canonical identification with X(X). For
every ©, Ax o is canonically identified with the connected kernel of © in
Ax, and we denote by A})@ the monoid of elements a € Ax o(F') with the

property that |e7(a)| < 1 for all v € Ay, and by fi}’@ the subset of those
elements with |e7(a)| < 1 for all v € Ax \ ©. (We use the exponential
symbol in order to use additive notation for the group X' (X)).

e Ezxponential map: For every open compact subgroup J of G, a system of
J-stable subsets Ng of X = X (F), with Ng c Nq if © < Q, and for each
O aJx A;’(ve—stable subset NS of X¢g, which generates all Xg under the
action of Ax g, together with identifications:

(24) Neo/J = N§/J,

characterized by their compatibility with certain p-adic analytic “expo-
nential maps” (s. [SV17, §5]) and by the fact that the induced map on
characteristic functions extends to an equivariant map, that will be ex-
plained in §7 Such a set Ng will be called a “J-good neighborhood of
O-infinity”, and from now on we will not distinguish in notation between
Ne and Ng, i.e. we will be denoting the latter also by Ng. (This con-
stitutes abuse of notation, since only J-orbits on these sets are identified,
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but it will only be used for statements that depend only on the identifi-
cation of the J-orbits, not the sets themselves.) The above identifications
clearly also identify Ng/J, for all Q < O, with subsets of Xg/J, and the
set:
N5 =Ne ~ | No
Qco

is stable under the action of J x A;’Q@ and has compact image in Xg/Ax 6.
We note the decomposition:

(2.5) X =| |N§.
e
We have Na, = X, hence the complement of U@gAx Ng is compact
modulo the action of Z(X).

The modular character of Pg, i.e. the inverse of the modular character of Pg,
will be denoted by dg. (Our convention is that a modular character is the quotient
of right by left Haar measure.) The functor of normalized induction from Pg, resp.
Pg , will be denoted by Ig, resp. Ig-:

IgV :={f: G — V smooth|f(pg) = (%f(g) for all p € Po},

Io-V :={f: G — V smooth|f(pg) = 5(;%]”(9) for all pe Pg}.
We similarly denote, for every representation 7 of G, the normalized Jacquet mod-
ules with respect to Pg, resp. Pg, by me, resp. mo-. These are, by definition,
the coinvariants of the corresponding unipotent radicals, tensored by the inverse
square root of the corresponding modular character, so that we have canonical
Lg-morphisms:
(IeV)e =V, (lo-V)g- > V.

Actions of Weyl groups will always be defined to be left actions. We consider the
Weyl group W of G as an automorphism group of its universal Cartan A = B/N
(where B is any Borel subgroup, with unipotent radical N, so that the universal
Cartan is a unique torus up to unique isomorphism). For subset S of the positive
simple roots of A in G, corresponding to a class of parabolics Ps, any element w
which maps S into the positive simple roots gives rise to an isomorphism between
the Levi quotients Lg and L,,s of the corresponding parabolics, unique up to inner
conjugacy. In particular, this is true for the Levi quotients Lg, Lo (where ©,Q
Ax) and an element

weWx(Q,0) :={weWx|w =Q} c Wx cW.

Finally, the notation © ~  will mean that © and  are associates, i.e. Wx (Q,0) #
.

2.5. The general symmetric case. In the general symmetric case (when
G is not necessarily split), the boundary degenerations X¢ are defined in [Del18
§3.1]. They are denoted there by Xp, while the Levi varieties Xé are denoted by
X]V[.

For consistency of notation with the split case, we will make a small modifica-
tion to the definitions of [Dell§]. Namely, in §2 of loc.cit. the tori Ap are defined
as certain central split subtori of Levi subgroups; thus, they do not need to act
faithfully on the boundary degenerations Xp. (More precisely, their action might
have finite kernel.) Here, we will denote by Ap (or, rather, Ax ) the quotient by
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which these tori act on X p; equivalently, Ap for us will be a quotient of the identity
component Z(M)? of the maximal split torus in the center of the Levi quotient M.
(For a group M, we will use the notation Z(M) for the maximal split torus in its
center; the notation Z(M), without the exponent °, will not be used, again for
consistency with the split case.)

These tori correspond to the mazimal split tori of what, over the algebraic
closure, is Z(X) or Z(Xg) under the definitions of the previous subsection. While
it is not very good to have notation which is not stable under base change, it is
convenient here that the emphasis is not on geometry but on harmonic analysis,
and we will adopt it. Similarly, for the definition of Wx in the general symmetric
case, cf. [Dell8], §7.5], denoted there W (Ag).

2.6. Normalized action and the various Schwartz spaces. We assume
that X (F') carries a G(F )—eigenmeasurdﬁ with eigencharacter 7, and any choice of
such measure endows all the spaces X¢ (F') with G(F')-eigenmeasures with the same
eigencharacter which make the identifications (2] of neighborhoods of the form
No/J measure-preserving, cf. [SV17] §4.1], [Dell8| Theorem 2]. This measure on
Xo(F) is also an Ax o(F)-eigenmeasure, and whenever a group acts on a space Y
endowed with an eigenmeasure with eigencharacter y, we normalize the action of
the group on functions on Y so that it is an L2-isometry:

(2.6) (- )W) =vx(9)f(yg)-

This also identifies the space C*®(Y") (uniformly locally constant functions on Y)
with the smooth dual of S(Y') := CX(Y).

On the Levi varieties X(f) =X Ps/Ug the measure on X gives rise to an Le-
eigenmeasure for which the following is true:

f, f(z)dz = L(g o f(uz)dudz.

XPe

This depends on the choice of Haar measure on Ug. The character by which Lg
acts on this measure is dg7n (recall that 7 is the eigencharacter of the measure on
X). Thus, we need to twist the unnormalized action of Le on functions by (nde)?2
in order to obtain a unitary representation.

Another way to describe this twisting is the following: if we identify X& as a
subvariety of Xg fixed by the parabolic Py, and g € Pg with image [ € Lg, then
for a function f a function on Xg we have:

1
(2.7) L (flxg) = 089 Dl
(The twist by /7 is already contained in the G-action on Xg.) An important
observation is that, by introducting this twisted action for Lg, the action of the
connected center of Le on f|xz coincides with the action of Z(Xe) on C*(Xe),
under the identification of Z(Xe) = Ax,e as a quotient of Z(Lg)?. Indeed, the

twist by Jé) is contained in (2.6), by taking into account the eigencharacter of the
measure under the action of Z(Xg).

We caution the reader that this may not be the most natural-looking action;
for instance, if X has a G-invariant measure and we consider the Levi variety

3In fact, under our assumption of factorizability it is possible to twist such a measure and

make it invariant; however, even if we do this for X it will not be the natural choice for the Levi
varieties X é, as we will see, so one ends up working with eigenmeasures anyway.
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Xé ~ Ax, the usual action of A on C*®(Ax) is twisted by the square root of
the modular character of P(X). However, this definition is such that the space of
L2-functions on Xg is unitarily induced from the analogous space on X§:

(2.8) L}(Xe) = Ig- L*(X}),

The Schwartz space S(X) is, by definition, the space C(X) of compactly sup-
ported smooth functions on X (and similarly for any homogeneous space). The
twist (Z7) on functions on X allows us to write, using again the functor of nor-
malized induction from Pg:

(2.9) S(Xo) = Io-S(X§),
Moreover, if X is a direct product:
X =Z(X)x X/,

where X’ is a [G, G]-spherical variety, we clearly have a decomposition:
S(X)=8(Z(X))®@S8(X").

In the general factorizable case, using a decomposition such as ([Z2]) and pulling
back functions by the action map:

Z(X) x X = Z(X) - X,
it is immediate to identify S(X) with:

dia,
(210) @ (S(z(0) @ S(xp) H @D,
K2
i.e. invariants under the simultaneous action of the finite subgroup Z(G)" n [G, G]
on both factors. (Recall that Z(G)°? - Z(X) under our conventions.)

For any function on Xg which is Ax e-finite (i.e. its translates under the nor-
malized action ([2:6) of Ax e span a finite-dimensional space) we call ezponents its
generalized Ax g-characters, considered as a multiset (i.e. each character appears
with a certain multiplicity).

We say that a function f € C®(X) (invariant, say, by an open compact sub-
group J) is tempered if for every © < Ax there is a J-good neighborhood of
O-infinity where |f| is bounded by an Ax e-finite function with trivial exponents
(equivalently: by the absolute value of an Ax o-finite function with unitary expo-
nents).

The Harish-Chandra Schwartz space € (X) is the space of those functions f €
C*(X) such that for every tempered function F' we have:

(2.11) pr(f) = L \f - Fldz < .

For example, in the abelian case X = Z(X) (by choosing a base point), any
smooth function descends to a function on a finitely generated abelian group ~
R (torsion) x Z", and it is in the Harish-Chandra Schwartz space iff its restriction
to any Z"-orbit is bounded by the multiple of the inverse of any polynomial in the
coordinates ni,no, ..., Ny.

We similarly define this notion for the spaces Xg. Again, the twisted action
[220) allows us to write the Harish-Chandra Schwartz space of Xg as the normalized
induction of the Harish-Chandra Schwartz space of X§:

(2.12) %(Xe) = Io-%(X8),
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Indeed, the action of G is clearly the correct one as was the case for L?(Xg) and
S(Xe); and the notion of “unitary exponents” used to define tempered functions
and, by duality, the Harish-Chandra Schwartz space coincides for the action of
Ax e on functions on Xg and X§.

The J-invariants of each of those Harish-Chandra Schwartz spaces have a nat-
ural Fréchet space structure, defined by a system of seminorms pg as above for F'
belonging in any sequence (F3,),, of tempered, J-invariant functions with the prop-
erty: for every tempered function F there is an n and a positive scalar ¢ such that
|F'| < ¢+ |F,|. (In fact, this is a nuclear Fréchet space.) Thus, the space € (X) is
an LF-space, i.e. a countable strict inductive limit of Fréchet spaces.

In case X is a direct product:

X = Z(X) x X',
where X’ is a [G, G]-spherical variety, we have a decomposition:
(X) = ¢ (2(X))&% (X)),

where the completed tensor product is defined as a strict inductive limit over the
corresponding spaces of invariants under compact open subgroups, and for each
such subgroup it is uniquely defined by nuclearity. In simple terms, this means
the following: We may choose the sequence as above of tempered functions Fj,
to consist of product functions: F;; = Fi(l) ® Fj(2), where Fi(l) and Fj(z) denote,
respectively, similar sequences on Z(X) and X’. Then ¢(X)” is the completion
of S(X)! = S(Z(X))J“Z(G)O ® S(X')7lGE] with respect to the corresponding
seminorms.

In the general factorizable case, using a decomposition such as (22 and pulling
back functions by the action map:

Z(X) x Xj— Z(X) - X,
it is immediate to identify:

(2.13) (X)~P (%(Z(X))(Q)‘K(Xl{))(Z(G)“m[G,G])diag .

Notice that we also have:

(2.14) L*X)~@ (L2(Z(X))®L2(XZ())(Z(G)Dm[G,G])diag ,

3

where the completed tensor product here is the Hilbert space tensor product.

2.6.1. Comparison with alternative definitions. Since the definition of Harish-
Chandra Schwartz space is sometimes phrased differently in the literature, we would
like to verify that the one we gave coincides with other versions. We start from
the general definition given in [Ber88| §3.5]; according to it, the Harish-Chandra
Schwartz subspace of C®(X)” is the one defined by the norms of L?(X, (1 +
r)eux)”?, for all d > 1. Here r is a radial function on X, and the measure uy
is a G-invariant measure. (We leave the case of an eigenmeasure to the reader —
cf. §3.7 of loc.cit.)

We remind that a radial function r : X — R% is a locally bounded proper
function such that for every compact subset B < G there is a constant C' > 0 with

(2.15) [r(gz) —r(x)]| < C
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for all g € B,z € X. The definition of the Harish-Chandra Schwartz space using ra-
dial functions generally depends on the radial function chosen up to the equivalence
relation:
r~r = 30>0st. C*1+7r)<1+7" <C(1+7).

However, for a homogeneous space X there is a “natural” class of radial functions
on X, described in [Ber88|, §4.2]. It admits the following explicit description, whose
verification we leave to the reader, using a (weak) Cartan decomposition for X.

By a (weak) Cartan decomposition for X we mean that there exists a subvariety
Y < X, which (over the algebraic closure) is an orbit of a Cartan subgroup T of G,
such that:

(2.16) X(F)=Y*+U

for some large enough compact subset U of G(F), where Y denotes a certain
notion of “dominant” elements of Y (F'), cf. [BO0O7,[DS11] for the symmetric case
and [SV17, Lemma 5.3.1] for the general split case. If we fix a natural radial
function R on Y (F) of the form R = |w|, where we choose a base point to identify
Y as a quotient of the Cartan subgroup T and w : Y (F) — V is a homomorphism
with compact kernel to a finite-dimensional real normed space V', the following is
a radial function on X, representing the natural class of radial functions:

r(z) ;= min{R(a)|la € YT,z € aU}.

In fact, as the proof of [SV17, Lemma 5.3.1] shows, the subvariety Y of the above
decomposition can be identified with the torus Ay defined in §2.3 in a way com-
patible with the A}7@-a0tions on good neighborhoods of infinity, i.e.: Considering
a decomposition X = | | Ng as in ([Z.3), the action of A} o  Z(Xe) on Y™ 1 Ng
coincides with its action on Ax ~ Y, restricted to Y n N§.

Thus, the above radial function is equivalent to the following one: Fix, for every
©, a J-invariant compact subset Mg < Ng such that A};@M@ = Ng, and let, for
each x € Ng:

r'(z) = min{R(a)|a € A o,z € aMe},

where R(a) is the fixed radial function on Ax ¢ < Ax.

Returning to functions, observe that the functions

Fy(x) = (1+ 7' (2)) 2 px (zJ) "2

form a basis of tempered functions such as the ones used in our present definition
I of the Fréchet structure of the Harish-Chandra Schwartz space. Thus, the
system of norms of the spaces L%(X, (1 + r)%ux)’ is equivalent to the system
of norms pp, defined using those functions. This shows the equivalence of our
definition with Bernstein’s.

Finally, we also have [DH14l Definition 3] in the case of a symmetric space,
which defines the Harish-Chandra Schwartz space in terms of bounds of the form:

f(2)] < O¢ (@) (Na(2)) ™"

with d > 0. The function Ny is of the form (1+7)%, for an algebraic radial function
r; namely, X is realized as a closed subvariety of affine space, and the function r
is the maximum of the absolute values of the coordinates. Such a radial function
can easily be seen to be equivalent to the ones used above, cf. also [Ber88| §4.5].
The function ©¢ is a nonvanishing positive smooth function, which up to a power
of (1+7) and a constant coincides with the function z — px (2.J)~ 2, by a result of
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Lagier [DH14l (2.27)] and an estimate of the volumes in [KT10, Proposition 2.6].
Thus, this definition of € (X) also coincides with the above ones.

3. Bundles over tori

3.1. Bundles with flat connections over complex tori. Let T be a com-
plex algebraic torus, and let V' be a finite-dimensional complex vector space. Let
I' ¢ T be a finite subgroup, and let p : ' — GL(V) be a representation. Thus, T
acts on the total space of the vector bundle T' x V', and the quotient V), is a vector
bundle over the quotient torus ¥ = T'/T.

By the following argument, one can see that this vector bundle is trivializable;
however, we will not fix such a trivialization. The representation p always extends
to a complex algebraic homomorphism p: T'— GL(V). Indeed, p decomposes into
a finite sum of characters of I'; viewing I' as the points of a finite algebraic group,
each character is algebraic. The coordinate ring C[T'] of T, which is spanned by
its characters, surjects onto the coordinate ring of I', and hence for every character
x of T', the (T, x)-equivariant part of C[T] is non-zero. Thus, x extends to a
complex algebraic character of T', and p extends to p. Then, once we choose a
basis (v1,...,v,) of V, the trivialization of the bundle V, is given by the sections:
(t,v;(t)), where v;(t) = p(t)v;.

In this paper, we will apply this construction to T = XE”, T/T' =a connected
component of X(‘Ciisc (and the corresponding tori for “boundary degenerations” —
see #l for the definitions). The vector bundle will come from certain spaces of
coinvariants of S(X).

We want to endow the vector bundle V), with a flat connection, hence an action
(on its sections) of the ring D(Y) of differential operators on Y = T'/T". There are
two obvious choices for doing that: One is to choose a trivialization by sections
v;(t) as before and require that the v;(t)’s are flat sections;

this is not the action that we will use. Rather, we consider the natural connec-
tion on the trivial vector bundle T x V:

D(Z ci(t)v) = Z(Dci(t))vi (D € D(T)).
K3 1
This descends to a connection on the quotient vector bundle (T" x V')/T" over Y.
Indeed, we have
D(Y) =D(T)",

and moreover the action of D(T') on sections of T x V' commutes with the action of
GL(V). Thus, the subring D(Y") preserves I'-invariant sections over T', which are
precisely the sections of V,, over Y. This is the action that we will be using.

For convenience we introduce a notion of flat functional on the vector bundle
with total space E = (T x V)/T. A flat functional will be an element of the dual
vector space V*, thought of as a flat section of the dual of the pull-back of E to T.
It is by abuse of language that we call it a “flat functional on E” since it is really
a flat section of the dual vector bundle over the étale cover T of Y = T/T, not a
section over Y. Any section y — f, of V,, together with a flat functional v*, give
rise to a function F(fy,,v*) :t — (fi,v*) on T (not on Y = T/T'). The action of
differential operators was defined in such a way that for every section f,, every flat
section v* and every differential operator D € D(Y') we have:

F(Dfy,,v*) = DF(f,,v").
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3.2. Various spaces of sections. Let T now denote the maximal compact
subtorus (considered as a real form) of a complex torus T¢; or, more generally, let
T be a torsor (principal homogeneous space) for a compact real torus, and T its
complexification. Let L be a finite dimensional, complex algebraic vector bundle
over Tr. We introduce the following notation for sections of L:

We denote by C[T, L] the regular sections of L over T'— that is, over T¢.
We denote by C(T, L) the rational sections.
We denote by I'(T, L) the rational sections which are regular on the real
subset T'; by “regular” we mean that their polar divisors do not intersect
T'; however, with an extra restriction on the poles which we will introduce,
this will turn out to be equivalent to the weaker condition that they extend
to C®, or even L2, sections (see Lemma [3.5)).
Thinking of (the set of real points of) T as a smooth manifold and of L
as a smooth vector bundle over T, we denote by C*®(T, L) the smooth
sections over T'; it carries a canonical structure of a Fréchet space.

If L is trivializable, we have a canonical isomorphism:

C*(T, L) = C[T, L] ®c(zy C*(T).

e We now come to hermitian forms. The bundle of sesquilinear forms on L
is the (smooth) complex vector bundle L* ® L* over Tr. However, for the
purposes of this paper, where T will parametrize unitary representations,
it is more meaningful to start with sesquilinear forms over T', view them as
bilinear pairings between a representation 7 and its dual 7, by identifying
7 with 7, and extend them as such to Tt.

Therefore, we will not adopt the common notation where L denotes
the complex conjugate of L, but L will denote the complex algebraic
bundle which is obtained by L via base change by complex conjugation
with respect to the compact real form T":

Resc/r(Tc) — Resc/r(Tc).-

In other words, the vector space of sections of L over an open U < T will
coincide with the conjugate vector space of sections of L over the complex
conjugate U, and the coordinate ring of U will act on them via complex
conjugation:

C[U] — C[U].

Of course, over the real form 7" this canonically induces the same smooth
complex bundle as the complex conjugate of L. But, one of the benefits
of our definition of L is that now L* ® L* is a complex algebraic vector
bundle over Tt.

A hermitian metric on L (over T) is a smooth section of L* ® L*
over T which corresponds to a positive definite hermitian form on every
fiber. A hermitian metric, together with a Haar measure on T, give rise
to the Hilbert space of L? sections of L. Since T is compact, all hermit-
ian metrics and Haar measures give isomorphic topological vector spaces
of L%-sections, although of course the Hilbert norm will depend on the
choices.

The following easy lemma will be useful:
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3.3. LEMMA. Let T be a real torus and T' a finite subgroup. The natural map:
ClT] ®cpr/r) C*(T/T) — C*(T)
is an isomorphism.

PRrROOF. As in the beginning of §3.I]1 we can extend each complex character
x of T to a character ¥ of T (x € C[T]), then write each f € C*(T) as a linear
combination of its y-equivariant parts:

F =3 fo, where fy(t) = ﬁZx*%v)f(vt),

and finally f, = x - %, with the last factor an element of C*(T/T"). This shows
surjectivity. Vice versa, for any sum »;; P; ® f; € C[T] ®c[r/r) C*(T/T), we can
similarly decompose the P;’s in terms of characters of I', and then the y-equivariant
part of the sum can be written as Y® f, with f, € C*(T'/I'). For the sum >} X®fy

to be zero, each f, has to be zero, proving injectivity. O

3.4. Linear poles. We continue assuming that L is a complex algebraic vector
bundle over a complex torus T, whose compact real form we denote by T" or, more
generally, over a torsor T for a compact real torus. A linear divisor on T will be
the scheme-theoretic zero set of a polynomial of the form:

(3.1) H(Xi — i)

(3
where:

e the r;’s are non-zero scalars;
e the x;’s are “characters” of T — more precisely: non-zero eigenfunctions
for the torus acting on 7T¢.

In particular, a linear divisor is always principal. The word “linear” stems from the
fact that under an exponential map: t — T' (and its complexification t¢ — T¢) their
preimages are unions of affine hyperplanes — in fact, affine hyperplanes associated
to the real functionals v/—1 - dy;.

We say that a rational section f € C(T, L) has linear poles if:

H(Xi —r;)f € C[T,L] (regular sections)

K3

for a finite set of characters x; and complex numbers 7; as above. A very crucial
lemma will be the following;:

3.5. LEMMA. If f € C(T) has linear poles and belongs to L*(T), then it belongs
to T'(T), i.e. its poles do not meet the real locus T.

The notion of L!(T) is defined with respect to any Haar measure on 7.

PRrOOF. Using the exponential map, we can pull back the function to a holo-
morphic function F' on the complexification t¢ of the Lie algebra, with poles along
complex hyperplanes and locally integrable on the real subspace t. Thus, locally
around any point on t which without loss of generality we may assume to be the
point 0, the pullback is equal to:

G
3
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where the [;’s are real linear functionals, the n;’s are positive integers, and h is a
holomorphic function which does not identically vanish on the zero set of any of
the I;’s. If such a function is locally integrable, the same is true a fortiori when the
denominator is replaced by a single linear functional /1, thus we may assume that
F = h-1;", where h is not divisible by [;.

There is a (real) point of t in any neighborhood of zero which is in the kernel
of I; but not on the zero set of h (otherwise, h would be divisible by l;). Thus, in
a neighborhood of that point the function is bounded by a constant times lfl, and
cannot be integrable. |

Finally, if Ly, Lo are two vector bundles as above, then Hom(L1, Lo) is also such
a vector bundle, and we can talk about its rational sections, and linear poles for
those sections. In particular, we have the following easy corollary of the previous
lemma:

3.6. COROLLARY. Suppose that M € C(T,Hom(Lq, Ls)) has linear poles and
induces a bounded map:
L*(T, L)) — L*(T, L)
(with respect to hermitian metrics on L1, Ly and a Haar measure on T — as re-
marked, all choices give isomorphic spaces of L? sections). Then M €
I(T,Hom(Ly, L2)), i.e. its poles do not meet the real locus.

PrROOF. Locally on T we may trivialize the bundles and bound the hermitian
metric from below by a constant hermitian metric (with respect to the trivial-
ization). Thus, the square of the absolute value of the fiberwise Hilbert-Schmidt
norms:

Tt | M|
is bounded below, locally, by a rational function with linear poles, no fewer than
those of M. The norm of M as a bounded map: L*(T,L;) — L?(T, Ls) is the
L'-norm of this function, and the previous lemma (or rather, its proof) shows that
the poles cannot meet the real locus. O

4. Coinvariants and the bundles of X-discrete and X-cuspidal
representations

4.1. Coinvariants. For an irreducible representation m of G, the space of
m-coinvariants of S(X) is the quotient of S(X) by the common kernel of all mor-
phisms: S(X) — 7. They can be canonically identified with:

(4.1) S(X)r = (Homg(S(X),n)* @ .

This is a finite direct sum of copies of m, by [SV17, Theorem 9.2.1], [Dell8|
Theorem 4].

A subspace of Homg(S(X), ) corresponds to a quotient of the space S(X ), of
X-coinvariants. Let m have unitary central character y,.; recall here that by (21))
(cf. also §2.5 for the meaning of Z(G)Y in the general case) we assume that the
maximal split torus in the center of G surjects onto the “center of X”. We call an
element of Homg(S(X), ) “cuspidal” if 7 has unitary central character and the
dual:

7— CP(X)
has image in the space of compactly supported functions modulo the center. We
call it “discrete” if the dual has image in L?(X/Z(X), xz), where x; is the central
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character. We call it “tempered” if the dual has image in the space of tempered
functions or, equivalently, if the morphism extends continuously to the Harish-
Chandra Schwartz space €(X). The “continuous” assumption will be implicit
whenever we write homomorphisms from €' (X).

Thus, we have natural surjections:

(42) S(X)‘IT - S(X)ﬂ',temp - S(X)w,disc - S(X)Tr,cuspa

where the second corresponds to tempered morphisms. The second, third and
fourth are also coinvariants for the Harish-Chandra Schwartz space, i.e. the canon-
ical quotient map from S(X) extends continuously to:

(4.3) E(X) = S(X)r temp-

If 7 does not have unitary central character, we will still be using the notation
S(X)r, S(X)r temps S(X)r disc and S(X)x cusp for quotients of S(X) such that the
corresponding morphisms:

S(X)—->m or #—> CPX)

have the aforementioned properties up to a twist by a character of the group.

4.2. X-discrete and X-cuspidal components. Assume X to be factoriz-
able. We let XUP denote the set of irreducible representations = with unitary
central character such that S(X)x cusp # 0; we let Xdisc denote the set of irre-
ducible representations 7 with unitary central character such that S(X), qisc # 0.
Thus, Xcusp < Xdisc,

Both sets have a natural topology, and split into disjoint, possibly infinite,
unions of compact components which can naturally be identified with the real
points of real algebraic varieties of the same dimension, each of which is a principal
homogeneous space for a torus. This structure arises as follows:

Recall from §2] that X is a quotient variety of X, which is a torsor for the
torus G*/H?P_ and that we denote by X the real torus of unitary unramified
characters of this torus.

By our assumption that X is factorizable, the torus X" acts (with finite
stabilizers) on X5¢ and X°uP. Indeed, any morphism M : S(X) — 7 can be
“twisted” by any element w € Xunr by fixing a base point zo € X to identify this
space with the abelian quotient of G of which it is a torsor, and considering w as a
function on X. We then define M, € Homg(S(X), 7 ® w) by:

(4.4) M, (®) = M(® - w).

It is clear that M, is discrete (resp. cuspidal) iff M is.
By [SV17, Theorem 9.2.1], [Dell18| Theorem 4], we have:

4.3. PROPOSITION. For each open compact subgroup J of G, the set of Xuor_
orbits on elements of XU with non-zero J-fized vectors is finite.

In particular, the set of X ™ -orbits on X%5¢ is countable, and the action endows
the latter with a real algebraic structure. We denote by X, Xdisc, X@nr the
complex points of these varieties.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



26 COINVARIANTS AND THE BUNDLES

4.4. The bundles L., .Z,. Consider the associations:
X(C:USP 57— Lg:=8(X)r cusps

X((Ciisc ST > gﬂ— = S(X)ﬂ',diSC'

The twisting ([@4]) allows us to consider these spaces as fibers of complex algebraic
vector bundles £, . over X(é“p, resp. X&isc endowed with (slightly noncanonical)
flat connections, following the formalism of §3.J1 More precisely, we will use this
formalism for the .J-coinvariants £7, .#” (where J is any compact open subgroup),
which will be vector bundles supported over a finite number of connected compo-
nents by Proposition 3] and with finite-dimensional fibers, and then we will define
the space of sections of £, .Z to be direct limits over all J of J-invariant sections.

For notational simplicity, we only discuss the case of .#7 (X-discrete series);
the other is identical and, after all, it is just a quotient of .2/ (and, as we shall see
later, also a direct summand).

We will exhibit the vector bundle .27 over X95¢ ag a vector bundle of the form
V, in the notation of §3.1] with T = XE“ and Y = a connected component of
Xgisc. To identify Y with a quotient of T, we need to fix a base point « in this
connected component, which we take in the unitary set Xdise,

The vector space V' will be the coinvariant space S(X )i’disc,
J

linear space (not equivariantly) with V,, := S(X)7g,, iser for any we X(‘C‘nr.
The way to perform this linear identification:

(45) Bu:V = S(X);]r,disc — S(X)‘/{®w7disc =V

identified as a

is by fixing a point zo € X2P, as before, giving rise to the twisting M — M, of
(@4, viewed here as a linear isomorphism:

Homg (S(X), 7)aise = Homg(S(X), ™ ® w)disc-

Moreover, the underlying vector space of the representation m ® w is naturally
identified with the vector space of 7, thus we get linear isomorphisms between the
spaces of discrete coinvariants:

(4.6) S(X)r dise = (Homg(S(X), W)disc)* Q.
This shows that the association:
(47) X(Enr SwW S(X)‘/{®w7disc’

has the structure of an almost canonically (depending on the choice of xg) trivial
vector bundle, thus also an algebraic vector bundle (independently of xy) with total
space T x V over T = X", (We remind that V = S(X)fndisc.)

Now notice that S(X)r disc is & canonical quotient of S(X) which depends only
on the isomorphism class of 7 and not on its realization. In particular, if 7 ~ TQw

for some character w of G then we have a canonical isomorphism:

(48) Q¢ V= S(X)i,disc = S(X);{(@w,disc = Vw'

(This is obvious if we think of S(X) as the quotient by the common kernel of all
morphisms S(X) — m; to explain it in terms of the isomorphism (@8], we notice
that the difference between any two choices of isomorphisms: © — 7T®w is a scalar

which gets cancelled when we tensor 7 with the linear dual of Homg(S(X), 7)disc-)
This isomorphism, in general, is not the same as the linear isomorphism S, defined
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above for every w. The composition 8, o o, defines a representation p of the
stabilizer in X" of 7 on V.

Now we endow .7 with the structure of a complex algebraic vector bundle
over Xgisc, by declaring that the bundle (7)) is simply its pull-back under the orbit
map w — T @w. In the notation of §3.11 we have .Z/ = V,,, where V = §(X)/

7,disc?
T= X&:‘m, ' = is the subgroup of those w such that T®w ~ 7, and p(w) = B, oay,.
Hence, .#” is the vector bundle over Y = T/T" with total space (T x V')/T', and,
by repeating the same process for each connected component, a vector bundle over
Xéisc. The algebraic structure does not depend on the choice of basepoint 7 for our
representations, or base point g on X. However, the corresponding flat connection,
and hence the notion of flat functionals of §3.1]1 depends on the choice of base point
2o up to a character of the torus XE”. More precisely, the “flat functionals” are
the functionals f, — ((M,)(f.,), w*), with w* € V*. This dependence will not
play any role in our statements.
It is clear from the definitions that the natural map:
S(x)" - 8(X);

7,disc

ives rise to regular sections of .#7, as 7 varies, i.e. it gives a canonical map:
b b

(4.9) S(X) - C[X =, 2],
(Similarly, by composing with the quotient map . — £ we get a canonical map:
(4.10) S(X) — C[X°™P, £].)

We have:

4.5. PROPOSITION. The vector bundles 7, L7 over X3¢, resp. X(EuSp, are
trivializable (over each connected component).

The global (regular) sections of £7 over X% (resp. L7 over XE“SP) are pre-
cisely the images of elements of S(X)” under (3.

PROOF. The two cases are identical, so we work with .#/. The fact that it is
trivializable follows from the generalities discussed in 3] but it will also be seen
explicitly by the argument that follows.

The map S(X)” — S(X)? 4. is surjective for any irreducible 7, hence E3),
composed with evaluation at each fiber, is surjective. Choose a finite number f; of
characteristic functions on J-orbits x;J on X such that their images form a basis
of S(X)?, for some fixed m. If f;(w) denotes the image of f; in S(X)xgw, with all
those vector spaces identified with the same vector space V' as above, it is immediate
from the above definitions that, in this common vector space, fi(w) = w(z;) - fi(1).
Hence, the images of the f;’s form a basis for every fiber of ([@1). Since X((Ciisc is
affine, these global sections trivialize the bundle.

To see that all global sections come from S(X)”, we can use Nakayama’s lemma.
Let Z be a finitely generated subgroup of Z(X) that surjects onto Z(X)/(Z(X)nJ).
Its group ring can be identified with C[Z], the ring of regular functions on the
character group of Z. We have a restriction map Xdise _, 7 hence both sides of
([@E9) (restricted to J-invariants) are C[Z]-modules. For every point x of Z¢ (i.e.
for every maximal ideal of C[Z]) the fiber of £ over ¥ is:

(4.11) @TrHXS(X>7{,disc>
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where the map 7 — x is the restriction of the central character. This sum is finite
(there are finitely many X-discrete series with given central character and non-zero
J-fixed vectors), and S(X)” surjects on it, because it surjects on every summand
and the representations indexing the sum are irreducible and non-isomorphic.

By Nakayama’s lemma, the C[Z]-modules S(X)” and C[Xd"*¢, %] coincide. [

We let:
& =lim.27,
J
L=limL’
J
as direct limits of sheaves, i.e. the corresponding sections will be, by definition, sec-
tions of the finite-dimensional vector bundle of J-invariants for some open compact
subgroup J.

Now we will endow the bundles .Z, £ with hermitian structures, coming from
the Plancherel formula for X.

The Hilbert space L?(X) has an orthogonal direct sum decomposition L?(X) =
L2(X)aise ® L*(X)cont, where L?(X)gisc has a Plancherel decomposition in terms
of discrete morphisms from irreducible representations: @ — C*(X), in the sense
of &1 i.e. with unitary central characters and in L? modulo the center.

The hermitian structure on % is a canonical measure on XU valued in the
space of hermitian forms on €(X), that will be denoted

(4.12) (,)pdm,

characterized by the following properties:
(1) for almost every 7, the hermitian form (, )_ is G-invariant, positive semi-
definite, and factors through € (X)  disc = S(X)r disc = Zr;
(2) for (1)1, (1)2 € %(X),

(4.13 @102 00, = |
Xdisc

(®1, o), dm.

Of course, this measure is absolutely continuous with respect to Haar measure
on Xdisc, Choosing dr to be a Haar measure we obtain G-invariant hermitian forms
(', ), on the fibers of .Z over Xdisc These forms are actually positive definite, and
“flat” in the following sense:

Recall the conventions of §3.2 for the vector bundle .Z; it is a complex vector
bundle over X(‘Ciisc, that only over Xdise g equal to the complex dual of Z. Since
7 ~ 7 (the smooth dual) over X4, the fiber of Z over an arbitrary 7 € X3¢ can
be identified with %, the “discrete” 7-coinvariants. The hermitian forms (, )
can be seen as linear functionals:

(4.14) 2 ®%r —C,

T

for 7 € Xds¢. We claim that these are restrictions to X%s¢ of flat functionals in
the sense of §3.11

Indeed, this is just another way to say the following: Fix a base point 7 € X disc
and consider the non-equivariant isomorphisms S, of ([@A). The claim is that,
with respect to these isomorphisms, the hermitian form (, )T@w pulls back to the

hermitian form (, ) , for any fixed 7 € Xdisc This is easy to see, since X is
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factorizable; indeed, for every representation 7 appearing discreetly mod center,
the contribution of the family 7 ® w, w € X" to L?(X) is given by:

(4.15) (1, (I)2>{7r®w}w = J”
Xunr

<<I>1 Wl @y w71>7r dw,

for the Haar measure dw whose push-forward to (the given connected component
of) Xdis¢ is the measure dr. Notice that we have identified w with a function on
X, depending on the choice of a base point, as in the construction of j3,,.

The forms (@1, @) — (@1 - w™!, Py -w*1>ﬂ are the forms (@1, @) o , appear-
ing in ([@I3). To view them as restrictions to X9¢ of flat functionals of the form
(@ET4) (defined for arbitrary 7 € X&), we need to view them as bilinear forms on
S(X):

q)l ®(I)2 = <(I>1 . wil,q)z . w>7r 5
a formula which makes sense (for ®;, P2 € S(X)) even when w is not unitary. It
is clear from the definitions that these are indeed flat functionals in the sense of
3.1l Moreover, our ability to extend them off the tempered spectrum means that
we can view the product

(4.16) Y

as a volume form on Xéise valued in the dual of the complex vector bundle Ly ®.L .
It is completely canonical once the measure on X is fixed. This will be a useful
point of view in order to shift integrals such as ([{I3]) off the unitary locus.
Finally, the hermitian forms for 7 unitary induce a splitting of the canonical
quotient from discrete to cuspidal: %, — L. This is, of course, just the orthog-
onal projection to the cuspidal subspace of L?(X/Z(X),X)disc, for every unitary
character x. The flatness of the hermitian forms with respect to the vector space
identifications S, shows that is induced by an injection of algebraic vector bundles
over Xdise:
(4.17) L—
splitting the canonical quotient map . — L.

4.6. The case of boundary degenerations. We have a similar decompo-
sition for the analogous spaces of Xg, not in terms of representations of G but in
terms of representations of a Levi subgroup. Recall the isomorphisms (2.9]), (212]):

S(Xe) = Io-S(X8),

¢ (Xo) = Io-€(XE).
For each irreducible representation ¢ of Lg, by inducing the quotient S (X(f))gﬁdisc
of (X&) we get a representation:

S(XQ)a,disc = (HOIHL@ (&a c* (XGL)))disc) ¥ ® Ig-o0,
together with a canonical map:
S(X@) - S(X@)U,disc-

(This is the “discrete” quotient of the space S(Xg), defined in §15.2.6 of [SV17].)
Similarly, we define the cuspidal o-coinvariants: S(Xe)e cusp- I other words, the
spaces of discrete and cuspidal o-coinvariants are the quotients corresponding to

morphisms:
lo-6 — C*(X§)
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which are induced by Frobenius reciprocity from morphisms (of the respective type):
5 — C*(X§).

—disc

The spaces S(Xe)q,aisc form a trivializable complex vector bundle over X@L) ,

which we will denote by %o (again as a direct limit over J-invariants, to be precise).

——cusp

The spaces S(Xo)q,cusp form a trivializable complex vector bundle over X§
which we will denote by Lg. Again, the definition of the algebraic structure of

—unr

these vector bundles is obtained by pulling back to X(_L) , and they are endowed
with the flat connections described in §3] (depending on the choice of a base point
on X§).

Although the isomorphism (23)), and the subsequent isomorphisms (212,
(Z3), depend on the choice of parabolic Pg in its class, it is clear that the spaces
S(Xo)o,disc; S(X0)os,cusp can be considered as canonical quotients of S(Xg), and
hence the vector bundles Lg, %o do not depend on choices. Indeed, the kernels
of the maps S(Xo) — S(Xo)o.dise; S(Xo) = S(Xo)o,cusp do not depend on the
choice of parabolic. As in (£9), (@I0), these quotient maps give rise to canonical
surjections:

—disc ——cusp
(4.18) S5(Xo) - CIXE 2]~ CIXE  Lel.
As in the previous subsection, the Plancherel decomposition for L?(Xg)qisc
—disc

gives a canonical volume form on X5. valued in (G%*-invariant) linear func-
tionals on Yo ® Zo:

(4.19) (), do,

and a splitting Lo — Lo of the canonical quotient map of vector bundles.
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5. Discrete summand of the Harish-Chandra Schwartz space

The Hilbert space L?(X) has an orthogonal direct sum decomposition L?(X) =
L?(X)dise ® L*(X)cont, where L?(X)gisc has a Plancherel decomposition in terms
of discrete morphisms from irreducible representations: @ — C*(X), in the sense
of §411 i.e. with unitary central characters and in L? modulo the center. We let
€ (X)dise = €(X) N L*(X)gise, and similarly for the spaces Xg.

5.1. PROPOSITION. Let Y be a connected component of Xdisc,' it corresponds
to a direct summand L*(X)y of L?(X)aisc by restriction of the Plancherel measure
to Y. The orthogonal projection of an element of € (X) to L*(X)y lies in € (X).
In particular, the orthogonal projection of an element of € (X) to L*(X)aisc lies in
% (X), and we have a direct sum decomposition:

%(X) = %(X)disc @ %(X)Conty
wh’ere %(X)disc = %(X) N LQ(X)diSC and %(X)cont = %(X) N LQ(X)cont'

Since for every open compact subgroup J there is only a finite number of
connected components Y with L?(X)7. # 0, the proposition actually gives a finer
decomposition of € (X)ajsc:

(51) %(X)disc = @Y%(X)Ya
where Y ranges over all connected components of Xdisc,

PROOF. Since X is assumed to be factorizable (cf. Remark Z4]), we may rep-
resent ¢(X) as in [2I3). Clearly, “projection to discrete” can be defined only with
respect to the action of [G, G], which reduces the statement to the spaces € (X))
in the notation of (ZI3]), i.e. reduces the problem to the case: Z(X) = 1.

In this case, we recall that the space L?(X)J,.. is finite dimensional [SV17]
Theorem 9.2.1], and its elements are Ay o-finite in a J-good neighborhood of ©-
infinity, with strictly subunitary exponents (i.e. Ax o-eigencharacters which are < 1
in absolute value in A}L(@) Thus, the elements of L?(X)J;.. belong to € (X), and
the projection map: €(X) — (X )disc is continuous.

Notice that this argument is a generalization of the usual criterion of Casselman
characterizing discrete series as those representations which appear with subunitary
exponents in all directions, s. Kato-Takano [KT10] for the symmetric case. g

Similar decompositions hold for all the boundary degenerations Xg; this is seen
simply by inducing from the Levi varieties X§, i.e. it follows from (ZI2).

Now recall the vector bundle of Xg-discrete series Zg. We have seen (([{IS)
and Proposition [L5]) that, through the canonical quotient maps to coinvariants,

—disc
elements of S(Xe) give all regular sections of .Zg, i.e. all elements of C[ X5, Zo].
Moreover, the Plancherel decomposition for L2 (Xo)disc endows the complex

—disc
vector bundle % over Xé with the hermitian structure that was discussed in
4.4 extending the above map to a canonical isomorphism:

—disc

(5.2) L*(Xe)aise — L*(X§ . %o).

The spectral description of € (Xg)aisc is as follows:
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5.2. THEOREM. For every ©, the canonical quotient maps € (Xe) — € (Xo)o.disc
give rise to a canonical isomorphism:

—disc
(53) %(X(—))disc =~ COO(Xé ag@)'

The “isomorphism”, here and throughout the paper, is in the category of G-
representations on LF-spaces (countable strict inductive limits of Fréchet spaces).

PrROOF OF THEOREM [5.21 The proof relies on the Payley-Wiener theorem for
the Harish-Chandra Schwartz space of finitely generated abelian groups.

By the isomorphism (ZI2)), it is enough to prove the theorem for € (X§)aisc,
hence we are reduced to the case of Xg = X, assumed factorizable. We need to
show that the image of

G (X) - (X9, 2)
lies in C*®, and that the resulting map
(5.4) (X )dise — C* (X9, 2)

is an isomorphism of topological G-modules.

We will first explain that it is enough to show this when G is replaced by the
group G’ = Z(X) x [G,G]. Since the F-points of the latter map to a subgroup of
finite index in G(F), it is immediate from the definitions that the restriction map
of representations is a finite covering Xdise _, ¥ /disc the latter being the space of
discrete coinvariants for X under the action of G’. Moreover, for any 7/ € X’disc
the fiber of the corresponding bundle %’ of discrete coinvariants over 7’ is just the
direct sum of the spaces .%,, with 7 ranging over the fiber of 7', in such a way that
the inclusions .Z; — .2/, and the projections in the opposite direction are C*, as w
varies in any small neighborhood in Xdisc locally isomorphic to its image in Xdise
. Thus, there is an isomorphism of topological G’-modules

COO(XdiSC,g) ~ COO(X/diSC,g/),

and it is enough to consider the action of G’.
But then, using the decomposition (21I3]), and the Paley—Wiener theorem for
finitely generated abelian groups:

¢(2(X)) =~ C*(2(X))
(depending on a choice of Haar measure on Z(X)), we get that € (X )aisc is equal
to the Z(G)° N [G, G]-invariant subspace of

o —

D C* (ZX)OE(X i

The second factor is the direct limit over all open compact subgroups J of its J-
invariants, which are finite-dimensional, hence the completion of the tensor product
here is immaterial. The space € (X/)aisc decomposes into a direct sum of isotypic
components for the [G, G]-action, thus identifying €(| |, Z(X) x X;)disc, as a topo-
logical G’-module, with the analogous space

P C*(Z(X) x X, ),

of which C* (X"disc, ') is simply the space of invariants under the diagonal Z(G)°n
[G, G]-action.
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This completes the proof, but we would like to mention another way of showing
that the map (54) is onto, without appealing to the artificial decomposition (213).
Let Z < Z(X) be a free abelian subgroup such that Z(X)/Z is compact. Notice
that the group ring of Z is canonically isomorphic to the (complexification of the)
coordinate ring of Z, the torus of unitary characters of Z. Moreover, by elementary
Fourier analysis, this extends to an isomorphism:

(5.5) €(Z2) = C*(2).
By restriction of central characters we get embeddings:
C[Z] — Cc[X .
and: R R
C*(Z) — C®P(X"m).
Recall the surjection of Proposition
(5.6) S(X) — C[X¥*, 2]
The action of the Harish-Chandra Schwartz algebra of Z on S(X):
C(Z)®S(X) - ¢ (X)

translates on the right hand side of (5.6) as multiplication by C*(Z). Finally, by
Lemma [3.3] the multiplication map is surjective:

COO(Z) ®(C[Z] (C[Xdisc,f] s O (Xdisc, f)
This shows surjectivity of (54]). The kernel is, essentially by definition, the subspace

% (X)cont, and thus the map induces an isomorphism of € (X ) gisc with C® (Xdisc, Z).
|

5.3. The discrete center of X. From Theorem [5.2] we deduce that the ring

—disc

C"‘O(X@L)dlsc) of smooth functions on X5  acts G-equivariantly on the Harish-
Chandra Schwartz space %(Xg)aisc; we extend this action to the whole space
% (Xo) by demanding that it acts as zero on € (Xg)cont- We will call this ring
the discrete center of X§, and denote it by:

—disc di I
C(X§ ) =57 (Xe)
In the case of Xg = X, we can think of this as the relative analog of the discrete

part of the center of the Harish-Chandra Schwartz algebra, i.e. the discrete part of
the “tempered Bernstein center” of Schneider and Zink [SZOS].

5.4. REMARK. Maybe from the point of view of the “relative Langlands pro-
gram” this is not quite the full “center”. Notice that if, for w € X disc the space
S(X)r disc has multiplicity n > 1 as a G-representation, then there is a larger
ring of G-automorphisms on the direct summand of ¥ (X) corresponding to the
connected component of 7 in Xdise (call Y this connected component). However,
this ring of G-automorphisms is non-commutative: it is, noncanonically, the ring
C*(Y,Mat,,), i.e. Mat,-valued smooth functions. The philosophy of the relative
Langlands program proposed in [SV17] suggests that this multiplicity should be
related to the number of lifts of the Langlands parameter of 7 to a suitable “X-
distinguished parameter” into the L-group “Gx of X; a more precise statement
involves Arthur parameters and packets, and we won’t get into that. That suggests
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that there might be a distinguished decomposition of S(X)r disc into a direct sum
of multiplicity-free spaces, each corresponding to a lift of the Langlands parameter
of m to “Gx. As 7 varies in a family, this would give a decomposition of the cor-
responding direct summand of €' (X )gisc, and the elements of the G-automorphism
ring which preserve this decomposition would form a commutative ring, isomorphic
to as many copies of C*(Y) as the multiplicity of 7 in the discrete spectrum. This
is not important for our analysis, but we mention it in order to relate the version
of “center” that we are using here with that suggested by the Langlands picture.

6. Cuspidal part of the Schwartz space

6.1. Main result. We have the following analog of Proposition 5.1l and Theo-
rem We start by giving a definition for the cuspidal direct summand S(X)cusp
of §(X).

Recall the canonical quotients: Zo , = S(Xo)o.disc = Lo,0 = S(X0)ocusp-
We have seen that the Plancherel hermitian form-valued measure (£I19) on X, édlbc
splits these quotients canonically; the resulting embedding of vector bundles Lo —
Zo gives rise, by the Plancherel formula, to a subspace of L?(Xg)cusp 0f L*(Xe)disc-

Let H(G, J) be the Hecke algebra of J-biinvariant measures on G.

6.2. PROPOSITION. For a function f € S(X), invariant under a compact open
subgroup J, the following are equivalent:
(1) fe L2(X)cuSp;
(2) the H(G, J)-module generated by f is finitely generated over Z(X);
(3) the H(G, J)-module generated by f consists of functions that are zero on
every J-good neighborhood of ©-infinity, for every © # Ax.

ProOOF. We first prove that the first statement implies the third.

An f e L*(X)J,sp has pointwise Plancherel decomposition:

(6.1) f(x) = f f7 (@)dn

X cusp
with f* e C®(X)T the space spanned by the images of all those morphisms:

cusp?
7 — C®(X) with irri)age in the space of functions that are compactly supported
modulo Z(X). The theory of asymptotics, that we will recall in the next section,
implies that all f* vanish in any .J-good neighborhood of ©-infinity, for © # Ax,
hence so does f.

The third statement implies the second, because the space of J-invariant, com-
pactly supported functions that are supported in the complement of all those J-good
neighborhoods is obviously finitely generated over Z(X), since this complement is
compact modulo Z(X), and Z(X) is Noetherian.

To show that the second statement implies the first, we may without loss of
generality assume that J is “good”, i.e. such that the functor of J-invariants is
an equivalence of categories between representations with non-zero J-fixed vectors,
and H(G, J)-modules (cf. [Ber84l Corollaire 3.9]). Indeed, if f is invariant under
some bigger subgroup K, and its H(G, K)-module is finitely generated over Z(X),
then the same holds for its H(G, J)-module, which is of the form . h,H(G, K) - f,
for a finite number of elements h; € H(G, J).

Hence, we assume that J is such, and that the space S := H(G, J) - f is finitely
generated over Z(X). In the case where Z(X) = 1, this immediately implies that S
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is of finite length as a H(G, J)-module, hence that f generates a G-module of finite
length. Since this module belongs to S(X) < L?(X), it is completely reducible,
with its irreducible summands obviously in L?(X)cusp-

In the general case, recalling that X is factorizable, and writing it as in (22)):

X(F) = || 2(0)F) - X{(F),

i=1

we notice first of all that the restriction of the space of functions H(G,J) - z - f
to (a certain) X/ is independent of the element z € Z(X). Thus, this restric-
tion is a finite-dimensional vector space which is an H([G, G], [G, G] n J)-module,
which implies by the above argument that it belongs to L?(X;)cusp (the latter de-
fined as before, replacing the group G by [G, G]). The restriction of the pointwise
Plancherel decomposition (G1I) to X; is the pointwise Plancherel decomposition for
flx,. Hence, z - f™|x, is supported on a fixed compact subset of X; for all i, z
and almost all 7, which means that f7 is compactly supported modulo Z(X), for
almost all 7. This proves that f € L2(X)cusp- O

The space S(X) N L?(X)cusp of functions satisfying either of the above equiva-
lent conditions is the cuspidal part of S(X) and will be denoted by S(X)cusp. The
same definitions hold for a Levi variety X§, and by (29) this defines a subspace
S(X@)cusp = Ing(Xé)CuSp of S(X@)

6.3. THEOREM. For every connected component Y of Xécuhp, the orthogonal
projection of an element of S(Xe) to L*(Xe)y.cusp lies in S(Xe). In particular,
the orthogonal projection of an element of S(Xe) to L*(Xe)cusp lies in S(Xo), and
we have a direct sum decomposition:

S(XG)) = S(XG))cusp @S(X@)noncuspa
where S(Xo)cusp = S(Xo)NL*(Xo)cusp and S(Xo)noncusp = S(Xeo)nL?*(Xe)Z

cusp*
——cusp

Finally, the natural map [@I0) from S(Xe) to sections of L over X& is
the composition of an isomorphism:

—cusp

(62) S(XG)cusp = (C[Xé ,E@],
with the orthogonal projection from S(Xg) to S(Xe)cusp-

PRrROOF. First of all, by ([29) and the analogous isomorphism for the bundle
Lo, the theorem is reduced to the case Xg = X, assumed factorizable.

Since our space is assumed to be factorizable, by (ZI0) the problem is reduced
to the case Z(X) = 1, in which case cuspidal morphisms: 7 — C*(X) have image
in S(X). The component L?(X)y cusp, when Z(X) = 1, is spanned by the images of
all those morphisms for a given 7, and therefore orthogonal projection to (the finite-
dimensional space) L?(X ){/,CUSP, for any fixed open compact subgroup J, preserves
compact support. The direct sum decomposition follows.

By the fact that £ is a direct summand of .Z (both trivializable vector bundles),
and by Proposition 5] the image of the map S(X) into sections of £ over Xcusp jg
equal to C[X™P, £]; and the kernel is the space S(X)noncusp = S(X) N L? (X)i-usp.

This proves the last claim. ([l
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For future reference, we note that since C*(Xg) is the smooth dual of S(Xe)
using the eigenmeasure that we have fixed (§2.0)), there is a corresponding direct
sum decomposition:

COO<X@) = COO<X(—))cusp ) COO<X(—))noncuSpa

where C”(Xg)noncusp 1S defined as the orthogonal complement of S(Xg)cusp and
vice versa. Of course, S(Xg)cusp belongs to C°(Xe)cusp-

6.4. The cuspidal center of X. The cuspidal center of X(f) is the ring:
—cusp
FUP(XE) =Clxs

By Theorem [6:3] it acts naturally on S(Xg), namely via the isomorphism (6.2) on
S(X)cusp and as zero on S(Xe)noncusp-

Again, as in Remark[5.4] we could have a larger, noncommutative ring acting on
S(X)eusp by G-automorphisms, if we wanted to take into account the multiplicity
of the spaces S(X)r disc, but we will not consider that.
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7. Smooth and unitary asymptotics

The theory of asymptotics of smooth representations [SV17, §4] provides us
with canonical morphisms (which in this paper we will call “equivariant exponential
maps”):

(7.1) eo : S(Xe) = S(X),

characterized by the property that for a J-good neighborhood Ng © X of ©-infinity
(s. 4)) the map ep restricts to the identification of characteristic functions of J-
orbits on Ng induced by (24)).

On the other hand, the theory of unitary asymptotics [SV17, §11] provides us
with canonical morphisms (the “Bernstein maps”):

(7.2) to : L*(Xe) — L*(X),
characterized by the fact that they are “asymptotically equal to eg’

infinity (cf. loc.cit. for details).
We can characterize the spaces L?(X )aisc, S(X)cusp using these maps:

” close to ©-

7.1. PROPOSITION. We have:

S(X)cusp = ﬂ kere”é|5(x),
0#Ax

PROOF. For L?(X)gisc this is part of the Plancherel formula of [SV17], [Del18].
For §(X)cusp, if an element f € S(X) is in the kernel of e, for all © # Ax,
then the third condition of Proposition is satisfied. Vice versa, if that condition
is satisfied, then ef f = 0 for all © # Ax, because, by [SV17, Lemma 5.2.7], there
is no H(G, J)-stable subspace of C*(Xg) whose elements are zero on a J-good
neighborhood of infinity. ]

Under the assumptions of the present paper (in particular, in the case of sym-
metric varieties), and conjecturally always, these smooth and unitary asympotics
have spectral expansions in terms of normalized Fisenstein integrals.

Recall the spaces of discrete and cuspidal o-coinvariants defined in section M}
the normalized constant terms (restricted, here, to discrete and cuspidal spectra),
whose definition will be recalled in the next subsection, are certain explicitly defined
morphisms:

Eg,a,disc : S(X) - "?@,U = S(X@)U,diSC?

E(i;,a',cusp : S(X) - ‘C@,U = S(X@)U,cuspa
the latter obtained from the former via the natural quotient maps: Zo , — Lo,0,
which vary rationally in o, i.e. they are really the pointwise evaluations of elements:

—disc

Eg,disc eC (Xé ,Homg(S(X),.,f@)) 5

—~cusp
Eg),cusp eC (Xé 7H0mG(S(X)a L@)) s

—disc

Here Home (S(X), Zo) denotes the sheaf over X5 .  whose sections over an open
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7. SMOOTH AND UNITARY ASYMPTOTICS a1
—disc
7.2. REMARK. The fiber of this sheaf over o € X5 is a priori not identical to
Homeg(S(X), %o ,0), since, in principle, there may be morphisms that don’t extend
locally to an algebraic family.

A priori this sheaf could be infinite-dimensional, but we claim:

—disc

7.3. LEMMA. Homg(S(X), %o) is a coherent, torsion-free sheaf over X§

PROOF. Indeed, for every open compact subgroup J the space S(X)” is a
finitely generated module for the Hecke algebra H(G,J) [AAG12, Theorem A],
[SV17, Remark 5.1.7]. Therefore,

Homg(S(X), Zo) = lim Homy ¢ 5 (S(X)J,.,fé])7
J

—disc
and the individual Hom-spaces on the right are coherent sheaves over Xé . More-
—disc
over, for every connected component Y of X é there is a compact open subgroup
J such that
HOIHG(S(X), zg‘y) = HOHlH(G’J) (S(X)J, zéqy)
[Ber84l Corollaire 3.9]. Therefore, Homg(S(X), Zo) is a coherent sheaf over

—~disc ——cusp

X5, and similarly for Lg over X§ . Moreover, for every Y and J as above, it
is a subsheaf of the locally free sheaf (£ |y )®, where S is a finite set of generators
of S(X)”, and hence it is torsion-free. O

The definition of normalized constant terms and normalized Eisenstein integrals
will be recalled in the next subsection, where we will also prove the important
property of regularity on the unitary set. We will also recall there the notion of a

—unr

character w € X (E)C being large, denoted w » 0. Here we will take them for granted,
in order to recall how they are used to express smooth and unitary asymptotics.

The normalized constant terms are adjoint to “normalized Eisenstein integrals”,
which can be described as morphisms:

E@,o’,disc : g@,a - C” (X)a

E@,mcusp : E@,o’ - COO(X)v
varying rationally in 0. (By ~ we denote smooth duals.)
Now we recall the way in which Eisenstein integrals can be used to explicate

smooth and unitary asymptotics. To formulate it, start from the Plancherel formula
for Xg, which canonically attaches to every f € L?(Xg)%,. a C%(Xe)-valued

disc
5 —disc 5
measure f°do on Xé . Explicitly, f° belongs to the “discrete G-equivariant

eigenspace of C*(Xg)” (i.e. the dual of % ), and is characterized by the property
that for every ® € S(Xg) we have:

(7.3) <f’ CT)>L2(X9) = J}/{\Ldisc JX- f&(x)q)(x)dxda

When f € S(Xg) the measure fodo extends to a C*(Xg)-valued differential

—disc
form on Xé(c , and another way to describe it is as follows. Recall the canonical

map ([{9) (adapted to Xe):
—disc

S(Xe) = C[X§ Lo,
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f = (U = fo’,disc)
(where f, qisc denotes the image of f in the discrete o-coinvariants), and the canon-
ical volume form: (, ), do, valued in hermitian forms on Zg obtained from the
discrete part of the Plancherel formula of Xg, s. (19). Then:

f&dU = <.7 f_a',disc> do

as differential forms valued in the smooth dual of §(Xg).
We are particularly interested in the case when f € S(Xg)cusp © L?(X6)disc,

——cusp

in which the form f%do is valued in the dual of Lg , and supported on Xéc
——cusp

Since the integrand in (.3) is entire and supported on X§ , we can shift the
contour of integration and write:

(7.4) (f®) 1o (xe) = f o | PP @)@(2)dzdo

w_lXé Xe
——unr

for any character w of Xéc

7.4. THEOREM ([SV17, Theorem 15.4.2]). For any w » 0, if f € S(Xo)cusp
admits the decomposition (IC4]) then:

(7.5) eof(r) = ‘[ - E@,mCust&(x)dU'
w*lXé

7.5. THEOREM ([SV17, Theorem 15.6.1], [Del18, Theorem 7]). If f € L*(Xo)%..
admits the decomposition (I(3]), then:

(7.6) o f(z) = fXA Eeo o 7 () do.

We need to extend the validity of Theorem [l to the cases considered in
[Dell8]. The proof of Theorem 15.4.2 in [SV17]| carries over verbatim, up to
Proposition 5.4.5 which we need to prove in the setting of [Del18]:

7.6. PROPOSITION. There is an affine embedding Xq — Y such that for every
® e S(X), the support of e§® has compact closure in'Y.

ProOOF. We choose a finite extension E of our field over which G splits, and
we let X, G etc. denote points over E. Then, in [SV17] §5.5] there is a filtration
of X defined by certain subsets X « indexed by points u in a rational vector space
ax, and similarly for the spaces Xg. (We point the reader to loc.cit. for definitions
and the notation.) By taking intersections with X, Xg, we have obtain filtrations
for this space.

Similarly, there is a filtration > of the full Hecke algebra of G determined
by the support of its elements, where A lies in a rational vector space a endowed
with a surjective map: a — ax. We may analogously define a filtration of the full
Hecke algebra of G, by imposing the same conditions on the support of its elements
(considered as a subset of G).

The rest of the argument of [SV17] (namely, [SV17, Lemma 5.5.5], following
[BK15| Lemma 8.8] and [SV17, Proposition 5.4.5]) now follow verbatim, proving
Proposition O

We complement this with a statement of moderate growth, that will be used
later:
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7.7. PROPOSITION. For any open compact subgroup J the image of S(X)” under
eg is a space of functions of uniformly moderate growth on Xe; i.e. there is a finite
number of rational functions F;, whose sets of definition cover Xg, such that each
feed (S(X)7) satisfies:

|71 < O -min(1 + |Fi)

on Xe (for some constant Cy depending on f).
This is [SV17, Proposition 15.4.3], whose proof holds in the general case.

8. Definition and regularity of Eisenstein integrals

The normalized constant terms:
Eg,o’ : S(X) - S(X@)O'

are defined as the composition: T@_}j o Reg,s, where Rg , and Tg , are operators —
essentially: spectral decompositions of Radon transforms — fitting in a diagram:

(8.1) S(X)
Re,s

S(Xg)7 6@)0

T@,o‘

S(Xe)s

The space X34 is the space of (generic) ©-horocycles of X, classifying pairs
(@, 9), where Q is a parabolic in the conjugacy class opposite to that of Pg (defined
in §3) and O is an orbit for its unipotent radical Ug on the open @Q-orbit on X.
Saying the same words about Xg would produce a canonically isomorphic variety
[SV17, Lemma 2.8.1], and the operators Rg and Tg are defined in completely
analogous ways as operators from S(X), resp. S(Xo), to S(X&,d6),. Thus, for
notational simplicity, we only describe below the definition of the former. (From
the definition it will be clear that Ty factors through the quotient S(Xg),, which
we noted in the diagram above in order to make sense of the inverse of Tg. The
operator Tg is essentially the standard intertwining operator between induction
from two opposite parabolics.)

Let A € Homp,,(S(X§),0), where o is an irreducible representation of Le.
Recall from 3 that the Levi variety X& can be identified with the quotient of the
open Pg-orbit on X by its unipotent radical Ug. We define a Pg-morphism:

(8.2) A:S(X)— o®de

formally (at least) as:

A(®) = A (Xé S — ‘b(mu)du) )

i.e. by integrating over Ug-orbits in the open Pg-orbit and then applying the op-
erator A. There are two difficulties here: First, integrating over Ug-orbits requires
fixing a measure on them; secondly the result of this integration will not be com-
pactly supported on X(f).

Ueo
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44 8. DEFINITION AND REGULARITY OF EISENSTEIN INTEGRALS

Without fixing measures on Ug-orbits, the operation (Radon transform) of in-
tegrating over them canonically takes values in a line bundle over Xé whose smooth
sections we denote by C'OO(XCE)7 do), and admits a noncanonical isomorphism:

(8.3) C*(X§,00) = C*(XE) ® bo,

cf. [SV17l §5.4.1]. The image of “integration over generic Ug-orbits” will be de-
noted by:

Re
(8.4) S(X) = C*(XE,60)x < C*(XE, do).
Inducing this Po-functional to G, we get a G-morphism (denoted by the same
symbol):
R
S(X) = C*(Xb,60)x,
where this notation stands for the corresponding line bundle over Xg.
For ease of presentation, let us now fix an isomorphism as in (83]), and denote
by C*(X&)x the subspace of C*(X§) corresponding to C*(X§, de)x:
(8.5) C*(X§,00)x ~ C*(XE)x ® do.
We will extend the morphism A to C*(X§)x by the usual method of mero-
morphic continuation: Let ¥ € &, and consider the following distribution on Xé :
S(xL) 30— (A(D),D).

Consider also the invariant-theoretic quotient Xg J Up = speck[Xe]Y?. It can
be shown (cf. [SV17, Lemma 15.3.1]) that it contains X& as an open orbit, whose

——unr

preimage is precisely the open Pg-orbit in X. For a character w € X, (’:3 ¢ » considered
as a function on X§ (this requires fixing a base point), we write w » 0 if it vanishes
sufficiently fast around the complement of the open orbit; the set of such characters
contains an open subset of the whole character group.

Twisting by w we get from A and v functionals:

(8.6) S(XE)2® — (A(®-w), D)

factoring through o ® w™!-coinvariants.

Then, for w » 0 (not depending on the choice of ¥) and any f € C*(X§)x,
the distributions (86) are in L'(X, f) — i.e., they are represented by measures
w - A*(0) with SX(,; |f| - |w- A*(D)] < oo (where A* denotes the adjoint of A with

image in the space of smooth measures on X5). That gives a natural way to extend
them to C*(X§&)x as the integral

(87) A= fwrew.
X
8.1. LEMMA. For any f € C*(XE5)x and © € G the integral (87) is rational in
the variable w € Xé , with linear poles.

Recall that the notion of “linear poles” was defined in §3.41

PRrROOF. This follows from the theory of Igusa integrals and the proof of [SV17,
Proposition 15.3.6], where it is shown that this integral has the form:

I@)= [ Fj0l T]IA,

i
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where, denoting by D the complement of the open Pg-orbit in X:

— the f;’s are Po-eigenfunctions (hence regular and non-vanishing away from
D), and the exponents s;(w) are such that the product [[;|f;|*) has
eigecharacter w;
— F is the pull-back of a finite function (i.e., generalized eigenfunction) on
(F)", for some r, via an r-tuple of “local coordinates” (g1, ..., gr), which
are rational functions whose divisor is contained in D;
— () an algebraic volume form whose divisor is contained in D.
As in [SV17] Proposition 15.3.6], we now refer to [Igu00] and [Den85| p.5]
for the fact that such an integral has rational continuation with linear poles. (Il

8.2. REMARK. For symmetric spaces, an alternative proof of rationality and
linearity of the poles was given by Blanc-Delorme in [BDO8| Theorem 2.8(iv) and
Theorem 2.7(i)].

Composing this with the map Reg of (B4) we now get, for every A €
Homp,, (S(X§),0), a rational family of Pe-morphisms:

Ay 8(X) > o @w e,

whose specialization at w = 1 (if regular) is the operator A.
If we let A vary, this defines a rational family of Pg-morphisms from S(X) to
the coinvariant space S(X§)o,gse; recall that

S(X&), = Homp, (S(X§),0)* ® 0.
Inducing from Pg, and forgetting the isomorphism (83]), we land in the coinvariant
space:
S(X(g, 5@)0 = (HOIHL@ (S(X(I_j, 5@), o® 5@)* ® I@U,
This completes the definition of the map Rg ., and the definition of Tg , is com-
pletely analogous. Notice that Tg , factors through the quotient S(Xeg) — S(Xe)s,
and essentially coincides with the standard intertwining operator Ig- (o) — Io(0):

S(Xe)s = Homp, (S(X§),0)* @ Io-0
— S(X5,60)s = Homp, (S(X&, 00),0 ®d0)* ® Ieo.
Notice that Homp (S(X§),0) = Homp, (S(X§) ® do,0 ® do) canonically, and
the non-canonical difference between S(X§) ® do and S(X§, do) accounts for the

non-canonicity of the choice of measure on Ug for the intertwining operator.
We have the following:

8.3. LEMMA. For o in general position (in a family of irreducible representa-
n

tions of Le twisted by elements of X5 ) the representation Ig- (o) is irreducible
and the operator Te » 15 an isomorphism.

PrROOF. Indeed, this follows from the fact that Xé:unr contains “Pg-regular”
characters — i.e. characters which are non-trivial on the image of all coroots corre-
sponding to roots in the unipotent radical of Pg (s. the proof of [SV17] Corollary
15.3.3]) — that To , is always non-zero (wherever defined), and that the points
of reducibility are contained in divisors of the form {oy ® w},, where oy is some
fixed point in this family and w varies along unramified characters of Lg satisfying
Wl (pxy = 1 for some root  in the unipotent radical of Pg, cf. [Sau97, Théoreme
3.2] and also Lemma [TT:3] later in the present paper. O
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46 8. DEFINITION AND REGULARITY OF EISENSTEIN INTEGRALS

Hence, the inverses of the operators T , form a meromorphic family of oper-
ators, and we can define the normalized constant terms:

EY, =T oRes: S(X) = S(Xo),.

The normalized Eisenstein integrals are by definition their adjoints:

(8.8) Foo : S(Xe)s — C*(X).
8.4. LEMMA. The normalized constant terms Eé,a (equivalently, the normalized
Fisenstein integrals Eg ) are rational in o, with linear poles.

ProOF. The rationality and linear poles of Rg, Te follow from standard Igusa
theory, as we recalled in Lemma [8Jl The fact that the inverse Tg L of the standard
intertwining operator has linear poles is also well-known, but we recall an argument
here, for the sake of completeness. By abuse of notation, we will denote by Tg the
standard intertwining operator Ig-(o) — Ig(o), depending on a choice of Haar
measure on Ug. We also denote by Tg- the corresponding operator when the roles
of Pg and Pg- are reversed.

The composition Tg- o Tg : Ig-(0) — Ig-(0) is a scalar (o), varying ratio-
nally as o is twisted by unramified characters of Pg. If that scalar is zero, that
representation is reducible. (This is [Cas| Theorem 6.6.2], which is stated for o
cuspidal, but the argument in this direction works for any o.) As we saw in the
proof of Lemma [R:3] the induced representation is reducible along linear divisors.
Thus, the zeros of v and the poles of T L are linear divisors. ([l

Now we project normalized constant terms to discrete and cuspidal quotients
of §(Xe)s, to obtain the morphisms used in the previous section:

—disc

Eg,disc eC (Xé ,HOHlG(S(X),.,?@)) 5

—~cusp
Eé),cusp eC (Xé 7H0mG(S(X)a ‘C@)) .

Linearity of the poles and their role in the Plancherel formula imply that the poles
actually do not meet the unitary set:

8.5. PROPOSITION. Normalized Fisenstein integrals are reqular on the subsets
of unitary representations, i.e.:

—disc

E(S,disc el (X@ ,HOIHG(S(X),Z@)) )

and:

——cusp

B oy €T (Xo s Homa(S(X), Lo))

PROOF. Theorem shows that for every ® € S(X), and every L?-section
o — v, of Lo, the inner product:
<E(>~I3,disc¢)’ U>U do
—disc
(see (I9) for the unitary structure on %) is integrable over X5
Dividing by a Haar measure do, and assuming that v is actually regular, we get
a function o — <Eg dise D v>a which has linear poles. By Lemma [3.5] these poles

—disc

cannot meet the unitary spectrum X(E) . O
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9. Goals

This part is technically at the heart of our proof of Paley—Wiener theorems.
The goal here is to prove Theorems[0.1] 0.2} before we formulate them, let us explain
what we will mean by saying that for associates ©,Q c Ay, and w € Wx(Q,0), a
morphism:

(9'1) S(X@)cusp - COO(XQ)cusp

is “w-equivariant with respect to the cuspidal center” 3°"P(X§) (§6.4), and simi-
larly that a morphism:
%(X@)disc - %(Xﬂ)disc
is “w-equivariant with respect to the discrete center” 345¢(X§) (§5.3).
Conjugation by w induces an isomorphism between the Levi Lg and the Levi
Lq (unique up to conjugacy), and hence between their unitary duals. It is not a
priori clear that this preserves the discrete and cuspidal subsets:
—disc = —=disc
e —4a
——cusp ——Ccusp
X§ X5
however this will be implicit (and hence will be proven) whenever we say that
a morphism of the form (@) is “w-equivariant”. Recall from §6.41 B3] that the
cuspidal, resp. discrete center é)'f Xo can be identified with regular, resp. smooth
—Cusp —dli1scC

functions on X§ , resp. X5 . Thus, w induces isomorphisms:

$R(XE) S 5 ()

—

and:
30 (XE) = e (xf),
and by saying that the map is “w-equivariant” we mean with respect to this iso-
morphism. Notice that, by duality to S(Xgq), the space C®(Xq) decomposes as a
direct sum:
COO (XQ) = COO(XQ)cusp @ OOO(XQ)noncuspv
and the action of 3°"*P(X%) on C®(Xq)cusp is defined by duality in such a way

that it extends the action on S(Xq)cusp: for Z € C[Xé;usp] we let ZV denote the
dual element: ZY (7)) = Z(7) and we define Z - f, for each f € C®(Xgq)cusp by the
property:
| ezpn-] @ oy
Xa Xa

for all ® € S(Xq)cusp-

Notice that £ could be equal to ©, but w # 1, in which case the isomorphism
between centers is not the identity map.

Now we state the three main theorems of scattering theory, which will be proven
in the following sections.

9.1. THEOREM. Consider the composition ifoig, restricted to L*(Xe)disc. It is
zero unless ) contains a Wx -translate of ©, and it has image in L? (XQ)cont unless
Q is equal to a Wx-translate of ©, in which case it has image in L*(Xq)disc. In
the last case, it admits a decomposition:

® _
Lo © [’9|L2(X(—))disc = 2 Sw,
weWx (Q,@)
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where the morphism:
Sw : LZ(XG)disc - L2(Xﬂ)disc
s w-equivariant with respect to 3diSC(X@L)), and is an isometry.
The operators Sy, restrict to continuous morphisms between Harish-Chandra
Schwartz spaces:
Sw %(Xe)disc - %(Xﬂ)discv
and they satisfy the natural associativity conditions:
(9.2) Suw 0S8y = Swuw forweWx(Q,0),w € Wx(Z,Q).
(In particular, since S; =1, they are topological isomorphisms.)

The theorem is part of the main L?-scattering theorem [SV17, Theorem 7.3.1],
[Del18l Theorem 6], except for two assertions: First, the condition on equivariance
with respect to 3diSC(X(’:j); indeed, the condition used in loc.cit. to characterize the
scattering maps S, was w-equivariance with respect to the action of A’X7@ (via
w: Axe — Axq on L*(Xq)), where A’X’@ denotes the image of the F-points of
Z(Le) via the quotient map: Z(Lg) — Ax.e. This condition is slightly weaker
than 34s¢(X[)-equivariance. Secondly and most importantly, the fact that the
scattering maps (continuously) preserve Harish-Chandra Schwartz spaces. Both of
these will be proven in Section [T1]

9.2. THEOREM. Consider the composition ef, o eg, restricted to S(Xe)cusp- It
is zero unless Q contains a Wx -translate of ©, and it has image in C*°(Xq)noncusp
unless 2 is equal to a Wx -translate of ©, in which case it has image in C*(Xq)cusp-
In the last case, it admits a decomposition:

%
€q © €@|S(Xe)cusp = 2 Sw,
weWx (€2,0)

where the morphism:
Sy : S(Xe)cusp g C:D(Xﬂ)cusp

is w-equivariant with respect to 3"P(X§).

If we denote the subspace of C*(Xq)cusp sSpanned by the images of all operators
Sy by ST(Xq)cusp, as O varies and w € Wx (2, ©), then there is a unique extension
of the operators S, to the spaces ST, i.e.:

Sw : S+(X@)Cusp - S+(XQ)cusp
satisfying the natural associativity conditions:
(9.3) Sw 0SS, = Sy forweWx(Q,0),w € Wx(Z,Q).

Both types of scattering operators have spectral expressions, which should be
seen as the analogs of Theorems [7.4] and to formulate them, let w e Wx (9, 9)

—disc
and denote by w*.%, the pullback of the vector bundle %, to Xk under the
—disc —disc
isomorphisms afforded by w: X§ — X5 . We will not distinguish between
—disc
sections of Homg (Lo, w* %) over X§  and sections of Homg ((w™!)* Ly, Z0)
—disc

over X{; ; this allows us to compose such sections for a sequence of maps:

—disc —disc —disc

ST A 7
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50 10. EIGENSPACE DECOMPOSITION OF EISENSTEIN INTEGRALS

9.3. THEOREM. For each w € Wx (2, 0) there is a rational family of operators,
with linear poles which do not meet the unitary set:
—disc

yw el <Xé ,Homg(,f@,w*,fg)) y

preserving the cuspidal direct summands Lo, Lq, such that the scattering operators
of Theorems and admit the following decompositions:

o Foranyw » 0, if f € S(Xo)cusp admits the decomposition (IT4) then:

(9.4) S, f(x) = L)/% F* L (z)do.
o If fe L*(Xo)disc admits the decomposition (I.3), then:
(9.5) Swf(z) = fAdm S f (z)do.
X

The operators .7, satisfy the natural associativity conditions:
(9.6) S ©Fw = Fww forweWx(Q,0),w € Wx(E,Q).

9.4. REMARK. The operator wal = .71 is a rational section of morphisms:
Zove — Lo, as o varies in )/(\édlsc, and hence its adjoint .*_, is a rational

section of morphisms: ,,%:, — :229\;;
The spaces Lo, — ZLow-1, are considered as subspaces of C*(Xg) and
C®(Xq), respectively, by duality with S(Xg), resp. S(Xq) — recall that f7 €

—_—

Zo,o-

s

The proofs of the above theorems will occupy the rest of this part.

10. Eigenspace decomposition of Eisenstein integrals

Recall that the (discrete part of the) normalized constant term gives the mor-
phisms (L9):
" /zdisc
E@,disc : S(X) - C(Xe 736)-
If we compose with the equivariant exponential map eq (for some Q c Ax), we get
morphisms which we will denote by Eg’giscz

—disc
(10.1) Eg’ﬁisc 1= B} e 00 : S(Xq) > C(X§ | %)

These morphisms express the asymptotics, in the Q-direction, of normalized Eisen-
stein integrals. Their projection to the cuspidal part (i.e. the projection from %o
to Le) will be denoted by E§* .

We notice that we have an action of a torus Ay o on S(Xq). If we fix 0 €
—disc

X(E) , any map:
(10.2) S(Xq) > Lo

(= the fiber S(Xg)rdisc of Zo over o) is finite under the Ax o-action, because
Zo,o if of finite length, but we will prove a stronger statement which takes into
account the variation of o. This has nothing to do with the Eisenstein integrals per
se, and in fact we want to apply it to their derivatives as well (in order to prove that
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the normalized constant term of the Harish-Chandra space gives smooth sections
over the spectrum), so we will discuss it in a more general setting.
We have already defined in §7] the sheaf Homg(S(X), %) which by Lemma

—disc
is a coherent, torsion-free sheaf over ch)(c ; recall that its sections over an open

subset U are, by definition, G-morphisms: S(X) — C[U, %] — cf. also Remark
By the same argument as in Lemma [73] the sheaf:

M = Homg (S(XQ),X@)

is also coherent and torsion-free. .
Let us fix a connected component Y < Xé . We let:

(10.3) My = C (Y,Homg (S§(Xq), ZLo)) = Homg (S(Xq),C(Y, L))

denote the rational global sections of this sheaf over Y — they form a finite-
dimensional (by coherence) vector space over the field Ky := C(Y).

This vector space carries a smooth Ax g-action via the action of this torus on
S(Xgq). Thus, over a finite extension of Ky, it splits into a direct sum of generalized
eigenspaces. We will describe the eigencharacters.

Let T denote the unitary dual of the “universal” split torus 7', defined as the
maximal central split torus of the Levi quotient of the minimal parabolic of G.
In what follows, characters of a Levi Lg are considered as characters of T via
the embedding of the minimal parabolic into the parabolic Pg. Thus, we have
restriction maps:

—_-unr —~ unr ~
(10.4) Xéc — Lor — T,
and recall that there is also a quotient map:
(10.5) Z(La)” — Ax.q,

whose image at the level of F-points we are denoting by A’X’Q.
For a (not necessarily unitary) character x € T¢ and an element w € W, it may
—unr

happen that for all w e Xéc the restrictions:

v (XUJ) |Z(LQ)O
factor through the quotient map (I0.35]). For example, this is the case if y arises as
the restriction of a character in (I0.4), and w € Wx (£, ©). We will then write:
o)l

X,Q
and whenever we use this notation we will implicitly mean that the characters do
factor through A/X,Q' This is also implicitly assumed for the characters that appear
in the following:

10.1. PROPOSITION. Choose a base point o € Y, and use it to construct the

—unr

~ ——unr
finite cover: X§  swr—o@weY. Let Ky = C(X§ ) be the corresponding
finite field extension. Then all eigencharacters of AiX,Q on My are defined over
Ky
_ ——unr ~
More precisely, if t : Lg — C[X§ | < K denotes the tautological character

0

a — (w+— w(a)), there is a character x € Tt, with restriction to Z(Leg)" equal to
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52 10. EIGENSPACE DECOMPOSITION OF EISENSTEIN INTEGRALS

the central character of o, and a subset W1 < Wi, \W such that the operator:

(10.6) [T G-"6d)

weWy

annihilates My ®ic, Ky, for every z € A/X,Q'

We used t for the tautological character of Leg into I%f, in order to reserve the
symbol t for the tautological character:

t: Ay o = ClY]* c Ky,
a — (0 — xs(a)), where x, denotes the central character of o.

PROOF. Since %y is (non-canonically) a direct sum of a finite number of copies
of Ig-(e) (the sheaf over Y whose local sections are regular sections o’ — ¢(o’) €
Ig- (")), it is enough to prove the proposition for the module:

My = Homg (S(Xq),C(Y, Ig-())) .
We have:
My ®xc, ’%Y c My := Homg <S(XQ>7(C()/(5<C lo-(0® .))) ’

therefore it is enough to show that MY, decomposes into a direct sum of generalized
eigenspaces as in the statement of the proposition.

We can represent o as a subrepresentation of a representation parabolically
induced from a supercuspidal 7, and then Ig- (0 ® w) becomes a subrepresentation
of Ip(T®w), where P is a suitable parabolic, and 7 is a supercuspidal representation
of its Levi quotient L.

Notice that:

Home (S(Xq), Ip(r ® w)) ¥ Home (Ip(7 ®w ™), C*(Xg)) ~

~ Homp,, (IP(?@)wil)Q*an(Xé)) )

where we recall that the index - denotes normalized Jacquet module with respect
to the parabolic P, .

The Jacquet module Ip(7 @ w™1)q- is Z(Lg)-finite, and it is annihilated for
every z € Z(Lg) by the product:

(2 = (w)"H(2)) s

we(Wro\W(L—Lq)/WL)

(corresponding to its canonical filtration in terms of P, \G/P-orbits), where W (L —
Lq) denotes the set of elements w € W with “L < Lg, and ., is the central char-
acter of 7. (We have implicitly chosen here a maximal split torus and hence a class
of standard Levis, for the Weyl group to act on them.) Moreover, for w in general
position, the statement will remain true if we restrict the product to the subset
(Wr \W(L — Lq)/Wr)* of those cosets for which the restriction of elements of

v(x+ X&) to Z(La)° factors through the quotient (I0.H); indeed, Z(Lgo)? acts on
C* (X&) through the quotient Z(Lg)? — A'y o, and therefore this has to be the

case for any generalized Z(Lg)%-eigenspace of the Jacquet module Ip(7 ® w™!)q-
on which a morphism Ip(7 @w™!)q- — CP(X§) is non-zero.
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Notice that at the step (#) we have used a duality which inverts characters of
A’y o, therefore the module Homg (S(Xq), Ip(T ®w)) will be annihilated by:

I1 (z =" (xrw)(2)) -

71.)€(VVLQ \W(L*)LS})/WL).

(We could alternatively have used second adjointness from the beginning, to analyze
the A’y o-action in terms of the Jacquet module Ip(T ® w)q.)

This essentially completes the proof of the proposition, except that the propo-
sition was formulated with w an element of Wi ,\W (instead of W ,\W /W) and
X a character of T' (instead of x,, a character of the center of the Levi L of P); this
formulation was chosen for uniformity, since P and L depend on choices, and the
component of the spectrum under consideration. We may arrive at the statement
of the proposition by choosing representatives in Wi, \W, and choosing a character
x of T which restricts to the character x, of the maximal split torus in the center
of L. |

10.2. REMARK. As we have seen in the last sentence of the proof, there is
some choice involved in the subset W7 < Wy, \W. Notice, however, that for
cosets represented by elements wx € Wx (2, ©) there is no choice involved, since
WrowxWre = Wi, wx. Moreover, for those elements we have, by construction:

(10.7) “(xw) = the Lg-central character of *(ow)
which, automatically, factors through A’X’Q.

We can think of the eigencharacters described in the last proposition as corre-
—— / .
spondences Y --» AX,QC'

—unr

(10.8) we X%

T

cQuweYr i(xw |A, EA/X,Q(C'
As a corollary of the proposition:

10.3. COROLLARY. The space My Qx, Ky decomposes in a direct sum of
generalized eigenspaces for the action of A/X,Q7 with eigencharacters ¥ (xt) as in the
statement of Proposition 0.1

PROOF. Indeed, choose a finite number of elements of A’y ¢, so that they distin-

guish the distinct characters “(xt). The space My ®xc, Ky decomposes in a direct
sum of joint generalized eigenspaces of those elements, and by the proposition those
have to be generalized eigenspaces for A/X,Q' |

10.4. Derivatives. Now recall from 4] that % carries a flat connection,
which depends (in a very mild way) on choosing a base point 2z € X. The resulting
action of D(Y) (the ring of differential operators on Y') on elements of the space:

My = Homg (8(Xa), C(Y, Zo))

does not preserve G-equivariance, but it does preserve eigencharacters up to mul-
tiplicity:
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LEMMA. Let E € My and let Wg < Wy, in the notation of ([I0.G), be any
subset such that the corresponding operator:

Pp(z):= [] (z="(d(=))
weWg
annihilates E, for every z € Aly q.
Let D € DY), so DE € Hom (S(Xq),C(Y,.%)). Then a power of Pg(z)
(depending only on D) annihilates DE, for every z € A’y o.

PROOF. For every fixed z, the polynomial:

Pp.(z)= [] (@="(d)(=)
weWg
is divided by the minimal polynomial of the operator z acting on E. The ring D(Y)
acts on polynomials with coefficients in Iy, simply by acting on the coefficients. If
D e D(Y) is of degree n, then the commutator:

[D, P
lies in the ideal generated by Pg .; therefore, Pgtl(z) = Ppt1(z) annihilates DE.
O

10.5. Weak tangent space of a family. In order to obtain more precise
information about the characters “(xt) that appear in the annihilator of Eisenstein
integrals and their constant terms, we need a way to encode representation-theoretic
information on families of representations. This information will be a “Lie algebra”
version of the usual notion of supercuspidal support.

Recall that an irreducible representation ¢ of G is a subquotient of a parabol-
ically induced supercuspidal representation 7 of a Levi subgroup L, and the pair
(1, L) is called the supercuspidal support of o. It is well defined modulo G-conjugacy
(we think of 7 as an isomorphism class of representations), and the set of G-
conjugacy classes of such pairs has a natural orbifold structure. Notationally, we
can also write (7, P) when P is a parabolic with Levi subgroup L.

Let us denote by SPg the space of supercuspidal pairs (7, L) and by SC¢ the
set of their equivalence classes, which we may consider either as an orbifold or (by
invariant-theoretic quotient) as an affine variety. The fiber of SPg over a fixed L
is acted upon with finite stabilizers by the character group f/(‘é“r, and therefore the
tangent space of any point on the fiber can be canonically identified with the Lie
algebra of [A/Enr.

A choice of parabolic P with Levi L gives an embedding I:&m c A(‘ém, where A
is the universal Cartan, and hence of the Lie algebra [ of the former into the Lie
algebra af = Hom(A,G,,) ® C of the latter. For a pair z = (7,L) € SPg we will
call weak tangent space WTg . the image of [§ in the set-theoretic quotient ag/W.
It does not depend on 7, neither on the choice of parabolic P.

Any two points in S Pg in the preimage of a point in SC¢ have the same weak
tangent space, thus this notion descends to the orbifold SCg. Moreover, if by
“tangent space” T, of a point z on an orbifold we mean the quotient of the tangent
space of a preimage on the covering manifold by the finite stabilizer, there is a well
defined map:

T, — WTG,z

at every x € SCg.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



10. EIGENSPACE DECOMPOSITION OF EISENSTEIN INTEGRALS 55

Now, consider a set Z of finite-length representations of G. Let Z' be the
set of isomorphism classes of irreducible subquotients of elements of Z’, and let
SCq(Z) € SCq denote the set of supercuspidal supports of elements of Z'. Then
at every point x € SCg(Z) we have a well-defined subset:

WTGJ(I) C WTGJC C QE/W,

defined as the union of the weak tangent spaces at x of all embedded suborbifolds:
S < SCq(Z) € SCq. We use “embedded suborbifold” to refer to the image in SCq
of a smooth embedded submanifold of a finite (smooth manifold) cover of SCg.
Equivalently, WTg ,.(Z) denotes the set of images in the “tangent space” T, of the
derivatives at zero of all smooth one-parameter families:

7 (—e,6) - SPg

with [v(0)] = = and [y((—e€,€))] = Z’, where [e] denotes the quotient map SPg —
SCq.

The union of the spaces WTg ,(Z) over all z € SCq(Z) will be called, for
brevity, the “weak tangent space of 7”7 instead of “weak tangent space of the su-
percuspidal support of Z”, and denoted WT(Z).

In what follows, we will apply these notions to Levi subgroups, instead of the
group G. Notice that for a Levi subgroup L, the corresponding notion of weak
tangent space for SCp, gives a subset of af/W,, where W, is the Weyl group of L.
If L = Lq for some Q ¢ Ax we will be using the index Q instead of Lg.

Let < Ax. Let J be a family of G-morphisms {S(Xq) — 7}r, where 7
varies over a set Jy of G-representations of finite length. Fach such morphism is
equivalent, by second adjointness, to a morphism:

(10.9) S(X&) — ma,

where 7mg denotes the Jacquet module of 7w with respect to Po — also of finite
length. Let Z denote the union, over all w € Jp, of the images of the maps (10.9).
We define:

SCq(T) := SCq(T)
and

WTQ(j) = VVTQ(I)7

the latter whenever SCq(J) is a suborbifold of SCyq.
These definitions can also be given without appealing to second adjointness, of
course; it suffices to dualize the morphisms:

T — COO(XQ)

and to use Frobenius reciprocity, as in the proof of the preceding proposition.
—disc

In the notation of the previous subsection (Y < X§ | etc), an element E of
Homg(S(Xq), C(Y,. %)) will be considered as a family J as above by considering
the evaluations of its points wherever they are defined, and we will also be using
SC(E),WT(FE) to denote the supercuspidal support, resp. weak tangent space, of
this family.

In this language, the proof of Proposition [[01] shows:

10.6. COROLLARY. Let Y < Xédm be a connected component and let E €
MY = HomG(S(XQ), (C(Y, f@))
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Then:
(10.10) SCq(F) c U [¢ (gg . )/(g;nr)],
geG(z,Lq)
(10.11) WTo(BE)= | [“(e%ec)
weW'c W, \W
where:

o x is a supercuspidal pair for Lg (i.e. x € SPg);
G(z,Lq) denotes the set of elements in G carrying the Levi L of x into
LQ;

—unr
a},@’c denotes the Lie algebra of Xé(c , which can also be identified with

the Lie algebra of ‘4/X7\@)<C (hence the notation), inside of af;
[e] denotes classes in SCq, resp. WTq;
o W' denotes some subset of the given set.

PROOF. The proof of the corollary is essentially identical to that of Proposition
[M0.1] if we replace the action of Z(Lq) (or its quotient A’y ) by that of the Bern-
stein center 3(Lg). The reader should notice here that, although we are going to
use the structure of the Bernstein center of Lq as the ring of polynomial functions
on the variety of supercuspidal supports, the present corollary will only be used in
the proof of Proposition [2.1] when  # Ax; thus, we are not applying a circular
argument when reproving the structure of the Bernstein center in §16.1], since one
can establish it inductively on the size of the group.

In the notation of the proof of Proposition 0.1l with o a base point in Y,
choosing a basis for Homy, (S(X§), 0)aisc we can identify the bundle % ,ge over

—unr

Xéc with a subbundle of Ip(r ® )", for some r, and hence E with a rational
section of the bundle:

(10.12) Home (S(Xq), Ip(r ® o)7).

At each point w where it is regular, we get a specialization E,,, whose dual, E
is an element of:

Homg(Ip(F @w )", C*(Xq)) = Homy,,(Ip(F @ w15, C*(X5)).

The Lg-supercuspidal support of the Jacquet module Ip(7 ® w™!)q- consists of
the classes [(“(F®w™!),”L)], where w ranges in Wr,\W (L — Lq)/Wp.

If we recall that 3(Lg) is the set of regular functions on the variety SCq, each
such w determines by pull-back a character:

tw :5(LQ) — /Cy,

and hence as in Proposition [[0.1land Corollary 0.3, £ decomposes into its general-
ized eigen-components with respect to the 3(Lg)-action, with those eigencharacters
ty:
(10.13) E= ) E",

weR

where by R we denote a minimal subset of representatives R < W, such that the
corresponding generalized eigensummands F" are non-zero.
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Thus, there is a (nonempty) Zariski open subset U < X ézm such that for w e U
the supercuspidal support of Eq, : S(X§) — Ip(T @)}, is precisely equal to the
set of classes [(* (T ®w)," L)] with w € R.

It is easy to see that the supercuspidal support of Eq . at all points where it

—unr

is defined is contained in this set of classes. Indeed, if E is regular at w € Xéc ,
and we group together the summands E* of ([I0I3) for which the specializations
of the corresponding eigencharacters t,, coincide at w (equivalently, the classes
[“(T ®w),™L] coincide), then the elements of this coarser decomposition of E are
also regular at w, and we get the same set of supercuspidal supports. (However,
the summands could vanish at some points, which explains why “precisely equal”
was replaced by “contained”.)

The corollary now follows. ]

10.7. Generic injectivity. We recall the notion of “generic injectivity of the
map: a%/Wx — a*/W” in the language of [SV17, §14.2] (for brevity we will just
say: “generic injectivity”), where a% = Hom(Ax,G,,) ® Q < a* = Hom(B,G,,) ®
Q. We will also introduce a stronger version of this notion, to be termed “strong
generic injectivity”, and will show that it holds for symmetric spaces.

For each © < Ax we let:

a;(,@ = HOHl(AX7@7 Gm) ® Q =~ Hom((Xé/)unr, Gm) ® Q7
which is embedded into a% = a% by the map induced from:
(Xé)unr _ (Xé)unr.
We say that X satisfies the condition of generic injectivity if the following holds:

Whenever the action of an element w of the full Weyl group W
on a* restricts to an isomorphism:

a?{,@ — a?{,ﬂ
(for any ©,Q < Ax, obviously of the same order, and possibly

equal), there is an element of the little Weyl group W which
induces the same isomorphism.

We will say that X satisfies the strong generic injectivity condition if the fol-
lowing holds:

Whenever an element w of the full Weyl group W on a* restricts
to an injection:
C‘}k(,e - C‘}k(,Q
(for any ©,Q < Ax, obviously with |Q2| < |©]) there is an ele-
ment wyx € Wy such that:
(10.14) wx|u>x)<(’9 :w\a;@.
Remember from §2] that we assume throughout that the strong generic
injectivity condition to hold for X, even though we will for emphasis repeat it
in the main results of this subsection.
The condition holds for all symmetric varieties, essentially by [Dell8| Lemma
15]. Together with the wavefront and strong factorizability assumptions (both of
which hold for symmetric spaces), it guarantees the validity of the full Plancherel
decomposition [SV17, Theorem 7.3.1], [Dell8, Theorem 6].
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10.8. LEMMA. (1) If X is a symmetric variety, then it salisfies the strong
generic injectivity assumption.
(2) If X satisfies the strong generic injectivity condition, the element w;(l
in the definition of this condition can be taken to map the set of simple
spherical roots ) into ©.

Proor. By [Dell8, Lemma 15(iv)], for every Z € a% o there is an element

wyz € Wx such that:
wZ(Z) = w(Z)

Since Wx is finite, an element wy € Wx will be equal to wz for a Zariski dense
set of elements of aX o but then wx will actually work for all elements of aX o

The second claim follows from known root system combinatorics: Thlnkmg of
u’)"(’@ and a% X o as the orthogonal complements, in a’%, of the sets ©, resp. , for any
element wy € Wx which maps a’)“(’@ into a;g we necessarily have that w}lﬂ is in
the linear span of ©. The set of elements in Wx which satisfy (I0.14) is a union of
Wxo,\Wx /Wx,-cosets. (It is actually a single coset, but that doesn’t matter here.)
If we choose a representative wy of minimal length for one of these cosets, then:

wx© >0 and wy'Q > 0.

The second statement implies that w}lQ belongs to the positive span of O, since
it is already known to belong to its linear span; the first statement, then, implies
that it actually belongs to ©. ]

10.9. REMARK. The strong version of the generic injectivity condition will only
be used to prove that “scattering maps preserve cuspidality”, cf. Proposition 2.1l
This result has been proven in a different way for symmetric varieties by [CD14],
relying heavily on the structure of these varieties. In each specific case, the strong
generic injectivity condition is easy to check once one knows the dual group of the
spherical variety; of course, it would be desirable to have a proof of this property
in some more general setting.

For the following lemma we identify af’;{yﬂ, as we did before, with a subspace of
ad := Hom(Pg,G,,) ® Q < a*; on the other hand, we have a restriction map from
characters of the Borel B to characters of the center Z(Lg) of the Levi of Py ; we
will write:

Centg : a* — af ~ Hom(Z(Lg),G,) ® Q
for the corresponding map.
10.10. LEMMA. Assume the strong generic injectivity condition for X. Then:
(1) For w e W we have ™ (a}‘( G,C) C a% ¢ iff w is equivalent in W /Wy

to an element wx € Wx with w;(lfl c 6.
(2) For wx € Wx(2,0) and w e W we have:

Centg o wx| = Centg o w|
X,0,C X

iff w=wx in Wr,\W.

e,C

We prove the lemma below. If the meaning of the lemma is not immediately
obvious, the following corollary has a representation-theoretic content related to
supercuspidal supports, more precisely their “weak tangent spaces”. Recall that
we denoted by t: A’X7@ — Ky the tautological character.
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—disc
10.11. COROLLARY. (1) Let Y = Xk be a connected component, and
define My as before. Then the only components on the right hand side
of (IOII) which are contained in a% g ¢ are those indexed by classes of
elements wx € Wx with w)_(lﬁ c O.
(2) The eigencharacters “t, w € Wx (€, 0), appear in (I00) with multiplicity
one. The same holds if we replace A’X’Q by any subgroup of finite indez.

Strictly speaking, the discussion up to this point implies that the eigencharac-
ters corresponding to elements of Wx (€2, ©) appear with multiplicity at most one.
However, scattering theory implies that they do appear — already in the asymp-
totics of Eisenstein integrals. We omit the details, since we will encounter this point
later.

Proor or LEMMA [I0.I0l For the first statement, we notice that if (a’)"(’@’c)

c aﬁ‘(ﬂ,c then, by strong generic injectivity, there is a wx € Wx such that w)_(1 Cw
fixes all points of a}‘(’@.

However, it is known that a% g contains strictly Pg -dominant elements [SV17,
Proof of Corollary 15.3.2], i.e. elements that are positive on each coroot correspond-
ing to the unipotent radical of Pg. Therefore the only elements of W which act
trivially on it are the elements of Wy, . Hence, w € wx W, . Since wx takes a}‘(’@
into a’)"(’g, its inverse must map 2 into ©, by properties of root systems.

For the second statement we notice that in terms of an orthogonal W-invariant
inner product on a*, the operator Centg represents the orthogonal projection onto
a&. On the other hand, wX|a§ o already has image in a% o ¢ < a ¢, therefore
the only way that o

Centq o wX‘a;"(,(_)’C = Centg o w|a§7®,

(o]

is that w\a§ oc also has image in a},ﬂ. By the first statement, this implies that w

is equivalent to wx in Wr,\W. O

Combining Proposition [0l with Corollary [0.11] and observing that the eigen-
characters “t, w € Wx (2, ©), are already defined over Ky, we arrive at the following
strengthening of Corollary [10.3]

10.12. PROPOSITION. Assume the strong generic injectivity condition for X.
The A’y o-module My admits a decomposition:

(10.15) My= H My & M,

’u)EWx(Q,@)
where MY is the (honest) eigenspace with eigencharacter “t, and the space M5
contains none of these eigencharacters.

Of course, this proposition is vacuous unless © ~ .

10.13. Polynomial decomposition of morphisms. We now return to the
torsion-free sheaf
m = HOIIIG (S(ng),f(—)) 5

—disc

whose rational sections over a connected component Y < X é we denoted before
by My . We also denote by 9ty the restriction of 9t to the connected component
Ye.
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Let us discuss to what extent the decomposition of Proposition extends
to a decomposition of this sheaf — the goal being to determine the poles that might
get introduced when decomposing an element of My as in (I0IE). Our approach
is similar to [DH14l Proposition 2], based on the theory of the resultant, which in
turn was inspired by the proof of Lemma VI.2.1 in Waldspurger [Wal03], except
that by considering all elements of A’X,Q simultaneously we can eliminate some
unnecessary poles.

Namely, let W1 be as in (I0.6]), and consider only those pairs wx € Wx (12, 0),
w € Wy for which the equality:

(10.16) Oy, = D)y s

represents a divisor in X(_L)(C . Notice that not all pairs (wx,w) as above represent
a divisor. For example, if © = Q = ¢F so that Wx (Q,0) = Wx, and w = 1, only
the pairs (wx,1) with wx a reflection in Wx represent a divisor. The images of

——unr

these divisors under the quotient map X, éc Sw— o ®uw € Y¢ are divisors on Y,
and we let U denote their complement.

10.14. PROPOSITION. Assume the strong generic injectivity condition for X.
The restriction My of the sheaf M = Home (S(Xq), Lo) over U decomposes as a
direct sum of subsheaves:

My= O ML o e,
weWx (97@)
where My; denotes the subsheaf of A’y o-equivariant morphisms with respect to the
map w: Ay g — Ay .

10.15. REMARK. We can be more precise about the poles of the decomposition
([I0IH). Let E be any rational section of My (i.e. E € My), and for simplicity let

—unr
us consider its pull-back to X(f)(c (to be denoted by the same letter). Let f be any
function on Y whose scheme-theoretic zero locus contains the divisors ([II6); for
example, we could take f to be defined by any element z € A’X’Q as follows:

F=TT>6DE) - (D)),
where the product ranges over all pairs (wx,w) defining divisors as above. (Both

sides are functions on Xégﬂr.) Then the summands in the decomposition of
f - F have no more poles than F itself.

We will later see (Corollary [[T4]) that for the objects that we are interested in,
namely the normalized constant terms, the poles of the above form where w is also
in Wx (€, 0) actually do not show up.

ProoFr. Clearly, by the previous section, the sheaf 91y admits a direct sum
decomposition into a finite number of eigenspaces for the maximal compact sub-
group of A'X,Q. Each eigencharacter defines a connected component of AiX,Q' We
fix such a component V' and consider My as a sheaf over V¢ x Y. (Elements of
A’y o now restrict to polynomials over V¢.)

Set R := C[V x Y']. The annihilator of MMy in R is the ideal Z generated by the
“minimal polynomials” (I0.G), where z ranges over all elements of A’y . (Clearly,
a finite set of elements generating Afxﬂ modulo its maximal compact subgroup
suffices.)
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The spectrum of the ring R = R/Z has a finite number of irreducible com-
ponents, parametrized by orbits of the distinct factors of (I0.6]) under the Galois

group of the extension (X(f)um/Y). We denote by Z,, the components correspond-
ing to w € Wx (€, 0), and by Z,es the union of the rest of the components; we use
P, Prest for the corresponding prime ideals.

Let YCSing  Y¢ denote the union of the images of all subvarieties given by equa-
tions of the form (I0I6]), whether these equations represent divisors or subvarieties
of larger codimension. For any f € R which is not a zero divisor and vanishes on
Yéing , consider the localization:

My [f~]
which is a sheaf over the spectrum of R[f~!].
Notice that the components Z, < V¢ x Y¢ have no intersection lying over the
complement of Y"¢; therefore, R[f '] is a direct sum of integral domains, and we
have a corresponding decomposition of the identity element:

(10.17) 1= "1y + Lyest,

where 1, € R[f~!]. This gives a decomposition of MMy over the complement of the
zero set of f. Since the only requirement on f was that it vanishes on YZ'"%, we get
a decomposition of My, ysine:

m . _ mw . mrest .
YoNYE e T @ Yenygsine ® Yesygine:
weWx (2,0)

Finally, recall from the proof of Lemma [[3] that 91 = Homg (S(Xq), Zo) is a
subsheaf of a locally free sheaf over Y. A section of .%o defined in a neighborhood
of a subvariety of codimension > 2 extends (uniquely) to this subvariety. Therefore,
the above decomposition of mYC\YCsing extends to the complement of all divisors

contained in YZ™, ie. to U. O

We return to the asympotics of the normalized constant terms introduced in

(I0.I):
—disc

B e = Eé aise 0 €0 : S(Xo) > C(XE ., Lo).
10.16. COROLLARY. Let 2 ~ ©. There is a decomposition:
(10.18) BlGse = D, Fw+ Foubunit,
wEWX(C"),Q)
where all summands are elements of:
—disc

M = HOII’IG <S(XQ), C(Xé ,$@)>

with the following properties:

(1) The operator .7, is an eigenvector of A/X7Q on M; more precisely, it is
w-equivariant with respect to the action of A’ q, i.e. Ax o acts via the
character “t.

(2) The operator Fsupunit has no w-equivariant direct summand with respect
to the action of Aly q, for any w e Wx(Q,0).
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) —disc
(3) The poles of all summands are linear; for each component Y < Xé ,
they are contained in the union of the poles of E§ and the images of
divisors given by equations:

,disc

_w

X (@) = O
for those pairs wx € Wx(,0),w € Wy in the notation of ([I08) for
—unr

which this equality represents a divisor in X@L)

The statements of this corollary will be strengthened in the next couple of
sections, in order to arrive at the results of §9 The notation .#supunis is due to the
fact that, as we will see in the next section using L?-theory, the exponents of these

—disc

morphisms over the unitary subset X§  are “subunitary”.

10.17. Explication of the fiberwise scattering maps. Here we would like
to emphasize here that the fiberwise scattering maps .%,, play the role of “functional
equations” between the normalized Eisenstein integrals. We use the fact that these
maps are equivariant with respect to discrete centers, which is a yet-unproven
statement of Theorem [@.3] because we are not going to use the following result
anywhere.

10.18. PROPOSITION. Let ©,Q be associates, and w € Wx(Q,0). The cor-

—disc

responding fiberwise scattering map %, € C (Xé: ,Homg(.iﬂ@,w*fg)) is the

unique rational family of maps making the following diagram commute (for almost
—disc

aloe X5 )

(1019) S(X@)a',disc

%
*
k

S(XQ)“’mdisc
ProoF. We have 1o f = 1Sy f. By Theorem and (@.3) this becomes:

i . s
JAC“SC FEe odiscf7do = JAdisc Eq wg dise? -1 f7do,
XL XL
e e

and disintegrating over o we get that Fg g disc and FEquwg disc © -7+, must be
equal for almost every o, hence equal as rational functions of o. Using (@.2), the
proposition follows by passing to adjoints. ]

This proof is actually rather indirect, to avoid the discussion of “small Mackey
restriction” of [SV17] §15.5]; it can be inferred directly from this discussion, when
“injectivity of small Mackey restriction” is known (such as in the case of symmetric
varieties).

This result is essentially equivalent to the description of the constant term of
Eisenstein integrals in terms of “B-matrices” and intertwining integrals in [CD14]
Theorem 8.4]; that work can be considered as a qualitative study of these functional
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equations in the case of symmetric spaces, which among other things gives some
results that we prove here without relying so much on the structure of symmet-
ric varieties, such as the fact that “scattering maps preserve cuspidal summands”

(Theorem [O23).

11. Scattering: the unitary case

The unitary asympotics (adjoints of Bernstein maps) were obtained in [SV17],
§11.4] by filtering out the unitary exponents of the Plancherel decomposition. More
precisely, given a (smooth, say) function ® € L?(X) with Plancherel decomposition:

B(x) = L & () (),

then it is known that e is Ax o-finite with only unitary and subunitary ex-
ponents (generalized elgencharacters) for p-almost all w. We recall the notion of
subunitary exponents for a morphism from S(Xgq) to a smooth representation V: it
means that the morphism is Ay o-finite, and the image of its dual: V' — C*(Xg)
has subunitary exponents under the action of Ax , i.e. generalized characters which
are < 1 on A;F(Q (For the definition of A;;Q see §2)

By construction we have:

(1L.1) (D) = L (e52™)"™ (),

T

where (eé@”)unit refers to isolating the part of (e,®™) with unitary generalized
exponents, cf. [SV17], Proposition 11.4.2].

Moreover, [SV17], [Dell8] have proven Theorem restricted to L?(Xe)disc
and with the modification that the condition of w-equivariance with respect to
3diSC(Xé) be replaced by the weaker condition of w-equivariance with respect to
A’y o- In other words,

(11.2) $owlizxe)ae = Dy Sus
weWx (2,0)

with S, being w-equivariant with respect to A, .o
Combining all the above with Theorem [Z.5 and Corollary [[0.16] we obtain:

—disc

11.1. PROPOSITION. Let 0,0 c Ax. For every o € Xk (hence unitary),

the Ax q-exponents of E@ disc @T€ unitary or subunitary.
Let © ~ Q. Consider the operator Fsupunit 0f Corollary 016l For every

—disc

oe X§ (hence unitary) where this operator is defined (regular), the resulting
morphism:

S(Xq) = Lo,
has subunitary exponents.

We hawve:
(11.3) hiof(z) = JA L (2)do

Proor. In the notation of Theorem [.5}

eQL@f f/\dmc eQEG o, dlSCf ( )
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and therefore, by the above, e Eg o disc can only have unitary or subunitary Ax o-
exponents (for almost all 0); hence, the same holds for .Zsubunit-

On the other hand, (IT1]) together with the property of w-equivariance with
respect to A’y o of the maps S, of (IL2) implies that all unitary A’y o-exponents
of e Fo o disc are contained among the exponents of the .7,,’s.

This proves (IT3]), and it shows that -#sybunit only has subunitary exponents.

O

This proves assertion (@.5)) of Theorem[@.3t the scattering operator S, : L?(Xg)
— L?(Xq), i.e. the w-equivariant part of 1o f with respect to the action of Ax e,
is given by:

Suf@) = | o 72 @)

The following proves the assertion on 39%¢(X§)-equivariance of Theorem [T} as-
sertion (@) of Theorem [@3}F and the regularity statement of Theorem The
regularity statement, i.e. the fact that the operators .#,,, and hence also .-#supunit by
Proposition B3] are actually regular on the unitary set, means that the condition
“where this operator is defined” is superfluous in Proposition IT.1]

11.2. PROPOSITION. Let © ~ Q, w € Wx(0,9Q). For every o € Xéilsc where
the operator %, is defined, the resulting morphism:

S(XQ) - Z@,a

factors through the discrete *o-coinvariants S(Xq)ve dise = Zowe and is generi-
cally an isomorphism between Lo w, and Lo . In particular, w induces an iso-

—disc —disc

morphism: X§ = X§
—disc

Thus, S, is a rational section of the sheaf Homg(w* %, Lo) over Xéc . Its
poles do not meet the unitary set, i.e.:

—disc

(114) Yw el (Xé ,Homg(w*iﬂgz,g@)) .

The operators ., satisfy the natural associativity conditions:
S 0 Sy = S forwe Wx(,0),w € Wx(E,Q).

The scattering map Sy 1s w-equivariant with respect to the discrete center
3 (XE).

For the proof of the proposition we will need the following lemma:

11.3. LEMMA. Suppose that T, To are non-isomorphic, irreducible representa-
tions of the Levi quotient of a parabolic P, and that X is a subtorus of the unramified
characters of P containing P-regular characters (i.e. those which are non-trivial
on the image of all coroots corresponding to roots in the unipotent radical of P ).

Then, for w € X in general position, Ip(T1 ®w) and Ip(Ta @ w) are irreducible
and non-isomorphic.

PROOF. The irreducibility statement is Théoreéme 3.2] — notice that
irreducibility of the induced representation is a Zariski open condition [Ren10]
VI1.8.4, Proposition].
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Suppose Ip(11 @ w) ~ Ip(me @ w) for w in some Zariski dense subset X’ of
X, fix such an isomorphism for each such w and denote this representation by .
Without loss of generality, we may assume that the trivial character w = 1 belongs
to X’. From the two realizations of 7, we deduce that its (normalized) Jacquet
module (7,)p with respect to P has an irreducible quotient which is isomorphic to
71 ®w, and an irreducible quotient which is isomorphic to 72 ® w. We will show
that, if w belongs to some fixed open dense subset of X, these quotients have to
coincide.

To see that, let M be the Levi quotient of P, and consider semisimplifications,
to be denoted by [n] (or, alternatively, elements in the Grothendieck group of
admissible representations). We have [11 ® w] < [(7,)p] and [r2 ® w] < [(7,)p] as
representations of M.

Now let (Q, p) be a pair consisting of a parabolic Q < P and a supercuspidal
representation p of its Levi quotient L such that 7 is a subquotient of Ig(p). We
will compute semisimplifications of Jacquet modules of 7, with respect to Q). As
in the proof of [Sau97, Théoreme 3.2], we have, from the two realizations of 7,:

(11.5) [(ro)el = Y, “l(n ®w)mrw-1quls
weW{‘l/I;AE

and

(11.6) [(mo)ol = Y "l ®w)irnw-1qu)-

weW /Wy
wMw~15L
Here, Wy, denotes the Weyl group of M.

Notice that the term of each of the above sums corresponding to the trivial
coset 1Wy, is the semi-simplicifaction of the Jacquet module of 7; ® w with respect
to M n@Q (i = 1,2). If the two irreducible quotients 7, — 7 Qw and 7, — T2®w do
not coincide (i.e. do not have the same kernel), since 71 and 7, are irreducible, that
means that all the irreducible summands of [(71 ® w)ar~¢] should appear among
the irreducible summands of the subsum of ([I.6) with w # 1Wj,.

Let p1 be an irreducible (necessarily cuspidal) summand of [(71)p~g] — so p1®
w is an irreducible summand of [(71 ® w)a~g]. If we assume it to be isomorphic,
for each w € &, to some irreducible (cuspidal) summand of the terms of (I1.0)
with w # 1Wjy, and since X’ is Zariski dense, there is a w € W ~ Wy, a Zariski
dense subset X" < X’ and an irreducible summand p of “[(72) a1 ~w-1Qw] With

p1OwW =~ p @“w

for all w e X”.

Let wg € X”, so that the central characters of p; ® wy and ps ® Ywq coincide.
Thus, the restrictions of w/wy and “w/"wy to the center of L have to coincide for
all we X”. Since X" is Zariski dense in X, the restrictions of all w and “w to the
center of L have to coincide, for all w € X. But, having assumed that X contains
P-regular characters, this is only possible if w € W), a contradiction. |

—unr

Notice that, by the wavefront and strong factorizability assumption, Xé
contains Pg-regular (in fact: “strictly P-dominant”) elements for every © ¢ Ax
— s. the proof of [SV17] Corollary 15.3.3]. Therefore, the lemma applies to families

—unr

of irreducible representations of Lg twisted by X§
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Proor or ProposITION [[I1.21 By w-equivariance with respect to A’y g, it fol-
lows that the specialization of ., at o factors through the A’y o-coinvariant space:

S(XQ)wXU7

where Y, is the central character of 0. Moreover, since S, is a morphism: L? (Xo)dise
— L?(Xq)dise, it follows that .7, is zero on the kernel of the map:

S(XQ)“’Xa - Lz(XQ/A/X,va Xa)disc

(for almost all, and hence for all o where it is defined), and hence factors through

the discrete coinvariants S(Xq)wy, disc. By the fact that S, is an isometry, we get
—disc
that .#, is non-zero on every connected component of X&

By definition, the space S(Xq)wy, disc i equal to:

@$Q,77

—disc —

where 7 ranges over the fiber of the map: X§. — A’ < (central character) over
“Xo-

We claim that for ¢ in general position, the only such 7 with the property
that Ig(o) and Io(7) have a common subquotient is 7 = “o. To see this, let o

—disc ——unr
vary in a family of the form oo ® x, with o9 € X§  and x varying in X}
—unr

Thus, Yo = Yoy @ w, with w = “x varying in X5 . By Lemma [[T.3] for w in
general position the representation Ig(o) is irreducible, and hence the standard
intertwining operator is an isomorphism:

Ig(o) ~ Ig(Yo).
Thus, any non-zero morphism:
Io(1) — Ie(0)

gives, by composition, a non-zero morphism: I(7) — In(“o).

If {r1,..., 7%} is the fiber of Xé’dm — A/’X\Q over “X4,, then the fiber over
Yo, for o as above, is {1 Qw, ..., T, ®w}. Again by Lemma[T.3] for w in general
position, we cannot have a non-zero morphism Iqo(7; ® w) — Ig(*op ® w), unless
T Qw ~ Yoy ®w, or equivalently 7; ~ “oq.

Thus, the specialization of ., at ¢ factors through %o w,. Using (@), this
proves that the scattering map S, is w-equivariant with respect to the discrete
center 3diSC(Xé:). The fact that S, is an isometry now proves that the resulting
map: Lows — Lo, is an isomorphism for generic o.

For the regularity statement, we will proceed as in the proof of Proposition
BAl where a priori knowledge of the integrability of Eisenstein integrals gave us
their regularity on the unitary spectrum. Here we will use the a priori knowledge
(Theorem [@.1)) that the scattering operators are bounded operators between L?2-
spaces (in fact, isometries, but we will not use that):

Sw : LQ(X@)diSC - L2(XQ)disC~

In terms of Theorem [5.2] this can be written as a map:

—disc —disc

L2(Xé 739) _)L2(X§Ii 7$Q)7
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which, we now know, is induced by some element:

—disc
yw E(C(Xé ,Homg(.}f@,w*ﬂz)).

By Corollary I0.16], .¥,, has linear poles. Corollary B.6lnow implies that it is regular
on the unitary spectrum.

Finally, the associativity conditions on ., follow from those of the unitary
scattering maps S,,. Indeed, the only way that the composition of the following
maps:

—disc —disc —disc
L2(Xé ,Z@) HLQ(XS% 7$Q) *)LQ(Xé 79%5)7
given by fiberwise application of .}, and .#,, is equal to the fiberwise application

—disc
of Sy is that Syl ze , = w0 Lul| 2., for almost all o € X5, and thus for
all. O

11.4. COROLLARY. When we decompose Eg%isc as in [[0.I8], the poles of the
form [I0I8) with w e Wx(Q,0) do not appear.

PROOF. Indeed, by (IO these poles intersect the unitary set, where we have
just proven that the summands are regular. O

Finally, we prove the continuous preservation of Harish-Chandra Schwartz
spaces under the scattering maps, thus completing the proof of Theorem

PROOF THAT S,,, w € Wx(£2,0), RESTRICTS TO A CONTINUOUS MAP:
% (Xo)disc = € (Xq)disc. By (@) the following diagram commutes:

Sw
L? (Xe)disc — 2 (XQ)disc

l |

—disc S —disc
LA(XE %) —=L*(XE %),
where the vertical arrows are the isomorphisms of the Plancherel formula (5.2)).

By the regularity statement of Proposition [[1.2, the restriction of the bottom
arrow to smooth sections gives an isomorphism:

—disc —disc
CP(XE L) —Li- CR(XE L),

which by Theorem corresponds to an isomorphism between discrete summands
of the corresponding Harish-Chandra Schwartz spaces. g

12. Scattering: the smooth case

We now turn to the smooth case, in order to prove Theorem [(@.21and the remain-
der of Theorem[3.3] As in the unitary case, the smooth scattering maps S,, will be
given by integrating the fiberwise scattering maps .7, but now over a shift of the
unitary set in analogy to Theorem [[4l However, there is an important result that
needs to be proven first: that “cuspidal scatters to cuspidal”. This is the analog of
“discrete scatters to discrete” in the unitary case, which was proven in the course
of the development of the Plancherel theorem, by an analytic argument. Similarly,
here, “cuspidal scatters to cuspidal” will be proven using a priori knowledge about
smooth asymptotics, and more precisely the support theorem
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We notice that both the statement “discrete scatters to discrete” and “cusp-
idal scatters to cuspidal” have been proven by Carmona-Delorme [CD14] in the
symmetric case. The proofs there heavily use the structure of symmetric varieties.
Here we present a different argument which applies in greater generality.

Recall again the asymptotics of normalized constant terms, defined in section
L0

—disc
Q2 .
E§ dise = Bé qisc 0 €01 S(Xo) » C(X§ . Zo).
We may project those to the cuspidal quotient (and summand) Lg of Zg, in which

case we will denote them by:

——cusp

ESe . 1 S(Xa) > C(X . Le).
12.1. PROPOSITION. If Q does not contain a conjugate of ©, then Eg’?usp 18
zero.
Ry’ .
If Q ~ © then Eacusp factors through S(Xq)cusp:
#,0 /zcusp
B2, € Homg (S(Xa)ewp C(XE L))

The summands .7, of ([018), viewed as in (IL4l), restrict to elements of:
——cusp
(12.1) T (Xé)’ 7H0mg(w*£g,£@>)

(i.e. preserve the cuspidal summands of the bundles %, ), and the projection of
Fsubunit 0f O8] to Le is zero, hence we have a decomposition:

Q
(12.2) ESow= 2,  Fule
wEWx(@,Q)

where |z denotes the restriction of 7, to the subbundle L.

We will prove this proposition below; let us first see how it implies Theorems
and

First of all, the decomposition (IZ2), combined with Theorem [Z4] allows us
to express the composition efeg, restricted to S(Xg)cusp as a sum:

€5€@|3(xe)cu5p = Z Su,
weWx (Q,@)
as claimed in Theorem [0.2] where S,, is defined as in ([@4). Notice that (@A) is
independent of w as long as w » 0; this follows from Corollary [[0.18] according to
which the .7, are rational with linear poles (hence no poles for w » 0). Moreover,

by Proposition [2.7],
<Sﬂw(s(){@)cusp) = COO(XQ)cusp~

Now define, as in Theorem the space ST (Xe)cusp © CP(Xo)cusp as the span
of all spaces:

8wS()(Q)cusp
with @ ~ © and w € Wx(0,Q). This includes the case w = 1 where S,, = Id, so
ST(X6)eusp 2 S(Xo)cusp- Let us prove that the scattering maps (and, incidentally,
the Bernstein maps) extend to the spaces ST(Xg)cusp, and that they satisfy the
associativity properties asserted in Theorem
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12.2. PROPOSITION. For f € 8T (Xo)cusp and w € Wx(Q,0), define S, f €
ST (Xq)eusp and eo f € C*(X) as follows: If

[= Z S ferw)

(©%,w’)
with w' € Wx (0,0’) and for ) € S(Xeor)cusp, we set:

Suf = Z Sww’f(e)ﬁw’)'
(&%)
and:
eof = Z eor f(er w)-
(©"w)
Then the resulting maps are well-defined (do not depend on the decomposition of f
chosen), and S, is an isomorphism:

Sw : S+(X@>Cusp - S+(Xﬂ)cusp'

Moreover, S, is w-equivariant with respect to the actions of 3°”Sp(Xé) on
C*(Xo)cusps CP(Xq)cusp, and the maps S, satisfy the associativity properties
of Theorem [Q.2]

PROOF. First of all, ([@.4) implies that every element of S*(Xg)cusp is of mod-
erate growth, as was the case for elements of ef (S(X)), cf. Proposition [’7l Hence,
every element of ST (Xg)cusp admits a unique spectral decomposition of the form
(T4), with the only difference from (Z4) being that the forms f°do are not poly-
nomial, but rational with linear poles, given by ([@.4). We point the reader to
[SV17, §15.4.4] for details on the spectral decomposition of functions of moderate
growth.

If f = Z(@,’w,) Su f(er,wy as in the statement of the proposition then, using
@A) and the associativity property [@.6]) of the fiberwise scattering maps .7, we
conclude that the operator S,, described in the proposition also admits the expres-
sion ([@.4)), which proves that it is well-defined.

Similarly for eg: by the commutativity of (I0.19)), it is expressed explicitly by
applying the formula of Theorem [l to the spectral decomposition ([Z4) of f.

Moreover, ([@3) now follows from ([@.6), and the fact that S; = Id shows that
these maps are isomorphisms. The extension of the action of the cuspidal center
with the given properties is obvious.

The associativity relations of the operators S, follow from those of the opera-
tors .%,,, which were proven in the previous section. ([l

This completes the proof of Theorem [@.3] and of Theorem for the case
Q~ 0.

If Q does not contain a conjugate of © then the same calculation and Proposi-
tion I2.1] show that the projection of efeq to C*(Xe)cusp is zero or, equivalently,
edeo, when restricted to S(Xe)cusp, i zero.

Finally, if © contains, but is not equal to, a conjugate of © then by switching
the roles of © and 2 in the above argument, since © does not contain a conjugate
of ) we have:

eg,cuspeQ|S(XQ)cusp = 0’
which means that efeq, when restricted to S(Xe)cusp, has image in C°(Xq)noncusp-
This completes the proof of Theorem [0.2] assuming Proposition 211
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Now let us come to the proof of Proposition [2.11

ProoOF oF PROPOSITION [[2.Il The proof is based on the same result as The-
orem [l namely Proposition on the support of elements of e (S(X)). This
proposition implies, in particular, that for every f € S(Xeg)cusp, the support of
edeof has compact closure in an affine embedding X§& of Xq. Moreover, Proposi-
tion [L.7] states that this function is of moderate growth.

By Theorem [T.4]

(12.3)
cheaf(o) = et [

w

w

~ Q ~
— cusp E@J,C‘Jsl)fa (l’)dU = J — cusp E@,a,cuspfa (.’L’)dO’,
1x(f) IX(—%

the second equality because ey commutes with the integral (because it is equivariant
and commutes after evaluating “close to infinity” — cf. the proof of Proposition

).

We first claim that if |Q| < |©], i.e. dimAx o > dim Ax e, then efeo f has
to be zero. Since we may translate f by the action of G, it is enough to fix an
Ax g-orbit Z and show that

eheefl, =0.

We identify Z with Ax o by fixing a base point. Let X§ be an affine embedding
of Xq as above, and let ) be an algebraic character of Ax o which extends to the
closure Z of Z in X& by zero. We remind that an affine embedding of a torus Ay g
is described by the set of characters of Ax o which vanish on the complement of
the open orbit, and this set (monoid) of characters has to generate the character
group; in particular, such a character 1 exists. The function efeg f is of moderate
growth; since Z \. Z is a divisor, this is equivalent to saying that there is an open
cover Z = U,;U; and for every i a function F; which is reqular on U; N Z such that
ledeo f| < |Fi| on U; n Z. Multiplied by a high enough power of 1, F; becomes
regular on the whole U;. The support of efee f|, has compact closure in Z, and
the Haar measure on Z ~ Ay q, after multiplied by a high enough power of 7, also
extends to a finite measure on the closure of the support of efeef|,. Therefore,
for a large enough n, the function |¢|" - efee f|, belongs to L?(Z) = L?(Axq),
and its abelian Fourier/Mellin transform is in LZ(/Al X,0)-

On the other hand, let us revisit Proposition [[0.1] fixing again a connected

—cCusp —unr

component Y of X5 : As w varies in X5 , each factor of (I0G) varies over
a set of characters of Ax q of positive codimension in Ax q.. More precisely, the

support of the (C[A/X?z]—module generated by Eg’?usp (restricted to the connected

=1

component Y') is contained in a subscheme S of A x,0¢ Whose reduction is the union:

U “(xAxec) Y S Axac
weWs X8

in the notation of (I0.6]).

Hence, on one hand we have that the (C[A/):Q]—module generated by EXY

O,cusp 18
supported on a subscheme of A/X?hc which does not contain any connected com-
ponent, and, on the other hand, the restriction of any efeof to any Ax o-orbit
(which decomposes as in (I2Z3])), when multiplied by a high enough power |¢|”
of the absolute value of a character 1, belongs to L?(Ax q). Elementary Fourier

analysis will now prove that this function is zero.
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Indeed, the (C[A/X?z]—action on E(ik):?usp corresponds to an action of the com-

pleted Hecke algebra
H(Axq) := lim H(Ax 0, J),
J

with J ranging over a basis of compact open subgroups. More specifically, given
a polynomial P € (C[A/X?)], there is a compatible system of measures (hpj); €
(H(Axq,J))s such for x € A/X?z a J-invariant character, the Mellin transform
satisfies

—_—

hp.s(x) = L hp.(a)x ™ (a) = P(x).

Since the dimension of the support subscheme S c A/)alc is smaller than that of

@C, there is P € C[@], non-zero on every connected component, which van-
ishes on S (i.e. vanishes with the appropriate multiplicity, since S is not necessarily
reduced). Explicitly, if for every factor of (I0.6]) of the form (z—%(xt)(z)) we choose
an element z, , € Ax o on which “(xw)(2y,w) is equal to some constant a, ,, for

——=unr
all we X§  (such an element exists for dimension reasons), then the restriction

of P to a connected component of A/;) can be taken to be the product, over all
pairs (x,w) such that “y belongs to that component, of the terms (zy 4, — Gyw)
(where z, 4, is by evaluation a polynomial on this component and a, ., we repeat,
is a constant complex number). For every open compact subgroup J, the measure

——cusp

hp,; annihilates the restriction of Eg:?usp to the chosen component Y < Xé

Now take f € S(Xo)cusp, spectrally supported on the chosen component ¥ <

—cusp

Xé , and an open compact subgroup J < Ax o such that eleg f is J-invariant.
By [I23)), we will have hp ; * e eq f = 0, and therefore

([ hp.s) = ([¢0["eqee f) = [¢" - (hp.y * egee f) = 0.
But the function |[¢)|"efee f, restricted to any Ax q-orbit, belongs to L?(Ax o)
(where we have chosen a base point to identify this restriction with a function ®
on Ay.q). Thus, its Mellin transform ®(x) = SAX,SZ ®(ax)x (a)da is in LQ(A/X?E).
On the other hand, the Mellin transform of &' := (|3|"hp ) * D is equal to ®'(x) =

P(x|¥|"™)®(x|¥|~™). Since ® = 0, and P is non-vanishing outside of a set of

[

measure zero in Ax g, it follows that d =0, and hence ® = 0.

This proves that ejeo f = 0 when |Q] < |0©|.

Now assume that  does not contain a conjugate of ©. By induction on |Q,
we may assume that e, e f = 0 for every ' < Q and hence efyeq f € C%(Xq)cusps

for all f € S(Xo)cusp. That means that Eg:?usp factors through S(Xq)cusp, S0 by
evaluating at points of regularity we get a family Z of morphisms:

S(Xﬂ)cusp - ‘C@,a-

In the language of §I0.0, we will examine the weak tangent space of this family
which, we recall, has to do with the set of morphisms obtained by second adjoint-
ness:

(12.4) S(XE)eusp — (Loo)a
By Corollary we have that WTq(Z), if nonempty, is a union of sets of the

form:
[w (a§,9,C>]7
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where [ o] denotes image in a*/Wp,. On the other hand, we can twist the mor-

—unr

phisms (IZZ) by elements of X5, , thus obtaining a possibly larger family J
whose weak tangent space will be a union of components of the form:

[ (C‘}k(,@,c)] +akac
By the first statement of Lemma [[0.10] (with © and €2 interchanged), since Q does
not contain a conjugate of O, the dimension of this is strictly larger than the
dimension of u}"(ﬂ’c. This is a contradiction: the supercuspidal supports of all
finite-length quotients of S(X&)cusp belong to the equivalence classes of a countable
union of families of the form (1 ® w, L), with (7, L) a supercuspidal pair in Lq and

—unr

w varying in X{jc ; hence, we cannot have a family of finite-length quotients of

—unr

S(Xé)cusp whose weak tangent space has dimension larger than that of Xéc , l.e.

larger than that of Ax o. This shows that Eg ?usp is zero.
Finally, consider the case Q) ~ ©. First of all:

——cusp §
12.3. LEMMA. LetY < Xé be a connected component, and E € M"P :=

Homg(S(Xq),C(Y, Lo)). Let Ky = C(Y), and let E EZ E; be the decomposition
of E into elements of (distinct) generalized eigenspacedd for the action of Ax.q on
the finite-dimensional Ky -vector space My*™P. If E factors through S(Xq)cusp, S0
does each of the E;’s.

The validity of the lemma is obvious, since Homeg (S(Xq)cusp, C(Y, Lo)) is an
Ax q-stable subspace of MJ"P.

Because of the lemma, the projections to Lg of all summands .7, of (I0.IS)
all factor through S (XQ)Cusp7 in other words by (IT4) they restrict to elements of
D).

Finally, we claim that the projection of #supunit to Lo is zero. The argument
here is identical to the one one we used for the case that 2 does not contain a
conjugate of O, using the weak tangent space of the corresponding family of maps:

S(Xé)cuSp - (ﬁe,a)ﬂ
which arises from .Zsupunis. If this family were non-zero, based on Lemma [I0.10]

it would give rise again to a family of morphisms of the form (I24]) whose weak
tangent space has dimension larger than that of a% , -, a contradiction. O

12.4. REMARK. Regarding the last step of the proof: in the discrete case, there
is no contradiction to the existence of subunitary exponents. The reason is that
the “subunitary parts” of Eisenstein integrals do not need to be “discrete modulo
center” (while the cuspidal parts were necessarily cuspidal modulo center by Lemma
[23). Indeed, they could be non-discrete, but with a central character that makes
them decay “towards infinity”.

4“Generalized eigenspaces” is used here in the generality of non-algebraically closed fields,
i.e. a generalized eigenspace does not necessarily correspond to an eigenvalue, but to an irreducible
monic polynomial.
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13. The Harish-Chandra Schwartz space
We start by proving the following two results:
13.1. PROPOSITION. (g takes € (Xo)dise continuously into € (X).
And in the other direction:
13.2. PROPOSITION. t§ 4. takes € (X) continuously into € (Xe)adisc-

We first reduce both statements to the case Z(X) = 1. This is achieved by
using (ZI3)) and (ZI4), which identify ¢’ (X) and L?(X) as closed subspaces of a
direct sum of spaces of the form:

C(Z(X) xY) ~ € (2(X)®F(Y),
respectively:
L(Z2(X) x Y) ~ L*(Z(X))®L*(Y),

where Y is a spherical [G, G]-variety with Z(Y) = 1.
It is obvious from the definitions that the Bernstein maps on those spaces are
induced by Bernstein maps for the second factor:

o : L*(Yo) — L*(Y),

which reduces both problems to the case Z(X) = 1. We will assume this for the
two proofs.

The proof of Proposition I3l will require a lemma: Fix an open compact
subgroup J < G and a collection (Ng)e of J-good neighborhoods of infinity. We
may, and will, assume that this collection is determined by the neighborhoods N,
where a runs over all simple spherical roots and & := Ax \ {a}, in the following
sense:

(13.1) Ne =[] Na.
ag®
We will also be denoting:
N§ := No ~ U Ng,
Qce
remembering that the image of N in Xo/Ax e is compact.

By a decaying function on X we will mean a positive, smooth function whose
restriction to each Ng is Ax e-finite function with subunitary exponents. Notice
that, by our definition, a subunitary exponent on Ax g is allowed to be unitary on
a “wall” of A}’e (it only has to be < 1 on A}@) However, by demanding that
the exponents of our function are A}Ve—subunitary on every Ng, this possibility
is ruled out: no exponent can be unitary on a wall of A}@. We will call such
exponents strictly subunitary. Together with our assumption that Z(X) = 1 a
decaying function is automatically in € (Ng).

This definition is essentially compatible with the way the notion of “decaying
function on A},@” that was introduced in [SV17] (and will be used in the proof be-
low): Indeed, for each © ¢ Ax, a decaying function on A;},@, according to [SV17],
is any function bounded by the restriction of a positive, Ax o-finite function with
strictly subunitary A;r(’@—exponents. Hence, a decaying (J-invariant) function f on
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13. THE HARISH-CHANDRA SCHWARTZ SPACE 75

X, in our present sense, is precisely a J-invariant function with the property that
for every © c Ax and every x € N§, (or equivalently: z € Ng) the function:

(13.2) Afosa—|(fia™" 1.1l

where 1,; denotes the characteristic function of zJ, is bounded by a decaying
function on A}LQ@. (Notice that this is stronger than saying that the restriction of
the function to the A}E@—orbit is a decaying function; our definition of the action of
A}@ is normalized by the square root of the volume, s. §2.6 so the above bound is

equivalent to a bound of f(az) by Vol(az.J)~ 2 times a decaying function on AL o))
Let 7o denote, for each O, the map of restriction to Ng.

13.3. LEMMA. When Z(X) =1, for any ® € L*>(X)’ the alternating sum:

(13.3) Alb(@) = > (-1)®Fere
OcAx

is bounded in absolute value by |®|r2(x) times a decaying function which depends
only on J.

PRrROOF. We claim that for every a € Ay, and every x € N4, the restriction of
([@33) to A 4 - « satisfies the bound:

(13.4) | ALt(®)(a - x)| < @] 12(x) Vol(azJ) ™% Ra(a),

where R, is a decaying function on A} ; that only depends on J.
This will prove the Lemma: Indeed, for an arbitrary ©, z € N§, and a € A}@
we get a bound:

|ALt(®)(a- )| = [ALL(P)(b- a'z)| < | L2(x) Vol(azJ) "% Re(a),

for every a € Ax \ O and decomposition a = a’b with a’ € A}@ and b e A% .,
where Rg is the decaying function on A% o defined as:

R = i i R.,(D) | .
@(a) aegl)lgn\(a <a—a/b,alel,?in beA;r( . a( )>

X,

(Notice that Ax e is generated by the one-dimensional tori Ax 4, @ € Ax 0O, up to
finite index. Checking that Rg, as defined above, is a decaying function essentially
reduces the problem to the monoid N2X>®  decaying functions Ry for each of the
coordinates, which can also be assumed to be equal to the same function R, and
R@((na)aeAX\@) = R(maxa na)')

To prove (I3.4)), we notice that Alt(®) is equal to the sum over all © containing
« of the terms:

(-1l (Fers® - Tow{a}to{a)P)-
By the transitivity property of Bernstein maps:

’
1E® =19 015,® for © c O,

where Lg/’* is the corresponding adjoint Bernstein map for the variety Xeo/, and
by the fact that the norm of .§,® for some © < Ax with o € ©', is bounded
by a fixed multiple of [® 2 y), it is enough to prove the statement when (I3.3)
is replaced by ® — X ® (the rest of the terms being similar, with ® replaced by
& ®, whose norm is bounded by a constant times |®|.2(x)). Thus, we need to
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prove that for every x € N4 the restriction of ® — 1X® to A}L(V& - x is bounded
by [|®]z2(x) Vol(azJ)"2 - Ry, where R, is a decaying function on A}L(V& that only
depends on J.

This follows from [SV17, Lemma 11.5.1] (and its proof): Indeed, if ¥ = 1.,
the characteristic function of some J-orbit on Ny, and a € A}ﬁ 4> then we have:

[ — i@, 0" W) = (D, (es —ta)a™ ' - W) <

<[ @lrzx) - lea = ta)a™ - Ulrzx) < |@]22(x)CwQ” (a)

in the notation of loc.cit. so we can set R,(a) = CyQ7(a), where Q7(a) is a
decaying function on A}L(V& which is independent of ®, U. In the proof of [SV17,
Lemma 11.5.1] it is seen, actually, that the constant C'y can be bounded by a fixed
multiple of:

1 r2(xa) + Z leaa; - ¥l r2cx),

where the a;’s range in a fixed finite set of elements of A+ . When ¥ is the
characteristic function of a J-orbit zJ on Ng, this sum will sunply be bounded by
a fixed (the number of a;’s +1) multiple of Vol(z.J)z, the L2 norm of ¥ — recall
that “close to infinity” the Bernstein maps eg are induced by measure-preserving
identifications of J-orbits, cf. [SV17], Proposition 4.3.3] and [Dell8| Theorem 2].
Therefore, for every z € Ng and a € A} 5 we get:

(@ —2®,a7t - 1,5)] < @] L2 (x) - Vol(zJ)2Q7 (a)

where the implicit constant only depends on J. Taking into account that the mea-
sure on Ny is an Ax 4-eigenmeasure, say with character d4, we have by definition:

_1
(®— 10,0t 1) = <<1> — 5D, (a)lm> -

=(®— L2¢)(ax)5d_% (a) Vol(azJ) = (® — L(”;(I))(ax)éo% (a) Vol(zJ),
and hence the above inequality becomes:
|® — 15®|(az) < [®]L2(x) - Vol(a-2J)~2Q” (a).
This proves the lemma. O

Proor or ProrosITION [[3.I Fix a ©, as in a statement of the proposition.
We will prove the proposition inductively on |Ax| — |©], the base case © = Ax
being trivial. Assume that it has been proven for all orders of |Ax| — |©| smaller
than the given one.

We have already reduced the proposition to the case Z(X) = 1, which we will
henceforth assume. (Notice, however, that by the inductive assumption we are
free to assume the proposition for any smaller value of |Ax| — |©| without this
assumption.) We fix an open compact subgroup J and J-good neighborhoods Ng
of Q-infinity as in the setup of Lemma [[3.3] and use the notation N{, as before.

By Lemma [I3.3] it is enough to prove:

For all Q & Ax, the composition of 1&ie @ L*(Xe)dise —
L?(Xgq) with restriction to Nq takes € (Xeo)dise continuously into
€ (Ngq).
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(13.5)
Indeed, by Lemma [3.3] for every f € ¥(Xe)” the difference:

of = ), (=) 5qubie f

is bounded by a fixed decaying function times |tg f|| < | f[|, and by the claim the
subtrahend above is (continuously) in the Harish-Chandra Schwartz space.

First of all, if 2 does not contain a conjugate of © then L’("2L9|L2(X®)disc =0
and there is nothing to prove. Now let (£2;); denote representatives for W,,-
conjugacy classes of subsets of 2 which are Wx-conjugate to ©. (Here, Wx, € Wx
denotes the little Weyl group of X¢q, which is generated by the simple reflections
corresponding to elements of 2.) Denote by ¢} : L?(Xq,) — L?*(Xq) the analogous
Bernstein maps for the variety Xq. We claim that there are non-zero integers dqo (€2;)
such that:

(13.6) L o tolr2(Xe)ai Z Vda (S LQ © LQ Ole.

Indeed, the image of L?(Xg)aisc under ¢& oo lies in the direct sum (over all 7)
of the spaces L? (Xa)q.], where LQ(XQ)[Q 1 denotes the image of L?(Xgq,)disc under
. This follows from the transitivity property ¢£ = LQ *o1 of the Bernstein maps,
and the fact that % discte = 0 unless Z is a WX -conjugate of ©.

Let da(;) = #WXQ(QZ, ;). It follows from Theorem [[2] that the map:

Vida(Q) "1, 0y + L (Xq) — L*(Xq)

is the identity on LZ(XQ)[m]7 and zero on the summands LZ(XQ)[Q].] with j # 1.

Hence,
Z \ dQ LQ o LQ

is the identity on the image of LQ(X@)diSC under § o 1g, and (I3.6]) follows.
The map ¢, o e is a continuous map:
€ (Xo)dise = €(Xaq,)disc

by Theorem 0] so by replacing © by €2; we have reduced the claim ([I3.3) to the
statement of the proposition when © c Q and X is replaced by Xq. It now follows
by the induction hypothesis. O

Now we come to proving the other direction. We keep assuming that Z(X) = 1,
having reduced the problem to this case.

PROOF OF PROPOSITION [[32 Let f € 4(X)”, and let X = | | N§ be a
decomposition as above; then fo := f|n, € €(Ng) = ¢(Xe). By Theorem [(.2] we

——disc
need to show that the image of sz_)’discf in L?(Xo)aise = L2(XE ,%o) actually

lies in C’OO(XL ,.,2”@) (smooth sections), and that the resulting map: ¢(X)’ —

di
c® (XL , Zo) is continuous.
First of all, for each © and 2 consider the composition of maps:

—disc

L* .
(13.7) S(Xq) 25 S(X) 25 L¥(Xo)aise — LA(XE o).
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By (Z.H), this composition is given by the restriction of the maps Eg’,gisc of (IO
(Q-asymptotics of normalized constant terms). Recall that by Proposition B5] the

image of Eg”gisc lies in F(Xédlsc,fg) (i.e. rational sections whose poles do not
meet the unitary set).

Our goal is show that the maps Egﬁiso extend continuously to operators rep-
resented by the bottom horizontal row of the following diagram, where the vertical
arrows are the natural inclusions:

——disc

S(Ny) ——T'(X§ %)

L

C(Ng) - - = C*(X§ ,Zo)

This will prove the proposition, once we know it for all €2.
—disc
Fix a connected component Y of X5, and recall that I'(Y, %) is actually a
D(Y)-module (module for the ring of polynomial differential operators on Y). Fix
any D € D(Y) and apply it to the operator Eg’gisc. As we have seen in Lemma

0.4l the resulting element:
DE} 't € Hom (8(X¢q),I'(Y, Zo))

(not a G-equivariant homomorphism) has the same exponents, possibly with higher
multiplicity, as Eg’gisc, and by Proposition [[T.1] these are either unitary or subuni-

tary with respect to A% o
We will use the following lemma of linear algebra:

13.4. LEMMA. Suppose S is a finitely generated abelian group together with
a finitely generated submonoid ST < S that generates S. If S has a locally finite
action on a complex vector space V , with the degrees of all vectors uniformly bounded
by an integer m, and generalized eigencharacters which are unitary or subunitary
with respect to ST, and if || e || is any norm on V, there exist a tempered function
T on S and a finite subset Sy = S, depending only on ST and m, with the property
that:

s vll < T(s) max |s" - o]
S 0
orallse ST,veV.
forallse St veV

We remind that “locally finite” means that the span of the S-translates of each
vector is finite dimensional, and the degree of a vector is the dimension of this
S-span. Compare this lemma with [SV17, Lemma 10.2.5].

PROOF. We may replace ST by the free monoid on a set of generators, and S by
the free group on this set. We can then reduce to the case S = Z, ST = N, because,
if T, S work for (Z,N), then T'(ny,...,n.) =T'(ny)---T'(n,), So = S{x -+ x S}
will work for (Z",N").

For (Z,N) we apply induction on the degree: Writing the minimal polynomial
of the generator M :='1" € N on an element v € V as P(z) = (z — {)Q(x), and
assuming by induction that the lemma holds for the vector v/ = (M — {)v (with
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some tempered function 7" and some set S{ depending only on the degree of @),
we get an estimate:

[ o] < M|+ (M o] < T'(n = 1) - max 5" o' + [M7 o],
0

where we have used the induction hypothesis and the assumption that |¢| < 1.
Repeating this estimate for M™ 'v and so forth, in the end we get:

M0 < (70— 1) + /(0 —2) -+ T(0) max | + o] < T0) e | o]
s'esS) s’€Soy

(again using |¢| < 1) where T(n) = 2(T"(n — 1) +T'(n — 2) + --- + T'(1)) + 1,
So = {0} U S{ U (S;+1). O
—disc
We now fix a Haar measure do on X5 , which determines norms || ||, on
the fibers of Lo over the unitary set, cf. (£I9). By regularity, for any F' € S(Xgq)
the numbers

HDE(S{IZiSC U'(F)H ’

as o varies in Y, are uniformly bounded in o. If we now fix a set of J-orbits on N,
whose A},Q—translates cover Nf,, and denote by F; their characteristic functions,
we claim that there is a finite set Sy of elements of Ax o and a tempered function
T on Ax g such that:

(13.8) |DES S0 (aF})

< T'(a) max
o seSy

,Q
DEg,disc,a (SFZ)

o

for all a € A};’Q. Indeed, this follows from the above lemma, using the fact that

Ax q acts on S(Xq)” through a finitely generated quotient, and that the DE;:&SC’U
are all Ax o-finite with uniformly bounded degree, by Lemma [10.41

For an arbitrary element ® € L2(N{,)”, writing it as a series in A% -translates
of the Fjs: 7

o= Zcijaj . Fi,
(2%

—disc

its image in L*(X}§ , %) is given by the corresponding series:
*,00
Z CijE@,disc(aj - F).
4,J

If, in particular, ® € F(NY,), by (I3.8) we deduce that the corresponding series for

—disc
DE;:ESC(Q)) converges in L*(X§ , %), and is bounded by continuous seminorms
on € (NG).
Since the seminorms:

fr= IDFN L, g iee

oz gy DEDY),

Zo)

form a complete system of seminorms for C*(X5 | %), we deduce that the
maps Eg’gisc’ restricted to S(N,)7, extend continuously to:

—disc
G(Np) — COXE L),
This proves Proposition O
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We are now ready to complete the proof of our main result on the Harish-
Chandra Schwartz space:

13.5. THEOREM. For each ©, orthogonal projection to L*(Xe)aisc gives a topo-
logical direct sum decomposition:
¢ (Xo) = €¢(Xo)disc ® € (Xo)cont-
For each w € Wx(Q,0) the scattering map S, restricts to a topological isomor-
phism:
% (Xo)dise — €(Xa)disc
The map * of ([[L2) restricts to a topological isomorphism:

(13.9) %(X)l>< &, <f(Xe)disc> ;

OcAx
where the exponent ™ denotes invariants of the scattering maps S..

PRrRoOOF. The first two statements have been proven in Proposition [B.1] and
Theorem @11 )

Because of the second statement, the space (@@ch %(X@)disc)mv makes
sense. By Proposition and Theorem the space € (X) injects continuously

into it. Finally, since »g(i¢ © ie) is a multiple of the identity on
(Pocay L*(Xe)disc) ", it follows from Proposition [ that the map from €/(X)
to (Docay % (Xo)disc)  is onto. 0

The combination of Theorems and [[3.5] gives Theorem [[.4] which we repeat
for convenience of the reader:

13.6. THEOREM (cf. Theorem [I3.6). The normalized constant terms E§ i,
extend to an isomorphism of LF-spaces:

(13.10) F(X) > (@ cm@di“,g@)) ,
©

where ™ here denotes .%,,-invariants, i.e. collections of sections (fo)e such that
for all triples (©,Q,w e Wx(Q,0)) we have: %, fo = fa.

In particular, the existence of a ring 3*™P(X) of multipliers on ¢ (X), as de-
scribed in Corollary [[5] immediately follows from either of the above two versions
of our Paley—Wiener theorem for the Harish-Chandra Schwartz space:

13.7. COROLLARY. Let

3temp (X) — ((_(? 3disc(Xé)> ,

where the exponent inv denotes invariants of all the isomorphisms induced by triples
(0,0, we Wx(Q,0)).

There is a canonical action of 3*™P(X) by continuous G-endomorphisms on
€ (X), characterized by the property that for every O, considering the map:

Lg,disc 16 (X) — €(Xo)dise
we have:
Lg,disc(z : f) = Z@([’g,discf>
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for all z € 3**™P(X), where zg denotes the ©-coordinate of z.

PROOF. Indeed, 3**™P(X) acts by continuous G-automorphisms on the right
hand side of (I39]) or (I3.10]), and the action is characterized by the stated property.
O

We complete this section by formulating an extension of the properties of
Bernstein and scattering maps from the discrete components of Harish-Chandra
Schwartz spaces to the whole space. For the proof, we point the reader to the proof
of Theorem [[4.7] which will be completely analogous.

13.8. THEOREM. For every triple (©,Q,w € Wx (£, ©)) the scattering map:
Sy : L*(Xe) — L*(Xaq)
restricts to a topological isomorphism:
% (Xe) — € (Xa)
which is 3temp(X(§)-equz'variant with respect to the obvious isomorphism:
3TP(XE) < 5P (X )
induced by w.

The Bernstein maps v and their adjoints 1§ map € (Xe) continuously into
€ (X) and vice versa.

14. The Schwartz space

We now come to our Paley—-Wiener theorem for the Schwartz space of com-
pactly supported, smooth functions on X. Besides the properties of the scattering
operators S, of §9 we will use the following basic result:

14.1. THEOREM. Let [©] run over all associate classes of subsets of Ax, and
for each such class let S(X)(e) denote the space generated by all eqS(Xa)cusp,
Qe [O]. Then:

(14.1) S(X) = PS(X)e)-
6]

PROOF. The sum is direct by Theorem We need to show that the map:
Z €o : @S(X@)Cusp - S(X)
[€) (€]

is surjective.

We will use induction on the size of Ax, the case Ax = J being tautologically
satisfied (because then S(X) = S(X)cusp). Assume that the proposition has been
proven when X is replaced by Xgq, for all @ ¢ Ax. Let us denote by e : S(Xo) —
S(Xq) (0 c Q) the corresponding maps for the variety Xq. Recall the transitivity
property:

eq o 68 = €Q.
Therefore,
Neo (S(X6)eup) = S(X)eusp + ) €0 (S(Xe)).
) O#Ax
Assume that S(X) # @g) S(X)[e), then there would be a non-zero subspace V
of the smooth dual (i.e. C* (X)) which would vanish on all the spaces on the right
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hand side of the last equation. In particular, eV = 0 for all © # Ax, hence the
elements of V' are compactly supported modulo the center of X. But then they
cannot be orthogonal to the cuspidal part S(X)cusp = S(X)[ax]- O

14.2. REMARK. This theorem is false, in general, in the non-factorizable case,
if we define the cuspidal subspace S(X)cusp, as in section [0 by requiring that
the image under the Plancherel decomposition (B.2]) of the (smooth) function is
relatively cuspidal. For example, if X = PGLy under the G = G,,, x PGLy action
(with G, acting as a split subtorus by multiplication on the left, and PGL2 acting
by multiplication on the right) then it is known that the tensor product of the
trivial character of F* by the Steinberg representation St of PGLs is relatively
cuspidal on X, while this is not the case for non-trivial characters of F*. What
this means is that the image of an embedding St — S(F*\ PGLy) will be orthogonal
to ey (S(Xg)) (this is the property of 1 ® St being relatively cuspidal), but also
orthogonal to S(X)cusp (Which has no Steinberg-equivariant part, since for generic
characters of F'* the Steinberg representation is not relatively cuspidal).

Recall that for each © we have defined S*(Xg)cusp as the subspace of C*(Xg)
generated by all spaces of the form:

8u)‘s'()(ﬂ)cusp

where ) is an associate of © and w € Wx (2, ©), and in Theorem [0.2] (and Proposi-
tion [[2.2]) we extended the scattering operators S,, to isomorphisms between these
spaces.

We are now ready to prove a Paley—Wiener theorem, reminding first that the
exponent ™ in:

(142) (@(—)S+(X(—))cusp

denotes invariants of these maps. Notice that, as follows easily from the definitions,
any element of (IZ.2)) can be obtained by averaging elements of the spaces S(Xg)cusp
via the operators S,,, i.e.:

)inv

14.3. LEMMA. For any element f = (fo)o of [@I42) there is a (non-unique)
element

(f(,—))@ € @@S(X@)cusp
such that:
(14.3) fo= Y Sufh

QuweWx (0,Q)
PROOF. Let ©; vary in a set of representatives for associate classes of subsets
of Ax. For each i there is, by definition of the spaces S*(Xg), a collection
(fOw)0~0wewx (0:,9) € Bo~ewewy (©:,2)S (Xa)cusp

with fo, = Yo wewy (0:1,0) Swfow-
Setting then

1
fo=rmaan 2 Jow
‘WX (Q7 Q)| wEWX (9“9)
(where ©; is the representative for the associate class of 1), we easily get from

the Wx (0©;, ©;)-invariance of fg, and the associativity properties of the scattering
operators that (IZ3)) holds for every ©. O
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14.4. THEOREM. The sum of the morphisms e cusp defines an isomorphism:

(14.4) S(X) ~ (B6S™ (X6)eusp) ™ -

PROOF. It is an immediate corollary of Theorem [[4.] and Theorem that
the image of Mg € yep lies in (BoS™ (Xo)eusp)

Lemma [I4.3] shows that the map is surjective, and injectivity follows from
Proposition [T.1] |

It is easy from this to deduce the fiberwise version in terms of normalized
constant terms. First of all, for every © ¢ Ax let:

——cCusp ——Cusp
ct x5 Le| =€ (X o)

be the subspace generated by the images of all fiberwise scattering maps .%,,, for
and associate of © and w € Wx (0, ). Notice that by the regularity of scattering
maps on the unitary spectrum (Theorem [3]), we might as well have written I'( )
instead of C( ). Then it is clear that such an .7, induces an isomorphism:

—cusp —cusp

cr X L] >t [XE T L]

and the combination of Theorems [7.4] and [I4.4] gives Theorem [[L9 which we repeat
for convenience of the reader:

14.5. THEOREM. The normalized cuspidal constant terms Eg
an isomorphism:

cusp Jive rise to

(14.5) S(X) > (@ ct [}g“‘SP, £@]> ,
S}

where ™ here denotes %, -invariants.

In particular, the existence of a ring 33 (X)) of multipliers on S(X), as described
in Corollary [LT0] immediately follows from either of the above two versions of our
Paley—Wiener theorem for the Schwartz space:

14.6. COROLLARY. Let

37M(X) = ((?3“““’()((5)) ;

where the exponent inv denotes invariants of all the isomorphisms induced by triples
(0,0, we Wx(Q,0)).
There is a canonical action of 33 (X) by continuous G-endomorphisms on
S(X), characterized by the property that for every O, considering the map:
eé),cusp : S(X> - S+(X@)cusp
we have:
ez),cusp(z : f) = Z@(eg,cuspf)
for all z € 3™ (X), where zg denotes the ©-coordinate of z.
PROOF. Indeed, 3 (X) acts by continuous G-automorphisms on the right

hand side of (I44) or (I41), and the action is characterized by the stated prop-
erty. (|
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We complete this section by extending the smooth scattering maps from the
cuspidal components of Schwartz spaces to the whole space.

14.7. THEOREM. There are unique extensions of the smooth scattering maps,
for all triples (©,Q,w e Wx(Q,0)):
Bw : S(X@) i COO(XQ),
such that for all ©' < ©, setting Q' = wO’:
(14'6) eg/ © 871—’|S(AX(_)/)cusp = Sw © 68'|S(X(—)/)cusp’

where as usual we denote by 68/, 68, the analogous equivariant exponential maps
for the varieties Xo, Xq, respectively.

These maps satisfy the same associativity relations as their restrictions to cus-
pidal spectra (s. Theorem [12), and S, is 33 (X§)-equivariant with respect to the
obvious isomorphism:

XE) & 5(XG)
induced by w.

PRroOOF. Given Proposition [[4.1] (applied to Xg), property (I4.0]) characterizes
the extension of S,,, provided it is unambiguous. For this, we need to show that if
F = 681f1 = 68§f2 € S(Xo), with f1 € S(Xe, )cusp and fa € S(Xey )cusp, then the
left hand side of (IZ8), applied to either f; or fa, gives the same result.

Theorem [[4.4] applied to Xg, implies that the kernel of the map:

2 68; S, S(Xey)cusp = S(Xo)

i=1,2 i=1,2
is generated by elements of the form: (f1, —f2) with f; € S(X@;)cusla and fo = Sy f1
for some w’' € Wx (0%, ©}); thus, we can assume our pair (f1, f2) to be of this form.

Then we have:

Bwfz = Swgw'fl = Sww’fl = wa/wflgwfl

(by the associativity properties of scattering maps), hence the element (S, f1,
—S., f2) belongs to the kernel of the map:

Z 68/@ : @ S(XQ,'L,)cusp HS(XQ)

i=1,2 i=1,2
Thus, the operator S, is well-defined on S(Xg). The associativity and 3™(X§)-
equivariance properties follow easily from the construction. O

15. Examples of scattering operators

15.1. Scattering operators in the group case. Let us consider the case
of the group, X = H, G = H x H. We consider it not just as a homogeneous
space, but as a pointed space, with a distinguished element 1 € H, which will help
us fix isomorphisms for its boundary degenerations. Its boundary degenerations
are parametrized by conjugacy classes of parabolics in H, where a given class of
parabolics [P] corresponding to © ¢ Ax we have:

Xip) = Xo = Lp xT*F7 (H x H) ~ Xo ~ LY\ (Up\H x Up\H) .

Here we have chosen representatives P for [P] and P~ for the opposite class,
Lp = P n P~ a Levi subgroup and Up,Up the corresponding unipotent radicals.
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The space X[p) lives over an open subset Y in the product of Grassmannians of
H corresponding to [P] x [P~], and its fiber over (P, P™) is isomorphic to Lp
canonically up to inner automorphism. In particular, each fiber has a canonical
point 1 € Lp; the subgroup H428 acts transitively on Y, preserving those points.
—disc _~ dis
Let us identify the space X@L)(C with the space L p(clbc of isomorphism classes
—~ dis

of discrete series representations of Lp by identifying o € L p(cm with the repre-
sentation & ® o of the Levi quotient Lp of P x P~. Fixing a Haar measure on H,
which induces invariant measures on all X|pj, we can identify the smooth dual of

the bundle .Z}p) of discrete coinvariants for X|pj with the bundle whose fiber D/iz[\p;,
—~ disc

over 0 € Lpe  is the induced representation ngxg, (Cs), where C5 < C*(Lp) is

the space of matrix coefficients of . The matrix coefficient map
c®F3vQ0v+— (v,5(e)V) € Cs
allows us to canonically identify I (C5) with Ip(0) ® Ip-(5).

Now consider a pair ([P],[Q]) of associate classes of parabolics of H, and an
element w € Wy (Q, P). If we fix a representative P for [P] and a Levi subgroup
L, the pair ([Q],w) gives rise to a representative @ of [Q)] which shares the Levi
subgroup L with P; the relation is that *(@ shares a minimal parabolic with P. We
will say that “the relative position of P and @ is determined by w”.

We let Tp|g denote the rational family of standard intertwining operators, as
o varies:

(15.1) Tpig: 15 (0) = IF (o).
This family depends on the choice of a Haar measure on Up/Up n Ug, and is
generically invertible with a rational family T I;IIQ of inverses.

We denote by P~,Q~ the opposite parabolics with respect to the chosen Levi.
The product:

Tpig® Ty p- 15 (0) ®15-(5) = Ll we — Zip)e = 15 (0) ® I5-(5)
does not depend on choices of Haar measures, because of the isomorphisms:

UP/UQ M Up ~ Up M UQ— ~ UQ—/UP— M UQ—.
Notice also that there is no lack of symmetry here, because T ® TC;I p- =
-1

Talp ® Tr-jo-

15.2. PROPOSITION. For any pair ([P],[Q]) of associate classes of parabolics
of H, and w € Wg(Q, P), the adjoints of the corresponding fiberwise scattering
operators %y, are the family of operators:

Trig ® Tol p- : Larve = Lrlo-

PRrOOF. The result will follow from Proposition [[0.I8]

Let us for simplicity denote by T, the standard intertwining operator between
induction from a given parabolic and its opposite; it will be clear from the context
which parabolic we are referring to.

By [SV17, Lemma 15.7.1], the normalized Eisenstein integrals can be written
as the composition of matrix coefficients with Tj; L as follows:

d®T, !

Eq:I5(0)®I5-(5) Ho)o18(5) X o= (H).
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Here M denotes the matrix coefficient map, which depends on the choice of a Haar
measure on Ug-, which brings 1} (5) and I (o) in duality. On the other hand,

T : Ig(&) — Ig_(&) is also proportional to the choice of a measure on Ug-, so

the composition of M with Id ®TO_1 does not depend on choices.
Now, we have a commutative diagram:

(15.2) C*(H)
AT
Tp1®Ty
I8 (0) ® T4 (5) m—l H(0) @ IH(5)
1®TOIT Tl@Tol
Tp1o®T,*

Q=P

1§ (o) ® I5-(5) I () ® I5-(9)
~di

of operators varying rationally with L p(clsc. The fact that the operator Tp|q ®T6‘1P
commutes with matrix coefficients follows from the fact that Tp|g is adjoint to
Toip- The fact that the operator on the last horizontal arrow making the dia-
gram commute is Tpjg ® T(;‘P, follows from the fact that ToTp = To-|p-To =
Tq-1p-Tp-1QTqP-

From the commutative diagram ([[0.19) (dualized), we now infer that the ad-
o . . —1
joint of ., is the operator Tp| ® TQ*IP*' O

15.3. Unramified scattering operators. We now assume that G is split,
and G, X are endowed with compatible models over the ring of integers 0. We
will discuss results of [Sak13] in the light of our current framework. For this, we
assume that the conditions of [Sak13l §1.7 and 2.4] hold. In particular, there is a
way to identify the universal torus Ay as a torus orbit Ax < X (over o), so that
its “anti-dominant” elements A% < Ax(F) represent all K = G(o)-orbits on X.

We will consider only the most degenerate boundary degeneration X, which
carries an action of Ax. Scattering operators for that degeneration are parametrized
by elements of the little Weyl group Wx of X. We have

(15.3) Xg(F)/K ~ Ax(F)/A(o),

where A is the universal Cartan of G (whose quotient as an algebraic variety is
Ax). The isomorphism ([I53) is fixed so that for “very antidominant” elements
a€ A;, the K -orbit represented by a on X corresponds, under the exponential
map, to the K-orbit represented by a on X, cf. [Sak18, Theorem 4.2].

A technical comment is in order: For the purpose of interpreting expressions
of the form e®(x), where & is a coroot of the universal Cartan of G and x an
unramified character of Ax (or A =the image of A(F') in Ax(F)), we identify
Ax as a quotient of the universal Cartan A in such a way that the action of Ax
on the open Borel orbit )D(@ < X is compatible with the action of A = B/N on
)Q(@/N. Then, e®() just means the value of x on ¢&(w), where w is a uniformizer
in the field. (We use exponential notation, because we use additive notation for the
coroots.) This convention is compatible with [Sak13].

We may interpret the functional equations established in loc.cit. in terms of
normalized Eisenstein integrals and scattering operators as we did above for the
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group, but we do not actually need to worry about normalization: Indeed, Theorem
4.2.2 in loc.cit. implies the following, which we state before defining the terms used:

15.4. THEOREM. For every w € Wy there is a rational family of H(G, K)-
equivariant operators

B, () :=( I (—ea(x))> bu(65)0) : CF (X )R — O (X ) K,

a>0,wa<0

satisfying the cocycle conditions B, ("X) © Byw(X) = B, (x), such that, for a
Zariski dense subset of X-distinguished Satake parameters, the space of e*g-
asymptotics of H(G, K)-eigenfunctions with those Satake parameters is precisely
the space of all B,,-invariants.

The theorem itself does not talk about asymptotics, actually, but about the
evaluation of H (G, K )-eigenfunctions (where H(G, K') denotes the unramified Hecke
algebra G with respect ot K) on A% = X(F). It was explained in [Sak18] that
can also be seen as a formula for e*g—asymptotics on Xg.

We explain the notation: The space C*(Xg)X is the subspace of C*(X )
where A(F) acts with unramified character y; this notation is compatible with the
notation C*(Xe)Z,, that we have been using for the dual of the fiber Lo, (the
index cusp here is superfluous).

The character x lives in the space of unramified characters of A(F') which are
trivial on the kernel of A — Ax. The normalized action of A explained in[2.6limplies
that C® (X)X is a direct sum of copies of the normalized induced representation

Ip(x)- (x); thus, its Satake parameter is the W-conjugacy class of 6(%X)X, where d(x)
denotes the modular character of L(X). Those are the “X-distinguished Satake
parameters” of the theorem.

The notation b,, refers precisely to the operators (matrices there, because a
basis has been chosen) denoted by the same symbol in Theorem 4.2.2, while the
notation B,, is adapted from (6.1) of loc.cit. (s. also Theorem 1.2.1 there), which
refers to a slightly special case. The coroots & appearing in the relation between
B,, and b,, are the coroots of G.

Finally, the notion of “B, -invariants” is completely analogous to the “.,-
invariants” of our main theorems: a vector

(15'4) (fw)we @ COO(XQ)WX

wEWX

is in the space of “B, -invariants” if for every w,w’ € Wx we have:

fw’w = Ew’fuw

Notice that the map from Wx-conjugacy classes of x’s to X-distinguished Sa-
take parameters is not necessarily injective (as happens, for example, when X =
N\G, with N maximal unipotent, where Wx = 1). Therefore, to obtain the ej-
asymptotics of all H(G, K)-eigenfunctions with a given Satake parameter, as in the
theorem, one might need to take the direct sum of B, -invariants of several of the
spaces ([5.4).

From Theorem [I5.4] we can now deduce:
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15.5. PROPOSITION. In the notation of Theorem [[5.4], the adjoints of the fiber-
wise scattering operators

Fw(X) : Lguwyx = L,

restricted to K -invariants, are given by:
(155) S (0" = By : O (X)X K = 07 (Xg) XK,
PrOOF. From the fact that the images of normalized Eisenstein integrals:
By : C*(Xg)¥ = C*(X)

also span the space of H(G, K)-eigenfunctions on X with given Satake parameter,
for a Zariski-dense set of X-distinguished Satake parameters, we deduce:

ehEgy= Y B,(x):C*(Xg)X — C%(Xp),

wEWX

and by the definition of the fiberwise scattering maps in (I0I8]), the claim follows.
O

Up to this point we have presented nothing more than a new symbol for the
scattering maps; however, the results of [Sak13] now give rise to a many examples
of scattering operators, restricted to unramified vectors. We will only discuss the
two most characteristic examples, that of course are much older than loc.cit.

15.6. EXAMPLE. (Whittaker model.) Consider the case of X = N™\G, where
N~ is a maximal unipotent subgroup over o, and N~ (F) is equipped with a non-
degenerate character W. We keep assuming that G is split, for simplicity. The
character is chosen to be trivial on all &(o) for all simple coroots &, but non-trivial
on &(w 1o), where w denotes a uniformizer. In this case, X g = X as varieties, but
with trivial character on N~ (F'). For every unramified character x of the universal
Cartan A(F), the space C*(X )X is 1-dimensional (isomorphic to the unramified
vectors of the normalized principal series Ig, (x)), with a canonical basis element
¢k, Which is equal to 1 on N71K. (The normalization of the character ¥ on
N~ (F) makes the double coset N~1K unambiguous; the exponent ~ on ¢ is to
remind that we are using the opposite Borel than that containing N~ to identify
the character x with a character of the universal Cartan.)

The Shintani-Casselman-Shalika formula states that, in this case, b,,(x) = 1 for
all w e Wx = W in terms of the canonical basis elements, i.e. Qw(X)SOI_(,X = QK wy
cf. §5.5 in loc.cit. Hence,

Fw(X) = ( [ (6%())) O (X)X K = 0% (X)X K
a>0,wa<0
In particular, the scattering operators have no poles and we get:

15.7. COROLLARY. In the Whittaker case, we have St (X)X = S(Xx)XK.

This is the only example that we know where the extended Schwartz space
of the boundary degeneration is equal to the original Schwartz space, as far as
K-invariants go. As we will see in the next subsection, this is not true for Iwahori-
invariants.
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15.8. ExAMPLE. (Group case.) We discussed scattering operators for the group
case X = H in the previous subsection, but for unramified vectors we can also
describe them explicitly using Macdonald’s formula for spherical functions. We
keep assuming that G (hence H) is split, for simplicity. Using the notation of
gI5T] for [P] = [B] (where B here denotes the class of Borel subgroups of H, not
of G) we may identify the smooth dual C* (X@)’(1 of L), with Ip(x)®Ip-(x')
(since the fiber of X|p) over B is trivialized, cf. §I5.1]). Here y is an unramified
character of B, and we keep the convention from §I5.1] of using the parameter x to
denote the representation y ® x ! of B x B~.

Using the canonical basis vector of (Ig(x)®Ig-(x~ 1)), we may again express
scattering operators on K = H (o) x H(o)-invariants as scalars. In this case we have
Wx = Wg (the Weyl group of H), and Macdonald’s formula implies:

Lo L—qte -1 w1

S (x) : ( [T (- a)m) (X): C¥(Xg)X K - CP(Xg) X K
a>0,wa<0 g €

where the coroots & > 0 in the product above are the positive (with respect to B)

coroots of H, not all positive coroots of G.

15.9. Examples with Iwahori-fixed vectors. Let us consider the Whit-
taker and the group case in rank one.

15.10. ExaMPLE. (Whittaker model) Consider the Whittaker model of G =
PGL2, with conventions (about integral models and characters) as above. Let w
be the non-trivial element of the Weyl group. We can reinterpret Example as
saying that

1—e @

*® —
(156) yw (X) - 1— q_led

00T

C* (Xl = I§- (1) = I5- ("X 1) = C%(Xp) ™

Indeed, this holds for K-fixed vectors by the formula

1— qfled
1—ed

but for x in general position these generate the whole representation.

The rational family of operators (I5.6) may be regular on K-fixed vectors,
but this is not true for all vectors in the representation. More precisely, for a
holomorphic family of functions x — ¢,-1 € C*(X @)fl with the property that

1

Topy 1 = (X) P w15

cpé 1 does not belong to the trivial subrepresentation C < Ig, (6%), the section
B

_1
S (x)(@y-1) has a simple pole at x = §5*. It follows from this that we have a
short exact sequence:

0—S(Xg)) - ST (Xy)! —»St! -0
of H(G, J)-modules, where J is the Iwahori subgroup and St denotes the Steinberg
representation. (Restricting to Iwahori-invariants is just a way to isolate the spec-
tral contribution of unramified principal series.) The quotient St/ lives over the
character x = 572 of A, which is where the trivial representation is a quotient of

S(Xg)y = Lg,y- The trivial representation is no longer a quotient of S*(X), as
should be the case for the Whittaker model.
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15.11. EXAMPLE. (The group case) Consider the case X = H = PGLy under
the G = PGL3y x PGLs-action. We have seen that for the non-trivial element
w € Wx = Wy the scattering map is given by:

—1 w,,—1

Fa)=To®Ty ' : C¥(Xg)¥  ~Ip(x)®Ip-(x") » C"(Xg) ¥,
where again we denote here by B a Borel subgroup of H (not G).

It can easily be seen that, for x unramified, To ® T, ! has poles precisely at y =
6%2; more precisely, for a holomorphic family of functions x — ¢, -1 € COO(Xg)X_l,
the section 7% (x)(py-1) has a (simple) pole at x = 6% if and only if the spe-
cialization of ¢, -1 at that point does not belong to any proper subrepresentation
of

-1 _
C*(Xg)" * =~ I5(*2) ® Ip- (572).
From this it can be inferred that we have a short exact sequence:
0—-S(Xg)! - SH(Xy)! -St'@St' ®CR®C — 0,

with the quotient St” ® St” living over y = 62 and the quotient C ® C living
over x = 62. The fiber V of St (Xg) over either of x = 6%z admits a short exact
sequence:

0-StRCPACRSt->V ->St®StACRC —0
and, of course, as a result both St ® St and C ® C are quotients of S(H).

16. The Bernstein center and the group Paley—Wiener theorem

16.1. The Bernstein center. We will now see how our Paley-Wiener the-
orem, and in particular the description of multipliers (Corollary [LT0]), implies the
well-known theorem on the structure of the Bernstein center in the case of the
group, X = H, G = H x H. The argument is inductive in the size of H; in particu-
lar, we have used the structure of the Bernstein center for its proper Levi subgroups
in Corollary and hence Proposition [2.1] in order to deduce our Paley—Wiener
theorem and the existence of the multiplier ring 3" (H) on S(H).

Recall that the Bernstein center 3(H) is, by definition, the center of the category
M(H) of smooth representations of H, i.e. the algebra of natural transformations
of the idendity functor of M(H). When X = H the boundary degenerations Xg,
© c Ax are parametrized by classes of parabolics in H, where for a given parabolic
P corresponding to © < Ax we have:

Xp = Xo ~ LY\ (Up\H x Up\H) ~ Lp x"*P" (H x H).

Here P~ is an opposite parabolic, Lp = P n P~ a Levi subgroup and Up,Up the
corresponding unipotent radicals.
For all H x H-representations that appear below, if not specified otherwise, we

let the Bernstein center of H act via the embedding H XL g« H.

16.2. THEOREM. (1) The canonical morphism:
(16.1) $(H) — Endygo s (S(H))

is an isomorphism.

(2) For every class of parabolics P in H (corresponding to © < Ax) the
Bernstein center acts fiberwise, i.e. 3*P(X§) = C[ﬁC“Sp]—equivariantly,
on S(Xo)eusp ~ C[LEP, Lo].
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(3) The action of any element of 3(H) on each fiber of Le is scalar; this scalar

. . Fcusp - . .
varies polynomially on Lp ', i.e. we get a canonical morphism:

(16.2) 3(H) — QLS.

(4) The above map gives rise to an isomorphism:

(16.3) 3(H) = (@C[i?SI’L) =3 (H),
P

where the exponent ™ denotes invariants with respect to the isomor-
phisms:

L(;;lbp ~ Lg}sp
induced by all we Wy (P, Q).

PROOF. (1) Choose a Haar measure dh on H, and let z — a(z) denote
the morphism ([I6I). We can construct an inverse to « as follows: Let
(m,V) be a smooth representation of H and let J be an open compact
subgroup. For Z € Endy« g (S(H)) we define an endomorphism §(Z) of
V7 by:

B(Z)(v) = 7(Z(1,/ Vol(J))dh)(v),
where 1; is the characteristic function of J. It is easy to see that this
defines an endomorphism 3(Z) of V, and that the collection of these
endomorphisms is an element of the Bernstein center (also to be denoted
by 8(Z)). Finally, the fact that § is inverse to « follows from applying
any z € 3(H) to the morphism of smooth H-representations:

SH)®7>3 f®uv— n(fdh)(v) €,

where the left hand side is considered as an H-module only via the action
on S(H) by left multiplication.

(2) This is obvious from the definition of the Bernstein center and the fact
that the 3°UP(X§)-action commutes with the G = H x H-action.

(3) The action is generically scalar because for o € f/%uSp in general position
the representations IH_ (o) and I (o) are irreducible, s. Lemma[IT3 On
the other hand, it has to preserve the space S(Xe)eusp =~ C[LS*P, Lo] of
regular sections of Lg, so it has to be polynomial in o.

(4) From our Paley-Wiener theorem (e.g. in the form of Theorem [I4.5]) and
the 5°“Sp(Xé)—equivariance properties of the scattering maps, it follows
that the image of (I6.2)) has to lie in the invariants. On the other hand,
by the inverse of (IG.]) and the fact that 3" (H) < Endg« g (S(H)), every
invariant induces an H x H-equivariant endomorphism of S(H), thus by
the first assertion of this proposition we get the desired isomorphism.

O

16.3. Paley—Wiener theorem. In the case of the group, X = H, G =
H x H, we would like to explain the relation of our theorem to the well-known
Paley—Wiener theorem of Bernstein [Ber| and Heiermann [Hei01]. We clarify that
our theorem goes only half-way towards their result; for the other half, one needs to
appeal to Proposition (0.2) of [Hei01], which is probably also the hardest part of
that paper. This is because the Paley—Wiener theorem of Bernstein and Heiermann
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for the group does not generalize (as a statement) to spherical varieties; and there is
a non-trivial distance to cover in order to obtain one from the other, accomplished
through the aforementioned proposition of Heiermann. In fact, the steps taken in
part A of [Hei01] can be recast in the setting of our general proof; thus, our work
provides a weak generalization, but not a new proof of the Paley—Wiener theorem
for reductive groups. We find it important, nevertheless, to explain the connection.

To state the Paley—Wiener theorem of Bernstein and Heiermann we will use the
language of bundles, as in §3] [ we will not explicitly detail the algebraic structure
of the bundles that we will encounter, since the process is identical to the one we
have used thus far.

16.4. THEOREM (Bernstein [Ber|, Heiermann [Hei01]). For every parabolic P
of H, denoting its Levi quotient by L, consider the bundle o — End (Iﬁ(&)) over
LE®P.

Fizing a Haar measure dh, for every smooth representation m we have the
canonical map:

S(H) 5 f v n(fdh) € End(r).

Then this map gives rise to an isomorphism:

S(H) > (@«: [0 € [P End (Iﬁ(&))]) ,
P

where:

e P ranges over all conjugacy classes of parabolics;
e the exponent ™ refers to sections of the bundle of endomorphisms which
commute with all standard intertwining operators.

We will use the notation of §I5.1l In particular, T p is the standard intertwin-
ing operator between representations induced from parabolics P, which share a
common Levi subgroup (depending on a choice of Haar measure on Ug/Ug N Up),
X[p) denotes the boundary degeneration corresponding to a class [P] of parabolics

_———cu

in H, and the space X[LP](C
By setting IH (o) in duality with 75 (&) (that depends on the choice of a Haar
measure on Up-), the bundle with fibers o — End (If(5)) of Theorem 64 is

identified with the bundle whose fiber over o € LE*P is IH(5) ® I (o).
Thus, the morphism f +— 7(fdh) can be understood as a morphism:

is identified with EEJSP as explained there.

(16.4) M*: S(X) - C [0 e Lewe H(5) @ I (o)]

where the notation M* is due to the fact that this is dual to the operation of
taking matrix coefficients. On the other hand, the condition of invariance under
standard intertwining operators in Theorem [I6.4] can be tranlated to the condition
of invariance under the operators:

. Tqp®Tp: .
C (a e feve TH(5) @I};f(a)) AT re, ¢ (0 e 1w 1 (&) @13(@) .

By [SV17, §15.7], one obtains the normalized cuspidal constant terms Eg,cusp

out of this by composing with the inverse of the standard intertwining operator
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Ty : I (0) — IF (o) in the second variable:

1T !

S(xX) M5 1 () @ IH (0)] 2 C (TH () @ T (0))

where we have for brevity omitted LewsP from the notation.
Thus, we have a commutative diagram:

(16.5)

ClIE(E) ®IE (o L 5)® 14 (o))
=j1®T01 :l1®Tol
TQ\P®T “le-

C (1) ® I (o) c (16 o1 ()

which is dual to (I52]), so the compositions of slanted and vertical arrows are the
normalized constant terms. Notice that up to this point we have made choices of
Haar measures on H and Up- (so that the left slanted arrow M* is proportional
to the measure dh and inversely proportional to Up-), and of a Haar measure on
Up (to which T(;l is inversely proportional; and similarly when P is replaced by Q.
The measure dh also induces measures on the boundary degenerations X|pj, X[qy,
and we leave to the reader to check that the choices of measures cancel each other
out when we identify the bundles in the bottom row with the bundles of cuspidal
coinvariants Lpy, resp. L[q]-

Our Theorem [I4.4] together with Proposition I5.2, states that the sum of
normalized constant terms induces an isomorphism:

(16.6) (@c*[fp ®1H()]> ,

where inv denotes invariants of the fiberwise scattering maps %, = T p®T - | o-

Recall that the space C* [If (6) @ IH_ ()] is generated by applying these scattering
maps to regular sections.

To see that this implies Theorem [I6.4] the only non-trivial statement to prove
is that every element of:

(16.7) (@C [15(6)® 15 (o )])
corresponds to an element of the right hand side of (I6.6]) under the diagram (I6.5]),
but this is [Hei01l, Proposition 0.2] which, in our language, states:

16.5. PROPOSITION (Heiermann [HeiO1l). For every element ¢ = (vq)o of
([6.7) there is an element & = (Ep)p € @p C I (6) ® IF (0)] such that:

¢ = > Toip ®Top-Sp

P~QweWg (P,Q) Q
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94 16. THE BERNSTEIN CENTER AND THE GROUP PALEY-WIENER THEOREM

Notice that Top ® Toip- = Toip ® (To © T;_l‘Q_). Thus, under the vertical
arrows of diagram (IG.0]), the element ¢ corresponds to the element:

2 Tar®Tplg
P~QweWy (P,Q) Q

of ((—BQ Cct [Ig(&) ®Ig_ (a)]) ", This recovers Theorem [[6.41 on the basis of
Proposition 0.2].
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APPENDIX A

Characterization of strongly factorizable spherical
varieties

In this appendix we assume that G is split.

Recall that a homogeneous spherical variety X is called factorizable if the rank
of X2 is equal to the rank of Z(X), and that a wavefront spherical variety is called
strongly factorizable if all its Levi varieties are factorizable.

We will characterize factorizable and strongly factorizable spherical varieties in
terms of combinatorial invariants attached to X. We refer the reader to [Lun01]
for more details on the definitions and properties of these invariants.

Recall that the group X(X) = Hom(Ax,G,,) defined previously denotes the
subgroup of characters of a Borel subgroup B which are trivial on generic stabilizers
or, equivalently, the group of eigencharacters of the Borel subgroup on the space
F(X)®) of non-zero rational B-eigenfunctions on X. By definition, the group X (X)
is a subgroup of X(A), the character group of the universal Cartan A = B/N.

The little Weyl group Wi acts on X'(X). The character group of Z(X) can be
identified with the quotient of X' (X) by the characters in the subspace of X(X)g =
X (X) ® Q spanned by the set Ax of spherical roots.

Let D be the set of colors, i.e. prime B-stable geometric divisors. Each of them
induces a valuation on the function field over the algebraic closure F'(X) and, by
restriction to B-eigenfunctions, a map px : D — Hom(X(X),Z). Indeed, there is
a short exact sequence

(A1) 1 - F* > FX)B) 5 x(X) -1,

and the valuations are trivial on F*. Since, in the case of G being split, the Galois
group acts trivially on X (X), these valuations are Galois stable — in particular,
Galois-conjugate colors give rise to the same valuation.

A.1. PROPOSITION. A homogeneous spherical G-variety X is factorizable if and
only if the following two conditions are satisfied:
(1) X(X)g™ c X(A)Y;
(2) the set px (D) of valuations induced by colors lies in the subspace of X (X)§
spanned by the images of coroots of G under the quotient map X(A)f&
X(X)§-
A wavefront homogeneous spherical variety is strongly factorizable if and only
if the following two conditions are satisfied:

—

(1) For every subset © of the set Ax of spherical roots,

X(X)y " X(A)y"e.

95
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(Recall that the little Weyl group Wx, of Xe is generated by the simple
reflections associated to elements of ©; by W, we denote the Weyl group
of the Levi subgroup Leg.)

(2) For every color D, px (D) is a multiple of the image of a simple coroot &
of G.

Before we prove the proposition, we make some remarks, prove some lemmas
and give some examples that clarify its use.

REMARKS. (1) In terms of the dual groups, the first condition means
that the center of the dual group of X is, up to finite indices, contained in
the center of the dual group of G, and similarly for all Levi varieties (for
strong factorizability). Notice that the dual grou G x of X is a canonical
subgroup of the dual group G of G, if the Tannakian construction of
Gaitsgory-Nadler is assumed, or a canonical subgroup up to conjugacy by
the canonical maximal torus, if a combinatorial definition based on the set
Ax of spherical roots is used. The dual Leg of the Levi Lg is determined
by the set of simple roots of G in the support of elements of ©, and the
simple roots in the Levi of P(X). Hence, this is a condition that can be
easily checked once the spherical roots of X and the parabolic P(X) are
known.

(2) The second condition (in both cases) cannot be read off from dual groups.
It requires more specific knowledge on colors, which can be obtained from
the Luna diagram [LunO1] of the spherical variety. This condition, for
strong factorizability, eventually boils down to a determination of val-
uations for “type T” colors, i.e. colors attached? to simple roots of G
belonging to (the set of unnormalized spherical roots)ﬁ Yx. More pre-
cisely:

A.2. LEMMA. The second condition for strong factorizability is satisfied if and
only if for every a € ¥x which is also a simple root for G, the two colors contained

in X - Py induce valuations equal to 5.

Such colors are called undetermined in [Kno96, §5].

PROOF. Indeed, for every color D there exists at least one « such that D <
XP,, and then px(D) = the image of ¢ (hence the second condition of strong
factorizability is satisfied) except when a € Yx, cf. [Lun01]. In this last case,
consider the boundary degeneration of rank one associated to © = {a}. The Levi
Lg has simple roots {a} U S%, where, using Luna’s notation, S% denotes the simple
roots in the Levi of P(X). But it is known that if 3 € S then the image of the
coroot 3 in X(X)§ is zero. Hence, px (D) has to be a multiple of (the image of) &,
(6]

and then it has to be equal to 5. (Cf. loc.cit. for all the facts we are using.) g

Moreover, it has been proven by Losev [Los09] Theorem 2| that for o € Xx
as in the previous lemma, the spherical variety Xy = N(H)\G = X/Autg(X)

1We are using here the Gaitsgory-Nadler dual group, denoted by GVXVGN in [SV17], assuming
that its root datum is the one corresponding to the spherical roots — see loc.cit., Theorem 2.2.3.

2A color D is attached to the simple root o of G if it belongs to X - P,, where P, is the
parabolic of semisimple rank 1 associated to a.

3Those are the spherical roots as used by Luna. They are multiples of elements of Ax.
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(where X = H\G and N(H) denotes its normalizer), the spherical root a gets
replaced by 2. That means that, up to dividing by the G-automorphism group or
a suitable subgroup thereof, X is a spherical variety whose spherical system has no
simple roots, and those have been classified, along with “strict spherical varieties”
by [BCF10]. Most of those are symmetric, and among the non-symmetric ones
some are not of wavefront type or do not satisfy the first condition of Proposition
[A1] but there are some examples that do:

A.3. EXAMPLE. Let X = G2\SO7. Its spherical system is denoted b”(3) in
[BCF10]. With simple roots labelled consecutively (on the Dynkin diagram) as
a1, ag, a3, where g is the short root, we have S% = {aj,a} and Xx = {aq +
200 + 3&3}.

The variety X is factorizable for trivial reasons: Z(X) is trivial. From its
spherical system it can be deduced that its only boundary degeneration is the
unique horospherical homogeneous variety X g with Sg(g = S% and character group
spanned by o +2as +3as. Thus, Xg = SLs U\G, where U is the unipotent radical
of the parabolic with Levi of type GL3, and SL3 is the derived group of this Levi.
Hence, the Levi variety is SLz \ GL3, which is factorizable.

A.4. EXaAMPLE. Let X = H\G, where G is the exceptional group G5 and
H = SLg; its spherical system is denoted ¢(2) in loc.cit. Here S% = {2} (the long
root) and ¥ x = {201 +as}. Again, Z(X) = 1, and from the spherical system it can
be deduced that the only boundary degeneration X is isomorphic to the quotient
of G by the subgroup SLs -U, where U is the unipotent radical of the parabolic
whose Levi has root as, and SLs belongs to that Levi. Thus, Xé = SLo\ GLo,
which is factorizable.

Now we come to the proof of Proposition [A.1l

Proor or ProrosiTION [AJl Consider the diagram of natural morphisms of
tori:
Z(X) —— Axy —— X

]

Z(G)° ——= A ——= G2

In terms of character groups we have a dual diagram:

X(X)®Q/ (Bx)q —— X(X) ®Q—— X(X") ®Q

| | |

X(A)®Q/(P)g=—X(4)®Q<—X(G")®Q.

The vertical arrows are injective, and so are the horizontal arrows on the right.
Thus, for an element ¥ € X(X) ® Q to come from X(X?*") ® Q, first of all it
has to come from X (G*") ® Q; thus, it has to be orthogonal to the subspace of
Hom(X(A),Q) spanned by coroots of G. Granted that, and assuming without
loss of generality that x € X(X), we need to make sure that such a character is
trivial on the subgroup H stabilizing a point on the homogeneous variety X. This
is equivalent to saying that x, thought of as a function on the open Borel orbit
(uniquely determined up to scalar by ([Al)), extends to a nonvanishing, regular
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function on the spherical variety. (The equivalence is established by pulling it back
to G and using the fact that a regular, non-vanishing function on G is necessarily
a scalar multiple of a character.) Which, in turn, is equivalent to saying that its
valuations on all colors are trivial. Thus:

(A.2) X(X™)®Q = X(X)®Qn &  px (D)L,

where ® denotes the image of coroots of G. Thus, X is factorizable if and only if
the span of colors and coroots of G in Hom(X(X), Q) has the same dimension as
the span of ¥y in X(X)g.

This condition can be reformulated, taking into account that there is a Weyl
group action on X'(X), under which the quotient X'(X)®Q/ (¥x) can be identified
with the subspace of Wx-fixed vectors. This, in turn, contains the subspace X (X)®

Qn él. (Notice that, in terms of dual groups, this containment corresponds the
embedding into the center of the dual group of X of its intersection with the center
of the dual group of G.) Thus, a variety is factorizable if and only if the Wx-fixed
subspace of X' (X)®Q belongs to the W-fixed subspace of X(A)®Q and, moreover,
the valuations induced by colors, i.e. the set px (D), are in the subspace spanned
by the images of coroots of G.

For a Levi variety, the lattice X'(X) does not change, the set of spherical roots
is a subset of X x, and the set of colors can be identified with the subset of those
D e D with (v, px (D)) > 0 for some ~ in that subset of ¥ x (cf. [Lun01]). The first
condition of strong factorizability follows directly from the first condition of factor-
izability, and the second follows from considering boundary degenerations with a
unique spherical root, and clearly suffices for all other boundary degenerations. [

Finally, we check that the two examples [A3] [A.4] of non-symmetric, strongly
factorizable varieties that we saw satisfy the rest of the assumptions of this paper
(s. ).

In both cases, the character group X(X) is generated by the spherical root,
hence is of rank one, and the spherical root is a root of the group. Hence, we have
a% o = either the line generated by the spherical root (when © = &) or the trivial
space {0} (when © = Ay). In the non-trivial case, since a% g is one-dimensional,
an element of the Weyl group that leaves it invariant either acts trivially on it or
acts by (—1); hence, both actions are represented by elements of the little Weyl
group Wx. Thus, the strong generic injectivity assumption is fulfilled.

We now sketch the argument for the validity of the explicit Plancherel formula
of [SV17, Theorem 15.6.2], by checking the “generic injectivity of small Mackey
restriction” (we point the reader to loc.cit. for the definitions). This has to do with
representations appearing in the continuous spectrum of X, i.e. in the spectrum of
(the unique boundary degeneration) Xg. In this case, since X is horospherical,
the representations will have the form Ip(x)(x), where x is a character that is
trivial on the intersection of P(X) with the stabilizer of a point on X belonging
to the opposite parabolic.

We need to show that, for generic such y, any morphism:

S(X) - IP(X)(X)
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is obtained by the analytic continuation of the functional “integration over the
open P(X)-orbit” (against the character X’lég(%x)). To show this, we argue that
other P(X)-orbits (or, for that matter, other Borel orbits) cannot support such a
P(X)-equivariant (or Borel-equivariant) distribution. For unramified characters,
this has been done in [Sak08], but the same argument works in general. It is
enough to show that no B-orbit other than the open one has character group (=
the group of characters of the Borel subgroup which are trivial on stabilizers of
points on this orbit) different from the open orbit (whose character group coincides
with X(X) and hence, in our examples, is generated by the unique spherical root).
By [Kno95], the rank of the character group of each Borel orbit is at most equal
to that rank for the open orbit, which in our case is 1; and all orbits of maximal
rank (in our case, rank 1) are conjugate under an action of the full Weyl group W
defined by F. Knop, which is compatible with the action of W on character groups
(considered as subgroups of X'(A), the character group of the Borel). The stabilizer
of the open orbit under this action is the product Wx x Wy x), where L(X) is
the Levi of P(X), so the whole problem boils down to checking that the stabilizer
of X(X) c X(A) in W is equal to Wx x Wr(x) in our examples. This is indeed
the case: Let w € W stabilize X' (X). Without loss of generality (multiplying, if
necessary, by the non-trivial element of Wx), w acts trivially on X' (X). But this
places w in the centralizer of the dual torus Ay (the torus with cocharacter group
X (X)) in the dual group G of G, a Levi of G which by [Kno94, Lemma 3.1] is the
Levi dual to P(X); thus, w € Wy (x).
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