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1. Introduction

Our concern is with a homogeneous real spherical space Z = G/H. We assume
that Z is algebraic, i.e. there exists a connected reductive group G, defined over R,
and an algebraic subgroup H ⊂ G, defined over R as well, such that G = G(R) and
H = H(R). Then Z is a G-orbit of the variety Z(R) where Z = G/H . We denote
by z0 = eH ∈ Z ⊂ Z(R) the standard base point and recall that Z is called real
spherical if there is a minimal parabolic subgroup P ⊂ G such that P · z0 is open
in Z.

The goal of this paper is to develop the basic Plancherel theory for L2(Z), i.e.
to establish the foundational Bernstein-decomposition of L2(Z) into different series
of representations. Although the main body of the text is written in terms of
Z, we focus in this introduction on Z(R) and the Bernstein decomposition for
L2(Z(R)), for which our results are easier to state. On a technical level we obtain
the information for Z(R) by collecting the data of all G-orbits in Z(R).

Real spherical varieties Z(R) have a well understood G-equivariant compactifi-
cation theory, which is constructed out of the combinatorial data of Z originating
from the local structure theorem. We recall from [28] that attached to Z there is a
torus AZ = A/A∩H, homogeneous for a maximal split torus A of G contained in P .

Let AZ be the identity component of AZ(R), and aZ its Lie algebra. Inside aZ one

finds a co-simplicial cone a
−
Z , called the compression cone, which is a fundamental

domain for a finite reflection group WZ [26]. In particular there is a set S ⊂ a∗Z , of
the so-called spherical roots, such that the faces of a−Z are given by a

−
I := aZ ∩ aI

with I ⊂ S and aI := I⊥ ⊂ aZ . For the simplicity of exposition we assume in this
introduction that S is a basis of the character group ΞZ � Zn of the torus AZ , the
so-called wonderful case.

Now there exists a (wonderful) smooth G-equivariant compactification Ẑ(R) of
Z(R) featuring a stratification in G-manifolds,

Ẑ(R) =
∐
I⊂S

ẐI(R),

parametrized by subsets I ⊂ S of spherical roots [26] and with Z(R) = ẐS(R). The

strata ẐI(R) for I ⊂ S arise as follows. For every element X in the relative interior
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a
−−
I of the face a

−
I of a−Z , the radial limit

ẑ0,I := lim
t→∞

exp(tX) · z0 ∈ Ẑ(R)

exists and is independent of X. Then ĤI , the G-stabilizer of ẑ0,I , is real algebraic,

i.e. ĤI = ĤI(R), and ẐI(R) := [G · ẑ0,I ](R) is the set of real points in the boundary

orbit G · ẑ0,I . The group ĤI acts on the normal space to the stratum ẐI(R)
at ẑ0,I . The kernel of this isotropy action defines an algebraic normal subgroup

HI � ĤI with torus quotient AI = ĤI/HI . The real spherical space ZI(R) :=
(G/HI)(R) is in fact canonically attached to Z(R), i.e. it does not depend on
the particular compactification. Geometrically ZI(R) is a deformation of Z(R)
which approximates Z(R) asymptotically near the vertex ẑ0,I . We denote by AI

the identity component of AI(R) and note that its Lie algebra is aI defined above.
We assume now that Z and hence also Z(R) is unimodular, i.e. it carries a G-

invariant positive Radon measure. As ZI(R) is a deformation of Z(R) for each
I ⊂ S, it follows that ZI(R) carries a natural G-invariant measure as well. On
ZI(R) the group G × AI acts from left times right. The left G-action defines a
unitary representation L of G on L2(ZI(R)) given by (L(g)f)(z) = f(g−1 · z) for
g ∈ G, z ∈ ZI(R) and f ∈ L2(ZI(R)). The right action of AI on ZI(R) defines a

normalized unitary representation R(aI)f(z) = a−ρ
I f(z ·aI) for aI ∈ AI and f, z as

before. The decomposition of L2(ZI(R)) with respect to R yields the disintegration
in unitary G-modules

L2(ZI(R)) =

∫
ÂI

L2(ZI(R), χ) dχ

with ÂI the unitary character group of the non-compact torus AI . The space
L2(ZI(R), χ) is the space of square integrable densities with respect to χ and we
denote by L2(ZI(R), χ)d the discrete spectrum of this unitary G-module. We define
the twisted discrete spectrum of L2(ZI(R)) by

L2(ZI(R))td :=

∫
ÂI

L2(ZI(R), χ)d dχ .

The main result of this work (see Theorem 11.11 where B of (1.1) is denoted by
BR,res) is the construction of a G-equivariant surjective map

(1.1) B :
⊕
I⊂S

L2(ZI(R))td → L2(Z(R))

such that source and image have equivalent Plancherel measures, i.e. belong to the
same measure class. Further each BI := B

∣∣
L2(ZI(R))td

is a sum of partial isometries.

The latter property translates into the Maass-Selberg relations, see Theorem 9.6,
and will be explained in more detail below. The existence of such a map originates
from ideas of J. Bernstein, and accordingly we call B the Bernstein morphism. Let
us remark that in the main text we derive a more general (but more complicated to
state) result, namely a Bernstein decomposition for L2(Z) (see Theorem 11.1 and
Theorem 11.9) from which we derive (1.1) by collecting the data for the various
G-orbits in Z(R).

For absolutely spherical spaces of wavefront type over a p-adic field k a Bernstein
map for L2(Z(k)) with the same properties as above was constructed by Sakellaridis
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and Venkatesh in [42] under the assumption of certain properties of the discrete se-
ries, see [42, Conjecture 9.4.6]. A novel point of view in [42], which we have adopted,
is the observation that the decomposition of L2(Z(k)) into the various series of rep-
resentations is reflected in the boundary geometry of a smooth compactification

Ẑ(k) of Z(k). Another new insight of [42] is that no explicit knowledge of the
discrete series is needed to derive the Bernstein decomposition: the bottom line is
the existence of a spectral gap for the discrete series. Since a spectral gap theorem
is established in full generality for real spherical spaces in [32], we do not have to
make any assumptions on the discrete spectrum as in [42].

With the implementation of the Bernstein decomposition the Plancherel theo-
rem for L2(Z(R)) essentially reduces to the understanding of the twisted discrete
spectrum for each ZI(R), and the determination of kerB. Since the Bernstein map
is isospectral and surjective, it follows that the measure class of the Plancherel
measure of L2(Z(R)) is given by countably many copies of the Haar measures on
the tori AI .

Let us consider the example Z = Z(R) = G×G/ diagG � G of a real semisimple
algebraic Lie group. Here the spherical roots S are identified with the simple roots
with respect to a, the Lie algebra of A of a maximal split torus of G. Recall that
subsets I ⊂ S parametrize the parabolic subgroups PI = LIUI of G. Then we
have HI = diag(LI)(UI × UI) with PI = LIUI the parabolic opposed to PI and in
particular

ZI(R) = [G/UI ×G/UI ]/ diag(LI) .

Write LI = MIAI as usual. Now, via induction by stages, we readily obtain

(1.2) L2(ZI(R))td �
G×G

∑
σ∈M̂I,disc

∫
ia∗

I

πσ,λ ⊗ π∗
σ,λ dλ ,

where πσ,λ = IndGPI
(λ⊗σ) is the unitarily induced representation of G with respect

to the unitary character of AI defined by λ, and σ is a discrete series representation
of MI . Via basic intertwining theory we then group the occurring representations
in (1.2) into equivalence classes and obtain Harish-Chandra’s Plancherel formula
up to the classification of the discrete spectrum of the inducing datum (see Section
14). Likewise holds for the Plancherel theorem for symmetric spaces as obtained
by Delorme [9] and van den Ban-Schlichtkrull [3] and we refer to Section 15 for the
complete account.

As in the work of Harish-Chandra on the Plancherel theorem for a real reductive
group, a constant term approximation [17] lies at the heart of the proof. Let us
explain that. A Harish-Chandra module V endowed with a linear functional η,
such that η extends to a continuous H-invariant functional on the unique smooth
moderate growth completion V ∞, will be called a spherical pair and denoted (V, η).
The continuous dual of V ∞ is denoted V −∞, and from [29] originates a natural
linear map

(1.3) (V −∞)H → (V −∞)HI , η �→ ηI .

Attached to η are the generalized matrix coefficients mv,η(gH) = η(g−1v) which
define smooth functions on Z for all v ∈ V ∞. Likewise we obtain smooth func-
tions mv,ηI on ZI := G/HI ⊂ ZI(R). An appropriate notion of temperedness for
functions on a real spherical spaces was defined in [27], and accordingly η is called
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tempered if all associated matrix coefficients are tempered functions. The map
(1.3) then gives rise to a linear map of tempered functionals

(V −∞)Htemp → (V −∞)HI
temp .

The constant term approximation [10] measures the differences

|mv,η(g exp(tX)H)−mv,ηI (g exp(tX)HI)|

for g ∈ Ω, a compact subset of G, and t → ∞ for X ∈ a
−−
I . We refer to Theorem

7.1 for the detailed statement.
In case of the group Harish-Chandra obtained in [17] such an approximation for

a fixed representation. Using his strong results on the discrete series [16] it was
made uniform for all tempered representations in [18]. For spherical spaces the
uniformity of the constant term approximation is obtained in [10] via the spectral
gap theorem of [32] for the twisted discrete spectrum.

Let us mention that our constant term approximation is also uniform in the
category of smooth vectors so that there is no need for expansion of functions in
terms of K-types. On a geometric level this allows us to view ZI and Z in terms of
the orbit geometry of the minimal parabolic subgroup P . In more detail, we show
that there is a natural injective map of open P -orbits (P\ZI)open → (P\Z)open.
This in turn allows us to identify ZI inside Z, up to measure zero via the open P -
orbits. We refer to Section 8 for the analytic implementation of this P -equivariant
point of view. Let us point out that the auxiliary “exponential maps” of [42], which

allowed an identification of Z(k) and ẐI(k) near the vertex ẑ0,I , are no longer
needed in our context of P -equivariant matching of ZI with Z up to measure zero.

For almost all irreducible Harish-Chandra modules in the spectrum of L2(ZI)

the multiplicity space (V −∞)HI
temp is a finite dimensional semisimple module for aI

and accordingly every ηI ∈ (V −∞)HI
temp decomposes into eigenvectors

ηI =
∑

λ∈ρ+ia∗
I

ηI,λ .

Our Maass-Selberg relations are then expressed in the form that η �→ ηI,λ is a
partial isometry, see Theorem 9.6. Notice that the ηI,λ reflect the asymptotics of
the matrix coefficients mv,η through the constant term approximation. Finally we
define the Bernstein morphisms spectrally via the technique of tempered embedding
developed in [29, Sect. 9].

As a corollary of the Bernstein decomposition we obtain a partial geometric
characterization of the existence of the discrete spectrum:

(1.4) int h⊥ell 
= ∅ ⇒ L2(Z)d 
= ∅ ,

see Theorem 12.1. This formulation reflects the known geometric characterization
for groups and symmetric spaces, going back to Harish-Chandra [16] and Flensted-
Jensen [12]. Actually we expect that the converse implication in (1.4) holds as well,
and we provide a geometric analogue of the expected equivalence via moment map
geometry in Theorem 13.1.
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2. Notions and generalities

Throughout this paper we use upper case Latin letters A,B,C . . . to denote Lie
groups and write a, b, c, . . . for their corresponding Lie algebras. If G is a Lie group,
then we denote by G0 its identity component.

If M is a set and ∼ is an equivalence relation on M , then we denote by [m] the
equivalence class of m ∈ M . Often the equivalence class is obtained by orbits of a
group G acting on M . More specifically if X,Y are sets and G is a group which
acts on X from the right and acts on Y from the left, then we obtain a left G-action
on X×Y by g · (x, y) := (x ·g−1, g ·y) whose set of equivalence classes we denote by
X ×G Y . We often abbreviate and simply write [x, y] instead of [(x, y)] to denote
the equivalence class of (x, y).

Given a group G and subgroup H ⊂ G we use for g ∈ G the notation Hg :=
gHg−1, i.e. Hg is the G-stabilizer of the point gH ∈ G/H.

For a Lie algebra g we write U(g) for the universal enveloping algebra of gC.
Further we denote by Z(g) the center of U(g).

If Z is an algebraic variety defined over R and k ⊃ R is a field, then we denote
by Z(k) the set of k-points. Since we only consider fields k = R,C in this paper we
abbreviate in the sequel and simply set Z := Z(C).

Let now G be a connected reductive algebraic group defined over R and let
G := G(R). As a general rule we use the following notation: if R is an algebraic
subgroup of G and defined over R, then we set R := R(R) and note that R is
closed Lie subgroup of G. We regard G ⊂ G and then R = G ∩ R. We let H < G
be an algebraic subgroup defined over R, and define H < G according to this
rule. For intersections with H we adopt the notation RH := R ∩ H and likewise

RH := R ∩H = RH(R).

Set Z := G/H and observe that Z is a smooth G-variety defined over R. Set
Z := G/H and observe that Z is a G-orbit of Z(R). In general Z(R) is a finite
union of G-orbits, but typically not equal to Z. For example if G = SL(n,C) and
H = SO(n,C) then Z(R) �

⋃
2k≤n SL(n,R)/ SO(n− 2k, 2k) identifies with the real

symmetric matrices with unit determinant, whereas Z comprises the set of positive
definite symmetric matrices therein. In particular, in this case Z = G/H � Z(R).
This shows, when taking real points of the principal bundle

(2.1) 1 → H → G � Z

we have to act with care, as the functor of taking real points in (2.1) is only left
exact

(2.2) 1 → H → G → Z(R)

and extends to a long exact sequence of pointed sets [43, I.5.4, Prop. 36] in Galois
cohomology

(2.3) 1 → H → G → Z(R) → H1(Gal(C|R), H) → H1(Gal(C|R), G) .

In this context we recall from [26, Prop. 13.1] that:

Lemma 2.1. If G is anisotropic over R, i.e. G(R) is compact, then (2.2) is right
exact.

We denote by z0 = H the standard base point of Z and observe the G-equivariant
embedding

Z → Z = G/H, gH �→ gH = g · z0 .
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If R is a unipotent group, then note that R is connected for the Euclidean
topology. This is because unipotent groups R are isomorphic (as varieties) to their
Lie algebras rC via the algebraic exponential map.

2.1. Real spherical spaces and the local structure theorem. Let P < G be
a parabolic subgroup of G which is minimal with respect to being defined over R.
We denote by N the unipotent radical of P .

We assume that Z is real spherical, that is, the action of P on Z admits an open
orbit. After replacing P by a conjugate we will assume that P ·z0 is open in Z. The
local structure theorem (see [28, Th. 2.3] and [26, Cor. 4.11]) asserts the existence
of a parabolic subgroup Q ⊃ P with Levi-decomposition Q = L � U defined over
R such that one has

P · z0 = Q · z0(2.4)

Q
H

= LH(2.5)

Ln ⊂ LH(2.6)

where Ln is the unique connected normal R-subgroup of L such that the Lie algebra
ln is the sum of all non-compact, non-abelian simple ideals of l.

Remark 2.2. In addition to (2.4)–(2.6) we request from our choice of L that it is
obtained via the constructive proof of the local structure theorem. In case that
Z = G/H is quasi-affine, this means that there exists ξ ∈ h⊥ ⊂ g such that

L = ZG(ξ) = {g ∈ G | Ad∗(g)ξ = ξ} .
In case Z is not quasi-affine one uses a quasi-affine cover (cone construction) to
reduce to the quasi-affine case: extend G to G1 = G × C× and let ψ : H → C×

be a character defined over R which is obtained from a Chevalley embedding of Z
into projective space which is defined over R. With H1 = {(h, ψ(h)) | h ∈ H} we
obtain a real spherical subgroup H1 ⊂ G1 such that Z1 = G1/H1 is quasi-affine.
The local structure theorem for Z1 then descends to a local structure theorem for
Z.

With this choice of L it is then guaranteed that the slice L/LH can be extended
to suitable compactifications of Z which will be used later in this text.

In particular, we obtain from (2.4)–(2.5) via the obvious multiplication map

(2.7) P · z0 � U × L/LH

an isomorphism of algebraic varieties defined over R. If we take real points in (2.7)
we get

(2.8) [P · z0](R) � U × (L/LH)(R).

In the next step we wish to describe (L/LH)(R) in more detail. For that let

A ⊂ L ∩ P be a maximal split torus and set AZ := A/AH . We also view the
torus AZ as a subvariety of Z. Further we define AZ to be the identity component

of AZ(R).
The number r := rankR Z := dimAZ is an invariant of Z and referred to as the

real rank of Z.
Let K be a maximal compact subgroup of G. Note that K is algebraic, i.e. K =

K(R). Further we denote by z(g) the center of g, and we fix with κ : g×g → R a non-
degenerate Ad(G)-invariant bilinear form which yields an orthogonal decomposition



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PLANCHEREL FORMULA 821

of the center z(g) = (z(g)∩a)⊕(z(g)∩k). In case g is semi-simple, the Cartan-Killing
form can be used for κ. It is a standing further requirement for K that k ⊥ a. Then
M := ZK(A), the centralizer of A in K, does not depend on the particular choice
of K with k ⊥ a.

Notice that ZG(A) is a Levi-subgroup of P and as such connected. Moreover we
have ZG(A) = MA. Notice that (2.6) implies that MA acts transitively on L/LH .

In the next two paragraphs we recall some elementary facts from [10, Sect. 1
and App. B]. Define

M̂H = {m ∈ M | m · z0 ∈ AZ}

and note that M̂H is the isotropy group for the action of M on L/LHA. In particu-

lar, M̂H is an algebraic subgroup of G defined over R. Moreover, M̂H contains MH

as a normal subgroup such that FM := M̂H/MH � M̂H/MH is a finite 2-group.

Here M̂H = M̂H(R) ⊂ M by our notational conventions.

Now L/LH is homogeneous for MA and thus

(2.9) L/LH � M ×
M̂H

AZ = M/MH ×FM
AZ .

In particular, by [10, Prop. B.2]

(2.10) (L/LH)(R) � M ×
M̂H

AZ(R) = M/MH ×FM
AZ(R)

where � refers to an isomorphism of real algebraic varieties.
From (2.7) and (2.10) we obtain the following form of the local structure theorem,

which we will use later on:

(2.11) [P · z0](R) � U ×
[
M/MH ×FM

AZ(R)
]
.

Recall that AZ(R) � (R×)r, with r = rankR(Z), is a split torus viewed as a

subvariety of Z(R). Set

AZ,R := AZ(R) ∩ Z .

Then it is clear that AZ ⊂ AZ,R ⊂ AZ(R). In general however, AZ,R is not a

group, but carries only the structure of an AZ-set (see Example 4.10 for Z =
SL(3,R)/ SO(2, 1)).

Let FR = {−1, 1}r < AZ(R) = (R×)r be the 2-torsion subgroup of AZ(R).

Since AZ is defined to be the identity component of AZ(R) we obtain the following
isomorphism of groups

(2.12) AZ(R) = AZFR � AZ × FR .

Let F ⊂ FR be the subset such that AZ,R = AZF , i.e. F = FR ∩ AZ,R. Set
TZ := expA(ia

⊥
H) < A and note that FR ⊂ TZ · z0 as TZ · z0 contains all torsion

elements of AZ .
Since FM maps faithfully into FR we view it in the sequel as a subgroup of FR.

Note that FM ⊂ F and that FM acts on F .
With this terminology we obtain from (2.10) that

(2.13) Z ∩ (L/LH)(R) � M/MH ×FM
AZ,R ,

and accordingly from (2.11)

(2.14) Z ∩ [P · z0](R) � U × [M/MH ×FM
AZ,R] .
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The set of open P -orbits in Z, resp. Z(R), is an important geometric invariant
and plays a dominant role in the harmonic analysis on Z, resp. Z(R). For a sym-
metric space it is known from [38] that the open P -orbits are parametrized by a
quotient of a Weyl group with a subgroup. Although no such parametrization is
known in general we denote

WR := (P\Z(R))open and W := (P\Z)open ,

motivated by the special case.
From (2.11) and (2.14) we deduce:

Lemma 2.3. The maps

FM\FR → WR, t = FM t �→ Pt

and

FM\F → W, t = FM t �→ Pt

are bijections.

It is often convenient to select representatives of W in G. For any t ∈ FM\F we
pick a representative t ∈ F such that t = FM t. Then Pt ∈ W and t ∈ Z = G · z0
implies that there is a lift w = w(t) ∈ G of t to G such that t = w · z0. If
W = {w(t) | t ∈ FM\F}, then the assignment

W → W, w �→ Pw · z0
is a bijection.

Let w = w(t) ∈ W and let t̃ ∈ TZ be a lift of t, i.e. t̃ · z0 = t. Then

(2.15) w = t̃h

for some h ∈ H .

2.2. Spherical roots and the compression cone. Let Σ = Σ(g, a) be the re-
stricted root system for the pair (g, a) and let

g = a⊕m⊕
⊕
α∈Σ

gα

be the attached root space decomposition. Write (l ∩ h)⊥l ⊂ l for the orthogonal
complement of l ∩ h in l with respect to κ. From g = q+ h = u⊕ (l ∩ h)⊥l ⊕ h and
g = q ⊕ u we infer the existence of a linear map T : u → u ⊕ (l ∩ h)⊥l such that
h = (l ∩ h)⊕ G(T ) with G(T ) ⊂ u⊕ u⊕ (l ∩ h)⊥l the graph of T .

Set Σu := Σ(u, a) ⊂ Σ. For α∈Σu andX−α∈g−α let T (X−α) =
∑

β∈Σu∪{0} Xα,β

with Xα,β ∈ gβ for β ∈ Σu and Xα,0 ∈ (l ∩ h)⊥. Let M ⊂ a∗\{0} be the additive
semi-group generated by

{α+ β | α ∈ Σu, ∃X−α : Xα,β 
= 0} .
Note that all elements of M vanish on aH so that we can view M as a subset

of a∗Z . A bit more precisely the elements of M, seen as characters of A, are trivial
when restricted to AH and therefore factor to characters of AZ . Thus if we denote

by ΞZ := Hom(AZ ,C
×) � Zr the character group, seen as a lattice in a∗Z , we have

M ⊂ ΞZ .
Define

aZ,E := {X ∈ aZ | (∀α ∈ M) α(X) = 0}
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and note that M belongs to a⊥Z,E ⊂ a∗Z . Next, according to [26, Cor. 9.7], the con-

vex cone R≥0M is simplicial in a⊥Z,E . Generators of this cone, suitably normalized,
will be called spherical roots and denoted S.

The standard normalization of S is that a generator σ of R≥0M belongs to S
provided it is integral and indivisible, i.e. σ ∈ ΞZ and 1

nσ 
∈ ΞZ for all n ≥ 2.
Next we define the compression cone by

a
−
Z := {X ∈ aZ | (∀α ∈ S) α(X) ≤ 0}.

Remark 2.4. The set of spherical roots S and the associated co-simplicial compres-
sion cone a

−
Z make up an algebro-geometric invariant of the real spherical space Z,

see [26]. This is important for this article, as the Bernstein morphisms defined later
have an inherent parametrization by subsets I ⊂ S, i.e. faces of a−Z .

Let us also mention that there is an alternative elementary approach to the
compression cone as a fundamental domain of a finite Coxeter group, see [36].

Let us define by aZ,E = a
−
Z ∩ (−a

−
Z ) the edge of a−Z and record

#S = dim aZ/aZ,E .

Following [29, Sect. 3] we define for I ⊂ S the boundary degeneration of hI of h
by

(2.16) hI := l ∩ h⊕ G(TI)

where

(2.17) TI(X−α) :=
∑

α+β∈N0[I]

Xα,β .

Observe that hS = h and h∅ = u⊕ l ∩ h.
We also set

aI := {X ∈ aZ | (∀α ∈ I) α(X) = 0},(2.18)

a
−
I := {X ∈ aI | (∀α ∈ S\I) α(X) ≤ 0},(2.19)

a
−−
I := {X ∈ aI | (∀α ∈ S\I) α(X) < 0}.(2.20)

We recall from [29, Sect. 3] that for all X ∈ a
−−
I

(2.21) hI = lim
t→∞

et adX
h .

Notice that aZ = a/aH is a quotient and not canonically a subalgebra of a. In
general it is convenient and notation saving to identify aZ as a subalgebra of a by
means of the identification aZ � a

⊥a

H . Then aI normalizes hI and we obtain with

ĥI := aI + hI

a Lie subalgebra of g. It follows from (2.21) that LH normalizes each hI . Further
we define AZ = exp(aZ) ⊂ A as a connected subgroup of A and set A−

Z := exp(a−Z ).

3. Equivariant smooth compactifications of Z(R)

In this section we explain and recall the principles of G-equivariant compactifi-
cation theory of Z(R) as developed in [26, Sect. 7].

The main idea is to use a partial toric completion of the torus AZ via a fan

F supported in all of a−Z (in [26] these fans are called complete). Let us call this
partial completion AZ(F).
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Given a complete fan supported in a
−
Z , we inflate (2.7) and form the P -variety

Z0(F) := U × (L/LH ×AZ
AZ(F)) .

Now it is the content of [26, Th. 7.1] that there exists a G-variety Z(F) of the
form Z(F) = G · Z0(F) containing Z0(F) as an open subset. Note that Z(F)(R)
is compact by [26, Cor. 7.12]. The compactifications Z(F) of Z just constructed
are usually called toroidal as they origin from partial compactifications of the torus
AZ .

For a cone C ∈ F in the fan F we denote by int C its relative interior, i.e. the
interior with respect to aC := spanR C ⊂ aZ . Now to every cone C ∈ F corresponds
a radial limit ẑC ∈ AZ(F) ⊂ Z(F) defined as follows. The limit

ẑC := lim
s→∞

exp(sX) · z0

exists for every X ∈ int C and is independent of X. Moreover, the G-orbits in Z(F)

are parametrized by the cones C ∈ F by way of C �→ ẐC := G · ẑC , see [26, Cor.
7.5].

Define AC ⊂ AZ as the torus which fixes ẑC and note that its Lie algebra is given

by the complexification of aC defined above. Hence if I = I(C) is the set of spherical
roots vanishing on C, then aC ⊂ aI . Further if we denote by ĤC the G-stabilizer of
ẑC , then we have the following relation for Lie algebras:

(3.1) ĥC = hI + aC

with hI defined as in (2.21). In case Z(F) is smooth we provide a simple argument
for (3.1) below.

For our purpose we need that Z(F) is a smooth manifold. By the construction
of Z(F) this is the case if and only if AZ(F) is smooth. Let us now provide a
standard construction of a complete fan which yields a smooth partial completion
AZ(F). For that we denote by ΞZ = Hom(AZ ,C

∗) � Zr the character group of

AZ . Likewise we let Ξ∨
Z = Hom(C∗, AZ) be the co-character group and note the

natural identification aZ � Ξ∨
Z ⊗Z R.

Best results are obtained when S is a Z-basis for the character lattice ΞZ . In
this case the standard fan Fst obtained by the faces of a−Z is smooth and Z(Fst) is
the wonderful compactification of Z (see [26, Definition 11.4]).

Remark 3.1. In general S is not a basis of ΞZ . This can have several natural
reasons, for example if aZ,E 
= 0 as #S := dim aZ/aZ,E < r = rankR(Z) = dim aZ .
One might overcome this by passing from H to H = H ·AZ,E . But even if #S = r
it might happen that there is torsion, i.e. ΞZ/Z[S] 
= 0 which destroys smoothness
of AZ(F) for F the fan generated by a

−
Z .

One can overcome both issues indicated in Remark 3.1 simultaneously by sub-
dividing a

−
Z into finitely many simple simplicial cones C1, . . . , CN such that

• a
−
Z =

⋃N
j=1 Cj ,

• Ci ∩ Cj is a common face of both Ci and Cj for all 1 ≤ i, j ≤ N ,
• For each 1 ≤ j ≤ N there exists a basis (ψji)1≤i≤r of ΞZ such that Cj =
{X ∈ aZ | (∀1 ≤ i ≤ r)ψji(X) ≤ 0}.

The existence of such a decomposition is a standard fact of toric geometry, see
[21, Ch. 3]. Let us denote by Fi the fan generated by Ci, i.e. the set of all faces of Ci.

Then define the fan F :=
⋃N

i=1 Fi. Notice that AZ(F) is smooth and is obtained
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from gluing together the various open pieces AZ(Fi) � Cr. From a
−
Z =

⋃N
j=1 Cj we

obtain a
−−
I =

⋃
j=1 Cj ∩ a

−−
I . Now for every I ⊂ S we let JI ⊂ {1, . . . , N} be the

set of indices j for which Cj ∩ a
−−
I 
= ∅. Then a

−−
I =

⋃
j∈JI

(Cj ∩ a
−−
I ). Note that

in general JI is not a singleton as for example J∅ = {1, . . . , N}.
We fix now a simplicial subdivision as above and the corresponding complete fan

F . To abbreviate notation we set Ẑ0 := Z0(F) and Ẑ := Z(F). We denote by Ẑ

the closure of Z in Ẑ(R) which is then a manifold with corners [26, Sect. 14].
For every I ⊂ S we fix now an jI ∈ JI and let c−I = CjI ∩ a

−
I ⊂ a

−
I . We denote

by c
−−
I the relative interior of c−I . We recall z0 = H ∈ Z the standard base point.

Then for X ∈ c
−−
I the limit

(3.2) ẑ0,I := lim
s→∞

exp(sX) · z0 ∈ AZ(FjI )(R) ⊂ Ẑ0(R)

exists and is independent of the choice of X ∈ c
−−
I (but depends on jI).

Remark 3.2. Our choice of jI ∈ JI yielding c
−
I can also be seen in the following

context. Set

(3.3) FI := {C ∈ F | aC = aI} .
Then our choice of jI ∈ JI picks an element c−I ∈ FI together with an 1 ≤ jI ≤ N

such that c−I ⊂ CjI .

Let us denote by ĤI the stabilizer of ẑ0,I in G. Note that ĤI is defined over R.

We claim that ĤI has Lie algebra

(3.4) ĥI = hI + aI

with hI defined in (2.16). In order to see that we note that the G-stabilizer of
zt := exp(tX) · z0 is Ht := exp(tX)H exp(−tX). Moreover the fact that zt → ẑ0,I
in the smooth manifold Ẑ(R) implies that the stabilizer Lie algebra of the limit ẑ0,I
contains the limit hI of (2.21). Now the claim follows from [26, Th. 7.3].

We define ẐI = G · ẑ0,I � G/ĤI . Proposition 3.3 shows that this definition is
independent of the choice of c−I ∈ FI .

Proposition 3.3. We have ĤC = ĤI for all C ∈ FI . Moreover, ĤI does not
depend on the choice of the smooth complete fan F defining the smooth toroidal

compactification Ẑ = Z(F) of Z. In other words, for every I ⊂ S the G-variety

ẐI = G/HI is up to G-isomorphism canonically attached to the G-variety Z =
G/H.

Proof. We prove the first assertion by induction on n = #S. We start with n = 0,
the case of horospherical varieties, see [26, Sect. 8]. In this situation A normalizes
H and moreoverH = (H∩L)Uopp with Uopp the opposite of U . In particular, AZ =

A/AH acts naturally on the right of Z = G/H . By the construction of the toroidal

compactification as the unique minimalG-extension of Z0(F) = [Q/Q
H
]×AZ

AZ(F)

we obtain that
Z(F) = G/H ×AZ

AZ(F)

and hence ĤC = HA for all C ∈ FS .
Let now n > 0 and I ⊂ S. We first treat the case for I = S. Then aS = aZ,E

and we note for all C ∈ FS the natural isomorphism

AZ · ẑC � AZ/AZ,E .
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Hence we obtain that

Q · ẑC = [Q/Q
H
]×AZ

[AZ · ẑC ] � Q/(Q ∩H)AZ,E .

This means for the G-extension ẐC of Z0(C) = Q · ẑC

ẐC � G/HAZ,E ,

i.e. ĤC = HAZ,E .

Suppose now that I � S and let C, C′ ∈ FI . We connect now C and C′ in a
−
I face

to face, i.e. we find C1, . . . Cm ∈ FI such that I(C ∩ C1) = I, I(Ci ∩ Ci+1) = I for
1 ≤ i ≤ m− 1 and I(C′ ∩ Cm) = I. Hence we may assume that I(C ∩ C′) = I. Set
C0 := C ∩ C′. Set

F(C0) := {C ∈ F | aC0
⊂ aC}

and note that C, C′ ∈ F(C0). Set Z0 := G · ẑC0
� G/HC0

and note that aZ0
=

aZ/aC0
. Moreover, F0 := F(C0)/aC0

is a complete smooth fan for Z0 featuring
Z0(F0) ⊂ Z(F) as the Zariski closure of Z0 in Z(F). Now S0 = S(Z0) = I � S

and we obtain by induction that ĤC = ĤC′ .
Finally we note that if F1 and F2 are smooth fans, then there exists a smooth

fan F3 containing both F1 and F2, i.e. Z(F1), Z(F2) ⊂ Z(F3). This completes the
proof of the proposition. �

For the purpose of this paper our interest is not so much with ẐI but with the

real G-orbit ẐI = G · ẑ0,I � G/ĤI . Note that ẐI ⊂ Ẑ.
For I ⊂ S we denote by AI the subtorus of AZ corresponding to aI ⊂ aZ . For

our fixed j = jI ∈ JI with regard to c
−
I we now set ψI

i := ψji for 1 ≤ i ≤ r.
Let k := r − |I|. We may order the basis (ψI

i )1≤i≤r then in such a way that
Q[I] = Q[ψI

k+1, . . . , ψ
I
r ] and then

c
−−
I = {X ∈ a

−
I | (∀i ≤ k) ψI

i (X) < 0} .

With the basis (ψI
i )i we identify AZ with (C×)r via

(3.5) AZ → (C×)r, a �→ (aψ
I
i )1≤i≤r .

In these coordinates AI corresponds to the subgroup (C×)r−k � 1 × (C×)r−k ⊂
(C×)r.

Let us denote by (eIi )1≤i≤r ⊂ aZ the basis dual to (ψI
i )1≤i≤r. We define the

AZ(R)-modules VI :=
⊕

i≤k Re
I
i � aI and V ⊥

I :=
⊕

i>k Re
I
i , which are both

diagonal with respect to the fixed basis (ψI
i )1≤i≤r of ΞZ . Via the coordinates of

(3.5) we view AZ as open subset of VC = Cr = AZ(FjI ) and obtain in particular
that

(3.6) Z0(FjI ) = U × [M/MH ×FM
VC]

where we view FM = M̂H/MH as a subgroup of {−1, 1}r acting on VC by sign
changes in the coordinates. Set V = Rr.

Lemma 3.4. The real points of Z0(FjI ) = U × [M/MH ×FM
VC] are given by

(3.7) Z0(FjI )(R) = U × [M/MH ×FM
V ] .
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Proof. Let x = (u, [mMH , v]) ∈ Z0(FjI ) where u ∈ U , m ∈ M and v ∈ VC. Then
x is real if and only if x̄ = x, that is

(ū, [m̄MH , v̄]) = (u, [mMH , v])

and in particular u = ū. Moreover, as FM has representatives in M̂H , we obtain

that m̄MH ∈ mM̂HMH . Now it follows from Lemma 2.1 that the polar map

M ×MH
m

⊥
H → M/MH , [g,X] �→ g exp(iX)MH

is a diffeomorphism. Hence if y = mMH = [g,X] is such that ȳ ∈ mM̂HMH we

obtain ȳ = [g,−X] = [gm̂−1,Ad(m̂)X] for some m̂ ∈ M̂H . But this gives m̂ ∈ MH

and thus ȳ = y, i.e. X = 0. Therefore y = mMH = [g, 0] and we may choose
m = g ∈ M . This yields in turn that v̄ = v which concludes the proof of the
lemma. �

Let eI :=
∑k

j=1 e
I
j ∈ VI . Set FM,I := FM ∩ AI and note that FM,I is the FM -

stabilizer of eI ∈ VI . Further put F I
M := FM/FM,I . Denote by V ⊥,×

I ⊂ VI the
subset with all coordinates non-zero and observe that

V ⊥,×
I,C = AZ · eI � AZ/AI .

Then we obtain from (3.6) and (3.7) the isomorphisms

P · ẑ0,I � U ×
[
[M/MHFM,I ]×F I

M
V ⊥,×
I,C

]
(3.8)

� U ×
[
[M/MHFM,I ]×F I

M
[AZ/AI ]

]
and

[P · ẑ0,I ](R) � U ×
[
[M/MHFM,I ]×F I

M
V ⊥,×
I

]
(3.9)

� U ×
[
[M/MHFM,I ]×F I

M
[AZ(R)/AI(R)]

]
which are given in coordinates as

(u, [mMHFM,I , v]) = umv · ẑ0,I .

3.1. Relatively open P -orbits in Ẑ. The structure of the finite set of G-orbits in

Ẑ is in general complicated and the G-orbits through the boundary points ẑ0,I ⊂ Ẑ

do typically not give all G-orbits in Ẑ (see Example 4.10 below).

In general, let us call a P -orbit P · ẑ ⊂ Ẑ relatively open provided P · ẑ is open in
the G-orbit G · ẑ. The goal of this subsection is to describe the set of all relatively

open P -orbits in Ẑ, denoted by (P\Ẑ)rel−op in the sequel.
Recall from the end of Section 2.1 the set W ⊂ G which parametrizes (P\Z)open.

In addition we remind that elements w ∈ W have a representation as w = t̃h with
t̃ ∈ TZ = exp(ia⊥H) ⊂ A and h ∈ H such that t := t̃ · z0 ∈ F where F = FR ∩Z and
FR the finite group of 2-torsion points of AZ(R) ⊂ Z(R) (see Subsection 2.1 for the

notation).
For w ∈ W we now define the shifted base points:

zw := w · z0 = t̃ · z0 = t ∈ F ⊂ Z .

Likewise for I ⊂ S and X ∈ c
−−
I we define in analogy to (3.2)

ẑw,I := lim
s→∞

exp(sX) · zw = t̃ · ẑ0,I
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and note that the second equality (immediate from the definitions) implies that
ẑw,I is independent of the choice of X ∈ c

−−
I . As t̃ · ẑ0,I is independent of the

chosen lift t̃ of t we can define for t ∈ FR

t · ẑ0,I := t̃ · ẑ0,I .

Since the limit defining ẑw,I exists and zw ∈ Z we infer that ẑw,I ∈ Ẑ. Moreover,
as ẑw,I ∈ FR · ẑ0,I with the notation defined above, we infer from the local structure
theorem as recorded in (3.9) that P · ẑw,I is open in G · ẑw,I . With that we obtain
in fact all relatively open P -orbits in the wonderful situation:

Lemma 3.5. Suppose that Ẑ is wonderful. Then the set of relatively open P -orbits

in Ẑ is given by

(P\Ẑ)rel−op = {P · ẑw,I | w ∈ W , I ⊂ S} .

Proof. The inclusion ⊃ was already seen above. In the wonderful situation the

G-orbits in Ẑ are precisely the G · ẑ0,I � G/ĤI for I ⊂ S and accordingly every

relatively open P -orbit in Ẑ(R) lies in some [P · ẑ0,I ](R). Hence any relatively open

P -orbit in Ẑ is of the form Pt1 · ẑ0,I for some t1 ∈ FR by (3.9) and (2.12). Since Ẑ

is G-invariant, and in particular P -invariant, it follows that t1 · ẑ0,I ∈ Ẑ. Further
the local structure theorem (3.9) implies that t1 · ẑ0,I ∈ ∂Z is approached by a
curve in Z of the form exp(sX)t2 ∈ Z for some t2 ∈ F and X ∈ a

−−
I = c

−−
I , for

s → ∞. In other words t1 · ẑ0,I = lims→∞ exp(sX)t2 = t2 · ẑ0,I . With Lemma 2.3
this concludes the proof. �

Remark 3.6.
(a) In the wonderful case we have a stratification Ẑ(R) =

∐
I⊂S ẐI(R) of Ẑ(R)

in real spherical G-manifolds with P · ẑw,I ⊂ ẐI(R) for each w ∈ W . In particular
if I 
= J ⊂ S we have P · ẑw,I 
= P · ẑw′,J for all w,w′ ∈ W . However, for fixed I it
can and will happen that P · ẑw,I = P · ẑw′,I for some w 
= w′. The extremal case
is I = ∅ where ẑ∅ = ẑw,∅ does not depend on w ∈ W at all.

(b) In case Ẑ is not wonderful, the assertion in Lemma 3.5 needs to be modified
as follows. For every cone C ∈ F and w ∈ W let us define

(3.10) ẑw,C := lim
s→∞

exp(sX) · zw

which does not depend on X ∈ int C. Recall that the G-orbits in the toroidal

compactification Ẑ are parametrized by C ∈ F and explicitly given by G · ẑC . Then
for each C ∈ F the relatively open P -orbits in ∂Z contained in ẐC = G · ẑC are
given by the P · ẑw,C with w ∈ W .

(c) As every open G-orbit in ẐC is open and contains an open P -orbit, we deduce
from (b) that

ẐC =
⋃

w∈W
G · ẑw,C .

4. Normal bundles to boundary orbits in a smooth compactification

Let X be a manifold and Y ⊂ X be a submanifold. We denote by T X and T Y
the associated tangent bundles of X and Y. The normal bundle of Y is then defined
to be

NY := T X|Y/T Y .
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Note that NY → Y is a vector bundle with fibers (NY)y = TyX/TyY.
We are mainly interested in the case where X is a smooth G-manifold for a Lie

group G, and Y := G · y is a locally closed orbit. In this case we have a natural
action of the stabilizer Gy on (NY)y and

(4.1) NY = G×Gy
(NY)y

reveals the G-structure of NY.

4.1. Normal bundles to boundary orbits. After this interlude on normal bun-
dles we return to our basic setting with G a real reductive algebraic group, and

let X := Ẑ(R) be a smooth G-equivariant compactification of Z as constructed in
Section 3.

Fix I ⊂ S and let Y := ẐI ⊂ X be a boundary orbit with base point y := ẑ0,I .
Recall the basis (ψI

i )1≤i≤r of ΞZ , its dual basis (eIi )i and VI :=
⊕

i≤k Re
I
i . By

means of the basis it is often convenient to identify VI with Rk where k = r − |I|.
Define V ×

I :=
⊕

i≤k R
×eIi and V 0

I ⊂ V ×
I by

V 0
I :=

⊕
i≤k

R+eIi � (R+)k .

Set V := VI ⊕ V ⊥
I and recall eI =

∑k
j=1 e

I
j ∈ V 0

I .

Let UM ⊂ M/MH be an open neighborhood of the base point MH ∈ M/MH

such that UM ∩ UM · x = ∅ for x ∈ FM , x 
= 1.

Recall that V ⊥,×
I = AZ(R)/AI(R). According to (3.9) the mapping

Ψ1 : U × UM × V ⊥,×
I → [P · ẑ0,I ](R) = U ×

[
[M/MHFM,I ]×F I

M
V ⊥,×
I

]
given by

(u,mMH , v) �→ (u, [mMHFM,I , v])

is a diffeomorphism onto an open subset of [P · ẑ0,I ](R) and hence also of ẐI(R).
Set

V := Ψ−1
1 (Y) .

Thus we obtain two diffeomorphisms onto their images

Ψ0 : V → Y = ẐI , (u,mMH , aAI(R)) �→ uma · y
and

Ψ : V × VI → U × [M/MH ×FM
V ] ⊂ X = Ẑ(R) ,

the latter one being given by

(u,mMH , aAI(R), vI) → (u, [m, a · eI + vI ]).

Set FI := F ∩AI(R) and note that FI identifies with a subset of {−1, 1}k upon
identification of AI(R) � (R×)k. From the definition of Ψ we then get

(4.2) Ψ−1(Z) = V × FI · V 0
I .

It is worth to note that

(4.3) Ψ(y, eI) = z0 .

With Ψ being diffeomorphic we record the following property of transversality

(4.4) dΨ(x, 0)(0× VI)⊕ TxY = TxX (x ∈ V) .
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In the sequel we use (4.4) to identify the spaces VI � (NY)y for y = ẑ0,I . On

VI = (NY)y there is a natural linear action of Gy = ĤI , the isotropy representation,
which we call

ρ : ĤI → GL(VI) .

The representation ρ is algebraic, i.e. it originates from the complex isotropy
representation

ρ : ĤI → GL(VI,C) .

We write HI = ker ρ and note that HI = HI(R) is given by HI = ker ρ. Observe

that HI � ĤI and HI � ĤI are closed normal subgroups.

Theorem 4.1. The following assertions hold:

(1) The Lie algebra of HI is given by hI , as defined in (2.16).

(2) ĤI/HI � AI .

The proof of Theorem 4.1 will be prepared by several intermediate steps. The
key is Lemma 4.2 and the techniques contained in its proof.

Lemma 4.2. The Lie algebra of HI contains hI , as defined by (2.16).

Proof. Let Y ∈ hI , then hI := exp(Y ) ∈ ĤI as explained in Proposition 3.3. We
claim that ρ(hI) = 1.

For all X ∈ c
−−
I ∩ Ξ∨

Z we consider the curve

γX : [0, 1] → X = Ẑ(R), s �→ exp(−(log s)X) · z0,
which connects ẑ0,I to z0. Note, that in coordinates of (3.5) we have AZ(FjI )(R) �
Rk (with jI ∈ JI the selected element for c−I ), and

γX(s) = (sm1 , . . . , smk) ∈ VI

for some mi ∈ N. Notice that all tuples of mi ∈ N occur for some X. Hence γX is
differentiable with γX(0) = y = ẑ0,I and γ′

X(0) = (δ1, . . . , δk) with δi = 1 if mi = 1
and δi = 0 otherwise.

Since ρ(hI)(γ
′
X(0)) = d

ds

∣∣
s=0

hIγX(s), the lemma will follow provided we can

show that d
ds

∣∣
s=0

hIγX(s) = γ′
X(0) for all X as above. Now for hI ∈ L ∩H this is

clear and thus we may assume that Y is of the form (see (2.17))

Y =
∑

α∈Σ(a,u)

(X−α +
∑

α+β∈N0[I]

Xα,β) .

Set now for s > 0

Ys :=
∑

α∈Σ(a,u)

(X−α +
∑
β

e−(log s)(α+β)(X)Xα,β) ∈ Ad(γX(s))h .

Note that Ys → Y for s → 0. Likewise we set hI,s := exp(Ys) and note hI,s → hI .
Now we use that M ⊂ ΞZ in order to conclude that hI,s is right differentiable at
s = 0. The Leibniz-rule yields

d

ds

∣∣∣
s=0

hI,sγX(s) =
d

ds

∣∣∣
s=0

hIγX(s) +
d

ds

∣∣∣
s=0

hI,sy︸ ︷︷ ︸
∈TyY

and thus we get
d

ds

∣∣∣
s=0

hIγX(s) = P

(
d

ds

∣∣∣
s=0

hI,sγX(s)

)
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with P the projection TyX → VI along TyY. Now observe that

hI,sγX(s) = hI,s exp(−(log s)X) · z0
= exp(−(log s)X) exp((log s)X)hI,s exp(−(log s)X)︸ ︷︷ ︸

∈H

·z0

= γX(s)

and the lemma follows. �

4.1.1. Normal curves and the proof of Theorem 4.1. Recall the base points ẑ0,I ∈
ẐI ⊂ Ẑ. Now ẑ0,I ∈ ∂Z is a boundary point of Z provided that I � S or aZ,E 
= 0

– in case aZ,E = {0} we have ẐS = Z and ẑS = z0 is not a boundary point.
The proof of Lemma 4.2 contains an important concept, namely smooth curves

in Z which approach the point ẑ0,I ∈ ẐI in normal direction. Let XI ∈ a
−−
I

correspond to −eI ∈ VI after the natural identification of aI with VI . Then we saw
that the curve

γI : [0, 1] → Ẑ(R), s �→ exp(−(log s)XI) · z0
is smooth with the following properties

• γI
(
(0, 1]

)
⊂ Z,

• γI(0) = ẑ0,I ,

• γ′
I(0) = eI ∈ VI ⊂ Tẑ0,I Ẑ(R).

More generally, let v ∈ V ×
I,C. Then there exists a unique a(v) ∈ AI such that

v = a(v) · eI . If we consider now AI ⊂ Z, then we obtain a smooth curve

γv : [0, 1] → Ẑ, s �→ exp(−(log s)XI) · a(v)

such that

• γv
(
(0, 1]

)
⊂ Z,

• γv(0) = ẑ0,I ,

• γ′
v(0) = v ∈ VI,C ⊂ Tẑ0,I Ẑ.

For g ∈ G we now shift γv by g, i.e. we set

γg,v(s) := g · γv(s) ∈ Ẑ s ∈ [0, ε) .

Notice that γg,v(0) = g · ẑ0,I and γ′
g,v(0) = dLg(ẑ0,I)v ∈ Tg·ẑ0,I Ẑ, where dLg denotes

the differential of the displacement Lg(z) = g·z. If v = eI we simply set γg,I := γg,v.

Specifically we are interested when g ∈ ĤI so that γg,v(0) = ẑ0,I .
Next we recall the decomposition of the complex tangent spaces

Tẑ0,I Ẑ = Tẑ0,I ẐI ⊕ VI,C

which identifies VI,C with the complex normal space to the boundary orbit ẐI =
G · ẑ0,I at the point ẑ0,I . We denote by

P : Tẑ0,I Ẑ → VI,C, u �→ un

the projection of a tangent vector u ∈ Tẑ0,I Ẑ to its normal part un. With this
notation we then obtain from the definition of HI = ker ρ that

(4.5) HI = {g ∈ ĤI | (∀v ∈ V ×
I ) [γ′

g,v(0)]n = v} .
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Proof of Theorem 4.1. First recall that ĥI = hI + aI from (3.4). As further AH ⊂
ker ρ we see that ρ induces a representation of AI on VI,C which is given by the
faithful standard representation ρ(a)(v) = a · v. In fact, if we denote by ã ∈ A
any lift of a ∈ AZ for the projection π : A → AZ , then for a ∈ AI we have

ρ(a)(v) = ã ·γ′
v(0) = a ·v. Notice that ρ(AI) � diag(k,C×) within our identification

VI,C � Ck. It follows in particular that aI ∩ Lie(HI) = {0} and thus hI = Lie(HI)
by Lemma 4.2. This shows (1).

Moving on to (2) we first observe that PĤ = PH for any spherical subgroup H.

In fact, since Ĥ normalizes H it follows that PĤ is a union of open right H-orbits.

Since G is connected the identity PĤ = PH follows. Equivalently,

(4.6) Ĥ = (P ∩ Ĥ)H .

We apply this to the spherical subgroup HI . Now if p ∈ P ∩ ĤI then

(4.7) p · ẑ0,I = ẑ0,I .

Let ÃI := π−1(AI). Then (4.7) and the local structure theorem in the form of (3.8)

implies p ∈ MHÃI ⊂ HIAI , and hence ĤI = HIAI by (4.6). �

In particular it follows from Theorem 4.1 that ρ(ĤI) � diag(k,C×) and thus for

g ∈ ĤI that ρ(g) = 1 if and only if ρ(g)(v) = v for some v ∈ V ×
I . Thus we obtain

the following strengthening of (4.5) to

HI = {g ∈ ĤI | [γ′
g,I(0)]n = eI}(4.8)

= {g ∈ ĤI | [γ′
g,v(0)]n = v} (v ∈ V ×

I ) .

4.2. The part of the normal bundle which points to Z. We denote by AI

the identity component of AI(R).
According to Theorem 4.1 there is the exact sequence

(4.9) 1 → HI → ĤI → AI → 1 .

In (4.9) we take real points, which is only left exact, and obtain

(4.10) 1 → HI → ĤI → AI(R) .

The image of the last arrow in (4.10) is an open subgroup since taking real points
is exact on the level of Lie algebras. We denote this open subgroup by A(I) and
record the exact sequence

(4.11) 1 → HI → ĤI → A(I) → 1 .

In particular,

(4.12) A(I) = AIF (I),

where F (I) < {−1, 1}k ⊂ AI(R) is a subgroup of the 2-torsion group {−1, 1}k of
AI(R) � (R×)k.

Remark 4.3.
(a) The non-compact torus A(I) � ĤI/HI acts naturally on ZI = G/HI from

the right and thus commutes with the left G-action on ZI .
(b) Since AI ⊂ AZ we obtain that A(I) is naturally a subgroup of AZ(R). In

particular we stress that it is not possible in general to realize A(I) as a subgroup
of A = A(R) ⊂ G.
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We return to the normal bundle of the boundary orbit Y = ẐI :

NY = G×Gy
VI = G×ĤI

VI .

From (4.11) we obtain that

(4.13) ρ(ĤI)eI = A(I) · eI = F (I) · V 0
I .

Recall the set FI = F ∩ AI(R) ⊂ {−1, 1}k with F (I) ⊂ FI . We define an
A(I)-stable open cone in VI by

(4.14) VZ,I = FI · V 0
I = FI · (R+)k ,

and we define the cone-bundle

(4.15) NZ
Y := G×Gy

VZ,I

as part of the normal bundle NY which points to Z. To explain the term “points to
Z” we recall the curves γv and note that γv

(
(0, ε)

)
⊂ Z if and only if a(v) ∈ A(I),

that is a(v) · eI = v ∈ FIV
0
I .

Observe that the coset space FI := F (I)\FI identifies with the NZ
Y /G. For every

t = F (I)t ∈ FI with t ∈ FI we now denote by

NZ,t
Y = G×Gy

[F (I)t · V 0
I ]

and note that

NZ
Y =

∐
t∈FI

NZ,t
Y

is the disjoint decomposition into G-orbits.
Presently we do not have a good understanding of F (I) and the coset space

FI = F (I)\FI , except when G is complex, where FI = F (I) for all I ⊂ S. Here are
two further instructive examples:

Example 4.4 (cf. [26, Ex. 14.6]).
(a) Let G = SL(2,R) and H = SO(1, 1). We identify Z = G/H with the one

sheeted hyperboloid

Z = {(x1, x2, x3) ∈ R3 | x2
1 − x2

2 − x2
3 = −1} .

We note that Z = Z(R) and we embed Z into the projective space P(R4). The
closure of Z in projective space is given by

Ẑ = {[x1, x2, x3, x4] ∈ P(R4) | x2
1 + x2

4 = x2
2 + x2

3} � S1 × S1

and coincides with the wonderful compactification Ẑ(R). In the identification Ẑ =
S1 × S1 from above, the unique closed G-orbit is given by Y = {1} × S1 and

Ẑ = Z ∪ Y .

In particular both directions of the normal bundle NY point to Z. In our notation
above this means that FI = {−1, 1}, F (I) = {1} and

NY = NZ
Y = NZ,+1

Y �NZ,−1
Y .

(b) The situation becomes different when we consider G = SL(2,R) with H =
SO(2). We identify Z = G/H with the upper component of the two sheeted hyper-
boloid Z(R), in formulae:

Z = {(x1, x2, x3) ∈ R3 | x2
1 − x2

2 − x2
3 = 1, x1 > 0} ,
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and

Z(R) = {(x1, x2, x3) ∈ R3 | x2
1 − x2

2 − x2
3 = 1} .

We emphasize that Z(R) has two connected components, one of them being Z.
As before we view Z(R) in the projective space P(R4) and obtain the wonderful

compactification Ẑ(R) as the closure

Ẑ(R) = {[x1, x2, x3, x4] ∈ P(R4) | x2
1 = x2

2 + x2
3 + x2

4} � S2 .

The unique closed orbit Y = S1 is identified with the great circle S1 ⊂ S2 which

divides Ẑ(R) into the two open G-orbits. In particular, only one direction of the
normal bundle NY points to Z. We obtain that FI = F (I) = {1} with

NY � NZ
Y .

By this we end Example 4.4.

Define

ZI := G/HI

and write z0,I = HI for its standard base point.
Let t = FI and fix with t ∈ FI a representative so that t = F (I)t. We then claim

that

G/HI → NZ,t
Y , gHI �→ [g, t · eI ]

defines a G-equivariant diffeomorphism for each t ∈ FI . In fact, with A(I) �
F (I)V 0

I via a �→ a · eI , this follows from:

(4.16) NZ,t
Y � G/HI ×A(I) (A(I) · t · eI) � G/HI ×AI

V 0
I � G/HI .

4.3. Speed of convergence. Next we wish to describe a quantitative version of
the fact that HI asymptotically preserves normal limits, i.e. of (4.8). For that recall
the curves γg,v.

Lemma 4.5. Let g ∈ ĤI and v ∈ V ×
I . Then there exists a smooth curve [0, ε) →

P, s �→ ps such that

γg,v(s) = ps · γv(s) (s ∈ [0, ε) )

and:

(1) p0 ∈ AI .
(2) If g ∈ HI then p0 = 1.

(3) If g ∈ ĤI we can assume that ps ∈ P .

Proof. Note that g · ẑ0,I = ẑ0,I by assumption, and hence γg,v(s) → ẑ0,I for s → 0+

in a smooth fashion.
The local structure theorem gives us coordinates near ẑ0,I , see (3.8). In partic-

ular, it implies that we can find a smooth curve s �→ p̃s ∈ P such that p̃s · γv(s) =
γg,v(s). Note that p̃0 · ẑ0,I = ẑ0,I and hence p̃0 ∈ AI(P ∩H) by (3.8). With that
we obtain an element pH ∈ P ∩H such that ps := p̃spH satisfies (1). Here we used
the fact that γv = γp,v for all p ∈ P ∩H.

We move on to (2). For that we recall the decomposition of the tangent space

Tẑ0,I Ẑ = Tẑ0,I ẐI ⊕ VI,C

and the normal part un ∈ VI,C of a tangent vector u ∈ Tẑ0,I Ẑ. Now if g ∈ HI , then
by the definition of HI as the kernel of the isotropy representation, we obtain that
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[γ′
g,v(0)]n = v. On the other hand, using the identity γg,v(s) = ps · γv(s) we obtain

[γ′
g,v(0)]n = p0 · v. As p0 ∈ AI , this implies p0 = 1.
The last assertion (3) is proved using the real version of the argument for (1). �

Let dG be a left invariant Riemannian metric onG. Then the quantitative version
of (4.8) reads as follows:

Corollary 4.6. Let XI ∈ c
−−
I ⊂ a

−−
I correspond to −eI ∈ VI in the identification

VI � aI . Set at := exp(tXI) for t ≥ 0. Let hI ∈ HI . Then there exist constants
C, ε, t0 > 0 and for each t ≥ t0 an element xt ∈ P such that dG(xt,1) ≤ Ce−εt and

(4.17) hIat · z0 = xtat · z0 .
If further, hI ∈ HI , then we can choose xt ∈ P .

Proof. Apply Lemma 4.5 to g = hI and v = eI . Set xt := pe−t and use that p0 = 1
and s �→ ps is differentiable at s = 0+. �

4.4. The intersection of HI with L. For later reference we record the following
fact, which is more or less immediate from (3.8). Since it is crucial for the paper
we include a detailed argument.

Lemma 4.7. For all I ⊂ S one has

(4.18) L ∩H = L ∩HI .

Proof. First note that L = MALn and from Ln ⊂ H ∩HI we obtain that H ∩L =
Ln[(MA) ∩ H ] and likewise HI ∩ L = Ln[(MA) ∩ HI ]. Hence it suffices to show
that H ∩ (MA) = HI ∩ (MA).

We first show that H ∩ (MA) ⊂ HI ∩ (MA). For that we recall the isotropy

representation ρ which we view here as a representation of ĤI so that HI = ker ρ.
Recall the curves γX from the proof of Lemma 4.2. Now for g ∈ (MA) ∩ H we
have gγX(s) = γX(s) and thus gγ′

X(0) = γ′
X(0). Hence g ∈ ker ρ = HI and “⊂” is

established.
For the converse inclusion we first note that both H ∩ (MA) and HI ∩ (MA)

are elementary algebraic groups (see [26] or [10, Appendix B] for the notion “el-
ementary”). Together with l ∩ h = l ∩ hI (which we obtain from (2.16)) we infer
that H ∩ (MA) and HI ∩ (MA) have the same Lie algebra, namely [mH + aH ]C.
Further as MA is an elementary group we obtain HI ∩ (MA) = (M ∩HI)(AHI

)0,

see [10, Appendix B].
From a∩h = a∩hI again obtained from (2.16) we derive (AHI

)0 = (AH)0. Hence

we only need to show that M ∩HI ⊂ M ∩H. Let now m ∈ M ∩HI . In particular

m ∈ ĤI fixes ẑ0,I and thus we obtain from (3.9) that m ∈ MHFM,I . Hence we may

assume that m ∈ FM,I . From ρ(m) = 1 we then obtain that m ∈ FM,I ⊂ {−1, 1}k
needs to have all coordinates to be 1, i.e. m = 1 and the proof is complete. �

4.5. The structure of ZI(R). From Theorem 4.1 and Proposition 3.3 we obtain:

Lemma 4.8. For any I ⊂ S, the G-isomorphism class of the variety ZI is canon-
ically attached to Z, i.e. independent of the particular smooth toroidal compactifi-

cation Ẑ = Z(F) of Z.

In particular, it follows that up to G-isomorphism ZI(R) is canonically attached
to Z(R). However, for ZI the situation is different. We recall the shifted base
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points zw = w · z0 and ẑw,I from Subsection 3.1. For I ⊂ S we then define the set
of G-orbits

CI := {G · ẑw,I | w ∈ W},
and note that different orbits in CI may not be isomorphic, see Example 4.10. In
particular, the isomorphism class of ZI = G/HI is not canonically attached to Z.

In this sense only the collection of G-spaces {G/(Hw)I | w ∈ W} (where (Ĥw)I is
the stabilizer of ẑw,I) is canonically attached to the G-space Z = G/H.

Remark 4.9. In case Ẑ is wonderful the set CI equals the set of G-orbits ∂Z∩ẐI(R).
This follows from Lemma 3.5. The general case is a bit more complicated, see
Remark 3.6(b). Recall the boundary points ẑw,C from (3.10). Then

DI := {G · ẑw,C | G · ẑw,C ⊂ ẐI(R), w ∈ W , C ∈ F}
= {G · ẑw,C | w ∈ W , C ∈ FI}

yields all G-orbits in ∂Z ∩ ẐI(R).

For c ∈ CI we set

Wc := {w ∈ W | G · ẑw,I = c}
and obtain the partition

(4.19) W =
∐
c∈CI

Wc .

Given c ∈ CI we choose a representative w(c) ∈ Wc. In case c = G · ẑ0,I = ẐI we
make the request that w(c) = 1. We then define

HI,c := (Hw(c))I .

We will see in Lemma 5.16 that the G-conjugacy class of HI,c is independent of the
representative w(c) used for its definition.

Example 4.10. Consider Z = SL(3,C)/ SO(3,C) which is defined over R. We will
use the identification

Z = Sym(3× 3,C)det=1

with Sym denoting the symmetric matrices. Hence

Z(R) = G/K �G/H

consists of two G-orbits with K = SO(3,R) and H = SO(1, 2), both real forms of
H = SO(3,C). Our interest is here with Z = G/H. If we identify AZ with the

diagonal matrices in Z, then FR, the 2-torsion group of AZ(R), is given by

FR = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)} = {t0, t1, t2, t3}
which in this case parametrize the open P -orbits in Z(R) – we have FM = {1} in
this example. Notice that t0 ∈ G/K whereas t1, t2, t3 ∈ Z = G/H. In particular
F = {t1, t2, t3} is not a group. Let us denote by w1, w2, w3 ∈ G lifts of ti to G so
that W = {w1, w2, w3}.

In this case the spherical roots comprise a system of type A2. With I = {α2}
we can take at = diag(t−2, t, t) for our ray.

Our example Z has a wonderful compactification which is given by the closure
of the image of its standard embedding into projective space

Z = Sym(3× 3,C)det=1 → P(Sym(3× 3,C)× Sym(3× 3,C))
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X �→ C · (X,X−1).

Note Hw1
= H and an elementary calculation in the above model for Ẑ yields

HI = (Hw1
)I = S(O(1)O(2))UI and (Hw2

)I = (Hw3
)I = S(O(1)O(1, 1))UI

where

UI =

⎛⎝1
∗ 1
∗ 1

⎞⎠ ⊂ G .

In particular, we see HI,1 := HI is not conjugate to HI,2 := (Hw2
)I .

We further note that ẐI(R) = ∂Z∩ẐI(R) consists of two G-orbits ẐI,1 = G/ĤI,1

and ẐI,2 = G/ĤI,2, and accordingly CI � {1, 2} has two elements. Note that ẐI(R)
is G-isomorphic to the projective space of the rank two real symmetric matrices.

Within this identification ẐI,1 ⊂ Ẑ(R) consists of the rank two symmetric matrices

(viewed projectively) with equal signature (i.e. 0++ or 0−−), and ẐI,2 ⊂ Ẑ(R) of
the rank two symmetric matrices with signature 0+−. Finally note thatW1 = {w1}
and W2 = {w2, w3}.

5. Open P -orbits on ZI and Z

Recall the set W ⊂ G of representatives for W = (P\Z)open. Let WI =
(P\ZI)open, the set of open P -orbits in ZI . The objective of this section is to
obtain a good set WI of representatives for WI which results in a natural injective
map m : WI → W (or WI → W if one wishes), and thus matches each open P -
orbit in ZI with a particular open P -orbit in Z. This map is important for various
constructions of the paper.

In general the map m is not surjective and this originates from the fact that ZI

is only one G-orbit in ZI(R) which points to Z. We will show in this section that
the G-orbits in ZI(R) which point to Z are given by

(5.1) Z̃I :=
∐
c∈CI

∐
t∈FI,c

ZI,c,t .

Here ZI,c,t � ZI,c = G/HI,c for all t ∈ FI,c with FI,c the set corresponding to
FI = FI/F (I) when ZI is replaced by ZI,c. For every pair c, t this then leads
to an injective matching map mc,t : WI,c → W with WI,c a parameter set for
WI,c = (P\ZI,c)open. The case of c = t = 1 corresponds to the original map
m = m1,1. The decomposition (5.1) then leads to a partition

(5.2) W =
∐
c∈CI

∐
t∈FI,c

mc,t(WI,c)

refining (4.19).
This section has several parts. It starts with the construction of the injective

map m : WI → W . For a better understanding of the matching map m we
then illustrate the case where Z is a symmetric space and relate m to Matsuki’s
description [38] of the open P × H-double cosets in G in terms of Weyl groups.
After that we derive the general partition of W in terms of the mc,t. This last part
is a bit more technical and can be skipped at a first reading.

Throughout this section I ⊂ S is fixed.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

838 PATRICK DELORME ET AL.

5.1. Relating WI to W . We recall from Lemma 2.3 the natural bijection of WR =
(P\Z(R))open with FM\FR where FR = AZ(R)2 denotes the 2-torsion subgroup of

AZ(R). On the other hand we recall from Lemma 4.7 that L ∩ H = L ∩ HI .
Intersecting this identity with A we obtain that A ∩ H = A ∩ HI and hence an
identity of homogeneous spaces

AZ = A/A ∩H = A/A ∩HI = AZI
.

In particular, AZ(R) and AZI
(R) have the same 2-torsion groups, namely FR. In

addition L∩H = L∩HI implies that the two open P -orbits P · z0 ⊂ Z and P · z0,I
carry canonically isomorphic local structure theorems, see (2.7), (2.9) and (2.10).
Hence the group FM is identical in both cases and we obtain a natural bijection
(the identity map)

mR : WI,R = (P\ZI(R))open → (P\Z(R))open = WR .

Remark 5.1. On the one hand we have an identity of homogeneous spaces AZ =
AZI

, but on the other hand we also view AZ as a subvariety of Z and AZI
as a

subvariety of ZI . In the latter picture the identity of homogeneous spaces yields a
natural identification of subvarieties of Z and ZI .

Proposition 5.2. One has mR(WI) ⊂ W .

In order to prove this proposition we first recall another natural map m : WI →
W which first arose in [29, Sect. 3]. We fix with WI ⊂ G a set of representatives
of WI with elements wI ∈ WI of the form wI = t̃IhI where hI ∈ HI and t̃I ∈ TZ .
Upon the identification of varieties AZ(R) � AZI

(R) we view tI := t̃I ·z0,I = wI ·z0,I
as an element of FR.

Let now PwI · z0,I ∈ WI be an open P -orbit in ZI with wI ∈ WI . Next let

X ∈ a
−−
I and set

as := exp(sX) ∈ A−−
I ⊂ A (s > 0) .

It follows from [29, Lemma 3.9] that there exist s0 = s0(X) > 0 and a unique
w = t̃h ∈ W such that

(5.3) PwIas · z0 = Pw · z0 (s ≥ s0) .

Lemma 5.3. Given wI = t̃IhI ∈ WI as above, the element w ∈ W such that (5.3)
holds does not depend on the choice of X ∈ a

−−
I .

Proof. In order to record the possible dependence on X we write as(X) = exp(sX)
and w(X) for the corresponding w. Now we recall the argument of [29, Lemma 3.9]:
For fixed X we have lims→∞ es adXh = hI by (2.21). Thus there exists an s0(X)
such that p + Ad(wI)e

s adXh = g for all s ≥ s0(X). In particular, we obtain that
PwIas(X) · z0 is open for all s ≥ s0(X). Since the limit (2.21) is locally uniform in
X ∈ a

−−
I , it follows that w(X) is locally constant. The lemma follows. �

With this lemma we obtain in particular a natural map

(5.4) m : WI → W , wI �→ w = m(wI) .

With the identifications WI � WI and W � W we view m also as a map WI → W ,
which by slight abuse of notation is denoted as well by m.

Since the choice of X ∈ a
−−
I was irrelevant for the definition of m we may

henceforth assume that X = XI ∈ c
−−
I ⊂ a

−−
I was such that it corresponds to

−eI ∈ VI under the identification VI � aI .
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Proposition 5.2 will now follow from:

Lemma 5.4. mR|WI
= m.

Proof. Let wI = t̃IhI ∈ WI and w = m(wI) = t̃h. From Lemma 4.5 for g = hI ∈
HI we obtain a C1-curve [0, 1] → P , u �→ pu with pu → 1 for u → 0+ and

hIas · z0 = pe−sas · z0 (s ≥ s0) .

Hence with p′s := t̃Ipe−s t̃−1
I we obtain that

wIas · z0 = p′s · tI ∈ Z .

Since tI ∈ Z and p′s → 1 for s → ∞ we may assume that p′s ∈ P is real as well (use
the local structure theorem of the form (2.11)). On the other hand the matching
property (5.3) yields

wIas · z0 = p′′s · t

for some p′′s ∈ P . Thus we get

P · tI = P · t.

This implies the lemma, and with that Proposition 5.2. �

In the sequel we adjust W ⊂ G (by possibly multiplying the previous w = t̃h by
an element of FM ) in such a way that for each wI = t̃IhI ∈ WI one has

(5.5) t = tI when w = t̃h = m(wI) .

We note that this adjustment of W depends on our fixed choice of WI and hence
on I.

Remark 5.5. Notice that we typically have m(WI) � W as the example of Z =
SL(2,R)/ SO(1, 1) with I = ∅ already shows (cf. Example 4.4(a)). Here we have

H∅ = MN and Ĥ∅ = MAN and thus W∅ = {1} while W = {1, w} has two
elements.

Proposition 5.6 (Consistency relations for stabilizers). Let wI ∈ WI and w =
m(wI) ∈ W. Then

(5.6) (Hw)I = (HI)wI
.

Proof. Recall from (4.8) that HI is the subgroup of G which asymptotically pre-
serves the curves γv in normal direction, i.e. is the group of elements g ∈ G with
g · [γ′

v(0)]n = [γ′
v(0)]n = v. Hence (HI)wI

⊂ G is the group of elements g ∈ G with
g · [γ′

wI ,v(0)]n = [γ′
wI ,v(0)]n = tI · v. On the other hand we can characterize (Hw)I

as follows: define the curve

σw,v(s) := ã(v) exp(−(log s)XI) · zw = ã(v) exp(−(log s)XI) · t

where ã(v) ∈ A is any lift of a(v) ∈ AI with respect to the projection π : A → AZ .
Then (Hw)I is the group of elements g ∈ G with g · [σ′

w,v(0)]n = [σ′
w,v(0)]n = t · v.

As t = tI , the desired equality of groups follows. �
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5.2. Symmetric spaces. The nature of the map m becomes quite clear in the
special case where Z is a symmetric space. In this special situation we can make
the matching map explicit in terms of certain Weyl groups.

For this subsection Z = G/H is symmetric, that is, there exists an involution
τ : G → G, defined over R, such that H is an open subgroup of the τ -fixed point
group Gτ . We choose our maximal anisotropic group K ⊂ G in such a way that
the Cartan involution θ, which defines K, commutes with τ . By slight abuse of
notation we use τ and θ for the induced derived involutions on g as well.

5.2.1. The adapted parabolic. With g = k ⊕ k⊥, resp. g = h ⊕ h⊥, we obtain the
decomposition of g in eigenspaces of τ , resp. θ, with eigenvalues +1 and −1. We let
aZ ⊂ h⊥ ∩ k⊥ be a maximal abelian subspace and extend aZ to a maximal abelian
subspace a ⊂ k⊥. Now, according to Rossmann, the root system Σ = Σ(g, a)
restricts to a root system

ΣZ = Σ|aZ
\{0}

on aZ . The Weyl group of ΣZ is denoted by W = WZ .
Let Σ+

Z ⊂ ΣZ be a positive system, and let Σ+ ⊂ Σ be a positive system such

that Σ+|aZ
\{0} = Σ+

Z . Then PH ⊂ G is open for the minimal parabolic subgroup
P = MAN , for which n is the sum of the positive root spaces. The adapted
parabolic Q = LU ⊃ P is then characterized by L = ZG(aZ). It is the unique
minimal θτ -stable parabolic subgroup of G containing P .

5.2.2. The deformations HI . The spherical roots S ⊂ a∗Z are given by the simple
roots in ΣZ with respect to Σ+

Z . Hence for any I ⊂ S we obtain parabolic subgroups
PI ⊃ Q with LI = ZG(aI). As before we realize aI ⊂ a so that AI = exp(aI)
becomes a subgroup of A. Then LI = MIAI � MI × AI for a unique τ -stable
subgroup MI ⊂ LI . Now the deformations HI are given by

HI = (MI ∩H)UI

with MI ∩H ⊂ MI a symmetric subgroup, i.e. MI/MI ∩H ⊂ G/H is a symmetric
subspace. Note that the Hw, w ∈ W , can be treated on the same footing, i.e.
(Hw)I = (MI ∩ Hw)UI and MI ∩ Hw ⊂ MI a symmetric subgroup. As seen in
Example 4.10 the subgroups MI ∩H and MI ∩Hw are not necessarily conjugate in
MI .

5.2.3. Open double cosets. For later reference in Section 15 (where we derive the
Plancherel formula for symmetric spaces) we consider here both (P\ZI)open and
(PI\Z)open together.

Recall that for symmetric spaces the set W = (P\Z)open allows a description in
terms of Weyl groups. For that we identify W = WZ � [NK(a) ∩NK(aZ)]/M and
define a subgroup of W by WH = [NK∩H(a) ∩NK∩H(aZ)]/M . Then Matsuki [38]
has shown that

(5.7) W/WH → (P\Z)open, wWH �→ PwH

is a bijection. In particular, W � W/WH .
When applied to the symmetric space MI/(MI ∩H), Matsuki’s result becomes

(5.8) W(I)/(W(I) ∩WH) � ((P ∩MI)\MI/(MI ∩H))open.

Now

(5.9) (P\Z)open → (PI\Z)open, P z �→ PIz
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is surjective. It follows from (5.8) that the composition of (5.7) with (5.9) factorizes
to a bijection (see also [39])

W(I)\W/WH → (PI\Z)open

where W(I) < W = WZ is the subgroup generated by the reflections sα for α ∈ I.
In particular we obtain an action of W(I) on W � W/WH and record:

Lemma 5.7. For I ⊂ S the following assertions hold:

(1) (PI\Z)open � W(I)\W.
(2) (P\ZI)open � WI � W(I)/(W(I) ∩WH).

Proof. We have just shown the first assertion. For the second, recall first that
HI = (MI ∩H)UI . Hence the Bruhat decomposition yields that

(P\ZI)open � ((P ∩MI)\MI/(MI ∩H))open ,

so that (2) follows from (5.8). �

Lemma 5.8. Upon identifying W(I)/W(I)∩WH with WI and W/WH with W, the
map m : WI → W corresponds to the natural inclusion map W(I)/(W(I)∩WH) ↪→
W/WH .

Proof. We recall the construction of the map m via considering the limits of the
double cosets PwIasH. So let wI ∈ W(I) and observe that W(I) keeps aI pointwise
fixed. Thus we have PwIasH = PwIH and the lemma follows. �

Also of later relevance are the open H × P I -double cosets in G which we treat
here as well. Since the anti-involution

G → G, g �→ g−θ := θ(g−1)

leaves H invariant and maps PI to its opposite PI , we obtain a bijection of double
cosets

PI\G/H → H\G/PI , PIgH �→ Hg−θPI .

With Lemma 5.7 we thus obtain a bijection

(5.10) W(I)\W → (H\G/PI)open, W(I)w �→ Hw−θPI .

5.3. Relating WI to ŴI . We now return to the setup of a general real spherical
space. In this subsection we provide some complementary material on the relation

of WI to ŴI := (P\ẐI)open. This will lead to a better geometric understanding of
what to come next.

Recall that AI is the connected component of A(I) = AIF (I) � AI × F (I).
Notice that A(I) acts naturally on the right of ZI = G/HI and thus induces an
action of A(I) on WI = (P\ZI)open. Lemma 5.9 is then a consequence of the fact
that the connected group AI acts trivially on the finite set WI .

Lemma 5.9. The natural map

WI = (P\ZI)open → ŴI = (P\ẐI)open, PwHI �→ PwĤI

is surjective and induces an isomorphism WI/F (I) � ŴI .
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Proof. Let PwĤI ⊂ G be open for some w ∈ G. We first show that PwHIAI =

PwHI . According to (2.15) applied to the real spherical space ẐI we may write

w = t̃ĥ with t̃ ∈ TZ and ĥ ∈ ĤI . Since ĤI = expG(aI,C)HI by (4.9), we have

ĥ = t̃Ih with h ∈ HI and t̃I ∈ expG(aI,C). Let a ∈ AI ⊂ A. Then

(aw)−1wa = (at̃t̃Ih)
−1t̃t̃Iha = h−1a−1ha .

Now we observe that aw ∈ G and a−1ha ∈ HI . Hence (aw)−1wa ∈ HI , and thus
PwHIa = PwaHI = PwHI as claimed.

Since ĤI = HIAIF (I) we obtain that PwĤI =
⋃

t∈F (I) PwHIt. In particular

PwHI is open. Hence the map WI → ŴI is onto. The last assertion also follows.
�

Similar to W � FM\F (see Lemma 2.3) we obtain with

F⊥
I := FAI(R)/AI(R) ⊂ AZ(R)/AI(R)

that

ŴI � FM\F⊥
I

as a consequence of (3.9). We further recall that we view FI ⊂ {−1, 1}r ∩ VI ⊂ V
and accordingly the group FM ∩ FI = FM ∩ F (I) acts on FI . Thus we obtain an
exact sequence of pointed sets

(FM ∩ F (I))\FI ↪→ FM\F � FM\F⊥
I

or, equivalently,

(FM ∩ F (I))\FI ↪→ W � ŴI .

From the injectivity of m and Lemma 5.9 we thus obtain the commutative diagram:

(5.11) (FM ∩ F (I))\FI
� � �� W �� �� ŴI

(FM ∩ F (I))\F (I)
��

��

� � �� WI
�� ��

��

m

��

ŴI

Remark 5.10. Let us emphasize that the upper horizontal sequence in (5.11) is
exact in the category of pointed sets, but not in the category of sets, i.e. we do not

have W � ŴI × (FM ∩ F (I))\FI as sets, see Example 5.18.

This phenomenon disappears if we consider WR and ŴI,R = (P\ẐI(R))open
instead of W and ŴI . In more detail, recall the basis (ψI

i )1≤i≤r by means of which
we get a decomposition (see (3.5))

(5.12) AZ(R) = AI(R)︸ ︷︷ ︸
�(R×)k

× A⊥
I (R)︸ ︷︷ ︸

�(R×)r−k

� (R×)r

analogous to the decomposition V = VI ⊕ V ⊥
I . In particular, FR, the 2-torsion

subgroup of AZ(R), decomposes as FR = FI,R × F⊥
I,R in self explaining notation.

Hence any t ∈ FR decomposes as t = t‖t⊥ with t‖ ∈ FI,R and t⊥ ∈ F⊥
I,R.

In this situation we obtain that the map

FR → F⊥
I,R, t �→ t⊥
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induces an epimorphism

WR � FM\FR → ŴI,R � FM\F⊥
I,R, FM t �→ FM · t⊥ ,

leading to a decomposition

WR � ŴI,R × (FI,R ∩ FM )\FI,R .

5.4. The fine partition of W with respect to I. Our next goal is to explore
the issue of non-surjectivity of m.

We recall from Subsection 4.5 the set CI , the partition

W =
∐
c∈CI

Wc

and the groups HI,c for c ∈ CI . Thus the understanding of W with respect to I
comes down to understanding the various Wc. Once we have fixed c we will see

below that we obtain a natural geometric splitting of Wc � Ŵc × (FM ∩ FI)\FI

contrary to what happens for W (see Remark 5.10 and (5.13)).

For expository reasons we start with c = 1 ∈ CI , by which we mean c = ẐI =
G · ẑ0,I . Thereupon we consider the other cases by replacing HI with HI,c and
adding a further index c to the notation.

Remark 5.11. Even in case CI = {1} andW = W1 it can happen thatm(WI) � W .
As we will see below this is related to the set FI = F (I)\FI originating from the
normal bundle geometry in Subsection 4.2.

5.4.1. The case c = 1. We assume that w ∈ W1, i.e. ẑw,I ∈ ẐI . Let W1 = {P · w |
w ∈ W1}. Let F1 := {t ∈ F | Pt ∈ W1} ⊂ FR. Then we can describe F1 and thus
W1 � FM\F1 geometrically as follows.

Recall from (5.12) that any t ∈ FR decomposes as t = t‖t⊥ with t‖ ∈ FI,R and

t⊥ ∈ F⊥
I,R. Let w ∈ W1, write it as w = t̃h, and decompose t̃ = t̃‖ t̃⊥ such that

t̃‖ · z0 = t‖ and t̃⊥ · z0 = t⊥. Consider the curve s �→ as · zw = as · t where
as = exp(sX) with X ∈ c

−−
I . Then, as t‖ ∈ AI(R) fixes ẑ0,I , we obtain in the limit

for s → ∞ that t̃ · ẑ0,I = t⊥ · ẑ0,I , and as w ∈ W1 this limit belongs to an open

P -orbit of ẐI .
Furthermore the coordinate t‖ ∈ FI,R tells us in which direction we approach

the limit t⊥ · ẑ0,I , i.e. in which component of the cone VZ,I = FIV
0
I we approach

the limit. With F⊥
I,1 := F1AI(R)/AI(R) � F1FI,R/FI,R we obtain the following.

Lemma 5.12. By restriction the map t �→ (t‖, t⊥) yields a bijection F1 � FI×F⊥
I,1.

Proof. First we claim that FI = F1 ∩ AI(R). The inclusion ⊃ is clear since by
definition FI = F ∩ AI(R). Conversely, each t ∈ FI corresponds to a w = t̃h ∈ W
with t ∈ AI(R). Then ẑw,I = ẑ0,I , and hence t ∈ F1 as claimed.

In particular it follows that (t‖, t⊥) ∈ FI ×F⊥
I,1 for all t ∈ F1. Since t �→ (t‖, t⊥)

is injective by its definition in (5.12), it remains to see that t = t‖t⊥ ∈ F1 for all

pairs (t‖, t⊥) ∈ FI × F⊥
I,1. Since t‖ ∈ AI(R) we know that t · ẑ0,I = t⊥ · ẑ0,I ∈ ẐI

which is the limit of the curve γ(s) = as · t for s → ∞. The coordinate t‖ ∈ FI

shows that γ approaches the limit t · ẑ0,I in a direction pointing to Z (see also the
end of the proof of Lemma 3.5 for a more formal argument). Hence t ∈ F and
Pt ∈ W1. �
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Lemma 5.12 implies the splitting

(5.13) W1 � ŴI × (FM ∩ F (I))\FI

and we can rephrase Lemma 5.9 as:

Lemma 5.13. We have m(WI) ⊂ W1 and under the identification (5.13) we have

(5.14) m(WI) � ŴI × (FM ∩ F (I))\F (I)

From (5.13) and (5.14) we obtain that

(5.15) W1 � m(WI)× FI

with FI = F (I)\FI .

Remark 5.14. It is instructive for the following to recall from Subsection 4.2 the

part NZ
Y =

∐
t∈FI

NZ,t
Y of the normal bundle NY which points to Z. Here

ZI,t := NZ,t
Y � G/HI

by the isomorphism (4.16), and FI = F (I)\FI parametrizes the components of NZ
Y .

Note that FI,R is a Z2-vector space and thus we can find a splitting FI,R =
F (I)⊕ F 0

I,R of vector spaces. In particular, we obtain FI = F (I)⊕ F 0
I for a subset

F 0
I ⊂ F 0

I,R. In particular the map

F 0
I → FI , t �→ t := tF (I)

is a bijection.
Now, using the isomorphism (5.15) and the identification FI � F 0

I we obtain
injective maps

mt : WI → W1 � m(WI)× F 0
I , wI �→ (m(wI), t)

which yields the partition

(5.16) W1 =
∐
t∈FI

mt(WI) .

Let us explain the map mt more geometrically using the normal bundle, see
Remark 5.14. The subset mt(WI) ⊂ W1 corresponds to those w = t̃wh ∈ W1 for
which the curve s �→ as · zw = astw · z0 approaches the boundary point ẑw,I =
tw · ẑ0,I = t⊥w · ẑ0,I in direction of tF (I)V 0

I ⊂ VZ,I . Let us emphasize that our initial
map m corresponds then to the case where t = F (I) is the identity coset.

Recall that t ∈ FI corresponds to a unique t ∈ F 0
I . Further we let t̃ ∈ TZ be a

lift of t, i.e. t̃ · z0 = t. We assume that t = 1 in case t = F (I).

Remark 5.15. Let wI = t̃IhI and w1 = m(wI) = t̃Ih ∈ W . Then note that

mt(wI) = t̃M t̃t̃I h̃

for some t̃M ∈ FM , depending on the choice of representatives for w := mt(wI) ∈
W , and h̃ ∈ H . Thus by changing w = mt(wI) ∈ W to t̃Mwh̃ ∈ G for some h′ ∈ H
we may assume that the compatibility conditions

mt(wI) = t̃t̃Ih
′′

hold for some h′′ ∈ H . In particular, we have

mt(wI) · z0 = t̃m(wI) · z0 = tt1
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for all t ∈ FI , wI ∈ WI .
Notice that this correction of choice of W (by harmless left displacements of

elements of FM ) with respect to WI depends on I. In general it seems to be not
possible to make a consistent choice of W which would be valid for all I simulta-
neously.

Recall the notation Hg = gHg−1 for a subgroup H in a group G and g ∈ G.
Then note that H t̃ is defined over R and Ht̃ := (H t̃)(R) is conjugate to H as t ∈ Z.
Likewise we define zt,I := t̃ · z0,I ∈ ZI(R) and note that G-stabilizer of zt,I is HI

as we have (Ht̃)I = HI as a consequence of the fact that t̃ fixes the vertex ẑ0,I .
We then obtain the following extension of the consistency relations from Propo-

sition 5.6:

Lemma 5.16. Let wI ∈ WI , t ∈ FI and w = mt(wI) ∈ W1. Then

(5.17) (Hw)I = (HI)wI
.

In particular, (Hw)I only depends on wI and is independent of t.

Proof. For wI = t̃IhI we have w1 := m(wI) = t̃Ih
′ for some h′ ∈ H. Hence

mt(wI) = t̃t̃Ih for some h ∈ H . We further have

(Hw)I =
(
(Hw1

)t̃
)
I
= (Hw1

)I

and now Proposition 5.6 applies. �
5.4.2. The general decomposition of W. In general we obtain a partition

(5.18) W =
∐
c∈CI

∐
t∈FI,c

mc,t(WI,c)

whereWI,c are the open P -orbits for ZI,c := G/HI,c parametrized as in the previous
section with HI replaced by HI,c. The set FI,c is then FI , but for HI replaced by
HI,c. We define mc,t similarly. Regarding our choices w(c) ∈ W which defined HI,c

we normalize mc,1 such that mc,1(1) = w(c).

Remark 5.17. If we let Fc ⊂ F correspond to Wc ⊂ W we define as before FI,c :=
Fc ∩ AI(R) and F⊥

I,c := FcFI,R/FI,R. As in Lemma 5.12 we then obtain

• FI,c = FI .

• Fc � FI,c × F⊥
I,c under t �→ (t‖, t⊥).

The first item tells us that FI,c is independent of c. However F (I)c does depend
on c as Example 5.18 shows. In particular the dependence of FI,c = F (I)c\FI on c
is caused by the c-dependence of F (I)c only.

Further we denote by z0,I,c = HI,c the standard base point of ZI,c, and state the
general version of (5.17): let c ∈ CI and t ∈ FI,c such that w = mc,t(wI,c) ∈ Wc for
some wI,c ∈ WI,c. Then (Hw)I does not depend on t and

(5.19) (Hw)I = (HI,c)wI,c
(w = mc,t(wI,c)) .

If we define w(c, t) := mc,t(1) ∈ W and set ZI,c,t = (Hw(c,t))I , then ZI,c,t = ZI,c

and the decomposition (5.1) follows.

Example 5.18. We continue Example 4.10 of Z = SL(3,R)/ SO(1, 2) with W =
{w1, w2, w3} and Hw1

= H. We chose I = {α2} and obtained CI = {1, 2} with
W1 = {w1} and W2 = {w2, w3}. Further we had HI,1 = HI = S(O(1)O(2))UI and
HI,2 = (Hw2

)I = (Hw3
)I = S(O(1)O(1, 1))UI .
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Next we claim that both WI,1 = {1} and WI,2 = {1} are one-elemented. In
fact this follows from the fact that the open P -orbits in G/HI,j are induced: if
we denote by GI � GL(2,R) the Levi for the parabolic defined by I, then the
open P -orbits on G/HI,j correspond to the open P ∩G2 orbits in GL(2,R)/O(2)
respectively GL(2,R)/O(1, 1). Both cases feature only one open orbit for P ∩ GI

and establish our claim.
Finally we determine FI,1 and FI,2. Since F = {t1, t2, t3} with titj = tk for all

i, j, k pairwise different, we readily deduce that FR,I = FI,1 = FI,2 � Z2 is a group.

Recall that we described ĤI,1 and ĤI,2 already in Example 4.10. From that we

deduce that ĤI,1/HI,1 � AI is connected and thus F (I)1 = {1}. In particular,
FI,1 � Z2.

On the other hand we have

u =

⎛⎝1 0 0
0 0 1
0 −1 0

⎞⎠ ∈ ĤI,2

as it preserves the diagonal quadratic form (0, 1,−1) projectively (i.e. up to sign).
Since u 
∈ HI,2 and commutes with AI = {diag(t−2, t, t) : t > 0} we thus have
F (I)2 � Z2. In particular, FI,2 = {1}.

Remark 5.19. The above example shows that the group A(I) = AI × F (I) is

sensitive to the orbit type in CI . More explicitly, we do not have A(I) � ĤI,c/HI,c

for all c ∈ CI .

6. Abstract Plancherel theorem and tempered representations

This section has several parts. We begin with a brief recall on Banach repre-
sentations and their smooth vectors, followed by a recap of smooth completions of
Harish-Chandra modules. Then we turn our attention to the abstract Plancherel
theorem for real spherical spaces. In fact there is no much difference to the case
of a general unimodular homogeneous space and “real spherical” only enters via
finite multiplicities. Finally we recall the basic tempered theory for homogeneous
spaces, initiated by Bernstein [4] in a general setup, and then made concrete for
real spherical spaces in [27].

6.1. Generalities on Banach representations and their smooth vectors.
We begin with a few facts on Banach representations of a Lie group G. By a
Banach (or a Fréchet) representation of a Lie group G we understand a continuous
linear action

G× E → E, (g, v) �→ π(g)v

on a Banach (or Fréchet) space E. As customary we use the symbolic pair (π,E) to
denote the representation. Sometimes we abbreviate and use g · v instead of π(g)v.

Let now (π,E) be a Banach representation. Further we fix with p a norm which
induces the topology on E. In case E is a Hilbert space and p originates from
the defining scalar product, then we say p is the Hermitian norm on E. As the
space E does not necessarily allow an action of the Lie algebra we pass to the
subspace E∞ ⊂ E of smooth vectors. Here v ∈ E is called smooth provided the
E-valued orbit map fv : G → E, g �→ π(g)v is smooth. In this sense we obtain a
G-invariant subspace E∞ ⊂ E which is dense in E. The space E∞ carries a Fréchet
topology for which the G-action is smooth. For further reference we briefly recall



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PLANCHEREL FORMULA 847

a few standard possibilities on how to define the Fréchet topology. To begin with
let B := {X1, . . . , Xn} be an ordered basis of g. For a multi-index α ∈ Nn

0 we set
Xα := Xα1

1 · . . . ·Xαn
n ∈ U(g). For each k ∈ N0 we now define a norm on E∞ by

pB,k(v) :=
( ∑

α∈Nn0
|α|≤k

p(Xα · v)2
) 1

2

(v ∈ E∞) .

Notice that pB,k is Hermitian in case p is Hermitian. If C is any other choice of
ordered basis we note that there exist constants Ck = Ck(B, C) > 0, depending on
B and C but not on the space E and its norm, such that 1

Ck
pB,k ≤ pC,k ≤ CkpB,k

for all k ∈ N0. In particular the locally convex topology on E∞ induced from the
family (pB,k)k∈N0

does not depend on the particular choice of B. In the sequel we
fix a basis B, set pk := pB,k, and refer to pk as a k-th Sobolev norm of p. We denote
by Ek the completion of E∞ with respect to the norm pk. Note that G leaves Ek

invariant and defines a Banach representation (πk, Ek) of G. It follows that the
Fréchet representation (π∞, E∞) is of moderate growth (see [5, Lemma 2.10]).

A second possibility to define the Fréchet structure is by Laplace Sobolev norms.
Let

(6.1) Δ := −(X2
1 + . . .+X2

n) ∈ U(g)
be a Laplace element attached to the basis B, and set

(6.2) ΔR = Δ+R2 · 1
for R ∈ R. We recall the following from [13, Cor. 3.3, Rem. 3.4].

Lemma 6.1. Let (π,E) be a Banach representation of a unimodular Lie group G.
Then there exists a constant RE ≥ 0 such that for all R > RE the operator

dπ(ΔR) : E
∞ → E∞

is an isomorphism of Fréchet spaces. Moreover, one can take RE = 0 in case (π,E)
is unitary.

From now on we assume that G is a unimodular Lie group. For a Banach
representation (π,E) and fixed R > RE , we define Laplace Sobolev norms of even
order for any k ∈ Z by

(6.3) Δp2k(v) := p(Δk
Rv) (v ∈ E∞) .

Strictly speaking Δp2k depends on R > RE but we suppress this in the notation.
In case (π,E) is unitary we use R = 1 and thus Δp2k(v) = p(Δk

1v).
For k ≥ 0, it is clear that Δp2k ≤ ck · p2k for a constant ck > 0 which is

independent of p and E.
Further, for k ≥ 0 [13, Prop. 4.12] yields constants Ck > 0 only depending on B

and not on E or p such that

(6.4) p2k(v) ≤ Ck · Δp2k+n∗(v) (v ∈ E∞)

where

(6.5) n∗ = min{k ∈ 2N | 1 + dimG ≤ k}
For the rest of this section we request that G is real reductive and G < GL(m,R)

for some m. In this situation we take the basis B = {X1, . . . , Xn} such that the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

848 PATRICK DELORME ET AL.

Laplace element Δ as defined in (6.1) satisfies

Δ = −CG + 2CK
with CG and CK appropriate Casimir elements (unique if g and k are semisimple).

Lemma 6.2. Assume (π,E) is irreducible and unitary and let p be any continuous
K-invariant Hermitian norm on E∞. Let R > 0. Then for each k ∈ N there exists
a constant C = C(k,R) > 0, independent of p and π, such that

p(Δk
Rv) ≤ Cp(Δk

1v) (v ∈ E∞) .

Proof. It suffices to prove this for k = 1. Notice that any v ∈ E∞ admits a
convergent expansion v =

∑
τ∈K̂ vτ in K-types which is orthogonal with respect to

anyK-invariant Hermitian norm on E∞. Since ΔR isK-invariant, the norm p(ΔR·)
is K-invariant and Hermitian. Hence it suffices to show that p(ΔRv) ≤ Cp(Δ1v) for
v belonging to a K-type E[τ ]. Then both CG and CK act by scalars on E[τ ]. Hence
ΔRv = (cτ +R2)v for some scalar cτ , which has to be ≥ 0 as the representation π
was unitary: use 〈Δv, v〉 ≥ 0 for all v ∈ E∞ and 〈·, ·〉 a unitary inner product on
E. Then

p(ΔRv) = (cτ +R2)p(v) ≤ C(cτ + 1)p(v) = Cp(Δ1v)

for C = max{1, R2} and the lemma follows. �

6.2. Smooth completions of Harish-Chandra modules and spherical pairs.
We move on to Harish-Chandra modules and their canonical smooth completions.
A useful reference for the following summary might be [5].

If V is a complex vector space and p is a norm on V , then we denote by Vp the
Banach completion of the normed space (V, p).

Let V be a Harish-Chandra module (with regard to a fixed choice of a maximal
compact group K of G). A norm p on V is called G-continuous provided the
infinitesimal action of g on V exponentiates to a Banach representation of G on
Vp. Note that every Harish-Chandra module admits a G-continuous norm, as a
consequence of the Casselman embedding theorem.

The Casselman-Wallach globalization theorem asserts that the space of smooth
vectors V ∞

p is independent of the particular G-continuous norm p, i.e. if q is another
G-continuous norm, then the identity map V → V extends to a G-equivariant
isomorphism of Fréchet spaces V ∞

p → V ∞
q . Stated differently, up to G-isomorphism

of Fréchet spaces, there is a unique Fréchet completion V ∞ of V such that the G-
action on V ∞ is smooth and of moderate growth.

We extend a to an abelian subalgebra j = a + it ⊂ gC with t ⊂ m a maximal
torus. Note that jC is a Cartan subalgebra of gC for which the roots are real valued
on j, i.e. Σ(gC, jC) ⊂ j∗. We denote by Wj = W(gC, jC) the corresponding Weyl
group and let ρj ∈ j∗ be a half-sum with ρj|a = ρ, where ρ is the half sum defined
by n.

Assume now that V is an irreducible Harish-Chandra module and denote by Z(g)
the center of U(g). By the Schur-Dixmier lemma the elements of Z(g) act by scalars
on V and we thus obtain an algebra morphism χV : Z(g) → C, the infinitesimal
character of V . Via the Harish-Chandra isomorphism we identify Z(g) � S(jC)

Wj ,
and consequently we may identify χV with an element of j∗C/Wj.

Let V be an irreducible Harish-Chandra module and V ∞ its canonical smooth
completion. Further let V −∞ := (V ∞)′ be the continuous dual of V ∞ and let
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η ∈ (V −∞)H be an H-fixed element. We refer to (V, η) as a spherical pair provided
η 
= 0.

Let now (V, η) be a spherical pair and v ∈ V ∞. We form the generalized matrix
coefficient

mv,η(g · z0) := η(g−1 · v) (g ∈ G)

which is a smooth function on Z.

6.3. Abstract Plancherel theory. We denote by Ĝ the unitary dual of G and
pick for every equivalence class [π] a representative (π,Hπ), i.e. Hπ is a Hilbert
space and π : G → U(Hπ) is an irreducible unitary representation in the equivalence
class of [π]. We denote by (π,Hπ) the dual representation. We recall the G-
equivariant antilinear equivalence

Hπ → Hπ, v �→ v := 〈·, v〉Hπ

which induces the G-equivariant antilinear isomorphism:

H−∞
π → H−∞

π , η �→ η; η(v) := η(v)

and a linear embedding H∞
π ↪→ H−∞

π .
In this context we recall the mollifying map

C∞
c (G)⊗H−∞

π → H∞
π ⊂ H−∞

π , f ⊗ η �→ π(f)η :=

∫
G

f(g)η(π(g)−1·) dg .

The mollifying map restricted to H-invariants induces a map

C∞
c (G/H)⊗ (H−∞

π )H → H∞
π ,

F ⊗ η �→ π(F )η :=

∫
G/H

f(gH)η(π(g)−1·) d(gH) .

The abstract Plancherel Theorem for the unimodular real spherical space Z =
G/H asserts the following (see [41], [11], or [35, Section 8]): There exists a Radon

measure μ on Ĝ and for every [π] ∈ Ĝ a Hilbert space Mπ ⊂ (H−∞
π )H , depending

measurably on [π] (note that (H−∞
π )H is finite dimensional [30], [34]), such that

with the induced Hilbert space structure on Hom(Mπ,Hπ) � Mπ⊗Hπ the Fourier
transform

F : C∞
c (Z) →

∫ ⊕

Ĝ

Hom(Mπ,Hπ) dμ(π)

F �→ F(F ) = (F(F )π)π∈Ĝ; F(F )π(η) := π(F )η ∈ H∞
π

extends to a unitary G-isomorphism from L2(Z) onto
∫ ⊕
Ĝ

Hom(Mπ,Hπ) dμ(π).
Moreover the measure class of μ is uniquely determined by Z and we call μ

a Plancherel measure for Z. Unique are also the multiplicity subspaces Mπ ⊂
(H−∞

π )H for almost all π together with their inner products up to positive scalar.
Note that by definition

(6.6) 〈F,mv,η〉L2(Z) = 〈F(F )π(η̄), v〉 (F ∈ C∞
c (Z)) ,

for all η ∈ Mπ, v ∈ H∞
π , and furthermore the Parseval formula

(6.7) ‖F‖2L2(Z) =

∫
Ĝ

Hπ(F ) dμ(π) (F ∈ C∞
c (Z)) ,
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where Hπ denotes the Hermitian form on C∞
c (Z) defined by

(6.8) Hπ(F ) =

mπ∑
j=1

‖π(F )ηj‖2Hπ

for η1, . . . , ηmπ
an orthonormal basis of Mπ. Observe that Hπ(F ) is the Hilbert-

Schmidt norm squared of the operator F(F )π : Mπ → Hπ and hence does not
depend on the choice of the particular orthonormal basis.

Remark 6.3 (Normalization of Plancherel measure). As mentioned, only the mea-
sure class of [μ] of μ is unique. With a choice of Plancherel measure μ ∈ [μ] we
pin down uniquely the G-invariant Hermitian forms Hπ on Hπ ⊗Mπ for almost all
π. In particular, together with a choice of an inner product on Hπ (unique up to
scalar by Schur’s Lemma) we pin down the scalar product on Mπ uniquely.

Typically the Hπ are induced representations with a preferred inner product,
but in practice there are several meaningful choices for the inner product on the
multiplicity space (see Section 14 and Section 15.) A different choice of inner
product on Mπ then leads to a rescaling of μ in its measure class.

Remark 6.4 (Fourier inversion). Let f ∈ C∞
c (Z) be of the form f = (F ∗ ∗ F )H

where F ∈ C∞
c (G), F ∗(g) = F (g−1) and the upper index H denoting the right H-

average of F ∗ ∗ F . Then f(z0) = ‖FH‖2L2(Z). Hence we deduce from the Parseval

formula (6.7) for all f ∈ C∞
c (Z) the inversion formula

(6.9) f(z0) =

∫
Ĝ

mπ∑
i=1

Θi
π(f) dμ(π)

where Θi
π is the spherical character, i.e. the left H-invariant distribution

Θi
π(f) = ηi(π(f)ηi) (f ∈ C∞

c (Z)) .

6.4. Tempered norms. We recall the standard tempered norms on Z. Using
the weight functions w and v from [27, Sections 3 and 4], the following norms on
C∞

c (Z) are attached to a parameter N ∈ R:

qN (f) := sup
z∈Z

|f(z)|v(z) 1
2 (1 +w(z))N ,

pN (f) :=

(∫
Z

|f(z)|2(1 +w(z))N dz

) 1
2

.

Note that the norm pN is G-continuous, K-invariant, and Hermitian. We recall
that the two families of Sobolev norms qN ;k and pN ;k for (N, k) ∈ R×N0 define the

same topology on C∞
c (Z), and specifically for k > dimG

2 we recall the inequality

(6.10) qN (f) ≤ CpN ;k(f) (f ∈ C∞
c (Z))

for a constant C only depending on k and N (see [35, Lemma 9.5] and its proof).
We denote by L2

N ;k(Z) the completion of C∞
c (Z) with respect to pN ;k. We wish

to define L2
N ;k(Z) and pN ;k as well for k ∈ −N, and we do that by duality. Given

the invariant measure on Z, the dual L2
N (Z)′ is canonically isometric isomorphic

to L2
−N (Z) via the equivariant bilinear pairing

L2
N (Z)× L2

−N (Z) → C, (f, g) �→
∫
Z

f(z)g(z) dz .
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This leads to the definition

(6.11) L2
N ;−k(Z) := L2

−N ;k(Z)′ (k ∈ N)

with

(6.12) pN ;−k(f) := sup
φ∈L2

−N;k
(Z)

p−N;k(φ)≤1

∣∣∣∣∫
Z

f(z)φ(z) dz

∣∣∣∣ .
6.5. Negative Sobolev norms. The definition of the negative Sobolev norms
pN ;−k for the norm pN fits into a general pattern which we recall in this Subsection.
Given a Banach representation (π,E) and a G-continuous norm p on E we define
the dual norm p′ of p on the continuous dual E′ as usual:

p′(λ) = sup
p(v)≤1

|λ(v)| (λ ∈ E′).

In the sequel we assume that p is a Hermitian norm. This guarantees in particular
that the dual action of G on E′ is continuous, i.e. (π′, E′) is a representation.
Further we retrieve p from p′ via p = (p′)′. For any k ∈ N0 we write p′k := (p′)k for
the k-th Sobolev norm of the dual norm p′ and define the negative Sobolev norm
p−k of p by

(6.13) p−k(v) := (p′k)
′(v) (v ∈ E) .

Recall that we define Laplace Sobolev norms Δp2k for all integers k ∈ Z.

Lemma 6.5. Let (π,E) be a Hilbert representation of G and p a corresponding
Hermitian norm. Then for all k ∈ N0 there exists a constant Ck > 0 such that

Δp−2k−n∗(v) ≤ Ckp−2k(v) (v ∈ E∞) .

Proof. In view of the definition of the negative Sobolev norm p−2k in (6.13) this
follows from (6.4) applied to the dual norm p′ and the observation that

(Δp′2k)
′ = Δp−2k

for all k ∈ N0. �

Lemma 6.6. Let (V, η) be a spherical pair where V = Vπ is the Harish-Chandra
module of a unitary irreducible representation π, and let N ∈ R be such that
pN (mv,η) < ∞ for all v ∈ V ∞. Then for each 2k > n∗ there exists a constant
C > 0, depending on k but not on (V, η) and N , such that

(6.14) pN (mv,η) ≤ CpN ;−2k+n∗(mΔk
1v,η

) (v ∈ V ∞).

Proof. In general we have for all f ∈ E∞ = L2
N (Z)∞ and fixed R > RE

pN (f) = pN (Δ−k
R Δk

Rf) =
ΔpN ;−2k(Δ

k
Rf) .

Upon applying Lemma 6.5 we obtain that

pN (f) ≤ CpN ;−2k+n∗(Δk
Rf) .

Specifically for f = mv,η we arrive at

pN (mv,η) ≤ CpN ;−2k+n∗(mΔk
Rv,η) (v ∈ V ∞) .

Now q(v) := pN ;−2k+n∗(mv,η) defines a K-invariant continuous Hermitian norm on
V ∞ and thus we may replace R by 1 according to Lemma 6.2. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

852 PATRICK DELORME ET AL.

6.6. Tempered pairs. We now define

(6.15) NZ := 2 rankR Z + 1 kZ :=
1

2
dim g.

Then for all N ≥ NZ and k > kZ it follows from [35, Prop. 9.6] combined with

[4, Th. 1.5] that for μ-almost all [π] ∈ Ĝ, the π-Fourier transform

Fπ : C∞
c (Z) → Hom(Mπ,Hπ)

extends continuously to L2
N ;k(Z) and that the corresponding inclusion

(6.16) L2
N ;k(Z) →

∫ ⊕

Ĝ

Hom(Mπ,Hπ) dμ(π)

is Hilbert-Schmidt (in the sequel HS for short).
We wish to make this fact a bit more concrete in the context of the Hermitian

forms Hπ. For that purpose we fix N and k as above and denote by ‖Hπ‖HS,N ;k

the HS-norm of the operator F ⊗ η̄ �→ π̄(F )η̄ from L2
N ;k(Z)⊗Mπ̄ to Hπ, that is

‖Hπ‖2HS,N ;k :=
∑
n∈N

Hπ(Fn)

for any orthonormal basis (Fn)n∈N of L2
N ;k(Z). The fact that (6.16) is HS then

translates into the a priori bound

(6.17)

∫
Ĝ

‖Hπ‖2HS,N ;k dμ(π) < ∞.

By (6.6) we further infer

(6.18)

mπ∑
j=1

p−N ;−k(mv,ηj
)2 =

mπ∑
j=1

sup
F∈C∞

c (Z)

pN;k(F )≤1

|〈F(F )π(η̄j), v〉|2 ≤ ‖Hπ‖2HS,N ;k ‖v‖2Hπ

for μ-almost all [π] ∈ Ĝ, all v ∈ H∞
π , and η1, . . . , ηmπ

an orthonormal basis of Mπ.
Hence it follows from (6.17) that

(6.19)

∫
Ĝ

sup
η∈Mπ
‖η‖≤1

sup
v∈H∞

π
‖v‖≤1

p−N ;−k(mv,η)
2 dμ(π) < ∞ .

Consequently p−N ;−k(mv,η) < ∞ for N ≥ NZ and k > kZ , for all v ∈ H∞
π , η ∈ Mπ,

and μ-almost all [π] .
In particular with any k with 2k− n∗ > kZ for N ≥ NZ we obtain from Lemma

6.5 that

p−N (mv,η) = p−N (Δ−k
R Δk

Rmv,η) =
Δp−N ;2k(Δ

k
Rmv,η)

≤ Cp−N ;−2k+n∗(mΔk
Rv,η) < ∞

for all v ∈ H∞
π and μ-almost all [π].

Definition 6.7 (cf. [27, Def. 5.3] and [10, Sect. 3.3]). Let (V, η) be a spherical
pair. We say that η is tempered or (V, η) is a tempered pair provided that

p−N (mv,η) < ∞ (v ∈ V ∞)

for some N ∈ R.

The tempered functionals make up a subspace of (V −∞)H which we denote by
(V −∞)Htemp. We conclude that Mπ ⊂ (V −∞)Htemp for almost all π.
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Remark 6.8.
(a) (About the inclusion (V −∞)Htemp ⊂ (V −∞)H). For a tempered pair (V, η) the

inclusion {0} 
= (V −∞)Htemp ⊂ (V −∞)H can be strict. This already appears for the
rank one symmetric spaces Z = SO0(1, n)/ SO0(1, n−1) when n ≥ 4, in which case
there exists an irreducible Harish-Chandra module which has multiplicity one in
Lp(Z) for p ≤ n− 1 and multiplicity two for p > n− 1. For details of this example
we refer to [33].

(b) (Tempered Frobenius reciprocity). If we denote by C∞
temp(Z)=

⋃
N∈R L2

N (Z)∞

the G-module of smooth functions of moderate growth on Z, then we recall from
[10, 3.10] the following variant of Frobenius reciprocity for Harish-Chandra modules
V :

Hom(V ∞, C∞
temp(Z)) � (V −∞)Htemp

with Hom referring to continuous morphisms of G-modules.
(c) (About the inclusionMπ ⊂ (V −∞)H). For symmetric spaces one has equality

(6.20) Mπ = (V −∞)Htemp for almost all π .

This was established by forming wave packets, which was a central technical step in
the proof of the Plancherel formula for symmetric spaces. Since we follow another
approach towards the Plancherel formula in this article, the equality (6.20) together
with an explicit description of (V −∞)H is not an issue in the underlying treatment.
However, we do expect that in general Mπ = (V −∞)Htemp for almost all π.

7. Constant term approximations

In this section we review the constant term approximation of [10] which is a
central technical tool for this paper. In fact, by using our geometric results from
Section 4.5 on the stabilizer HI , and our combinatorial results on the open P -orbits
of Section 5, we are able to refine slightly the results from [10].

Recall from (5.18) that the set of open P -orbits W of Z admits a combinatorial
decomposition W =

∐
c∈CI

∐
t∈FI,c

mc,t(WI,c). For the sake of readability we first

consider the partm(WI) ⊂ W corresponding to c = t = 1 and treat the notationally
heavier case later.

7.1. Notation. Let V be an irreducible Harish-Chandra module with smooth com-
pletion V ∞ and dual V −∞.

We recall that (V −∞)H is a finite dimensional space for any real spherical sub-
groupH ⊂ G. Also we recall that AI normalizesHI . Hence for any I ⊂ S we obtain
an action of AI on (V −∞)HI by aI · ξ = ξ(a−1

I ·) for ξ ∈ (V −∞)HI . Accordingly we
can decompose ξ into generalized eigenvectors:

ξ =
∑

λ∈a∗
I,C

ξλ,

where ξλ has generalized eigenvalue λ. We set

(7.1) Eξ := {λ ∈ a
∗
I,C | ξλ 
= 0} .

For η ∈ (V −∞)H and w ∈ W we set ηw := w · ξ and note that ηw is Hw-fixed.
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7.2. Base points from m(WI). We recall from (5.4) the injective map m : WI →
W . Let now wI ∈ WI and w = m(wI). Then, given ξ ∈ (V −∞)HI we note that
ξwI

= wI · ξ is fixed under (HI)wI
= (Hw)I , see (5.6). Moreover AI normalizes

(HI)wI
and we obtain from (a slight adaption of) [29, Lemma 6.2] that (ξλ)wI

is a
generalized eigenvector for the aI -action to the same spectral value λ.

We recall that ρ|aH
= 0 by the request that Z is unimodular, see [27, Lemma

4.2]. This allows us to consider ρ as a functional on aZ = a/aH as well. In the
sequel if not stated otherwise we take N = NZ (see (6.15)).

Theorem 7.1 (Constant term approximation). Let Z = G/H be a unimodular
real spherical space and I ⊂ S. Then for all irreducible Harish-Chandra modules V
there exists a unique linear map

(V −∞)Htemp → (V −∞)HI
temp, η �→ ηI

with the following property. For all compact sets Ω ⊂ G and CI ⊂ a
−−
I there exist

k ∈ N, ε > 0, and C > 0, such that

(7.2) |mv,η(gaIw · z0)−mv,ηI (gaIwI · z0,I)| ≤ Ca
(1+ε)ρ
I p−N ;k(mv,η)

for all η ∈ (V −∞)Htemp, v ∈ V ∞, g ∈ Ω, aI ∈ A−−
I with log aI ∈ R≥0CI , and

w = m(wI) ∈ m(WI) ⊂ W. The constants k, ε, and C can be chosen independently
of V .

Moreover, with χV ∈ j∗C/Wj the infinitesimal character of V one has

(7.3) EηI ⊂ (ρ|aI
+ ia∗I) ∩ (ρ−Wj · χV )|aI

,

where EηI is defined by (7.1). Finally there is the consistency relation

(7.4) (ηw)
I = (ηI)wI

(w = m(wI) ∈ W ) .

The constant term assignment

(V −∞)Htemp → (V −∞)HI
temp, η �→ ηI

is typically neither injective nor surjective. Let us illustrate that in two examples
before giving the proof of the theorem.

Example 7.2.
(a) Let H = K be a maximal compact subgroup of G and I = ∅. Then

H∅ = MN . Now let V be a K-spherical tempered Harish-Chandra module. Then

dimV K = 1. However, for generic V we have dim(V −∞)MN = |Wa| with Wa the
Weyl group of the restricted root system Σ(g, a). This shows that the constant
term assignment is typically not surjective.

(b) Tempered pairs (V, η) of the twisted discrete series can be characterized by
the vanishing of the constant term assignments for I 
= S, see [10, Th. 5.12]. In
particular, if (V, η) belongs to the discrete series of Z, then we have ηI = 0 for all
I 
= S. Hence the constant term assignment is typically not injective.

Proof. The existence of an ηI ∈ (V −∞)HI
temp satisfying (7.2), (7.3) and (7.4) is

proved in [10], with the exception that invariance of ηI is only shown for the identity
component of HI . In more precision, (7.2) for HI replaced by (HI)0 is [10, Th.
7.10] with the caveat that in [10] the norms to bound the right hand side of (7.2)
are Sobolev norms of q−N and not of p−N . However, the passage between q−N and
p−N is justified by the comparison of Sobolev norms in (6.10) which is valid for any
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N ∈ R. The inclusion of exponents (7.3) is part of the general theory in [10] and
the consistency relation in (7.4) is [10, Prop. 5.7].

We turn to the uniqueness of the map η → ηI . We recall that (V −∞)HI is a
finite dimensional AI -module and thus (7.3) implies that for any fixed g ∈ G and
v ∈ V ∞ the map

AI � aI �→ mv,ηI (gaI · z0,I) = mv,aI ·ηI (g · z0,I)
is an exponential polynomial with normalized unitary exponents and hence unique
as constant term approximation of mv,η(ga · z0), see Remark 7.3. In particular, ηI

is then uniquely determined by the approximation property (7.2).
Finally we will show that ηI is in fact HI -invariant for all η ∈ (V −∞)Htemp. We

do this for the case of wI = w = 1, the more general case being an easy adaption.
We recall Lemma 4.6 and the notation used therein.

Let XI ∈ c
−−
I corresponding to −eI under the identification aI � VI . Set at :=

exp(tXI) for t ≥ 0. First notice that both mv,ηI (ghIat · z0,I) and mv,ηI (gxtat · z0,I)
approximate

mv,η(ghIat · z0) = mv,η(gxtat · z0)
via (7.2), and thus we get

(7.5) a−ρ
t |mv,ηI (ghIat · z0,I)−mv,ηI (gxtat · z0,I)| ≤ Ce−εt

for some C, ε > 0. On the other hand, the coefficients of the exponential polynomial

aI �→ a−ρ
I mv,ηI (gxtaI · z0,I) = a−ρ

I m(gxt)−1v,aI ·ηI (z0,I)

with unitary exponents depend smoothly on gxt. Hence it follows, after possibly
shrinking ε, from (4.17) that

(7.6) |a−ρmv,ηI (gxta · z0,I)− a−ρmv,ηI (ga · z0,I)| ≤ Ce−εt

for all a ∈ AI . Now the HI -invariance of ηI follows from combining (7.5) and (7.6)
together with the before mentioned uniqueness. �

Remark 7.3 (Uniqueness of the constant term). Let f(a) be a function on AI and

F (a) = aρ
∑
λ∈E

qλ(log a)a
λ (a ∈ AI)

an exponential polynomial with unitary exponents, i.e. E ⊂ ia∗I is finite and qλ are
polynomial functions on aI . In case there exists an ε > 0 such that

(7.7) |f(a)− F (a)| ≤ Ca(1+ε)ρ (a ∈ A−
I ) ,

then F is the unique exponential polynomial with normalized unitary exponents
having the approximation property (7.7). This is a consequence of the following
basic lemma, which we record without proof.

Lemma 7.4. Let Λ ⊂ R be a finite set and for each λ ∈ Λ let qλ ∈ C[t] be a
polynomial. If there exist constants ε, C > 0 such that∣∣∣ ∑

λ∈Λ

qλ(t)e
iλt

∣∣∣ < Ce−εt (t ≥ 0)

then qλ = 0 for all λ ∈ Λ.
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7.3. General base points. So far we have treated the constant term approxima-
tion through the base points zw = w · z0 for w ∈ m(WI). The general case is
obtained by adapting the notation to the partition W =

∐
c∈CI

∐
t∈FI,c

mc,t(WI,c)

from (5.18).
For c ∈ CI and t ∈ FI,c we define w(c, t) := mc,t(1) ∈ W and set zc,t = w(c, t)·z0.

Further we set w(c) = mc,1(1) ∈ W and zc = w(c) · z0. Let Hc,t and Hc denote the
G-stabilizers of zc,t and zc respectively.

Define for η ∈ (V −∞)H accordingly ηc,t := w(c, t) ·η. Notice that ηIc,t is invariant
under (Hc,t)I . From (5.19) we infer further that (Hc,t)I = HI,c does not depend on
t.

As before we obtain that AI normalizes (HI,c,t)wI
= (HI,c)wI

, so that AI

acts naturally on (HI,c)wI
-invariant distribution vectors ξ and yields generalized

eigenspace decompositions ξ =
∑

λ∈aI
∗
C
ξλ. Within the introduced terminology the

general case of the constant term approximation then reads as follows:

Theorem 7.5 (Constant term approximation - general version). Let Z = G/H be
a unimodular real spherical space and I ⊂ S. Fix c ∈ CI and t ∈ FI,c. Then for all
irreducible Harish-Chandra modules V there exists a unique linear map

(V −∞)Htemp → (V −∞)
HI,c

temp, η �→ ηIc,t

with the following property: There exist constants ε > 0, k ∈ N, such that for all
compact subsets CI ⊂ a

−−
I and Ω ⊂ G there exists a constant C > 0, such that

(7.8) |mv,η(gaIw · z0)−mv,ηI
c,t
(gaIwI,c · z0,I,c)| ≤ Ca

(1+ε)ρ
I p−N ;k(mv,η)

for all η ∈ (V −∞)Htemp, v ∈ V ∞, g ∈ Ω, aI ∈ A−−
I with log aI ∈ R≥0CI , and

w = mc,t(wI,c) ∈ mc,t(WI,c) ⊂ W. The constants ε, k, and C can all be chosen
independently of V .

Moreover, with χV ∈ j∗C/Wj the infinitesimal character of V one has

(7.9) EηI
c,t

⊂ (ρ|aI
+ ia∗I) ∩ (ρ−Wj · χV )|aI

.

Finally there is the consistency relation

(7.10) (ηw)
I = (ηIc,t)wI,c

(w = mc,t(wI,c) ∈ W ) .

Proof. By replacingHI,c withHI we may assume that c = 1. Let then w ∈ mt(WI).
The passage to t = 1 is obtained via the material in Subsection 5.4.1 and via the
further base point shift z0 → zt. By this we obtain a reduction to Theorem 7.1. �

8. The main remainder estimate

In this section we derive an important uniform estimate which is the key technical
tool for the results in the next section. The estimate is based on the constant term
approximation of Section 7.

8.1. Adjustment of Haar measures. We assume that Z = G/H carries a G-
invariant measure. Then, according to [29, Lemma 3.12], the same holds for ZI :=
G/HI . Since L ∩H = L ∩HI by Lemma 4.7, we see that the P -orbits through z0
and z0,I are isomorphic as homogeneous spaces for Q, i.e.

(8.1) P · z0 = Q · z0 � Q/L ∩H � Q · z0,I = P · z0,I .
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We fix the normalizations of the G-invariant measures on Z and ZI such that on
these open pieces they coincide with a common Haar measure on Q/L∩H, and we
denote these measures on Z and ZI by dz and dzI , respectively.

8.2. Right action by A(I). As A(I) normalizes HI we obtain a right action of
A(I) on functions f on ZI given by

(R(aI)f)(g · z0,I) := f(gaI · z0,I) (g ∈ G, aI ∈ A(I)) .

Lemma 8.1. Let f ∈ L1(ZI) and aI ∈ A(I). Then

(8.2)

∫
ZI

(R(aI)f)(zI) dzI = |a2ρI |
∫
ZI

f(zI) dzI

In particular, the normalized action f �→ |a−ρ
I |R(aI)f of A(I) is unitary on L2(ZI).

Proof. First note that |aρ| = 1 for all a ∈ TZ = exp(ia⊥H) ⊂ A. Since elements of
F (I) have finite order it is sufficient to consider aI ∈ AI ⊂ A(I). The first assertion
then follows from [29, Lemma 8.4], and the second assertion is a consequence of the
first. �

Fix an element X ∈ a
−−
I and set at := exp(tX) for t ∈ R. Let f ∈ L2(ZI) and

define

(8.3) ft(z) := aρt (R(a−1
t )f)(z), (z ∈ ZI).

Notice that the assignment f �→ ft is G-equivariant and unitary by Lemma 8.1. In
particular

(8.4) ‖ft‖L2(ZI) = ‖f‖L2(ZI) (t ∈ R)

and, in case f is smooth,

(8.5) Luft = (Luf)t (u ∈ U(g)) .

8.3. Matching of functions. We recall from Section 5 the injective map m :
WI → W which matches the open Q-orbit QwI · z0,I = PwI · z0,I in ZI with the
open Q-orbit Qw · z0 = Pw · z0 in Z where w = m(wI). As in (8.1) we have

(8.6) Qw · z0 � Q/L ∩H � QwI · z0,I .
Given a smooth function f on ZI with compact support in QWI · z0,I ⊂ ZI we

define via (8.6) a ‘matching’ smooth function F = Φ(f) on Z with compact support
in Qm(WI) · z0 ⊂ Z by

(8.7) F (qm(wI) · z0) := f(qwI · z0,I) (q ∈ Q) .

Observe that the space spanned by the smooth functions on ZI with compact
support contained in the union of the open Q-orbits QWI · z0,I is dense in L2(ZI).

Since the invariant measures on Z and ZI coincide on the open Q-orbits we get

‖Φ(f)‖L2(Z) = ‖f‖L2(ZI).

Together with (8.4) this implies for the function ft defined in (8.3)

(8.8) ‖Φ(ft)‖L2(Z) = ‖f‖L2(ZI)

for all t ∈ R.
The main result of this section now reads as follows. Let N = NZ from (6.15).
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Theorem 8.2 (Main remainder estimate). There exists ε > 0 with the following
property. Let Ω ⊂ Q be a compact set. Then for every s ∈ R there exist C > 0 and
m ∈ N such that for all f ∈ C∞

c (ZI) with supp f ⊂ ΩWI · z0,I , all tempered pairs
(V, η), and all v ∈ V ∞ the following equality holds

〈Φ(ft),mv,η〉L2(Z) = 〈ft,mv,ηI 〉L2(ZI) +R(t) (t ≥ 0) ,

with the remainder bounded by

|R(t)| ≤ Ce−tε p−N ;−s(mv,η) pN ;m(Φ(f)) .

Before giving the proof we observe Corollary 8.3. Recall from (6.8) the Hermitian
forms Hπ on C∞

c (Z). We fix an orthonormal basis η1, . . . , ηmπ
of Mπ and define a

preliminary Hermitian form HI,pre
π on C∞

c (ZI) by

(8.9) HI,pre
π (f) =

mπ∑
j=1

‖π(f)ηIj‖2Hπ
(f ∈ C∞

c (ZI)) .

Notice that HI,pre
π is independent from the particular choice of the orthonormal

basis η1, . . . , ηmπ
, being the Hilbert-Schmidt norm squared of the linear map

Mπ → Hπ, η �→ π(f)ηI .

We derive from Theorem 8.2 and the global a priori bound (6.17) that:

Corollary 8.3. Let ε > 0 be as in Theorem 8.2 and let f ∈ C∞
c (ZI) with support

in QWI · z0,I . Then there exists a constant C > 0 such that

‖f‖2L2(ZI)
=

∫
Ĝ

HI,pre
π (ft) dμ(π) +R(t)

with |R(t)| ≤ Ce−εt for all t ≥ 0.

Proof. We first observe that by (8.8) and (6.7)–(6.8)

(8.10) ‖f‖2L2(ZI)
=

∫
Ĝ

Hπ(Φ(ft)) dμ(π) =

∫
Ĝ

mπ∑
j=1

‖π(Φ(ft))ηj‖2Hπ
dμ(π).

Hence we need to estimate the integral over π ∈ Ĝ of
mπ∑
j=1

(
‖π(Φ(ft))ηj‖2Hπ

− ‖π(f)ηIj‖2Hπ

)
.

Using the identity a2− b2 = 2a(a− b)− (a− b)2 together with Cauchy-Schwarz and
(8.10), we see that it suffices to show

(8.11)

[ ∫
Ĝ

mπ∑
j=1

(
‖π(Φ(ft))ηj‖Hπ

− ‖π(f)ηIj‖Hπ

)2

dμ(π)

]1/2
≤ Ce−εt .

From the dense inclusion H∞
π ⊂ Hπ and (6.6) we obtain that

‖π(Φ(ft))ηj‖Hπ
= sup

v∈H∞
π

‖v‖=1

〈π(Φ(ft))ηj , v〉Hπ
= sup

v∈H∞
π

‖v‖=1

〈Φ(ft),mv,ηj
〉L2(Z)

and similarly

‖π(f)ηIj‖Hπ
= sup

v∈H∞
π

‖v‖=1

〈f,mv,ηI
j
〉L2(ZI) .
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Let s > kZ (see (6.15)). Now application of Theorem 8.2 implies for all t > 0∣∣∣‖π(Φ(ft))ηj‖Hπ
− ‖π(f)ηIj‖Hπ

∣∣∣ ≤ Ce−tε sup
v∈H∞

π
‖v‖=1

p−N ;−s(mv,ηj
) ,

where C > 0 depends on f , but not on t or π. Hence (8.11) follows from (6.18) and
(6.17). �
8.4. Comparing Haar measures. In the proof of Theorem 8.2 we will assume for
simplicity that supp f ⊂ Ω · z0,I . The general case is obtained using the following
observation. Recall that the Haar measures of Z and ZI are both adjusted to agree
with a fixed Haar measure of Q/QH on the Q-orbits through z0 and z0,I .

Recall from the local structure theorem that

(8.12) Qw · z0 � Q/QH � U × L/LH

and by (8.6) likewise QwI ·z0,I � Q/QH . We claim that the Haar measures of Z and
ZI coincide on every open Q-orbit with the fixed normalized measure on Q/QH .
Let us verify this for Z, the proof for ZI being analogous. We first implement the
Haar measure on Q/QH via a density |ωZ | obtained from a top degree differential

form ωZ ∈
∧top

(q/q∩ h)∗. As usual we decompose w = t̃h with t̃ ∈ TZ and h ∈ H,

see (2.15). Then Ad(t̃) preserves (q/q ∩ h)C and thus acts on
∧top

(q/q ∩ h)∗C by a
unit scalar. Since the scalar has to be real, the claim follows.

8.5. Matching derivatives. Before we can give the proof of Theorem 8.2 we need
Lemma 8.4.

Lemma 8.4. Let Ω ⊂ Q be a compact subset. Then the following assertions hold:

(1) Let u ∈ U(g). There exist u1, . . . , uk ∈ U(q) with deg uj ≤ deg u and a
constant C = C(Ω, u) such that

(8.13)
∣∣[Φ(Lu(ft))− Lu(Φ(ft))](z)

∣∣ ≤ C max
σ∈S\I

aσt

k∑
j=1

∣∣Luj
(Φ(ft))(z)

∣∣
for all f ∈ C∞

c (ZI) with support in ΩWI · z0,I , and all z ∈ Z, t ≥ 0.
(2) Let p0 denote the L2-norm on L2(Z). Then for every k ∈ N0 there exists a

constant C = C(Ω, k) > 0 such that

(8.14) p0;k(Φ(ft)) ≤ Cp0;k(Φ(f))

for all f ∈ C∞
c (ZI) with support in ΩWI · z0,I and t ≥ 0.

Proof. Since the map

Φ : C∞
c (QWI · z0,I) → C∞

c (QW · z0), f �→ Φ(f)

is Q-equivariant we have

(8.15) Φ(LY f) = LY Φ(f)

for all Y ∈ q.
For simplicity we consider the case supp f ⊂ Ω·z0,I . We first calculate LX(Φ(ft))

(qat · z0) and Φ(LX(ft))(qat · z0) for X ∈ g.
For that we recall that g = u + q is a direct sum. More generally for all q ∈ Q

the sum g = Ad(q)u+ q is direct. Accordingly we can decompose any X ∈ g as

X =
∑
α,k

cα,k(q) Ad(q)Xk
−α +

∑
j

dj(q)Xj
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where (Xk
−α)k is a basis of g−α, α ∈ Σu, and (Xj)j is a basis of q. The coefficients

cα,k(q), dj(q) ∈ R depend smoothly on q.
Recall that Xk

−α +
∑

β X
k
α,β ∈ h by (2.17) with I = S. Thus we get for every

smooth function F on Z and every q ∈ Q, a ∈ AZ that

LXF (qa · z0) =
∑
j

dj(q)LXj
F (qa · z0)−

∑
α,β,k

cα,k(q)a
α+βLAd(q)Xk

α,β
F (qa · z0) .

By expanding each Ad(q)Xk
α,β in terms of the Xj we can rephrase this identity as

(8.16) LXF (qa · z0) =
∑
j

[
dj(q)−

∑
α,β

cj,α,β(q)a
α+β

]
LXj

F (qa · z0)

with coefficients cj,α,β depending smoothly on q.
On the other hand by (2.17) we also have Xk

−α +
∑

α+β∈〈I〉 X
k
α,β ∈ hI which

then similarly yields for every smooth function f on ZI

LXf(qa · z0,I) =
∑
j

[
dj(q)−

∑
α,β

α+β∈〈I〉

cj,α,β(q)a
α+β

]
LXj

f(qa · z0,I)

with exactly the same coefficients as before, but for fewer α and β. We apply Φ to
this equation with f replaced by ft. With (8.15) this gives

(8.17) Φ(LXft)(qa · z0) =
∑
j

[
dj(q)−

∑
α,β

α+β∈〈I〉

cj,α,β(q)a
α+β

]
LXj

(Φ(ft))(qa · z0) .

From this equation we subtract (8.16) with F = Φ(ft). With a = at we obtain

(8.18) [Φ(LX(ft))− LX(Φ(ft))](qat · z0) =
∑
j

cj(q, t)[LXj
(Φ(ft))(qat · z0)]

with coefficients cj(q, t), each being a linear combination
∑

μ cμ(q)a
μ
t of functions aμt

with μ ∈ 〈S〉 \ 〈I〉, and with coefficients cμ ∈ C∞(Q) supported in Ω. In particular
(8.13) follows for deg u = 1.

We now prove by induction on deg u that

(8.19) [Lu(Φ(ft))− Φ(Lu(ft))](qat · z0) =
∑
j

cj(q, t)[Luj
(Φ(ft))(qat · z0)]

for some uj ∈ U(g) with deg uj ≤ deg u and coefficients cj(q, t) of the same type
as required in (8.18). Note that the set of coefficients of this type is stable under
differentiation by elements from q.

Let u = Xv with X ∈ g and deg v < deg u. We write

Lu(Φ(ft))− Φ(Lu(ft)) =

LX

[
Lv(Φ(ft))− Φ(Lvft))

]
+
[
LXΦ(Lvft)− Φ(LX(Lvft))

]
.

For the first term we apply (8.16) to LX in order to replace the differentiation with
X ∈ g by differentiation with the Xj ∈ q. We then apply the induction hypothesis
(8.19) to

[
Lv(Φ(ft))− Φ(Lvft))

]
. After the differentiations by Xj we then obtain

for the first term an expression of the required form. For the second term we apply
(8.18) with ft replaced by (Lvf)t = Lvft. This gives∑

j

cj(q, t)[LXj
(Φ(Lvft))(qat · z0)].
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Once more we apply the induction hypothesis to v, which allows us to replace this
expression by ∑

j

cj(q, t)[LXj
Lv(Φ(ft))(qat · z0)]

at the cost of additional terms. Since all these terms have the required form this
completes the proof of (8.19).

In order to complete the proof of (8.13) we need to replace the uj ∈ U(g) in (8.19)
by elements from U(q). By induction on the degree, similar to the one before, we
obtain from (8.16) for every u ∈ U(g) a set of elements u1, . . . , un ∈ U(q) with
deg uj ≤ deg u such that

(8.20) LuΦ(ft)(qat · z0) =
∑
j

ej(q, t)Luj
Φ(ft)(qat · z0),

with coefficients ej(q, t), each being a linear combination
∑

μ cμ(q)a
μ
t of functions

aμt with μ ∈ 〈S〉, and with coefficients cμ ∈ C∞(Q) supported in Ω. This finally
implies (8.13) and with that the proof of (1) has been completed.

For (2) we note that (8.20) and (8.15) imply:

p0(LuΦ(ft)) ≤ Cu

∑
j

p0(Φ(Luj
(ft))).

If we denote by q0 the L2-norm on L2(ZI) we obtain from (8.5) and (8.8)

p0(Φ(Luj
ft)) = q0(Luj

f) = p0(Φ(Luj
f)) = p0(Luj

(Φ(f))).

Combining this with the preceding inequality, (2) follows. �

8.6. Proof of Theorem 8.2.

Proof. In view of the consistency relations wI · ηI = (ηm(wI))
I for all w ∈ WI (see

(7.4)), the assertion readily reduces to the case where supp f ⊂ Q · z0,I . Let us
assume that in the sequel.

Recall that at = exp(tX) with X ∈ a
−−
I fixed. For simplicity we assume again

that supp f ⊂ Ω · z0,I , and then suppΦ(ft) ⊂ Ωat · z0.
Recall the Laplace element Δ1 ∈ U(g) from (6.2). In what follows we will apply

the Sobolev inequality of Lemma 6.6 to V , and for this we observe (see Theorem
11.2) that V is unitarizable since (V, η) is tempered.

In the sequel we write 〈·, ·〉 for 〈·, ·〉L2(Z) and 〈·, ·〉I for 〈·, ·〉L2(ZI) to save notation.
Let n ∈ N, to be specified at the end of the proof. It will depend on s, but apart

from that only on the space Z. We start with the identity v = Δn
1Δ

−n
1 v which

yields

(8.21) 〈Φ(ft),mv,η〉 = 〈LΔn
1
Φ(ft),mΔ−n

1 v,η〉 .

Next we have to address the subtle point that Φ(LΔn
1
ft) does not necessarily

equal LΔn
1
Φ(ft). However from Lemma 8.4(1) we obtain constants ε > 0, C > 0,

and elements uj ∈ U(g) of degree ≤ 2n such that for all f supported by Ω · z0,I
(8.22)

|LΔn
1
Φ(ft)(z)− Φ(LΔn

1
ft)(z)| ≤ Ce−tε

∑
j

|Luj
(Φ(ft))(z)| (z ∈ Z, t ≥ 0).
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We rewrite (8.21) as

(8.23) 〈Φ(ft),mv,η〉 = 〈Φ(LΔn
1
ft),mΔ−n

1 v,η〉+R1(t)

with R1(t) = 〈LΔn
1
Φ(ft) − Φ(LΔn

1
ft),mΔ−n

1 v,η〉. We claim, after shrinking ε to ε
2 ,

that for 2n > n∗ where n∗ is the even integer given by (6.5)

(R1) |R1(t)| ≤ Ce−tεpN ;2n(Φ(f))p−N ;−2n+n∗(mv,η)

with a constant C > 0 that depends on Ω and n, but not on f . From (8.22) and
Cauchy-Schwarz we obtain

(8.24) |R1(t)| ≤ Ce−tεpN ;2n(Φ(ft))p−N(mΔ−n
1 v,η) .

We obtain from [27, Prop. 3.4 (2)] that |w(z)| ≤ C(1 + t) for all z ∈ suppΦ(ft)
for a constant C only depending on Ω. Hence it follows with Lemma 8.4(2) that

pN ;2n(Φ(ft)) ≤ C(1 + t)
N
2 p0;2n(Φ(ft))

≤ C(1 + t)
N
2 p0;2n(Φ(f)) ≤ C(1 + t)

N
2 pN ;2n(Φ(f))(8.25)

with positive constants C (possibly not equal to each other). Note that these
constants C depend on n.

Furthermore it follows from (6.14) that for 2n > n∗

(8.26) p−N (mΔ−n
1 v,η) ≤ Cp−N ;−2n+n∗(mv,η) .

If we insert (8.25) and (8.26) into (8.24) we obtain the claim (R1) by noting that

(1 + t)
N
2 e−

ε
2 t is bounded for all t ≥ 0.

We move on with the identity (8.23) and wish to analyze 〈Φ(LΔn
1
ft),mΔ−n

1 v,η〉
further. By the definitions of Φ and ft

〈Φ(LΔn
1
ft),mΔ−n

1 v,η〉 =

∫
Q/QH

(LΔn
1
f)(qat · z0,I)aρtmΔ−n

1 v,η(q · z0) d(qQH)

=

∫
Q/QH

(LΔn
1
f)(q · z0,I)a−ρ

t mΔ−n
1 v,η(qat · z0) d(qQH) .(8.27)

Likewise
(8.28)

〈LΔn
1
ft,mΔ−n

1 v,ηI 〉I =

∫
Q/QH

(LΔn
1
f)(q · z0,I)a−ρ

t mΔ−n
1 v,ηI (qat · z0,I) d(qQH) .

Next we wish to replace mΔ−n
1 v,η by the constant term approximation mΔ−n

1 v,ηI

via Theorem 7.1. We then obtain constants ε > 0, k ∈ N, depending only on Z,
and a constant C > 0 depending also on Ω and n, such that with l := k + n∗ one
has for all q ∈ Ω and all v ∈ V ∞

|mΔ−n
1 v,η(qat · z0)−mΔ−n

1 v,ηI (qat · z0,I)| ≤ Ca
(1+ε)ρ
t p−N ;k(mΔ−n

1 v,η)

≤ Ca
(1+ε)ρ
t p−N ;l−2n(mv,η) .(8.29)

In the passage to the second line of (8.29) we used (8.26).
Now note that (8.5) implies

〈(LΔn
1
f)t,mΔ−n

1 v,ηI 〉I = 〈ft,mv,ηI 〉I ,

and thus if we insert the bound (8.29) into the difference between (8.27) and (8.28),
we obtain the identity
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(8.30) 〈Φ(LΔn
1
ft),mΔ−n

1 v,η〉 = 〈ft,mv,ηI 〉I +R2(t)

with

(8.31) |R2(t)| ≤ Ce−tεp−N ;l−2n(mv,η)‖LΔn
1
f‖L2(ZI)

√
volZI

(Ω · z0,I) .

Now, as in (8.20) we convert derivatives,

LΔn
1
f(q · z0,I) =

∑
cj(q)Luj

f(q · z0,I)

with uj ∈ U(q) of deg uj ≤ 2n and smooth coefficients cj . Hence

‖LΔn
1
f‖L2(ZI) ≤ Cp0;2n(Φ(f)) ≤ CpN ;2n(Φ(f))

with constants C depending only on Ω. Hence we obtain

(R2) |R2(t)| ≤ Ce−tεp−N ;l−2n(mv,η)pN ;2n(Φ(f)) .

Now the theorem follows from the two remainder estimates (R1) and (R2), by
choosing the number n such that m = 2n ≥ s+ k + n∗. �

8.7. Matching with respect to Z̃I . We conclude this section with a slight ex-
tension of the preceding results, when we consider instead of ZI the union of all

G-orbits in ZI(R) which point to Z, i.e. the space Z̃I =
∐

c∈CI

∐
t∈FI,c

ZI,c,t from

(5.1) which gives rise to the full partition W =
∐

c∈cI

∐
t∈FI,c

mc,t(WI,c) from (5.2).

Observe that f ∈ C∞
c (Z̃I) corresponds to a family f = (fc,t)c,t with fc,t ∈

C∞
c (ZI,c,t) and ZI,c,t = ZI,c as homogeneous spaces. Suppose now that supp fc,t ⊂

QwI,c · z0,I,c ⊂ ZI,c = ZI,c,t for all c, t. With (5.2) the function f can then be
matched with a function F = Φ(f) ∈ C∞

c (Z) by requesting

F (qmc,t(wI,c) · z0)) = fc,t(qwI,c · z0,I,c) (q ∈ Q) .

Then Corollary 8.3 extends to all f ∈ C∞
c (Z̃I) with supp fc,t ⊂ QWI,c · z0,I,c, and

yields constants C, ε > 0 such that

(8.32) ‖f‖2
L2(Z̃I)

=

∫
Ĝ

∑
c,t

HI,pre
π,c,t ((fc,t)t) dμ(π) +R(t)

with |R(t)| ≤ Ce−εt for all t ≥ 0. Here HI,pre
π,c,t refers to HI,pre

π for ZI replaced by
ZI,c,t; explicitly

(8.33) HI,pre
π,c,t (fc,t) =

mπ∑
j=1

‖π(fc,t)((ηj)Ic,t)‖2Hπ
(fc,t ∈ C∞

c (ZI,c,t)) .

9. Induced Plancherel measures

In this section we show that the Plancherel measure of L2(ZI) is induced from the
Plancherel measure of L2(Z) in a natural manner, see Theorem 9.5. A consequence
thereof is a certain variant of the Maass-Selberg relations as recorded in Theorem
9.6. Statements and approach are largely motivated by the reasoning in Sakellaridis-
Venkatesh [42, Sect. 11.1–11.4], which originates from ideas of Joseph Bernstein.
The main technical ingredient is our remainder estimate of Corollary 8.3.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

864 PATRICK DELORME ET AL.

Given a point [π] ∈ Ĝ we denote by U[π] the neighborhood filter of [π] in Ĝ. Let

I ⊂ S and recall from (8.9) the definition of the Hermitian form HI,pre
π . Attached

to the Plancherel measure μ we define its I-support by

(9.1) suppI(μ) := {[π] ∈ Ĝ | (∀U ∈ U[π]) μ({[σ] ∈ U : HI,pre
σ 
= 0}) > 0} .

We denote by μI the restriction of μ to suppI(μ). In the sequel we let (π,Hπ) be
such that [π] ∈ suppI(μ). Define

(9.2) MI
π := span{a · ηI : η ∈ Mπ, a ∈ AI} ⊂ (H−∞

π )HI
temp

where the latter inclusion is part of Theorem 7.1.
The elements ξ ∈ MI

π decompose into generalized eigenvectors for the AI -action,

(9.3) ξ =
∑
λ∈Eξ

ξλ,

and we recall from (7.3) that the generalized eigenvalues λ satisfy

(9.4) Eξ ⊂ (ρ−Wj · χπ)|aI
∩ (ρ|aI

+ ia∗I) .

It will be seen later that the AI -action is semisimple for almost all π ∈ suppI(μ).
Recall that the conjugation H−∞

π → H−∞
π , η �→ η is a G-equivariant isomor-

phism of topological vector spaces. The conjugation map induces an antilinear
AI-equivariant isomorphism MI

π � MI
π. In particular, MI

π is semisimple if and
only if MI

π is semisimple.

9.1. Averaging. What follows is motivated by the techniques of [42, Sect. 10]. Let
X ∈ a

−−
I and set at = exp(tX) as usual. Throughout this section we let (π,Hπ)

be a representation occurring in suppI(μ). We recall the notion ft from (8.3).

Lemma 9.1 (Averaging lemma). Let X ∈ a
−−
I . Then the following assertions

hold:

(1) Suppose that MI
π is X-semisimple. Then we have for all f ∈ C∞

c (ZI) and
ξ ∈ MI

π that

lim
n→∞

1

n

2n∑
t=n+1

‖π(ft)ξ‖2 =
∑
λ∈Eξ

‖π(f)ξλ‖2 +

+ 2Re
∑

λ 
=λ′∈Eξ

(λ−λ′)(X)∈2πiZ

〈π(f)ξλ, π(f)ξλ′〉 .(9.5)

In particular, if (λ− λ′)(X) 
∈ 2πiZ for all λ, λ′ ∈ Eξ with λ 
= λ′, we have

(9.6) lim
n→∞

1

n

2n∑
t=n+1

‖π(ft)ξ‖2 =
∑
λ∈Eξ

‖π(f)ξλ‖2 .

(2) Suppose that MI
π is not X-semisimple. Then for every ξ ∈ MI

π which does
not belong to the sum of eigenspaces for X we have

(9.7) lim
n→∞

1

n

2n∑
t=n+1

‖π(ft)ξ‖2 = ∞

for every f ∈ C∞
c (ZI) for which π(f)|MI

π
is injective.
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Proof. (1) Assume MI
π is diagonalizable for X and let ξ ∈ MI

π. It then follows
from (9.3) and (9.4) that

π(at)ξ =
∑

λ∈ρ+ia∗
I

aλt ξ
λ .

In particular we obtain from Lemma 8.1 for all f ∈ C∞
c (ZI) and t ≥ 0 that

π(ft)ξ =
∑

λ∈ρ+ia∗

aλ−ρ
t π(f)ξλ

and thus

‖π(ft)ξ‖2 = ‖
∑

λ∈ρ+ia∗
I

aλ−ρ
t π(f)ξλ‖2

=
∑

λ∈ρ+ia∗
I

‖π(f)ξλ‖2 + 2Re
∑

λ,λ′∈Eξ
λ 
=λ′

aλ−λ′

t 〈π(f)ξλ, π(f)ξλ′〉 .

Now for any γ ∈ R\2πZ we have limn→∞
1
n

∑2n
t=n+1 e

itγ = 0 and (1) follows.
For (2) we remark that with the mentioned assumption on ξ we have for some

m ∈ N and each λ ∈ ρ+ ia∗ that

(9.8) π(ft)ξ
λ = aλ−ρ

t π(f)

m∑
j=0

tj

j!
ξλ,j

where ξλ,0 = ξλ, ξλ,1, . . . , ξλ,m ∈ MI
π. Moreover we can assume ξλ,m 
= 0 for some

λ. Now (9.7) becomes a simple matter on polynomial asymptotics: set

ξtopt :=
∑
λ

aλ−ρ
t ξλ,m (t ≥ 0)

and note that |aλ−ρ
t | = 1 implies that the vectors ξtopt , t ≥ 0, stay away from 0 in

the finite dimensional space MI
π. Thus we obtain from (9.8) and the injectivity of

π(f)|MI
π
that

‖π(ft)ξ‖ ∼ tm‖π(f)ξtopt ‖
from which (9.7) follows. �

Suppose that X ∈ a
−−
I is such that (λ−λ′)(X) 
∈ 2πiZ for all λ, λ′ ∈ Eξ, ξ ∈ MI

π,
with λ 
= λ′. Then we obtain from (8.9) and Lemma 9.1 that
(9.9)

lim
n→∞

1

n

2n∑
t=n+1

HI,pre
π (ft) =

⎧⎪⎪⎨⎪⎪⎩
∑mπ

j=1

∑
λ∈E

ηI
j

‖π(f)ηI,λj ‖2 if MI
π is X-semisimple

∞ if otherwise and

π(f)|MI
π
is injective

where η1, . . . , ηmπ
is an orthonormal basis for Mπ.

This motivates the following definition of HI
π. In case MI

π is a semisimple AI -
module we set

(9.10) HI
π(f) :=

mπ∑
j=1

∑
λ∈E

ηI
j

‖π(f)ηI,λj ‖2 (f ∈ C∞
c (ZI)) ,
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and otherwise HI
π := 0. Observe that the Hermitian form HI

π is left G-invariant,
and normalized-right AI -invariant. Set

suppI
fin(μ) := {[π] ∈ suppI(μ) | MI

π is aI -semisimple} .

9.1.1. Mollifying on multiplicity spaces. Throughout this subsection we let V be an
irreducible Harish-Chandra module and V ∞ its unique SF -completion. Let S(G)
be the Schwartz algebra of rapidly decreasing functions on G (see [5]) and recall
the following variant of the Casselman-Wallach theorem: if 0 
= v ∈ V , then

(9.11) S(G) ∗ v = V ∞

by [5, Th. 8.1], where for f ∈ S(G) and v ∈ V ∞ we use the standard notation

f ∗ v =

∫
G

f(g)g · v dg

with the right hand side being a convergent integral in the Fréchet space V ∞.

Assertion (9.11) can be strengthened further as follows. Let Ṽ be the Harish-
Chandra module dual to V . Then we first record the mollifying property S(G) ∗
Ṽ −∞ ⊂ V ∞ which in view of (9.11) strengthens to

(9.12) S(G) ∗ η = V ∞ (0 
= η ∈ Ṽ −∞)

In fact, choose first a left K-finite function f ∈ C∞
c (G) such that 0 
= f ∗ η ∈ V

and then apply (9.11) with S(G) ∗ C∞
c (G) ⊂ S(G). Let now H ⊂ G be any

closed unimodular subgroup of G. Then we define S(G/H) as the space of right
H-averages of functions F ∈ S(G), i.e. f ∈ S(G/H) if and only if there exists an
F ∈ S(G) such that

f(gH) = FH(g) :=

∫
H

F (gh) dh (g ∈ G) .

With that we can define for η ∈ (Ṽ −∞)H and f = FH ∈ S(G/H):

f ∗ η := F ∗ η
as the right hand side of this equation is independent of the particular lift F of f .
Then we have the following generalization of (9.12).

Lemma 9.2. Let H ⊂ G be a closed unimodular subgroup and let E ⊂ (Ṽ −∞)H be
a finite dimensional subspace. Then the map

ΦE : S(G/H) → Hom(E, V ∞), f �→ (η �→ f ∗ η)
is continuous and surjective. Moreover E is uniquely determined by kerΦE.

Proof. First of all it is clear that ΦE is continuous. Next we observe that the
statement reduces to H = {1} which we will assume from now on.

Notice that ΦE is an S(G)-module morphism with S(G) acting on Hom(E, V∞)
on the target V ∞, i.e. for f ∈ S(G) and T ∈ Hom(E, V∞) we set (f ∗ T )(η) :=
f ∗ (T (η)).

Suppose that ΦE were not surjective. Then imΦE ⊂ Hom(E, V ∞) would be a
proper S(G)-invariant subspace. Upon the identification Hom(E, V∞) = E∗ ⊗V ∞

we then derive from the fact that V ∞ is an algebraically simple module for S(G)
(a consequence of (9.11)) that imΦE = F⊥ ⊗ V ∞ for a subspace 0 
= F ⊂ E. This
then means

imΦE = {T ∈ Hom(E, V∞) | T |F = 0}
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which contradicts the fact that S(G) ∗ F = V ∞ 
= {0} as F 
= 0.
Finally from S(G)/ kerΦE � E∗ ⊗ V ∞ we obtain the asserted uniqueness. In-

deed, suppose you have kerΦE1
= kerΦE2

. Then kerΦEi
= kerΦE1+E2

for i = 1, 2
and thus dim(E1 + E2)

∗ = dimE∗
i for i = 1, 2, i.e. E1 = E2. �

We apply Lemma 9.2 to the Hermitian forms HI
π of (9.10) as follows. Let E =

MI
π.

Corollary 9.3. Let [π] ∈ suppIfin(μ). There exists a unique Hermitian form H on

Hom(MI
π,H∞

π ) � H∞
π ⊗MI

π

for which H(ΦE(f)) = HI
π(f) for all f ∈ S(G/H). This form is G-invariant and

positive definite.

Proof. Clearly f ∈ kerΦE ⇒ HI
π(f) = 0. Moreover, since [π] ∈ suppIfin(μ) we have

E = MI
π = span{ηI,λj | 1 ≤ j ≤ mπ, λ ∈ ρ|aI

+ ia∗I}
from which we deduce the converse implication. �

We use the symbol HI
π also for the form H introduced in the corollary. Now a

variant of Schur’s Lemma implies that HI
π viewed as a form on H∞

π ⊗MI
π is given

by

(9.13) HI
π(v ⊗ ξ) = 〈v, v〉Hπ

〈ξ, ξ〉MI
π

for a unique Hilbert inner product 〈·, ·〉MI
π
on MI

π.
We conclude this intermediate subsection with a simple observation of later use.

Lemma 9.4. Keep the assumptions of Lemma 9.2 and let (fn)n∈N be a Dirac-
sequence in C∞

c (G/H). Then there exists an N = N(E) such that the map

ΦE(fn) : E → V ∞, η �→ fn ∗ η
is injective for all n ≥ N .

Proof. This is a special case of a more general fact. Let X be a locally convex
topological vector space and E ⊂ X a finite dimensional subspace. Let Tn : E → X
be a family of linear continuous maps with limn→∞ Tn(x) = x for all x ∈ E. We
claim that there exists N ∈ N such that Tn is injective for all n ≥ N . To see that we
choose a closed complement to E and obtain a continuous projection pE : X → E.
With Sn := pE ◦ Tn we then obtain a sequence Sn ∈ End(E) such that Sn → 1.

This proves the claim. The lemma follows with X = Ṽ −∞ and Tn(x) = fn ∗ x. �
9.2. Induced Plancherel measure. Theorem 9.5 was largely motivated by [42,
Th. 11.3].

Theorem 9.5 (Induced Plancherel measure). For all f ∈ C∞
c (ZI) one has

(9.14) ‖f‖2L2(ZI)
=

∫
suppI(μ)

HI
π(f) dμ(π) .

In particular, the Plancherel measure μI of L2(ZI) is equivalent to μ restricted
to suppI(μ), and MI

π as defined in (9.2) and equipped with the Hermitian form
obtained from (9.13) provides a multiplicity space for μI -almost all π. In other
words

(9.15) L2(ZI) �
G×AI

∫
suppI(μ)

Hπ ⊗MI
π dμ(π) ,
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with the just described inner product on MI
π, is a Plancherel decomposition for ZI .

Finally, the complement of suppIfin(μ) in suppI(μ) is a null set.

Proof. It is sufficient to prove this identity for test functions f with support in
PWI · z0,I because PWI · z0,I exhausts ZI up to measure zero. Let such a test
function f be given.

Fix X ∈ a
−−
I . It follows from the exponential decay of R(t) in Corollary 8.3 that

(9.16)
1

n

2n∑
t=n+1

∫
Ĝ

HI,pre
π (ft) dμ(π) → ‖f‖2L2(ZI)

as n → ∞. Define

HI,X−inv
π (f) := lim

n→∞

1

n

2n∑
t=n+1

HI,pre
π (ft) ∈ [0,∞] .

Then (9.16) and Fatou’s lemma imply

(9.17)

∫
Ĝ

HI,X−inv
π (f) dμ(π) ≤ ‖f‖2L2(ZI)

< ∞.

Next set
ĜX := {[π] ∈ Ĝ | MI

π 
= {0} and MI
π is X-semisimple} .

By choosing a Dirac sequence f1, f2, . . . of C
∞
c (ZI) which is supported in P · z0,I

we obtain from Lemma 9.4 for each [π] ∈ Ĝ that π(fj)|MI
π
is injective for some

j. Hence by countable additivity it follows from (9.17) together with (9.9) and the

definition of suppI(μ) in (9.1) that μ(suppI(μ)\ĜX) = 0. Further for [π] ∈ ĜX we
have HI,X−inv

π (f) < ∞ and from (9.5) we infer

HI,X−inv
π (f) =

mπ∑
j=1

∑
λ∈ρ+ia∗

I

‖π(f)ηI,λj ‖2 +

+

mπ∑
j=1

2Re
∑

λ 
=λ′∈Eξ
(λ−λ′)(X)∈2πiZ

〈π(f)ηI,λj , π(f)ηI,λ
′

j 〉 .(9.18)

Next we define

ĜX,reg := {[π] ∈ ĜX | (∀λ 
= λ′ ∈ (ρ−Wjχπ)|aI
) : (λ− λ′)(X) 
∈ 2πiZ}

and deduce from (9.17), (9.18), and (9.10) that

(9.19) ‖f‖2L2(ZI)
≥
∫
ĜX,reg

HI
π(f) dμ(π) +

∫
ĜX\ĜX,reg

HI,X−inv
π (f) dμ(π) .

Now we start iterating (9.19) with finitely many X ∈ a
−−
I . In more precision,

let X1 := X and set X2 :=
√
2X1. Now the iteration of (9.19) starts with at :=

exp(tX2) while observing ‖f‖2L2(ZI)
= ‖ft‖2L2(ZI)

and taking weighted averages as

before. Another application of Fatou’s Lemma then yields

‖f‖2L2(ZI)
≥

∫
⋃2

j=1 ĜXj,reg

HI
π(f) dμ(π) +

+

∫
(
⋂2

j=1 ĜXj )\(
⋃2

j=1 ĜXj,reg)
HI,{X1,X2}−inv

π (f) dμ(π)
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with

HI,{X1,X2}−inv
π (f) =

mπ∑
j=1

∑
λ∈ρ+ia∗

I

‖π(f)ηI,λj ‖2 +

+

mπ∑
j=1

2Re
∑

λ,λ′∈E
ηI
j

λ 
=λ′,(λ−λ′)(X1)=0

〈π(f)ηI,λj , π(f)ηI,λ
′

j 〉(9.20)

as a result of making (9.18) also invariant under X2. Here we used that (λ −
λ′)(Xi) ∈ 2πZ for i = 1, 2 means (λ− λ′)(Xi) = 0.

Next take X3 ∈ a
−−
I linearly independent to X1 and then X4 :=

√
2X3. This we

continue until X1, X3, . . . , X2m−1 is a basis of aI contained in a
−−
I .

Notice that iterating (9.20) yields that

HI,{X1,...,X2m}−inv
π (f) = HI

π(f)

and we finally arrive at

(9.21) ‖f‖2L2(ZI)
≥
∫
Ĝ

HI
π(f) dμ(π)

together with the fact μ(suppI(μ)\ suppIfin(μ)) = 0 as suppIfin =
⋂

j ĜXj
.

To conclude the proof we observe for X = X1 and any π ∈ Ĝ that ‖π(ft)ηI‖ ≤∑
λ∈EηI

‖π(f)ηI,λ‖ and thus

‖π(ft)ηI‖2 ≤ |Wj|
∑

λ∈EηI

‖π(f)ηI,λ‖2

as |Eη| ≤ |Wj|. Summing over t and the ηIj this implies via (9.18) for all [π] ∈
suppIfin μ that

1

n

2n∑
t=n+1

HI,pre
π (ft) ≤ |Wj|HI

π(f)

for all n > 0. Thus by (9.17) and dominated convergence we can interchange limit
and integral in (9.16) and obtain actual equality in (9.17):

(9.22)

∫
Ĝ

HI,X−inv
π (f) dμ(π) = ‖f‖2L2(ZI)

.

The just described iteration applied to (9.22) then yields∫
Ĝ

HI
π(f) dμ(π) = ‖f‖2L2(ZI)

and finishes the proof of the theorem.
The final statements follow from uniqueness of the Plancherel measure together

with (9.13). �

9.3. Extension to Z̃I . In view of Section 8.7 we can extend Theorem 9.5 to all
f ∈ C∞

c (Z̃I):

(9.23) ‖f‖2
L2(Z̃I)

=
∑
c,t

∫
suppI,c,t(μ)

HI
π,c,t(fc,t) dμ(π)
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where we put an extra index c, t when we consider objects, initially defined for ZI ,
now for ZI,c,t. Let us further denote by MI

π,c,t ⊂ (H−∞
π )HI,c the Hilbert space MI

π

(with the inner product obtained from (9.13)), but for ZI replaced by ZI,c,t = ZI,c.
We then form the direct sum of Hilbert spaces

M̃I
π =

⊕
c,t

MI
π,c,t ,

and equip this space with the diagonal action of AI , i.e. for ξ = (ξc,t)c,t ∈ M̃I
π we

have a · ξ = (a · ξc,t)c,t. Then we obtain the following extension of (9.15) to

(9.24) L2(Z̃I) �
G×AI

∫
Ĝ

Hπ ⊗ M̃I
π dμ(π)

9.4. The Maass-Selberg relations. The multiplicity space M̃I
π is AI -semisimple

for μ-almost all [π] and thus admits a direct sum decomposition M̃I
π =⊕

λ∈ρ+ia∗
I
M̃I,λ

π with

M̃I,λ
π = {ξ ∈ M̃I

π | (∀a ∈ AI) a · ξ = aλξ} .
Since the normalized right action of AI on L2(ZI) is unitary it follows that the

Hermitian structure on M̃I
π is such that this decomposition of M̃I

π is orthogonal
for μ-almost all [π].

Theorem 9.6 (Maass-Selberg relations). Let λ ∈ ρ|aI
+ ia∗I . Then for almost all

[π] ∈
⋃

c,t supp
I,c,t
fin (μ) the map

Iλ : Mπ → M̃I,λ
π , η �→ (ηI,λc,t )c,t

is a surjective partial isometry, i.e. its Hermitian adjoint is a unitary isometry.

Proof. Let us denote by 〈·, ·〉 the scalar product on M̃I
π. By definition it is given

by (9.13) (summed over all c, t) for almost all [π]. Now summation of (9.10) over

all c, t implies for all x ∈ M̃I
π that

(9.25) ‖x‖2MI
π
=
∑
c,t

mπ∑
j=1

∑
λ∈E

ηI
j

|〈x, (ηj)I,λc,t 〉|2 .

In particular, for x ∈ M̃I,λ
π this is condition (9.26) so that Lemma 9.8 applies. �

Remark 9.7. Of particular interest is the case of a multiplicity one space, i.e. where
we have dimMπ ≤ 1 for almost all π ∈ suppμ. This is for instance satisfied in
the group case Z = G×G/ diagG � G, for complex symmetric spaces, and in the
Riemannian situation Z = G/K.

For a symmetric space the condition that dimMπ ≤ 1 for almost all π implies
W = {1}. To see that we first observe that there are |W|-many open H-orbits O ⊂
G/Q, each isomorphic to H/LH as a unimodular H-space. Integration over these
open H-orbits yields at least |W|-many tempered functionals for representations
π with generic parameters in the most-continuous spectrum of Z, say ηπ,w for
w ∈ W . Now there is a subtle point that a priori we only have Mπ ⊂ (V −∞

π )Htemp.
But forming wave packets finally yields that these ηπ,w indeed contribute a.e. to
the L2-spectrum. For this one needs an estimate of ηπ,w which is locally uniform
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with respect to π. For the case of a symmetric space Z such an estimate is given
in [2, Thm. 9.1]. The statement follows.

The statement above implies that MI
π = M̃I

π. Our Maass-Selberg relations in
Theorem 9.6 then assert for η ∈ Mπ with ‖η‖ = 1 that (ηI,λ)λ is an orthonormal

basis of MI
π = M̃I

π (where we only count those λ for which MI,λ
π 
= {0}). In

particular, for the group case this leads to the Maass-Selberg relations of Harish-
Chandra [19, p. 146].

We finish this section with an elementary lemma about finite dimensional Hilbert
spaces. It was used for Theorem 9.6.

Lemma 9.8. Let J : M → N a linear map between two finite dimensional Hilbert
spaces. Assume that for some orthonormal basis η1, . . . , ηn for M one has

(9.26) 〈x, x〉 =
n∑

j=1

|〈x, Jηj〉|2, (x ∈ N ).

Then the adjoint of J is an isometry.

Proof. It follows from (9.26) that ‖x‖2 =
∑n

j=1 |〈J∗x, ηj〉|2 = ‖J∗x‖2. �

10. Spectral Radon transforms and twisted discrete spectrum

The constant term assignments

Mπ � η �→ ηI ∈ MI
π

give rise to spectral Radon transform RI : L2(Z) → L2(ZI) which is the topic
of this section. With the help of this transform we can characterize the twisted
discrete series L2(Z)td of L2(Z) spectrally. The section starts with a brief recall on
the twisted discrete series, see also [32] and [28, Sect. 9].

10.1. Twisted discrete series. Let us denote by L2(Z)d the discrete spectrum
of L2(Z), i.e. the direct sum of all irreducible subspaces. Now in case aZ,E 
= {0},
it is easy to see that L2(Z)d = ∅, see [32, Lemma 3.3]. In particular, for I � S we
have L2(G/HI)d = ∅ as aZI ,E = aI 
= {0}.

Recall that the subspace aZ,E = aS ⊂ aZ normalizes h and gives rise to the

subalgebra ĥ = h+ aZ,E . Hence AZ,E := AS ⊂ A normalizes H and acts unitarily
on L2(G/H) via the normalized right regular action

(R(a)f)(gH) = a−ρf(gaH) (g ∈ G, a ∈ AZ,E , f ∈ L2(Z)).

Disintegration of L2(G/H) with respect to the right action of AZ,E then yields the
unitary equivalence of G-modules

(10.1) L2(Z) =

∫
ÂZ,E

L2(G/Ĥ, χ) dχ,

where ÂZ,E denotes the unitary dual of the abelian Lie group AZ,E , and for each

unitary character χ : AZ,E → S1 the G-module L2(G/Ĥ, χ) is a certain Hilbert
space of densities explained in [29, Sect. 8] or [32, Sect. 3.2]. A spherical pair

(V, η) which embeds into some L2(G/Ĥ, χ) will be referred to as a representation
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of the twisted discrete series of Z. Further we denote by L2(G/Ĥ, χ)d the discrete
spectrum and define the twisted discrete series by

(10.2) L2(Z)td =

∫
ÂZ,E

L2(G/Ĥ, χ)d dχ

made more rigorous in Subsection 10.3.

10.2. Spectral Radon transforms. For w ∈ W we set Zw = G/Hw. Note that

L2(Z) → L2(Zw), f �→ (gHw → f(gwH))

is a unitary equivalence ofG-representations. Hence the abstract Plancherel formula
for L2(Z) induces one for L2(Zw) with the same Plancherel measure and isometries

Mπ → Mπ,w, η �→ ηw .

For every I ⊂ S and w ∈ W we set ZI,w := G/(Hw)I and keep in mind that for
fixed I, the various (Hw)I need not be G-conjugate (cf. Example 4.10).

Now given η ∈ Mπ and w ∈ W we note that ηIw = (w · η)I is fixed by (Hw)I
and we use notation MI

π,w for MI
π with respect to (Hw)I . In the sequel we assume

that [π] ∈ suppμ ⊂ Ĝ is generic, that is MI
π,w is aI -semisimple for all I ⊂ S and

w ∈ W . By Theorem 9.5 with H replaced by Hw we obtain that the complement
of the generic elements is a null set with respect to μ. We endow MI

π,w with the
Hilbert space structure induced from Mπ via Theorem 9.5.

Our concern is with the spectral Radon transforms induced from the constant
term maps:

rπ,I,w : Mπ → MI
π,w, rπ,I,w(η) = ηIw ,

and for J ⊂ I their transitions:

(10.3) rIπ,J,w : MI
π,w → MJ

π,w, rIπ,J,w(ξ) = ξJ .

We recall the transitivity of the constant terms [10, Prop. 6.1]:

Lemma 10.1. Let η ∈ Mπ and w ∈ W. Then for all J ⊂ I one has

(ηIw)
J = ηJw .

The transitivity of the constant term maps then reflects in

(10.4) rIπ,J,w ◦ rπ,I,w = rπ,J,w (J ⊂ I) .

Recall that rπ,I,w is a sum of at most |Wj|-many partial isometries by the Maass-
Selberg relations in Theorem 9.6. Hence we obtain

(10.5) ‖rπ,I,w‖ ≤ |Wj| .

Proposition 10.2. Let I ⊂ S and w ∈ W. The operator field

(idHπ
⊗rπ,I,w)π∈Ĝ : Hπ ⊗Mπ → Hπ ⊗MI

π,w

is measurable and induces a G-equivariant continuous map

RI,w : L2(Z) �
∫ ⊕

Ĝ

Hπ ⊗Mπ dμ(π) → L2(ZI,w) �
∫ ⊕

Ĝ

Hπ ⊗MI
π,w dμ(π)

Moreover

(10.6) ‖RI,w‖ ≤ |Wj| .
We call RI,w the spectral Radon transform at (I, w).
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Proof. Since the rπ,I,w reflect the pointwise convergent asymptotics of matrix coef-
ficients, the operator field is measurable. With the upper bound in (10.5) we then
obtain that RI,w is defined and continuous with norm bound (10.6). By definition
RI,w is then G-equivariant, completing the proof. �

With (10.3) we obtain spectrally defined Radon transforms:

(10.7) RI
J,w : L2(ZI,w) → L2(ZJ,w) (J ⊂ I)

which then by (10.4) satisfy

(10.8) RJ,w = RI
J,w ◦ RI,w (J ⊂ I)

Putting the data of the various (I, w) together, we arrive at the (full) spectral
Radon transform

R = ⊕I,wRI,w : L2(Z) →
⊕
I⊂S

⊕
w∈W

L2(ZI,w) .

10.3. Characterization of the twisted discrete spectrum. Next we want to
define L2(Z)td rigorously in terms of the spectral Radon transforms. Set

(10.9) Mπ,td = {ξ ∈ Mπ | ∃χ ∈ ÂZ,E ∀v ∈ V ∞
π : mv,ξ ∈ L2(Ẑ, χ)d}

and likewise we define MI
π,w,td for w ∈ W and I ⊂ S.

Then

(10.10) L2(Z)td :=
⋂

w∈W
I�S

kerRI,w .

defines a closed subspace G-invariant subspace of L2(Z).
Next we need a reformulation of the characterization of the twisted discrete series

from [29, Sect. 8] in the more suitable language of constant terms [10, Th. 5.12],
namely:

Lemma 10.3. Let η ∈ Mπ. Then the following are equivalent:

(1) η ∈ Mπ,td.
(2) ηIw = 0 for all w ∈ W and I � S.

With the characterization in Lemma 10.3 we arrive at:

Proposition 10.4. We have

(10.11) L2(Z)td �
∫ ⊕

Ĝ

Hπ ⊗Mπ,td dμ(π) .

In particular L2(Z)td ⊂ L2(Z) is invariant under the normalized right regular rep-
resentation R of AZ,E .

Proof. Both assertions follow from Lemma 10.3 and the involved definitions (10.9)
and (10.10) �

Since L2(Z)td is AZ,E-invariant we obtain from (10.11) a rigorous definition of

(10.2) with L2(Ẑ, χ)d equal to the χ-spectral part of L2(Z)td under R.
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10.4. Restriction to the twisted discrete spectrum. Applying the preceding
theory with L2(Z) replaced by L2(ZI,w) we obtain orthogonal projections

prI,w,td : L2(ZI,w) → L2(ZI,w)td

and define RI,w := prI,w,td ◦ RI,w. Note that

RI,w : L2(Z) → L2(ZI,w)

is a continuous G-equivariant map. The restricted spectral Radon transform is then
defined to be

R = ⊕I,wRI,w : L2(Z) →
⊕
I⊂S

⊕
w∈W

L2(ZI,w)td .

11. Bernstein morphisms

We define the Bernstein morphism B as the Hilbert space adjoint R∗ of the
restricted spectral Radon transform R. With BI,w := R∗

I,w we then have

B :
⊕
I⊂S

⊕
w∈W

L2(ZI,w)td → L2(Z), (fI,w)I,w �→
∑
I,w

BI,w(fI,w) .

The main result of this section then is:

Theorem 11.1 (Plancherel Theorem – Bernstein decomposition). The Bernstein
morphism is a continuous surjective G-equivariant linear map. Moreover, B is
isospectral, that is, image and source have Plancherel measure in the same measure
class.

After some technical preparations we give the proof of Theorem 11.1. Then,
after applying the material on open P -orbits developed in Section 5 we derive in
Theorem 11.9 a refined Bernstein decomposition, which agrees with the partition
W =

∐
c∈CI

∐
t∈FI,c

mc,t(WI,c) from (5.18).

Finally, by adding up the refined Bernstein decompositions for the various G-
orbits in Z(R) we obtain in Theorem 11.11 the statement for L2(Z(R)) which is in
full analogy to the p-adic statement of Sakellaridis-Venkatesh [42, Cor. 11.6.2].

11.1. Proof of Theorem 11.1. Denote by P(S) the power set of S. With regard
to η ∈ Mπ we call a pair (I, w) ∈ P(S) × W admissible provided that ηIw 
= 0.
Finally we call an η-admissible pair (I, w) optimal provided that the cardinality
|I| is minimal, i.e. we have ηJw′ = 0 for all w′ ∈ W and J � I. Notice that, by
definition, for every η 
= 0 there exists an η-optimal pair (I, w).

The embedding theory of tempered representations into twisted discrete series
from [29, Sect. 9] then comes down to:

Theorem 11.2. Let 0 
= η ∈ Mπ and (I, w) be an η-optimal pair. Then ηIw ∈
MI

π,w,td.

Proof. Let (I, w) be η-optimal. Applying a base point shift we may assume that
w = 1. According to Lemma 10.3 applied to ZI we need to show that (wI ·ηI)J = 0
for all wI ∈ WI and J � I. Let m(wI) = w ∈ W . By the consistency relations
(7.4) we have wI · ηI = ηIw. Thus, by the transitivity of the constant term we have

(wI · ηI)J = ηJw = 0

by the minimality of |I|. The theorem follows. �
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Let us denote for each [π] ∈ Ĝ and each I ⊂ S, w ∈ W by ξ �→ ξtd the orthogonal
projection MI

π,w → MI
π,w,td.

With that we define a linear map between finite dimensional Hilbert spaces by

rπ = ⊕rπ,I,w,td : Mπ →
⊕
I⊂S

⊕
w∈W

MI
π,w,td, η �→ (ηIw,td)I,w

with ηIw,td := (ηIw)td.

Remark 11.3. Since ξ → ξtd is AI-equivariant, we have the orthogonal decom-

position MI
π,w,td =

⊕
μ∈ρ+ia∗

I
MI,μ

π,w,td. Thus every ξ ∈ MI
π,w,td decomposes as

ξ =
∑

ξμ with ξμ ∈ MI,μ
π,w,td for μ ∈ ρ|aI

+ ia∗I by (7.3).

For any λ ∈ EηI ⊂ ρ|aI
+ ia∗I (cf. (7.3)) we denote by rπ,I,w,td,λ the map rπ,I,w,td

followed by orthogonal projection to the λ-coordinate MI,λ
π,w,td of MI

π,w,td.
Then Theorem 11.2 yields the technical key Lemma:

Lemma 11.4. The following assertions hold:

(1) rπ is injective.
(2) For all I ⊂ S,w ∈ W and λ ∈ Eπ the map

rπ,I,w,td,λ : Mπ → MI,λ
π,w,td, η �→ ηI,λw,td

is a surjective partial isometry.
(3) The assignment π �→ rπ is measurable.

Proof. Let 0 
= η ∈ Mπ. According to Theorem 11.2 we find an η-optimal pair
(I, w) such that ηIw,td 
= 0, establishing (1). Having shown (1), assertion (2) is
obtained from the Maass-Selberg relations in Theorem 9.6: we replace H by Hw

and observe that η �→ ηw establishes an isomorphism of Mπ → Mπ,w with Mπ,w

referring to Mπ with H replaced by Hw.
Finally (3) is by the definition of the measurable structures involved (see Section

6 and Proposition 10.2): The family of maps

rπ,I,w : Mπ → MI
π,w, η �→ ηIw,

as well as the projection to discrete parts rπ,I,w,td are measurable. �

We now define

bπ :
⊕
I⊂S

⊕
w∈W

MI
π,w,td → Mπ

to be the adjoint of rπ and note that bπ, being the adjoint of an injective morphism,
is surjective. Notice that the Bernstein morphism

B :
⊕
I⊂S

⊕
w∈W

L2(ZI,w)td → L2(Z)

is defined spectrally by the operator field (bπ)π∈suppμ.

Remark 11.5 (Decomposition of B into isometries). For I ⊂ S and w ∈ W we
denote by BI,w the restriction of B to L2(ZI,w)td.

We claim that there is an orthogonal decomposition

L2(ZI,w)td =
⊕
u∈Wj

L2(ZI,w)td,u
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such that every restriction BI,w,u := B|L2(ZI,w)td,u is an isometry. To construct
such a decomposition we choose for every [π] ∈ supp(μ) with infinitesimal character
χπ ∈ j∗C/Wj a representative λπ ∈ jC, i.e. χπ = Wj · λπ. Let us denote by

Pu([π]) : MI
π,w → MI,(ρ−u·λπ)|aI

π,w

the orthogonal projection. Our request for the choice λπ ∈ χπ is then such that
the operator field

supp(μ) � [π] �→ Pu([π]) ∈ End(MI
π,w)

is measurable. With

L2(ZI,w)td,u :=

∫ ⊕

Ĝ

Hπ ⊗MI,(ρ−u·λπ)|aI

π,w,td dμ(π)

we then obtain an orthogonal decomposition L2(ZI,w)td =
⊕

u∈Wj
L2(ZI,w)td,u for

which BI,w,u is an isometry by Lemma 11.4(2).

The final piece of information we need for the proof of Theorem 11.1 is the
following elementary result of functional analysis whose proof we omit.

Lemma 11.6. Let H =
∫ ⊕
X

Hx dμ(x) be a direct integral of Hilbert spaces. Let

further K =
∫ ⊕
X

Kx dμ(x) and L =
∫ ⊕
X

Lx dμ(x) be closed decomposable subspaces
of H. Suppose that Kx + Lx ⊂ Hx is closed for every x ∈ X. Then K + L ⊂ H is
closed.

Proof of Theorem 11.1. The surjectivity of the bπ together with Theorem 9.5 shows
that B is an isospectral G-morphism with dense image. To see that B is surjective
we note that B is a sum of isometries each one of which has closed range. Thus B
is surjective by Lemma 11.6. �

Remark 11.7. In case W = {1}, i.e. there is only one open P -orbit, the Bernstein
decomposition becomes a lot simpler as the summation over W disappears in the
domain of B. We recall thatW = {1} is satisfied for reductive groups G � G×G/G,
for complex spherical spaces, and for Riemannian symmetric spaces.

11.2. Refinement of the Bernstein morphisms. In the definition of the Bern-
stein morphism a certain over-parametrizing takes place in the domain. This will
now be remedied via the partition W =

∐
c∈CI

∐
t∈FI,c

mc,t(WI,c) from (5.18). We

recall the corresponding terminology from Subsection 7.3.
For η ∈ Mπ, c ∈ CI , t ∈ FI,c we recall the functional ηc,t = w(c, t) · η from

Subsection 7.3. Further we set ηIc,t := (ηc,t)
I and given wI,c ∈ WI,c we define the

functional (ηIc,t)wI,c
:= wI,c ·ηIc,t. Likewise for μ ∈ a∗I,C we set (ηI,μc,t )wI,c

:= wI,c ·ηI,μc,t .

Every w ∈ W can be written uniquely as w = mc,t(wI,c) for c ∈ CI , t ∈ FI,c and
wI,c ∈ WI,c. In this context we recall from (7.10) the consistency relation

(11.1) ηI,λw = (ηI,λc,t )wI,c
(w = mc,t(wI,c) ∈ W , λ ∈ EηI ) .

Recall HI,c = (Hw(c))I equals HI,c,t = (Hw(c,t))I . Hence (ηI,λc,t )wI,c
is fixed by

(HI,c)wI,c
. On the other hand ηI,λw is fixed under (Hw)I . We recall from (5.19) that

the two groups are in fact equal:

(Hw)I = (HI,c)wI,c
.

In this context it is worth to record the following extension of [10, Th. 5.12]:
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Proposition 11.8. The following assertions are equivalent for η ∈ Mπ:

(1) η ∈ Mπ,td.
(2) For all I � S and c ∈ CI , t ∈ FI,c one has ηIc,t = 0.

Proof. Let w ∈ W and write it as w = mc,t(wI,c). We recall (7.4) which asserts
that ηIw = wI,c · ηIc,t. In particular ηIw = 0 if and only if ηIc,t = 0 and the proposition
follows from Lemma 10.3. �

For c ∈ CI and t ∈ FI,c we set ZI,c,t = ZI,w(c,t) and note that ZI,c,t = G/HI,c is
independent of t ∈ FI,c by Lemma 5.16. The following is then a refined version of
the Bernstein decomposition, taking the fine partition (5.18) of W into account.

Theorem 11.9 (Plancherel Theorem – Bernstein decomposition refined). The re-
stricted Bernstein morphism

Bres :
⊕
I⊂S

⊕
c∈CI

⊕
t∈FI,c

L2(ZI,c,t)td → L2(Z)

is surjective.

Proof. Given the proof of Theorem 11.1 this comes down to the fact that the map

r̃π : Mπ →
⊕
I⊂S

⊕
c∈CI

⊕
t∈FI,c

MI
π,w(c,t),td, η �→ (ηIc,t,td)I,c,t

obtained from rπ by restricting the target remains injective. Now we recall the
proof of Lemma 11.4(1) and let 0 
= η ∈ Mπ with ηIw,td 
= 0 for an η-optimal pair

(I, w). In particular, ηIw,td 
= 0. Let w = mc,t(wI,c) for wI,c ∈ WI,c and t ∈ FI,c.

Then the consistency relation (11.1) yields ηIw,td = (wI,c ·ηIc,t)td and thus ηIc,t,td 
= 0,
establishing the injectivity of r̃π. The theorem follows. �

11.3. Bernstein decomposition for L2(Z(R)). Recall that Z = G/H is only one
G-orbit of Z(R). To obtain the Bernstein decomposition of L2(Z(R)) we just need
to add the data of the various G-orbits in Z(R). We recall WR = (P\Z(R))open �
FR/FM and choose representatives WR ⊂ G for WR as we did with W for W . For
w ∈ WR we set ZI,w := G/(Hw)I with (Hw)I the real points of the R-algebraic
group (Hw)I . Notice that the G-orbit decomposition of Z(R) yields a natural par-
tition of WR by selecting for a given G-orbit in Z(R) the open P -orbits it contains.
Summing up the Bernstein morphism of all G-orbits then yields a G-morphism:

BR :
⊕
I⊂S

⊕
w∈WR

L2(ZI,w)td → L2(Z(R)).

We then obtain from Theorem 11.1:

Theorem 11.10 (Plancherel Theorem for L2(Z(R)) – Bernstein decomposition).
The Bernstein morphism BR is a continuous surjective isospectral G-equivariant
linear map.

Recall from the beginning of Section 5 that WI,R = (P\ZI(R))open and WR are
canonically isomorphic. In particular we obtain a generalization of (5.18) to

WR = WI,R =
∐

c∈CI,R

∐
t∈FI,c

mc,t(WI,c)

with CI,R := {G · ẑw,I | w ∈ WR} etc.
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The finer results in Theorem 11.9 then yield the refined restricted Bernstein
morphism

(11.2) BR,res :
⊕
I⊂S

L2(ZI(R))td → L2(Z(R))

with the same properties as in Theorem 11.9:

Theorem 11.11 (Plancherel Theorem for L2(Z(R)) – Bernstein decomposition
refined). The restriction BR,res of the Bernstein morphism BR is a continuous sur-
jective isospectral G-equivariant linear map.

12. Elliptic elements and discrete series

As a consequence of the Bernstein decomposition in Theorem 11.1 we obtain
in Theorem 12.1 a general criterion for the existence of a discrete spectrum in
L2(G/H) for a unimodular real spherical space G/H. The main additional tool is
a theorem of [20], by which the wave front set of the left regular representation of
a unimodular homogeneous space G/H is determined as the closure of Ad(G)h⊥.

12.1. Existence of discrete spectrum. As usual, we call an element X ∈ g

semisimple provided adX is a semisimple operator. Equivalently, X ∈ g is semisim-
ple if and only if its centralizer zg(X) is a reductive subalgebra.

An element X ∈ gC is called elliptic if adX is semisimple with purely imaginary
eigenvalues. If E ⊂ gC we denote by Eell the subset of E consisting of elliptic
elements. More generally we call an element X ∈ gC weakly elliptic if spec(adX) ⊂
iR and denote by Ew−ell the corresponding subset of E ⊂ gC.

Theorem 12.1. Let Z = G/H be a unimodular real spherical space. Suppose that

int h⊥w−ell 
= ∅. Then H = Ĥ is reductive and L2(Z)d 
= {0}.

Here int h⊥w−ell refers to the interior of h⊥w−ell, in the vector space topology of h⊥.
The proof is given in the course of the next two subsections.

Remark 12.2. In case Z = G is a reductive group or more generally Z = G/H
is a symmetric space, then Theorem 12.1 comes down to the existence theorems
of Harish-Chandra [16] and Flensted-Jensen [12] about discrete series. It is due
to Harish-Chandra that L2(G)d 
= ∅ if g admits a compact Cartan subalgebra.
Flensted-Jensen generalized that to symmetric spaces by showing L2(G/H)d 
= ∅
if there exists a compact abelian subspace t ⊂ g ∩ h⊥ with dim t = rankG/H .

Remark 12.3. For the twisted discrete series an appropriate generalization of The-
orem 12.1 reads

(12.1) int ĥ⊥w−ell 
= ∅ ⇒ (∀χ ∈ ÂZ,E) L
2(G/Ĥ, χ)d 
= ∅

and will presumably follow from results on wavefront sets of induced representations
more general than what is obtained in [20].

12.2. The geometry of elliptic elements. To prepare the way for the proof of
Theorem 12.1 we establish some foundational material on elliptic elements in h⊥,
and show that if the weakly elliptic elements in h⊥ have non-empty interior, then
h is reductive in g.

We consider theH-module h⊥ ⊂ g and recall the canonical isomorphism (g/h)∗ �
h⊥. In the sequel we view aZ � a

⊥a

H as a subspace of a and likewise we view

mZ = m/mH � m
⊥m

H as a subspace of m.
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Lemma 12.4. (l ∩ h)⊥ = h⊥ ⊕ u.

Proof. Clearly h⊥+u ⊂ (l∩h)⊥. Moreover h⊥ ∩u = {0} because κ(u, q) = {0} and
g = h+ q. The lemma now follows from dim h = dim(l ∩ h) + dim u. �

Let T0 : (l ∩ h)⊥ → u be minus the projection along h⊥. It follows that

(12.2) (aZ +mZ)
0 := {X + T0(X) : X ∈ aZ +mZ} ⊂ h⊥ .

Similarly we set b0 := {X + T0(X) : X ∈ b} for b ⊂ aZ +mZ a subspace.
Lemma 12.5 is motivated by [24, Th. 5.4 and Cor. 7.2] and [40, Th. 5 and Th.

6].

Lemma 12.5. Let Z = G/H be a real spherical space for which there exists an
X0 ∈ aZ ∩ h⊥ such that α(X0) < 0 for all α ∈ Σu. Then the canonical map

Φ : H × (aZ +mZ)
0 → h⊥, (h,X) �→ Ad(h)X

is generically submersive.

Proof. We first note that (aZ+mZ)
0+[h, X] ⊂ h⊥ for all X ∈ (aZ+mZ)

0, and that
Φ is generically submersive if and only if there is equality for some X ∈ (aZ+mZ)

0.
We will show that

(12.3) (aZ +mZ)
0 + [h, X0] = h

⊥.

For t > 0 we set at := exp(tX0). By conjugation (12.3) is then equivalent to

(12.4) (aZ +mZ)
0
t + [ht, X0] = h

⊥
t ,

where (aZ+mZ)
0
t := Ad(at)(aZ+mZ)

0 and ht := Ad(at)h. Now note that by (12.2)
we have for t → ∞ that (aZ +mZ)

0
t → aZ +mZ in the Grassmannian of subspaces.

Moreover ht → h∅ = l ∩ h+ u by (2.21).
On the other hand (h∅)

⊥ = aZ +mZ + u. As [X0, u] = u we obtain

aZ +mZ + [h∅, X0] = (h∅)
⊥ ,

that is, (12.4) holds in the limit. Hence it holds for t sufficiently large. �

In analogy to [25, Sect. 3] we call Z = G/H non-degenerate provided that an
element X0 as in Lemma 12.5 exists, and degenerate otherwise. Flag varieties
Z = G/P with P a parabolic subgroup of G are degenerate. But in many cases Z
is non-degenerate as Example 12.6 shows.

Example 12.6 (cf. [25, Lemma 3.1]). Every quasi-affine real spherical space is
non-degenerate. Indeed, the constructive proof of the local structure theorem, see
[28, Section 2.1], yields an X0 ∈ aZ ∩ h⊥ such that l = zg(X0). Moreover, this
element can be chosen such that α(X0) < 0 for all roots α ∈ Σu.

Lemma 12.7 was communicated to us by B. Harris.

Lemma 12.7. Let G be an algebraic group defined over R and H ⊂ G be an
algebraic subgroup defined over R as well. Suppose that Z = G/H is unimodular.
Then Z is quasi-affine, i.e. Z = G/H is a quasi-affine variety.

Proof. Clearly Z is unimodular if and only if Z is unimodular. We assume first
that H is connected and treat the general case at the end. We recall the following
transitivity result, see [45, Lemma 1.1] and [6, Th.4]: If there is a tower H ⊂
H1 ⊂ G of subgroups, such that H1/H and G/H1 are both quasi-affine, then
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G/H is quasi-affine. Now for d := dimH and X1, . . . , Xd a basis of h consider

v1 := X1 ∧ . . . ∧Xd ∈
∧d

gC. As H is supposed to be unimodular and connected,
we see that H fixes v1. Let H1 be the stabilizer of v1 in G. Then

G/H1 →
d∧
gC, gH1 �→ g · v1

is injective and exhibits G/H1 as quasi-affine. Moreover, as H ⊂ H1 is normal,
H1/H is affine and the transitivity result of above applies. This shows the lemma
for H = H0 connected. As F := H/H0 is finite and acts freely on Z0 = G/H0

the quotient Z = G/H � Z0/F is geometric and quasi-affine as well (average
polynomial function over F ). �

It is interesting to record the following (cf. [25, Th.3.2]):

Lemma 12.8. Let Z = G/H be a non-degenerate real spherical space. Then the
set h⊥ss of semisimple elements in h⊥ has non-empty Zariski-open interior in h⊥.

Proof. Since gss has Zariski-open interior in g, it suffices to check that there is
a non-empty open set of semisimple elements in h⊥. Now X0 is semisimple and
for all elements X1 ∈ aZ + mZ sufficiently close to X0 we have in addition that
X1 + u = Ad(U)X1 by [28, Lemma 2.6]. In view of (12.2) this implies that all
elements X1+T0(X1) are semisimple and belong to (aZ +mZ)

0. With Lemma 12.5
we conclude the proof. �

Corollary 12.9. Let Z = G/H be a non-degenerate real spherical space and E ⊂
h⊥. Then the following are equivalent:

(1) intEell 
= ∅.
(2) intEw−ell 
= ∅.

Lemma 12.10. The following assertions hold:

(1)
[
Ad(H)(aZ +mZ)

0
C

]
w−ell

= Ad(H)
(
(aZ +mZ)

0
C ∩ z(gC) + ia0Z +m0

Z

)
.

(2) Suppose that Z is non-degenerate and assume that int h⊥w−ell 
= ∅. Then

int
(
h
⊥ ∩ Ad(H)(z(g) + ia0Z +m

0
Z)
)

= ∅ .

Proof. For (1) we first observe that it suffices to show[
(aZ +mZ)

0
C

]
w−ell

= (aZ +mZ)
0
C ∩ z(gC) + ia0Z +m0

Z

Let Y ∈ (aZ +mZ)C and X = Y + T0(Y ) ∈ (aZ +mZ)
0
C as in (12.2). Then

spec(adX) = spec(adY ) .

Hence X is weakly elliptic if and only if Y ∈ (aZ +mZ)C ∩ z(gC) + iaZ +mZ , that
is, if and only if X ∈ (aZ +mZ)

0
C ∩ z(gC) + ia0Z +m0

Z .
For (2) we note that Ad(H)(aZ + mZ)

0
C is defined over R and Zariski dense in

h⊥C as a consequence of Lemma 12.5. Now (2) follows from (1). �

Recall the edge aZ,E ⊂ aZ and aZ,E ⊂ ng(h) with ng(h) the normalizer of h in g.

Lemma 12.11. Let Z be a non-degenerate real spherical space. If aZ,E 
= {0},
then int h⊥w−ell = ∅.
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Proof. Let aZ = aZ,E ⊕ aZ,S be the orthogonal decomposition. Recall ĥ = h+ aZ,E

with [aZ,E , h] ⊂ h. Define a0Z,E ⊂ h⊥ as below (12.2). Then since a0Z,E ∩ ĥ⊥ = {0}
we obtain by dimension count

(12.5) h⊥ = ĥ⊥ ⊕ a0Z,E .

Next we claim

(12.6) Ad(h)X −X ∈ ĥ
⊥
C (h ∈ H,X ∈ a

0
Z,E) .

In fact, as H is connected it suffices to show that κ(eadY X,U) = κ(X,U) for all
Y ∈ hC and U ∈ aZ,E . By the invariance of the form κ this is then implied by
e− ad Y U ∈ U + hC as [aZ,E , hC] ⊂ hC.

Suppose int h⊥w−ell 
= ∅. According to Lemma 12.10 we thus find some subset

O ⊂ ia0Z,E + ia0Z,S +m0
Z such that Ad(H)O ∩ h⊥ is open and non-empty.

Let X = iX1 + iX2 + Y ∈ O with X1 ∈ a0Z,E , X2 ∈ a0Z,S , Y ∈ m0
Z and let h ∈ H

be such that Ad(h)X ∈ h⊥. With (12.6) we get

Ad(h)X = iX1 + (Ad(h)(iX1)− iX1)︸ ︷︷ ︸
∈ĥ⊥

C

+Ad(h)(iX2 + Y )︸ ︷︷ ︸
∈ĥ⊥

C

∈ (ia0Z,E + ĥ
⊥
C ) ∩ h

⊥ .

From (12.5) we then deduce X1 = 0. Hence O ⊂ ia0Z,S + mZ . Now as a0Z,E 
= {0}
we have

dim h/l ∩ h+ dim aZ,S + dimmZ < dim h
⊥ = dim g/h

and therefore Ad(H)(a0Z,S + m0
Z)C ⊂ h⊥C has empty interior, a contradiction. This

concludes the proof. �

Proposition 12.12. Let Z = G/H be a unimodular real spherical space. Suppose
that int h⊥w−ell 
= ∅ where the interior is taken in h⊥. Then h is reductive in g.

Proof. First we note that Z is non-degenerate as Z is requested to be unimodular
(see Lemma 12.7 and Example 12.6). We argue by contradiction and assume that
h is not reductive. Then [26, Cor. 9.10] implies that aZ,E 
= {0}. Now the assertion
follows from Lemma 12.11. �

Corollary 12.13. Let h be a real spherical unimodular subalgebra and I � S. Then
int

(
(h⊥I )w−ell

)
= ∅.

Proof. Since hI is a proper deformation of h it cannot be reductive in g. Hence the
assertion follows from Proposition 12.12. �

12.3. Proof of Theorem 12.1.

Proof. The first assertion, H = Ĥ reductive in G, repeats Proposition 12.12. In
particular L2(Z)td = L2(Z)d.

We recall that to every unitary representation (π,E) of G one attaches a wave-
front set WF(π) which is an Ad(G)-invariant closed cone in g∗ � g. If Z = G/H
is a unimodular homogeneous space, then the wavefront set of the left regular
representation of G on L2(G/H) was determined in [20, Thm 2.1] as

(12.7) WF(L2(G/H)) = cl(Ad(G)h⊥)

with cl referring to the closure.
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For the second assertion we compare wavefront sets of unitary G-representations.
Recall that unitary representations with disintegration in the same measure class
have the same wavefront sets. Hence we obtain from Theorem 11.1 that

(12.8) WF(L2(Z)) ⊂ WF(L2(Z)d) ∪
⋃
I�S

⋃
c∈cI

WF(L2(ZI,c)) .

On the other hand, we obtain from (12.7) that

(12.9) WF(L2(ZI,c)) = cl(Ad(G)h⊥I,c) (I ⊂ S, c ∈ CI) .

Let Y := Ad(G)h⊥ ⊂ g and observe that Y is the image of the algebraic map

Φ : G× h⊥ → g, (g,X) �→ Ad(g)X .

In particular, it follows that dim cl(Y )\Y < dimY . Likewise we have for YI,c =
Ad(G)h⊥I,c that dim cl(YI,c)\YI,c < dimYI,c. By assumption and Corollary 12.9 the

elliptic elements Yell have non-empty interior in Y . Since dim cl(Y )\Y < dimY we
also obtain that Yell has non empty interior intcl(Y )(Yell) in cl(Y ). On the other
hand it follows from Corollary 12.13 that YI,c,ell has no interior in YI,c when I 
= S.
From dim cl(YI,c)\YI,c < dimYI,c we thus infer that (cl(YI,c))ell has empty interior
in cl(YI,c).

From (12.7) and (12.8) we obtain

∅ 
= intcl(Y )(Yell) ⊂ WF(L2(Z)d) ∪
⋃

I�S,c

[intcl(Y )(Yell) ∩WF(L2(ZI,c))],

and since YI,c ⊂ cl(Y ) it follows from (12.9) that

intcl(Y )(Yell) ∩WF(L2(ZI,c)) ⊂ intcl(YI,c)(cl(YI,c)ell) = ∅
for all I 
= S and c. Hence L2(Z)d 
= 0. �
12.4. An example.

Example 12.14. We now give two examples of series of non-symmetric real spher-
ical spaces Z = G/H for which int h⊥ell 
= ∅.

(a) Let Z = G/H = SO(n, n+1)/GL(n,R) for n ≥ 2. We realize g = so(n, n+1)
as matrices of the form

X =

⎛⎝ A B v
C −AT w

−wT −vT 0

⎞⎠
with v, w ∈ Rn, A,B,C ∈ Matn×n(R) subject to BT , CT = −B,−C. Then
h consists of the matrices X ∈ g with B,C, v, w = 0. First we consider
the case where n = 2m is even. For t = (t1, . . . , tm) ∈ Rm we let Dt =

diag(Dt1 , . . . , Dtm) ∈ Matn×n(R) with Dti =

(
0 ti
−ti 0

)
. Further for s ∈ Rm

we set vs = (s1, s1, s2, s2, . . . , sm, sm)T ∈ Rn. Now consider the n-dimensional
non-abelian subspace

t
0 :=

⎧⎨⎩
⎛⎝ 0 Dt vs
−Dt 0 vs
−vTs −vTs 0

⎞⎠ | s, t ∈ Rm,

⎫⎬⎭ ⊂ h
⊥
ell .

It is then easy to see that the H-stabilizer of a generic element X ∈ t0 is trivial
with [h, X] + t0 = h⊥. Thus the polar map H × t0 → h⊥ is generically dominant
and therefore int h⊥ell 
= ∅. For n = 2m+1 odd we modify t0 as follows. We consider
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Dt now as n × n-matrix via the left upper corner embedding. For s ∈ Rm+1 we
further set vs = (s1, s1, . . . , sm, sm, sm+1) ∈ Rn and define

t
0 :=

⎧⎨⎩
⎛⎝ 0 Dt vs
−Dt 0 vs
−vTs −vTs 0

⎞⎠ | s ∈ Rm+1, t ∈ Rm

⎫⎬⎭ ⊂ h
⊥
ell .

We now complete the arguments as in the even case.
(b) Next we consider the cases Z = G/H = SU(n, n + 1)/ Sp(2n,R) for n ≥ 2.

Here g = su(n, n+ 1) is realized as the trace-free matrices of the form

X =

⎛⎝ A B v
C −A∗ w

−w∗ −v∗ d

⎞⎠
with v, w ∈ Cn, A,B,C ∈ Matn×n(C) subject to B∗, C∗ = −B,−C, and d ∈ iR.
Further we realize h � sp(2n,R) as the subalgebra

h = {X ∈ g | A ∈ Matn×n(R), B, C ∈ iMatn×n(R), v = w = 0, d = 0}
For t = (t1, . . . , tn) ∈ Cn we let Et = diag(t1, . . . , tm) ∈ Matn×n(C) and consider

t0 :=

⎧⎨⎩X =

⎛⎝Eit 0 s
0 Eit s

−sT −sT d

⎞⎠ | s, t ∈ Rn, tr(X) = 0

⎫⎬⎭ ⊂ h⊥ell .

Now proceed as in (a) and obtain that int h⊥ell 
= ∅.

Corollary 12.15. For Z = SU(n, n + 1),R)/ Sp(2n,R) and Z = SO(n, n + 1)/
GL(n,R), n ≥ 2, we have L2(Z)d 
= ∅.

Proof. In Example 12.14 we have shown int h⊥ell 
= ∅. Apply Theorem 12.1. �

13. Moment maps and elliptic geometry

We expect that Theorem 12.1 gives in fact an equivalence: L2(Z)d 
= {0} if
and only if int h⊥w−ell 
= ∅. This section is devoted to Theorem 13.1, which gives a
geometric version of this expected equivalence.

Theorem 13.1. Let Z be a non-degenerate real spherical space with a strictly con-
vex compression cone, i.e. aZ,E = {0}. Then the following statements are equiva-
lent:

(1) cl(Ad(G)h⊥) =
⋃

I�S

⋃
c∈CI

Ad(G)h⊥I,c.

(2) int h⊥ell = ∅.

Remark 13.2.
(a) From Corollary 12.13 we obtain that

intcl(Ad(G)h⊥)[Ad(G)h⊥I,c]ell = ∅
for all I � S (see also the proof of Theorem 12.1). Hence we get (1) ⇒ (2), which
is the geometric equivalent of Theorem 12.1.

(b) Note that (2) is equivalent to int h⊥w−ell = ∅ by the assumption of non-
degeneracy (see Corollary 12.9).

(c) For fixed I ⊂ S we recall

{hI,c : c ∈ CI} = {(hw)I : w ∈ W} .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

884 PATRICK DELORME ET AL.

The goal of this section is to prove Theorem 13.1. The proof is obtained via new
insights on the geometry of the moment map of the Hamiltonian G-action on the
co-tangent bundle T ∗Z.

13.1. The moment map. In this subsection Z = G/H is a general algebraic
homogeneous space attached to a reductive group G = G(R) and an algebraic
subgroup H = H(R).

In the sequel we identify g∗ with g via our non-degenerate Ad(G)-invariant form
κ. In this sense we also have (g/h)∗ � h⊥ ⊂ g and we can view the co-tangent bundle
T ∗Z of Z as T ∗Z = G ×H h⊥. Recall that the G-action on T ∗Z is Hamiltonian
with corresponding G-equivariant moment map given by

m : T ∗Z → g, [g,X] �→ Ad(g)X .

Now for X ∈ h⊥ the stabilizer in G of ξ := [1, X] ∈ T ∗Z is Gξ = ZH(X) whereas
the stabilizer of X = m(ξ) ∈ g is Gm(ξ) = ZG(X). It is then a general fact about
the geometry of moment maps (see [14, p. 190]) that for the Lie algebras of ZH(X)
and ZG(X) one has

(13.1) zh(X) � zg(X) (X ∈ h
⊥) .

Let us call an element X ∈ h⊥ generic, provided that dim zh(X) is minimal. Then
it follows from [14, Th. 26.5] that

(13.2) zg(X)/zh(X) is abelian for X ∈ h
⊥ generic .

A somewhat sharper version of (13.2) is:

Lemma 13.3 ([24, Satz 8.1]). Assume that Z = G/H is an algebraic homogeneous
space defined over R attached to a connected reductive group G. Then for X in a
dense open subset of h⊥ one has

(1) ZH(X) � ZG(X).
(2) ZG(X)/ZH(X) is a torus.

In particular, ZG(X)/ZH(X) is an abelian reductive Lie group.

13.2. Ellipticity relative to Z. Moment map geometry suggests notions of ellip-
ticity and weak ellipticity of elements X ∈ h⊥ which are more intrinsic to Z.

Let us call an element X ∈ h⊥ weakly Z-elliptic provided that ZG(X)/ZH(X) is
compact. A weakly Z-elliptic element X ∈ h⊥ will be called Z-elliptic if in addition
X is semisimple.

Lemma 13.4. Let X be a generic weakly Z-elliptic element and let (ZG(X))0 =
LX � UX be a Levi-decomposition with LX reductive. Let LH,X := LX ∩H. Then
(ZH(X))0 = LH,X � UX and there exists a compact torus TX in the center Z(LX)
of LX such that LX = LH,XTX and lX = lH,X ⊕ tX orthogonal. Moreover,

(13.3) X ∈ tX + uX

and X ∈ tX if X is semisimple. In particular,

(1) Every generic weakly Z-elliptic element is weakly elliptic.
(2) Every generic Z-elliptic element is elliptic.

Proof. Let G1 := (ZG(X))0 and G2 := (ZH(X))0. Then by (13.1) and (13.2), G2 �
G1 is a normal subgroup such that G1/G2 is compact, connected and abelian, i.e. a
compact torus. Furthermore G3 := G2UX is a closed normal subgroup such that
G1/G3 = LX/LX ∩ G3 is a compact torus. This implies that LX = (G3 ∩ LX)TX
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with TX an (infinitesimally) complementing compact torus in the center of LX . It
then follows that G2 ∩ LX = G3 ∩ LX , as there are no algebraic morphisms of a
reductive group to a unipotent group. Now the compactness of G1/G2 implies that
UX ⊂ G2 as well. Furthermore, since lX and lX,H are both algebraic Lie algebras

we see that tX = l
⊥lX

H,X is the orthogonal complement.

Finally we decompose X ∈ h⊥ ∩ zg(X) as X = X0 + X1 with X0 ∈ lX and
X1 ∈ uX . Then X ∈ h⊥ implies that X0 ∈ tX , that is (13.3). If we further
observe X is semisimple if and only if zg(X) = lX is reductive, then we see that
the remaining statements of the lemma are consequences of (13.3). �

Remark 13.5. Notice thatX = 0 is semisimple and elliptic but not weakly Z-elliptic
unless Z = G/H is compact. To see an example of a generic weakly Z-elliptic
element which is not Z-elliptic, i.e. not semisimple, consider H = N for an R-split
group G. Then h⊥ = a + n. Now for a regular nilpotent element X ∈ n we have
ZG(X) = ZN (X) and thus X is generic and weakly Z-elliptic.

Our notion of non-degeneracy for real spherical spaces now generalizes to all
algebraic homogeneous spaces Z = G/H as follows. We call Z = G/H non-
degenerate provided that m(T ∗Z) contains a Zariski dense open set of semisimple
elements. We recall from [25, Sect. 3] that all quasi-affine homogeneous spaces are
non-degenerate.

Proposition 13.6. Let Z = G/H be a non-degenerate homogeneous space. Then
the following assertions are equivalent:

(1) int h⊥ell 
= ∅.
(2) int h⊥Z−ell 
= ∅.

Proof. Here we prove (1)⇒(2), as the converse implication follows immediately
from Lemma 13.4(2) (in fact without assuming non-degeneracy).

Since Z is non-degenerate, the image m(α) is semisimple for α = [g,X] in a dense
open subset of T ∗Z = G×H h⊥. For those α, the centralizer L(α) := ZG(m(α)) of
m(α) is a Levi subgroup of G which is defined over R. Since there are only finitely
many conjugacy classes of such subgroups, there is a dense open subset T of T ∗Z
such that for each α ∈ T , L(α) is a Levi subgroup of G and the G-conjugacy class
of its real points L(α) is locally constant on T .

Let T0 be a connected component of T , and let α0 ∈ T0 and L = L(α0). Then
L(α) is G-conjugate to L for all α ∈ T0. Moreover, T0 is a Hamiltonian G-manifold
with moment map m|T0

: T0 → g.
Set T00 := m−1

T0
(l). Then it follows from the Cross Section Theorem (cf. [15, Th.

2.4.1]) that T00 is a Hamiltonian L-manifold with moment map m|T00
: T00 → l the

restriction of m to T00.
Note that ZG(m(α0)) = L(α0) = L. In particular m(α0) ∈ z(l) is regular.

As m(T00) ⊂ l we thus find an open neighborhood U0 of α0 in T00 such that
L(α) = ZG(m(α)) ⊂ L for all α ∈ U0. On the other hand we know that L(α)
is conjugate to L. Thus in fact L(α) = L for α ∈ U0. Hence by passing to a
dense open subset of T00 we may assume that L(α) = L for all α ∈ T00. Since
Gα ⊂ Gm(α) = L we then have Gα = Lα with Lα the stabilizer of α ∈ T00 in L.

Let c ⊂ l be the R-span of m(T00). We claim that

(13.4) c ⊂ z(l)
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with z(l) the center of l. In fact, we have just seen that Gm(α) = L for all α ∈ T00.
Thus m(α) ∈ z(l) for all α ∈ T00.

Next we recall the basic equivariant property for the derivative of the moment
map [14, eq. (26.2)]:

(13.5) κ(dm(α)(v), X) = Ωα(X̃α, v) (α ∈ T00, v ∈ TαT00, X ∈ l)

where Ω is the symplectic form on T00, X̃ is the vector field on T00 associated to
X and TαT00 is the tangent space at α. Let gα = lα be the Lie algebra of the
stabilizer Gα = Lα of α ∈ T00. We claim that c⊥l ⊂ gα. To see that we first
note that dm(α)(v) ∈ c by the definition of c. Hence we derive from (13.5) that

Ωα(X̃α, v) = 0 for all v if X ⊥ c. Since Ω is non-degenerate one obtains X̃α = 0.
Hence c⊥l acts with vanishing vector fields on T00 and thus c⊥l ⊂ gα = lα.

Notice that the claim implies in particular that the L-action on T00 factors
through the group C := L/〈exp(c⊥l)〉 with Lie algebra c.

On the other hand, by passing to a further open dense subset of T00 we may
assume that Cα = Gm(α)/Gα = L/Gα is a real form of a complex torus for all
α ∈ T00, see Lemma 13.3. Notice that Cα is a quotient of c and likewise the Lie
algebra cα of Cα is a quotient of c.

Via the non-degenerate form κ we realize cα as a subalgebra of c ⊂ l and note
that Cα is compact if and only if cα consists of elliptic elements. Further m(α) ∈ cα.

From T0 = G · T00 we obtain that for all ξ in a dense open subset of T0 it holds
true that m(T0) consists of elliptic elements if Gm(ξ)/Gξ is a compact torus.

Finally, every α ∈ T ∗Z is in the G-orbit of an element ξ = [1, X] with X ∈ h⊥ for
which we recall Gm(ξ)/Gξ = ZG(X)/ZH(X). Now the implication (1)⇒(2) follows
from m([1, X]) = X. �

13.3. The logarithmic tangent bundle. Let Z ↪→ Ẑ be a compactification cor-

responding to a complete fan F as in Section 3. In particular we recall that Ẑ was

constructed as the closure of Z in the smooth toroidal compactification Ẑ(R) of
Z(R) attached to F .

According to [26, Cor. 12.3], there is a unique G-equivariant morphism φ :

Ẑ(R) → Gr(g) into the Grassmannian of g with φ(z0) = h⊥. Let E → Gr(g)

be the tautological vector bundle. Then the logarithmic cotangent bundle of Ẑ(R)

is defined by T logẐ(R) := φ∗E . Concretely
T logẐ(R) = {(z,X) ∈ Ẑ(R)× g | X ∈ φ(z)}.

Then T logẐ(R) is a smooth G-manifold containing T ∗Z(R) as a dense open subset.
It comes with a projection to the first factor

p : T logẐ(R) → Ẑ(R), (z,X) �→ z

making it into a vector bundle. On the other hand, the second projection

m : T logẐ(R) → g, (z,X) �→ X

is called the logarithmic moment map since it restricts to the moment map on T ∗Z.

Since Ẑ(R) is compact, the logarithmic moment map is proper in the Hausdorff
topology.

Next we recall from Section 3 that each cone C ∈ F corresponds to a G-orbit

ẐC = G · ẑC ⊂ Ẑ. We have defined AC ⊂ AZ to be the subtorus with Lie algebra
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aC = spanR C. Moreover for I = I(C) the set of spherical roots vanishing on C, we
have aC ⊂ aI and ĥC = hI + aC . Also recall ẐC � G/ACHI = ZI/AC . Next we
recall from Remark 3.6(c) that

(13.6) Ẑ ∩ ẐC(R) =
⋃

w∈W
G · ẑw,C .

Set T log := p−1(Ẑ). For all C ∈ F we define T log
C := p−1(ẐC ∩ Ẑ) and note

that T log =
∐

C∈F T log
C . Furthermore, for I ⊂ S we put T log

I :=
⋃

C∈F
I=I(C)

T log
C . Since

m(ẑw,C) = hw,C = (hw)I for all C ∈ F with I(C) = I we obtain with Remark 13.2(c)
and (13.6) that

(13.7) m(T log
I ) =

⋃
c∈CI

Ad(G)h⊥I,c .

13.4. Proof of Theorem 13.1. As mentioned in Remark 13.2(a) we only need to
show (2) ⇒ (1). Let α ∈ T ∗Z be generic. Then m(α) is not elliptic by assump-
tion. Hence the torus Aα := Gm(α)/Gα is not compact and therefore contains a
1-parameter subgroup μ : R× ↪→ Aα(R). Consider the orbit Aα · α ⊂ T ∗Z. Since
its projection into Z is closed (being a flat) also Aα · α is closed in T ∗Z. The

limit α0 := limt→0+ μ(t)α exists in Ẑ since m is proper. Since α0 
∈ T ∗Z we have

α0 ∈ T log
I for some I 
= S (here we used that the compression cone is strictly convex

which implies that T log
S = T ∗Z.) Hence

m(α) = Ad(μ(t))(m(α)) = m

(
lim
t→0+

μ(t)α

)
= m(α0) ∈ m(T log

I ) =
⋃
c∈CI

Ad(G)h⊥I,c

by (13.7). Thus we obtain for α ∈ T ∗Z generic that

(13.8) m(α) ∈
⋃
I�S

⋃
c∈CI

Ad(G)h⊥I,c .

Since the right hand side in (13.8) consists of all proper deformations of Ad(G)h⊥,
hence is closed in cl(Ad(G)h⊥), we obtain (1) from (13.8) and the density of the
generic elements. �

14. Harish-Chandra’s group case

In this section we apply the results of this paper to derive Harish-Chandra’s
formula for the Plancherel measure for a real reductive group [19]. The Plancherel
measure contains naturally the formal degrees of discrete series representations of
various inducing data. The formal degrees were computed by Harish-Chandra in
[16]. The explicit knowledge of the formal degree is treated as a black box in what
follows.

We are considering a real reductive group G′ together with its both-sided sym-
metries G = G′ × G′, by which G′ gets identified with Z = G/H where H =
diag(G′) ⊂ G is the diagonal subgroup. Let us recall that the topological assump-
tion on G′ is that G′ = G′(R) for a reductive algebraic group G′ which is assumed to

be connected. If P ′ = M ′A′N ′ ⊂ G′ is a minimal parabolic subgroup of G′ and P
′

is its opposite, then we obtain with P = P ′×P ′ ⊂ G a minimal parabolic subgroup
of G with PH ⊂ G open and dense as consequence of the Bruhat decomposition.
In particular W = {1}.
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Next note that a = a′ × a′, aH = diag(a′) and aZ = a
⊥a

H is the anti-diagonal

aZ = {(X,−X) | X ∈ a′} .

The assignment

a′ → aZ , X �→ 1

2
(X,−X)

gives a natural identification. If we denote by Σ′ = Σ(a′, g′) ⊂ (a′)∗\{0} the
(possibly reduced) root system for the pair (a′, g′), and further by Φ′ ⊂ Σ′ the set
of simple roots determined by the positive roots Σ′(a′, n′), then the set of spherical
roots S ⊂ a∗Z naturally identifies with Φ′.

14.1. The abstract Plancherel theorem for L2(Z). Here we specialize the ab-
stract Plancherel theory of Section 6.3 to the case at hand. Recall that

(L,L2(Z)) �
(∫

Ĝ

π ⊗ id dμ(π),

∫
Ĝ

Hπ ⊗Mπ dμ(π)

)
with Mπ ⊂ (H−∞

π )H .

Now any π ∈ Ĝ has the form π = π1 ⊗ π2 with πi ∈ Ĝ′. Further, since H∞
πi

is a
nuclear Fréchet space (as a consequence of Harish-Chandra’s admissibility theorem)
we haveH∞

π = H∞
π1
⊗̂H∞

π2
� Hom(H−∞

π1
,H∞

π2
) together withH−∞

π = H−∞
π1

⊗̂H−∞
π2

�
Hom(H∞

π1
,H−∞

π2
). Thus

(H−∞
π )H � HomG′(H∞

π1
,H−∞

π2
) .

We then claim

(14.1) dim(H−∞
π )H ≤ 1

and

(14.2) (H−∞
π )H 
= {0} ⇐⇒ π2 � π1

with π1 the dual representation of π1.
We first show “⇒” of (14.2) and assume that (H−∞

π )H 
= {0}. This means that
HomG′(H∞

π1
,H−∞

π2
) 
= {0}. On the level of Harish-Chandra modules this yields

Homg′(Vπ1
, Vπ2) 
= {0} and thus π2 � π1. The same reasoning also shows (14.1).

To see the converse in (14.2), we first supply some useful notation. Given a
Hilbert space H we denote by B2(H) the Hilbert space of Hilbert-Schmidt operators
and note that B2(H) � H⊗̂H with ⊗̂ the tensor product in the category of Hilbert
space and H the dual to H. Further we denote by B1(H) ⊂ B2(H) the space of
trace-class operators.

Given a unitary representation (π,Hπ) of G′, we set HΠ = B2(Hπ) and obtain
a unitary representation (Π,HΠ) of G = G′ ×G′ by

Π(g′1, g
′
2)T = π(g′1) ◦ T ◦ π(g′2)−1 (g′1, g

′
2 ∈ G′, T ∈ HΠ = B2(Hπ)) .

Notice that Π � π ⊗ π under the isomorphism B2(Hπ) � Hπ⊗̂Hπ, and that the
HS-norm on B2(Hπ) does not depend on the positive scaling class of the Hilbert
norm which defines the Hilbertian structure of Hπ.

Let us assume from now on that (π,Hπ) is irreducible. We remind that Harish-
Chandra’s basic admissibility theorem implies

H∞
Π ⊂ B1(Hπ) .
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Together with (14.1) we thus obtain that

(H−∞
Π )H = C trπ

with trπ denoting the restriction of the trace on B1(Hπ) to H∞
Π . In particular, this

completes the proof of (14.2).
From (14.2) we then deduce

suppμ ⊂ {[Π] | [π] ∈ Ĝ′} � Ĝ′

and
MΠ = C trπ ([π] ∈ suppμ) .

As the Hilbert-Schmidt norm on HΠ = B2(Hπ) is independent of the particular
G′-invariant Hilbert norm on Hπ we obtain a natural Hilbert space structure on
the one-dimensional space MΠ by the request ‖ trπ ‖ = 1. Then the natural left
right representation L = L′ ⊗R′ of G = G′ ×G′ on L2(Z) decomposes as

(L′ ⊗R′, L2(Z)) �
G′×G′

(∫ ⊕

Ĝ′
Π dμ(π),

∫ ⊕

Ĝ′
HΠ dμ(π)

)
.

14.2. The Plancherel theorem for L2(ZI)td. We recall from Theorem 11.1 the
Bernstein decomposition

L2(Z) =
∑
I⊂S

BI(L
2(ZI)td) .

For I ⊂ S � Φ′ we obtain a standard parabolic P ′
I = M ′

IA
′
IN

′
I ⊃ P ′ and the

deformation HI of H as

HI = diag(M ′
IA

′
I)(N

′
I ×N ′

I) ,

with
ĤI = diag(M ′

I)(A
′
IN

′
I ×A′

IN
′
I) .

Next we describe L2(ZI)td. As in Subsection 10.1 we decompose every f ∈ L2(ZI)
as an AI -Fourier integral

f =

∫
ia∗

I

fλ dλ

where fλ ∈ L2(ẐI , λ) is given by

fλ(g) =

∫
AI

a−ρ−λf(gaHI) da (g ∈ G)

If we denote by

ξλ : L2(ẐI , λ)
∞ → C, f �→ f(1)

the evaluation at 1, and write Lλ for the left regular representation of G on

L2(ẐI , λ), then we can rewrite the Fourier-inversion in terms of spherical char-
acters (as in Remark 6.4)

(14.3) f(z0,I) =

∫
ia∗

I

ξλ(L−λ(f)ξ−λ) dλ

with L−λ = Lλ the dual representation and ξ−λ = ξλ. Next note that we have by
induction in stages

L2(ẐI ,−λ) = IndG
ĤI

(λ) � IndG
′×G′

P ′
I×P ′

I

(L2(M ′
I)⊗ λ) .

Thus L2(ẐI ,−λ)d is induced from the discrete series of M ′
I .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

890 PATRICK DELORME ET AL.

In more detail, let (σ,Hσ) be a discrete series representation of M ′
I and λ ∈

i(a′)∗. Then we denote by IndG
′

P ′
I

(σ ⊗ λ) the Hilbert space of measurable functions

f : G′ → Hσ with the transformation property

f(g′m′
Ia

′
In

′
I) = σ(m′

I)
−1(a′I)

−λ+ρ′
f(g′) (g′ ∈ G′,m′

Ia
′
In

′
I ∈ P ′

I)

and endowed with the inner product (of which the convergence is an extra assump-
tion)

〈f1, f2〉 =
∫
K′

〈f1(k′), f2(k′)〉σ dk′

where K ′ ⊂ G′ is a maximal compact subgroup of G′ with k′ ⊥ a′. The left

regular representation of G′ on Hσ,λ := IndG
′

P ′
I

(σ ⊗ λ) is then unitary and denoted

by πσ,λ = indG
′

P ′
I

(σ ⊗ λ). Let us denote by d(σ) the formal degree of the discrete

series representation of M ′
I (with respect to a chosen Haar measure dm′

I), i.e. the
positive number for which we have

(14.4) d(σ)

∫
M ′

I

〈σ(m′
I)u, u

′〉〈σ(m′
I)v, v

′〉 dm′
I = 〈u, v〉〈u′, v′〉

for all v, v′, u, u′ ∈ Hσ.
We now define a G′ ×G′-equivariant linear map

Φσ,λ : IndG
′

P ′
I

(σ ⊗ λ)⊗̂ IndG
′

P ′
I
(σ ⊗ (−λ) → L2(ẐI ,−λ)d

by

Φσ,λ(f1 ⊗ f2)(g
′
1, g

′
2) := (f1(g

′
1), f2(g

′
2))σ ,

with (·, ·)σ referring here to the natural bilinear pairing of σ with its dual repre-
sentation σ. The square integrability of the image follows from the fact that the

norm for f ∈ L2(ẐI ,−λ) can be computed by means of the Haar measures on K ′

and M ′
I (with the latter properly normalized) as

‖f‖2
L2(ẐI ,−λ)

=

∫
K′

∫
K′

∫
M ′

I

|f(k′1m′
I , k

′
2)|2 dm′

I dk′1 dk′2 .

In fact, with (14.4) this calculation shows that d(σ)1/2Φσ,λ is isometric.
With the operator

∑
σ

∫
Φσ,λ dσλ we thus obtain a unitary G-equivalence

(14.5) L2(ZI)td �
G′×G′

⊕̂
σ∈M̂ ′

Idisc

∫ ⊕

i(a′
I)

∗
IndG

′

P ′
I

(σ ⊗ λ)⊗̂ IndG
′

P ′
I
(σ ⊗ (−λ)) dσλ

where

dσλ = d(σ) dλ

with dλ the Lebesgue-measure on the Euclidean space i(a′I)
∗, suitably normalized.

For any I ⊂ S we now denote by μI,td the restriction of the Plancherel measure
μ to the closed subspace imBI ⊂ L2(Z).

From Theorem 9.5 we obtain from the uniqueness of the measure class of the
Plancherel measure for L2(ZI) that:

• suppμI,td = {[Πσ,λ] | [πσ,λ] ∈ Ĝ′, σ ∈ M̂ ′
Idisc, λ ∈ i(a′I)

∗},
• indG

′

P ′
I
(σ ⊗ (−λ)) is isomorphic to π∗

σ,λ = indG
′

P
′
I
(σ ⊗ λ)∗ for μI,td-almost all

parameters (σ, λ).
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Next we move to the subtle point on how to identify IndG
′

P ′
I
(σ ⊗ (−λ)) with the

dual representation of IndG
′

P ′
I

(σ ⊗ λ). For that we first remark that the pairing

(14.6) IndG
′

P ′
I

(σ ⊗ λ)× IndG
′

P ′
I

(σ ⊗ (−λ)) → C, (f1, f2) �→
∫
K′

(f1(k
′), f2(k

′))σ dk′

is G′-equivariant. Thus the dual representation of πσ,λ = indG
′

P ′
I

(σ ⊗ λ) is unitarily

equivalent to πσ,−λ = indG
′

P ′
I

(σ ⊗ (−λ)).

Next, we consider the long intertwining operator

(14.7) Aσ,λ : IndG
′

P ′
I

(σ ⊗ (−λ)) → IndG
′

P ′
I
(σ ⊗ (−λ))

(14.8) Aσ,λ(f)(g
′) =

∫
N ′

I

f(g′n′
I) dn

′
I (g′ ∈ G′) .

Clearly, Aσ,λ(f) is defined near g′ = 1 for functions f with compact support in

the non-compact picture, i.e. supp f ⊂ ΩP ′
I for Ω ⊂ N ′

I compact. By standard
techniques of meromorphic continuation in the λ-variable, summarized in Remark
14.1, we obtain that Aσ,λ is defined for generic λ ∈ i(a′I)

∗.

Remark 14.1. Let us briefly recall the basic constructions leading to the definition
of Aσ,λ in terms of meromorphic continuation (originally obtained in [23]). In
the first step one embeds the irreducible representation σ of M ′

I into a minimal
principal series representation of M ′

I via the Casselman subrepresentation theorem.

In formulae, we consider σ as a subrepresentation of ind
M ′

I

M ′
I∩P

′(σM ′ ⊗ λ0), where

σM ′ ∈ M̂ ′ and λ0 ∈ (a′∩m′
I)

∗
C. Via induction in stages we then obtain that πσ,−λ is

a subrepresentation of the minimal principal series indG
′

P
′(σM ′⊗μ) where μ = λ0−λ.

It is important to note that μ|a′
I
= −λ for this initial parameter μ. In the sequel

σM ′ ∈ M̂ ′ will be fixed, but we will allow the parameter μ ∈ (a′)∗C to vary. For
Reμ in a certain open cone this then leads to an intertwining operator

A(μ) : IndG
′

P ′(σM ′ ⊗ μ) → IndG
′

(P
′∩M ′

I)A
′
IN

′
I

(σM ′ ⊗ μ)

given by absolutely convergent integrals as in (14.8).
In the second step, via Gindikin-Karpelevic change of variable (i.e. by using a

minimal string of parabolics in the terminology of [23, Sect. 4]), one obtains that
the intertwining operator is a product of rank one intertwiners Aα(μ) attached to
indivisible roots α ∈ Σ(a′, n′I). For these rank one operators one has well known
explicit formulae which show that they admit a meromorphic continuation via Bern-
stein’s pλ. In this regard it is important to note that the μ-dependence of Rα(μ)
is in fact only a dependence on μα = μ(α∨) ∈ C. Moreover, regardless of σM ′ , the
operator Aα(μ) is defined and invertible provided that μα 
∈ 1

NZ for an N ∈ N only
depending on G′, see [32, Prop. B.1] which was based on [44, Th. 1.1].

If we now use that the roots α do not vanish identically on a′I , we obtain Aσ,λ,
as in (14.7), is defined and invertible for generic λ ∈ i(a′I)

∗. In more precision we

define Aσ,λ as the restriction of A(μ) to the subrepresentation IndG
′

P ′
I

(σ ⊗ (−λ)).
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The operator Aσ,λ is G′-equivariant and continuous, and hence we obtain from
Schur’s Lemma that

(14.9) A∗
σ,λ ◦ Aσ,λ = τ (σ, λ) id

for a number τ (σ, λ) ∈ [0,∞] which is positive for generic λ ∈ i(a′I)
∗. Here A∗

σ,λ

is the Hilbert adjoint to Aσ,λ. This implies in particular for all f ∈ Hσ,−λ =

IndG
′

P ′
I

(σ ⊗ (−λ)) the following norm identity

(14.10) ‖Aσ,λf‖2 = τ (σ, λ)‖f‖2 .

Remark 14.2. The numbers τ (σ, λ) are computable via rank one reduction, see
Remark 14.1.

Recall that B2(Hσ,λ) � Hσ,λ ⊗ Hσ,λ and from (14.6) that Hσ,−λ = Hσ,λ is the
natural (isometric) dual of Hσ,λ. By combining (14.5) and (14.10) we thus obtain
that the operator ∑

σ

∫
Φσ,λ ◦ (idHσ,λ

⊗Aσ,λ)μ(σ, λ) dλ

provides a unitary G-equivalence

(14.11) L2(ZI)td �
G′×G′

⊕̂
σ∈M̂ ′

Idisc

∫ ⊕

i(a′
I)

∗
B2(Hσ,λ) μ(σ, λ)dλ

where

(14.12) μ(σ, λ) :=
d(σ)

τ (σ, λ)
.

Next we want to keep track of the implied isomorphism in (14.11) with more
suitable language. For that we define a one-dimensional Hilbert space Cσ,λ =
Cξσ,λ ⊂ (B2(Hσ,λ)

−∞)HI with ‖ξσ,λ‖ = 1 and where ξσ,λ is defined by

(14.13) ξσ,λ(f1 ⊗ f2) = (f1(e),Aσ,λ(f2)(e))σ (f1 ∈ H∞
σ,λ, f2 ∈ H∞

σ,−λ) .

In this regard we note for g = (g′1, g
′
2) ∈ G that

(14.14) Φσ,λ(f1 ⊗Aσ,λ(f2))(g) = ξσ,λ(Πσ,λ(g
−1)(f1 ⊗ f2))

so that with the extended notation

(14.15) L2(ZI)td �
G′×G′

⊕̂
σ∈M̂ ′

Idisc

∫ ⊕

i(a′
I)

∗
B2(Hσ,λ)⊗ Cσ,λ μ(σ, λ)dλ .

We keep track also of the isomorphism from right to left. In view of (14.3) and the
orthogonality relations for the discrete series, this isomorphism is the inverse of the
Fourier transform

Ftd �→ Πσ,λ(F )ξσ,λ ∈ B2(Hσ,λ)
∞

for F ∈ C∞
c (ZI), see (14.3) and Remark 6.4. Here Ftd refers to the orthogonal

projection of F ∈ C∞
c (ZI) ⊂ L2(ZI) to L2(ZI)td.
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14.2.1. Grouping into irreducibles. The G = G′ × G′-representation in (14.15) is
not multiplicity free as different Πσ,λ can yield equivalent representations. These
equivalences are induced by Weyl group orbits. In more precision let W′ be the
Weyl group of Σ′. Then

W′
I := {w|aI

| w ∈ W′, w(a′I) = a′I}
gives rise to a subquotient of W′ and finite subgroup of the orthogonal group of a′I .

Remark 14.3 (Structure of W′
I). In general we are not aware of a criterion for

subsets I ⊂ Φ′ = S which characterizes those for which W′
I is a reflection group.

Nevertheless we can describe a fundamental domain for the action of W′
I as a union

of simplicial cones as follows.
For α ∈ Φ′ we denote by sα ∈ W′ the corresponding simple reflection and recall

that

W′(I) := 〈sα | α ∈ I〉
is naturally a reflection group on

a
′(I) := spanR{α∨ | α ∈ I}

with simple roots given by I. Note that a′ = a′(I)⊕a′I is an orthogonal decomposi-
tion. Next we recall the set D′

I ⊂ W′ of distinguished representatives for W′/W′(I),
namely with

D′
I := {w ∈ W′ | w(I) ⊂ (Σ′)+}

we obtain a bijection

D′
I → W′/W′(I), w �→ [w] = wW′(I)

with w the unique minimal length representative of [w].
For I, J ⊂ S set

W′(I, J) = {w ∈ W′ | w(J) = I} .
We claim that the map

R : W′(I, I) → W′
I , w �→ w|a′

I

is an isomorphism of groups. Let us first show that R is defined. In fact, if
w ∈ W′(I, I), then w(I) = I implies that w preserves a′(I) and hence its orthogonal
complement a′I . Hence R is defined. Let us show now that R is injective and assume
w|a′

I
= id. In particular w fixes the face

(a′I)
− := {X ∈ a

′
I | (∀α ∈ S\I) α(X) ≤ 0}

of (a′)−, the closure of the Weyl chamber (a′)−−. Hence Chevalley’s Lemma implies
that w ∈ W′(I), thus w = 1 as w(I) = I. Finally we show that R is surjective.
Let w ∈ W′ such that w(a′I) = a′I . Hence w(a′(I)) = a′(I). From the description
of W′/W′(I) � D′

I we find w1 ∈ W′(I) such that ww1(I) ⊂ (Σ′)+. Note that
ww1(a

′
I) = ww1(a

′
I) holds as well. Hence ww1(I) ⊂ (Σ′)+ ∩ spanR I = W′(I) · I. In

particular we find w2 ∈ W′(I) such that w2ww1(I) = I. Hence w2ww1 ∈ W′(I, I).
Since w1|a′

I
= w2|a′

I
= id, the surjectivity of R follows.

Recall that subsets I, J are called associated provided that W′(I, J) 
= ∅. This
defines an equivalence relation I ∼ J among subsets of S. Next we record the tiling

(14.16) a
′
I =

⋃
J∼I

⋃
w∈W′(I,J)

w(a′J )
−
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meaning that the union of interiors
∐

J∼I

∐
w∈W′(I,J) w(a

′
J )

−− is disjoint. Now

note that W′
I � W′(I, I) acts on each W′(I, J) from the left. We pick for each orbit

[w] = W′
Iw ⊂ W′(I, J) a representative w (of minimal length). Then the cone

(14.17) C ′
I :=

⋃
J∼I

⋃
[w]∈W′

I\W′(I,J)

w(a′J )
−

is a fundamental domain for the action of W′
I on a′I .

Let C∗
I be a fundamental domain for the dual action of W′

I on (a′I)
∗, constructed

as in (14.17). Let w ∈ W′
I . Then for λ ∈ i(a′I)

∗ we define λw = w · λ = λ(w−1·).
Likewise one defines σw by σw(m

′
I) = σ(w−1m′

Iw) where we tacitly allowed our-
selves to identify w ∈ W′

I � (NK(a′I)∩NK(a′))/M ′ with a lift toK which normalizes
M ′

I .

Lemma 14.4. Let w ∈ W′
I . Then for generic λ ∈ i(a′I)

∗, the representation πσ,λ

is equivalent to πσw,λw
.

Proof. We use the intertwining operator

(14.18) Aw : IndG
′

PI
′(σ ⊗ λ) → IndG

′

w−1PI
′
w
(σ ⊗ λ)

(14.19) Aw(f)(g
′) =

∫
w−1NI

′
w/w−1NI

′
w∩NI

′
f(g′x) dx (g′ ∈ G′)

which is, as a product of rank one intertwiners, generically defined by Remark 14.1.
The desired equivalence of πσ,λ and πσw,λw

is then obtained by composing Aw with
the right shift by w, i.e.

(14.20) Rw(f)(g
′) := (Awf)(g

′w)

yields the desired equivalence between πσ,λ and πσw,λw
. �

Lemma 14.5 is a generic form of the Langlands Disjointness Theorem (see [22, Th.
14.90]) for which we provide an elementary proof.

Lemma 14.5. Let σ, σ′ ∈ M̂ ′
Idisc and λ, λ′ ∈ iC∗

I be such that the unitary repre-
sentations πσ,λ and πσ′,λ′ are equivalent. Then for generic λ one has λ = λ′ and
σ = σ′.

Proof. We first show that λ = λ′ for generic λ. For that we consider the infinitesimal
characters πσ,λ. For the discrete series σ a fairly elementary and short proof that
their infinitesimal characters are real is given in [32]. Now, from the standard
formulae for infinitesimal characters of induced representations, see [22, Prop. 8.22],
we deduce from πσ,λ � πσ′,λ′ that

(14.21) W′
j′ · (μσ + λ) = W′

j′ · (μσ′ + λ′) .

Here j′ = a′ + t′ is a Cartan subalgebra of g′ which inflates the maximal split
torus a′ ⊂ g′ by a maximal torus t′ ⊂ m′. Further, μσ, μσ′ ∈ (it′ + a′ ∩ m′

I)
∗ are

representatives of the infinitesimal character for σ, resp. σ′. Note that W′
j′ leaves

the real form j′R := a′ + it′ of j′C invariant. Hence comparing the imaginary parts
(with respect to j′R) in (14.21) yields for generic λ, λ′ ∈ iC∗

I that λ = λ′.
Finally we show that σ is equivalent to σ′. Let F be a finite dimensional repre-

sentation of G′ with strictly dominant highest weight Λ and highest weight vector
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fixed by M ′
I . Hence Λ ∈ (a′I)

∗. The translation functor moves for λ generic the
representations πσ,λ to πσ,λ+Λ and πσ′,λ to πσ′,λ+Λ, see [47, proof of Lemma 10.2.7].

We conclude that πσ,λ is equivalent to πσ′,λ also for a parameter λ with Reλ
sufficiently dominant. This allows us to apply Langlands’ Lemma [37, Lemma
3.12] for the asymptotics of 〈πσ,λ(m

′
Ia

′
t)f1, f2〉 for f1, f2 ∈ H∞

σ,λ, m′
I ∈ M ′

I and

a′t = exp(tX ′) for X ′ ∈ (a′I)
−−:

lim
t→∞

(a′t)
λ−ρ′〈πσ,λ(a

′
tm

′
I)f1, f2〉 = 〈σ(m′

I)[f1(1)],Aσ,λ(f2)(1)〉σ,

see also (14.26). Notice that with f1, f2 ∈ H∞
σ,λ the vectors f1(1),A(f2)(1) run over

all pairs of smooth vectors in V ∞
σ . Likewise holds for σ′ and we obtain that the

unitary representations σ and σ′ feature the same (smooth) matrix coefficients.
Now we recall the Gelfand-Naimark-Segal construction which asserts for an ir-

reducible unitary representation π of a locally compact group G on a Hilbert space
H that one can recover π by one matrix coefficient g �→ 〈π(g)v, v〉 for v ∈ H, v 
= 0.
Consequently σ and σ′ are equivalent, concluding the proof of the lemma. �

Remark 14.6. Let us stress that the only property of discrete series used in the
preceding proof of Lemma 14.5 was that infinitesimal characters are real.

By applying Lemma 14.4 and Lemma 14.5 to the disintegration formula (14.15)
we obtain the grouping in inequivalent irreducibles, i.e. the Plancherel formula for
L2(ZI)td:

(14.22) L2(ZI)td �
G′×G′

∑
σ∈M̂ ′

Idisc

∫
iC∗

I

B2(Hσ,λ)⊗MI
σ,λ μ(σ, λ)dλ ,

where

MI
σ,λ := MI

Πσ,λ
= (B2(Hσ,λ)

−∞)HI
temp

is the multiplicity space. Moreover, for generic λ we have also seen that

(14.23) MI
σ,λ �

⊕
w∈W′

I

Cσw,λw

as aI -module. In particular, we obtain that

(14.24) speca′
I
MI

σ,λ = ρ′|a′
I
−W′

I · λ .

14.3. The Maass-Selberg relations. From Theorem 9.5 we obtain that the mul-
tiplicity space MI

σ,λ is endowed with the Hilbert space structure induced from the
one dimensional space Mσ,λ := MΠσ,λ

= C trπσ,λ
.

Set ησ,λ := trπσ,λ
∈ Mσ,λ and recall from (9.3) the orthogonal decomposition

ηIσ,λ =
∑

ξ∈(ρ−Wjχ)|aI

ηI,ξσ,λ

with χ the infinitesimal character of Πσ,λ.
Upon our identification of aI with a′I we obtain for λ generic from (14.24) that

ηI,ξσ,λ 
= 0 if and only if ξ ∈ ρ′ +W′
I · λ and accordingly

ηIσ,λ =
∑

w∈W′
I

ηI,ρ
′−wλ

σ,λ .
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Further, our Maass-Selberg relations in Theorem 9.6 give

(14.25) 1 = ‖ησ,λ‖ = ‖ηI,ξσ,λ‖MI
σ,λ

for any ξ with ηI,ξσ,λ 
= 0.
In order to proceed we need an elementary result on the asymptotics of the

matrix coefficient

η(Πσ,λ(g)(f1 ⊗ 〈·, f2〉)) = 〈πσ,λ(g
−1
1 )f1, πσ,λ(g

−1
2 )f2〉 (f1, f2 ∈ Hσ,λ)

for g = a = (
√
a′,

√
a′

−1
) ∈ A−−

I with a′ ∈ (A′
I)

−−. In other words we are interested
in the asymptotics of

a′ �→ 〈πσ,λ((a
′)−1)f1, f2〉

for a′ = a′t = exp(tX ′) with X ′ ∈ (a′I)
−− and t → ∞. Then we have the following

variant, observed in [32], of [37, Lemma 3.12].

Lemma 14.7. Let λ ∈ ia∗I and suppose that f1, f2 ∈ H∞
σ,λ are such that supp fi ⊂

ΩP ′
I for some Ω ⊂ N ′

I compact. Then

(14.26) lim
t→∞

aλ−ρ
t 〈πσ,λ((a

′
t)

−1)f1, f2〉 = 〈f1(1),Aσ,λ(f2)(1)〉σ

Proof. We use the non-compact model for πσ,λ and realize f1, f2 as σ-valued func-
tions on NI :

〈πσ,λ((a
′
t)

−1)f1, f2〉 = (a′t)
−λ+ρ′

∫
N ′

I

〈f1(a′tn′
I(a

′
t)

−1), f2(n
′
I)〉σ dn′

I .

Observe that

a′tΩ(a
′
t)

−1 →
t→∞

{1}

for all Ω ⊂ N ′
I compact. By the compactness of supports we are allowed to inter-

change limit and integral and the asserted formula follows. �

The Maass-Selberg relations (14.25) then yield the following key-identity:

Lemma 14.8. For generic λ ∈ iC∗
I we have ξσ,λ = ηI,ρ

′−λ
σ,λ together with Cσ,λ ⊂

MI
σ,λ as Hilbert spaces.

Proof. First note that ξσ,λ and ηI,ρ
′−λ

σ,λ have to be multiples of each other as they
have the same aI -weight. Let us show that this multiple is indeed 1 by computing

the asymptotics of the matrix coefficient: Recall that for a = (
√
a′,

√
a′

−1
) ∈ A−−

I

with a′ ∈ (A′
I)

−− we have

η(Πσ,λ(a)(f1 ⊗ 〈·, f2〉)) = 〈πσ,λ((a
′)−1)f1, f2〉 .

Now for f1, f2 as in Lemma 14.7 we obtained in (14.26)

〈πσ,λ((a
′)−1)f1, f2〉 ∼ (a′)ρ

′−λ〈f1(e),A(f2)(e)〉σ .

Comparing with (14.13) we then get indeed that ξσ,λ = ηI,ρ
′−λ

σ,λ .

Finally, as ‖ξσ,λ‖ = 1 we obtain from the Maass-Selberg relations (14.25) that
Cσ,λ ⊂ MI

σ.λ as Hilbert spaces. This completes the proof of the lemma. �
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14.4. The Plancherel theorem for L2(Z). From the fact that source and target
of the Bernstein morphism have equivalent Plancherel measures we obtain

(14.27) suppμ =
⋃
I⊂S

suppμI,td

with

suppμI,td = {[Πσ,λ] ∈ Ĝ | λ ∈ iC∗
I , σ ∈ M̂ ′

Idisc}
In the union (14.27) a certain overcounting takes place, which will be taken care

of in Lemma 14.9:

Lemma 14.9. Let I, J ⊂ S. Then the following assertions hold:

(1) If I and J are associated, i.e. there exists a w ∈ W′ such that w(I) = J ,
then suppμI,td = suppμJ,td.

(2) Otherwise suppμI,td ∩ suppμJ,td has μ-measure zero.

Proof. (1) Basic intertwining theory (assuming no particular knowledge on the
discrete spectrum) as used above implies that

specL2(ZI)td = specL2(ZJ )td ⊂ Ĝ

if I and J are associated.
(2) As the infinitesimal characters for the discrete series of M ′

I and M ′
J are real

(see [32]), we obtain that the infinitesimal characters of the induced representations

in L2(ẐI , λI)d and L2(ẐJ , λJ)d for generic λI , λJ ∈ ia∗J are different if I and J are
not associated, see (14.21) and the text following it. �

We are now ready to phrase the Plancherel theorem of Harish-Chandra in terms
of the Bernstein morphism. For this let

HI :=
∑

σ∈M̂ ′
Idisc

∫
iC∗

I

B2(Hσ,λ)⊗ Cξσ,λ μ(σ, λ)dλ,

viewed as a subspace of L2(ZI)td as in (14.22).
Let B′

I be the restriction of BI to HI . Select a family I of representatives of
subsets of S modulo association and set

B′ :=
⊕
I∈I

B′
I .

Theorem 14.10. The map

B′ :
⊕
I∈I

HI → L2(Z)

is a bijective isometry, hence the inverse of a Plancherel isomorphism. In particular
we obtain the explicit Parseval-formula:

(14.28) ‖f‖2L2(Z) =
∑
I∈I

∑
σ∈M̂ ′

Idisc

∫
iC∗

I

‖πσ,λ(f)‖2HS μ(σ, λ)dλ

for all f ∈ C∞
c (Z).
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Proof. By Lemma 14.9 both sides have the same support in Ĝ and moreover have
multiplicity one. Next B′

I is isometric by Lemma 14.8 and the spectral definition
of the Bernstein morphism (compare also to Remark 11.5). Since for different
I 
= J ∈ I the spectral supports are disjoint by Lemma 14.9, the images of the
various B′

I are orthogonal. The theorem follows. �

To obtain the original Parseval formula of Harish-Chandra in its standard form
we unwind (14.28) via ia′∗I = W′

I · iC∗
I and average over association classes

(14.29) ‖f‖2L2(Z) =
∑
I⊂S

1

|[I]| · |W′
I |

∑
σ∈M̂ ′

Idisc

∫
i(a′

I)
∗
‖πσ,λ(f)‖2HS μ(σ, λ)dλ

where [I] is the equivalence class of I ⊂ S under association.

Remark 14.11. Regarding the knowledge about representations of the discrete se-
ries, let us stress that in the above derivation of the Plancherel formula for a real
reductive group we only used the results of [32] on the infinitesimal characters of
discrete series. These are valid for general real spherical spaces and when special-
ized to the group case comparably soft and elementary opposed to the usage of the
difficult classification of the discrete series by Harish-Chandra.

As byproduct of his classification of the discrete series Harish-Chandra obtained
the following beautiful geometric characterization of the discrete spectrum

(14.30) L2(G)d 
= ∅ ⇐⇒ g contains a compact Cartan subalgebra .

Let us emphasize once more that we obtained “⇐” in this paper in the full generality
of real spherical spaces, see Theorem 12.1.

For a general real spherical space a description of the (twisted) discrete spectrum
in terms of parameters is currently out of reach. Therefore, regarding the discrete
spectrum of a real spherical space, the emphasis is to obtain “⇒” of (14.30) in
general. Now for the group case, there is an economic way to obtain that: one first
characterizes the discrete spectrum as cusp forms and then relates cusp forms to
orbital integrals, see the account of Wallach [46, Ch. 7]. This idea, as well as all
other known methods for the group, fails to generalize to a real spherical space.

Finally, Harish-Chandra determined with the parameters of the discrete series
also their formal degrees. In the group case we saw that there is a canonical
normalization of the one dimensional space of H-invariant functionals Mπ = C trπ,
namely by the trace. Now for a general real spherical space the space of H-invariant
functionals Mπ,td for a (twisted) discrete series is no longer one-dimensional nor is
it clear whether there is a canonical normalization of the inner product on Mπ,td.
The only known general result beyond the group case is the case of holomorphic
discrete series on a symmetric space [31].

15. The Plancherel formula for symmetric spaces

In this section we apply the Bernstein decomposition to symmetric spaces and
derive the Plancherel formula of Delorme [9] and van den Ban-Schlichtkrull [3].
The account is rather parallel to the group case. The only needed extra tool is
the description of a generic basis of H-invariant distribution vectors for induced
representations in terms of open H-orbits on real flag varieties G/P , see [1], [7].

For this section Z = G/H is symmetric and we use the notation and results from
Subsection 5.2.
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15.1. Normalization of discrete series. This small paragraph is valid for a gen-

eral unimodular spherical space Z = G/H. Let [π] ∈ Ĝ and (π,H) be a unitary
model of [π]. We write Mπ,d ⊂ (H−∞)H for the subspace of those η for which
mv,η ∈ L2(Z) for all v ∈ H∞. We define an inner product on Mπ,d by the request
that the Schur-Weyl orthogonality relations hold true:

(15.1)

∫
Z

mv,η(z)mv′,η′(z) dz = 〈v, v′〉H〈η, η′〉Mπ,d

Notice that the norm on Mπ,d depends on the unitary norm of H which is only
unique up to positive scalar.

Remark 15.1. Given a pair of normalizations of 〈·, ·〉H and 〈·, ·〉Mπ,d
one obtains a

notion of formal degree d(π) analogous to (14.4) by requiring

d(π)

∫
Z

mv,η(z)mv′,η′(z) dz = 〈v, v′〉H〈η, η′〉Mπ,d
.

The normalization of 〈·, ·〉Mπ,d
by (15.1) therefore amounts to setting d(π) = 1.

Without a canonical normalization of 〈·, ·〉Mπ,d
this is the best we can offer.

15.2. The Plancherel formula for L2(ZI)td. Recall that HI = (MI ∩ H)UI is
contained in PI = MIUI with PI/HI � MI/MI ∩H. Hence L2(ZI) is parabolically
induced from L2(MI/MI ∩H), and hence we obtain

(15.2) L2(ZI)td �
∑

σ∈M̂I

∫ ⊕

ia∗
I

Hσ,λ ⊗Mσ,d dλ .

Here Hσ,λ = IndG
P I

(σ⊗λ) and Mσ,d is the space of MI ∩H-invariant functionals on

H∞
σ , which are square integrable for the symmetric space MI/MI ∩H, as defined

in Subsection 15.1 for G/H and π = σ.

The space Hσ,λ ⊗Mσ,d embeds into L2(ẐI ,−λ)d isometrically (by our normal-
ization of the discrete series) by

Φσ,λ : Hσ,λ ⊗Mσ,d → L2(ẐI ,−λ)d

defined by linear extension and completion of

Φσ,λ(f ⊗ ζ)(gHI) := ζ(f(g)) (f ∈ H∞
σ,λ, ζ ∈ Mσ,d, g ∈ G) .

For ζ ∈ Mσ,d let us also define an HI -invariant functional ξσ,λ,ζ on H∞
σ,λ via

(15.3) ξσ,λ,ζ(f) := ζ(f(e)) (f ∈ H∞
σ,λ)

and record

Φσ,λ(f ⊗ ζ) = ξσ,λ,ζ(πσ,λ(g
−1)f) .

Recall the little Weyl group W = WZ of the restricted roots system Σ(g, aZ)
from Subsection 5.2.1.

The decomposition (15.2) is not yet the Plancherel formula for L2(ZI)td, since it
is not a grouping into irreducibles as different πσ,λ may yield equivalent represen-
tations. Similar to the group case this possibility is governed by the subquotient

WI = {w|aI
| w ∈ W, w(aI) = aI}

of W = WZ and a cone C∗
I ⊂ a∗I as fundamental domain for the dual action of WI

(see Remark 14.3). As in the group case we identify elements w ∈ WI with lifts to
K which normalize MI .
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As in Lemma 14.4 and (14.20) we obtain for every w ∈ WI , σ ∈ M̂I and generic
λ ∈ ia∗I a G-intertwiner

Rw : Hσ,λ → Hσw,λw

with σw and λw defined as before. Next in full analogy to Lemma 14.5 we obtain:

Lemma 15.2. For λ, λ′∈ iC∗
I generic and σ, σ′ in the discrete series of L2(MI/MI∩

H) (i.e. both Mσ,d and Mσ′,d are non-zero) one has

πσ,λ � πσ′,λ′ ⇐⇒ λ = λ′ and σ � σ′ .

Proof. We recall that the proof of Lemma 14.5 only requires that the infinitesimal
character of the inducing data σ and σ′ are real, see Remark 14.6. By [32] this is
the case in the current situation as well.

Next we recall that the root system ΣZ = Σ(g, aZ) ⊂ a∗Z is obtained from the
root system Σ(gC, jC) ⊂ j∗R as the non-vanishing restrictions. In particular, the faces
a
−
I of a−Z are contained in the faces j−R with respect to our lined up positive systems.
This allows us now to argue as in (14.21) and conclude that λ = λ′.

The rest of the argument is then fully analogous. �

By grouping equivalent representations in (15.2) we then obtain the Plancherel
formula

(15.4) L2(ZI)td �
∑

σ∈M̂I

∫ ⊕

iC∗
I

Hσ,λ ⊗MI
σ,λ dλ

with generic multiplicity space MI
σ,λ = MI

σ,λ,td of dimension

(15.5) dimMI
σ,λ = |WI | · dimMσ,d .

For w ∈ WI let us denote by Mσw,d the space Mσ,d with MI ∩ H replaced by
w(MI ∩ H)w−1 = MI ∩ Hw and σ replaced by σw. Since L2(MI/MI ∩ H)d �
L2(MI/MI ∩ Hw)d we infer that Mσ,d and Mσw,d are canonically isomorphic.
Now for each w ∈ WI and ζ ∈ Mσw,d we can define an HI -invariant functional of
aI -weight ρ− λw via

ξσw,λw,ζ : H∞
σ,λ → C, f �→ ζ((Rwf)(1)) .

This functional yields an embedding ofH∞
σ,λ into L2(ZI)td, i.e. ξσw,λw,ζ ∈ MI,ρ−λw

σ,λ,td .
Moreover, by varying ζ we obtain for each w ∈ WI a linear injection

(15.6) Mσw,d → MI,ρ−λw

σ,λ,td , ζ �→ ξσw,λw,ζ .

We now count dimensions. With MI
σ,λ =

⊕
μ∈ρ+ia∗

I
MI,μ

σ,λ,td and (15.5) we obtain

for generic λ that the inclusion (15.6) is an isomorphism, that is

(15.7) MI,ρ−λw

σ,λ,td = {ξσw,λw,ζ | ζ ∈ Mσw,d} , (w ∈ WI).

15.3. Support of the Plancherel measure. Previously we defined for σ ∈ M̂I

and w ∈ WI the multiplicity space Mσw,d. We now also need a notion for every
w ∈ W . For w ∈ W we write Mσ,w,d for the space of MI ∩Hw-invariant function-
als on H∞

σ , which are square integrable for the symmetric space MI/MI ∩ Hw �
w−1MIw/w

−1MIw ∩H.
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Then, by the isospectrality of the Bernstein morphism we obtain that

(15.8) suppμ =

{
[πσ,λ] ∈ Ĝ

∣∣∣∣∣I ⊂ S, λ ∈ iC∗
I ,

σ ∈ M̂I s.t. ∃ w ∈ W : Mσ,w,d 
= {0}

}
.

Let us introduce the notion that σ ∈ M̂I is cuspidal provided Mσ,w,d 
= {0} for
some w ∈ W .

15.4. Generic dimension of multiplicity spaces. To abbreviate matters let
us set Mσ,λ = Mπσ,λ

for [πσ,λ] ∈ suppμ. The next goal is to obtain a precise

description of Mσ,λ for generic λ. This is related to the geometry of open H × PI -
double cosets in G which we recall from Section 5.2.3. From Lemma 5.7 there is an
action of W(I) on W with identifications (PI\Z)open � W(I)\W and (P\ZI)open �
W(I)/W(I) ∩WH .

For what to come we need to interpret the quotient W(I)\W in terms of the
geometric decomposition W =

∐
c∈CI

∐
t∈FI,c

mc,t(WI,c) from (5.18).

Lemma 15.3. With regard to W =
∐

c∈CI

∐
t∈FI,c

mc,t(WI,c) the action of W(I) on

W acts on each subset mc,t(WI,c) ⊂ W transitively and induces a natural bijection

(15.9) W(I)\W �
∐
c∈CI

FI,c

Proof. Let us fix c, t, and to save notation, assume first c = t = 1. Then ZI,c,t = ZI

and WI = WI,1. Lemma 5.7(2) implies that W(I) acts transitively on WI �
WI = (P\ZI)open. We claim that this holds for every ZI,c � ZI,c,t, i.e. W(I) acts
transitively on (P\ZI,c,t)open. To see that we recall the identifications W � W �
FM\FR with FR the 2-torsion subgroup of AZ(R). Further we need the splitting
FR = FI,R × F⊥

I,R derived from (5.12). Now the W(I)-orbits on W � FM\FR

correspond exactly to the F⊥
I,R-orbits on FM\FR. Now the claim follows from the

definition of ZI,c,t and the fact that (P\ZI,c,t)open � WI,c is mapped under mc,t in
a W(I)-equivariant way into W , see Lemma 5.8 applied to Zc,t = G/Hw(c,t) � Z =
G/H.

The reasoning above implies further that the W(I)-action on W respects with
regard to the decomposition W =

∐
c∈CI

∐
t∈FI,c

mc,t(WI,c) the disjoint union and

is trivial on the fibers FI,c. The lemma follows. �

15.4.1. The description of Mσ,λ. We wish to relate H-invariant functionals on the

induced representation Hσ,λ = IndG
PI
(σ⊗λ) with regard to the open H×PI -double

cosets in G. Recall from (5.10) the bijection

W(I)\W → (H\G/PI)open, W(I)w �→ Hw−θPI .

Now we define for each [w] = W(I)w ∈ W(I)\W a subspace

H∞
σ,λ[w] = {f ∈ H∞

σ,λ | supp f ⊂ Hw−θPI}

and for each η ∈ (H−∞
σ,λ )H we define the restrictions

η[w] := η|H∞
σ,λ[w] .

These functionals have now a straightforward description. Notice that η[w] only de-
pends on the double coset Hw−θPI . This allows us to replace W(I)\W by W(I)\W
and since elements w ∈ W have representatives in K have w−θ = w−1 for w ∈ W.
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Let now w ∈ W. Notice that the H-stabilizer of the point w−1PI ∈ G/PI is
given by the (symmetric) subgroup H ∩ w−1MIw of w−1MIw. Allowing a slight
conflict with previous notation we let σw be the representation of w−1MIw induced
from the group isomorphism MI � w−1MIw.

Frobenius reciprocity then associates to each η and [w] a unique distribution
vector

ζη[w] ∈ (H−∞
σw

)H∩w−1MIw

such that

η[w](f) =

∫
H/H∩w−1MIw

ζη[w](f(hw
−1)) dh(H ∩ w−1MIw) (f ∈ H∞

σ,λ[w]) .

For each [w] ∈ W(I)\W we pick with w ∈ W a representative. As W(I) normal-
izes MI via inner automorphisms, it follows that σw depends only on [w], up to
equivalence. Set

(15.10) V (σ) :=
⊕

[w]∈W(I)\W
(H−∞

σw
)H∩w−1MIw

and consider then the evaluation map

(15.11) evσ,λ : (H−∞
σ,λ )H → V (σ), η �→ (ζη[w])w∈W(I)\W

This map is a bijection for generic λ by [1, Thm. 5.10] for the case of PI = Q and
[7, Thm. 3] in general. Sometimes it is useful to indicate the choice of the parabolic
P I above MIAI which was used in the definition of the induced representation
Hσ,λ = IndG

P I
(σ ⊗ λ). Then we write evPI ,σ,λ

instead of evσ,λ. Further, for λ

generic we recall the standard notation of [1] and [7]:

(15.12) j(PI , σ, λ, ζ) := ev−1

PI ,σ,λ
(ζ) ∈ (H−∞

σ,λ )H (ζ ∈ V (σ)) .

Next we define a subspace of V (σ) by

V (σ)2 :=
⊕

[w]∈W(I)\W
Mσw,d

with Mσw,d ⊂ (H−∞
σw

)H∩w−1MIw referring to Mσ,d ⊂ (H−∞
σ )H∩MI for MI replaced

by w−1MIw.
In the sequel we assume that λ ∈ ia∗I is generic, i.e. j(PI , σ, λ, ζ) is defined

(the obstruction is a countable set of hyperplanes) and the representation πσ,λ is a
generic member in suppI,td μ ⊂ suppμ, see Subsection 10.2. Recall that our request
is that σ is cuspidal, as defined in Section 15.3.

The main result of this subsection then is:

Theorem 15.4. Let σ be cuspidal. Then for Lebesgue-almost all λ ∈ ia∗I the image
of Mσ,λ by evσ,λ is V (σ)2, i.e.

evσ,λ : Mσ,λ → V (σ)2

is a bijection. In particular we have

(15.13) dimMσ,λ =
∑

[w]∈W(I)\W
dimMσw,d .
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The proof of this theorem will be prepared by several lemmas. The first lemma
is valid for a general unimodular real spherical space Z = G/H with Plancherel
measure μ. In the sequel we consider L2(Z) as a unitary module for G×AZ,E and
recall that the twisted discrete spectrum L2(Z)td ⊂ L2(Z) is a G×AZ,E-invariant
subspace. Define the essentially continuous spectrum by L2(Z)ec := L2(Z)⊥td. We
write μtd and μec for the Plancherel measures of L2(Z)td and L2(Z)ec.

Lemma 15.5. Let Z = G/H be a unimodular real spherical space with Plancherel
measure μ. Then

μec(suppμtd) = 0,

i.e. the Plancherel supports of L2(Z)td and L2(Z)ec do μ-almost not interfere.

Proof. The proof goes by comparing the infinitesimal characters of the representa-
tions occurring in μtd and μec. For that we recall that the map

Φ : Ĝ → j∗C/Wj, π �→ χπ

is continuous. Next the Bernstein decomposition of L2(Z) implies that μec is equiv-
alent to

∑
w∈W

∑
I�S μI,w,td with μI,w,td the Plancherel measure of L2(ZI,w)td. In

this regard we note moreover that μI,w,td is built up by the Lebesgue measure on
ia∗I and counting measure over each fiber λ ∈ ia∗I . Now the main result of [32]
asserts that for each pair I, w there is a Wj-invariant lattice Λ = Λ(I, w) ⊂ j∗R such
that

Φ(suppμI,w,td) ⊂
[ ⋃
s∈Wj

(Λ + iAd(s)a∗I)

]
/Wj .

Now the continuity of Φ and the aforementioned structure of the various μI,w,td

with regard to Lebesgue measures imply the lemma. �

A further important ingredient in the proof of Theorem 15.4 is the long inter-
twiner, which we also used in treatment of the group case (14.7):

Aσ,λ : IndGPI
(σ ⊗ λ) → IndG

PI
(σ ⊗ λ)

Aσ,λ(u)(g) =

∫
NI

u(gnI) dnI (g ∈ G)

which is defined near g = 1 for all u with supp u ⊂ ΩPI for Ω ⊂ NI compact, and
for general u and g by meromorphic continuation with respect to λ.

We wish to compute the asymptotics ofmv,η for η ∈ Mπ,σ for certain test vectors

v ∈ H∞
σ,λ. In more precision, let u ∈ IndGPI

(σ ⊗ λ)∞ with supp u ⊂ ΩPI with Ω as

above. Our test vectors v are then given by v = Aσ,λ(u). Now with

(15.14) η̃ = η ◦ Aσ,λ

we obtain the tautological identity

mv,η(g) = mu,η̃(g) .

The advantage of using the opposite representative IndGPI
(σ⊗λ) for [πσ,λ] is that it

allows us to compute the asymptotics of mu,η̃(a) for a = at = exp(tX) ∈ A−−
I on

rays to infinity. In more precision, we have the following symmetric space analogue
of Lemma 14.7. Let

(15.15) ζ̃ = evPI ,σ,λ(η̃) ∈ V (σ).
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Lemma 15.6. With the notation introduced above we have for all mI ∈ MI :

(15.16) lim
t→∞

aλ−ρ
t mu,η̃(mIat) = ζ̃[1](σ(m

−1
I )(Aσ,λ(u)(1))) = ζ̃[1](σ(m

−1
I )(v(1)))

for the [1]-component ζ̃[1] ∈ (H−∞
σ )MI∩H of ζ̃.

Proof. It is sufficient to prove the assertion for mI = 1. Next, since a−1
t Ωat → {1}

we may assume in addition that supp u ⊂ ΩPI ∩HPI . Hence

mu,η̃(at) = mu,η̃[1](at) = (πσ,λ(at)(η̃[1]))(u)

by the support condition of u. It is then easy to verify (see the proof of [8, Lemma
16]) that

lim
t→∞

aλ−ρ
t (πσ,λ(at)(η̃[1])) = ζ̃[1] · dnI

as a distribution. The lemma follows. �

Note that for generic λ the intertwiner Aσ,λ induces a natural linear isomorphism

bσ,λ : V (σ) → V (σ),

defined by

bσ,λ(ξ) = evPI ,σ,λ

(
j(PI , σ, λ, ξ) ◦ Aσ,λ

)
.

In this regard we recall from [8, Th. 2]:

Lemma 15.7. For generic λ one has

(15.17) bσ,λ(V (σ)2) = V (σ)2 .

Proof of Theorem 15.4. Let η ∈ (H−∞
σ,λ )H and ζ = ζη = evσ,λ(η) ∈ V (σ). The task

is to show that ζ ∈ V (σ)2 if and only if η ∈ Mσ,λ. Recall that ζ = (ζ[w])[w]∈W(I)\W
is a tupel in accordance with the definition of V (σ) in (15.10).

Assume first that η ∈ Mσ,λ. The proof goes by comparing two different expres-
sions for the constant term mv,ηI for certain test vectors v ∈ H∞

σ,λ. According to

Lemma 15.5 applied to Z = ZI we may assume that MI
σ,λ = MI

σ,λ,td.

Hence ηI,ρ−λ ∈ MI,ρ−λ
σ,λ = MI,ρ−λ

σ,λ,td. By (15.7) we then have ηI,ρ−λ = ξσ,λ,ζ′ for

some ζ ′ ∈ Mσ,d, that is,

(15.18) ηI,ρ−λ(π(mI)v) = ζ ′(σ(m−1
I )(v(1))) (v ∈ H∞

σ,λ,mI ∈ MI) .

On the other hand we can compute the asymptotics via Lemma 15.6. Comparing
(15.16) with (15.18) and using Theorem 7.1 yields

ζ ′(σ(m−1
I )(v(1)) = ζ̃[1](σ(m

−1
I )(v(1))) (mI ∈ MI)

for our test vectors v = A(u). Thus we have

(15.19) mζ′,v(1) = mζ̃[1],v(1)

as functions on MI/MI ∩H. We claim that ζ̃[1] ∈ Mσ,d and ζ̃[1] = ζ ′. To see that
we first observe that there exists at least one v with v(1) 
= 0. This is because
v(1) 
= 0 translates into

∫
NI

u(nI) dnI 
= 0 which can obviously be achieved for

one of our test vectors u. Now recall that ζ ′ ∈ Mσ,d. Hence (15.19) implies that

ζ̃[1] ∈ Mσ,d, since for ζ̃[1] to yield an embedding into L2(MI/MI ∩H) only one non-

zero matrix coefficient mζ̃[1],v(1)
has to be square integrable. With that ζ ′ = ζ̃[1]
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follows from the orthogonality relations (15.1) and (15.19): For ζ0 = ζ ′ − ζ̃[1] we
have

0 = ‖mζ0,v(1)‖2L2(MI/MI∩HI)
= ‖v(1)‖2Hσ

‖ζ0‖2Mσ,d
.

Next we let w ∈ W � W vary. Analogous reasoning via transport of structure
Z → Zw yields that ζ̃[w] ∈ Mσw,d. Thus we arrive at

(15.20) ζ̃ := (ζ̃[w])[w]∈W(I)\W ∈ V (σ)2 .

Now observe that bσ,λ(ζ) = ζ̃ ∈ V (σ)2 in view of (15.14), (15.15), and (15.20),
and from Lemma 15.7 it then follows that ζ ∈ V (σ)2, i.e. we have shown the
implication evP I ,σ,λ

(Mσ,λ) ⊂ V (σ)2 of the theorem.
To complete the proof of the theorem we remain with the converse inclusion

evP I ,σ,λ
(Mσ,λ) ⊃ V (σ)2. For that let ζ = (ζ[w])[w] ∈ V (σ)2. Forming wave pack-

ets via η = j(P I , σ, λ, ζ) for varying λ, we finally deduce with [8, Thm. 4] that
j(P I , σ, λ, ζ) contributes to the L2-spectrum of Z. Hence η = j(P I , σ, λ, ζ) ∈ Mσ,λ

for Lebesgue almost all λ, completing the proof of the theorem. �

In the course of the proof of Theorem 15.4 we have shown the following identity:

Lemma 15.8. Let λ be generic and η ∈ Mσ,λ such that η = j(PI , σ, λ, ζ) for

some ζ ∈ V (σ)2. Then η̃ = η ◦ Aσ,λ is of the form η̃ = j(PI , σ, λ, ζ̃) for a unique

ζ̃ ∈ V (σ)2 and

(15.21) ηI,ρ−λ = ξσ,λ,ζ̃[1]

with ζ̃[1] = η̃[1][1] ∈ Mσ,d and ξσ,λ,ζ̃[1]
defined as in (15.3).

Let us now transport the structure from Z = G/H to Zw = G/Hw for w ∈ W
and write jw and V (σ)w for the j-map (15.12) and multiplicity space for Zw. Note
that V (σ)w � V (σ) by permutation of coordinates.

Then η = j(P I , σ, λ, ζ) for ζ = (ζ[u])[u]∈W(I)\W ∈ V (σ) will be moved to ηw
which then can be written as ηw = jw(P I , σ, λ, ζ

w) for some ζw = (ζw[u])[u]∈W(I)\W ∈
V (σ)w. By the construction of j-maps which relates invariant functionals to open
H-orbits we then obtain from ηw = η ◦ w−1 the transition relations

(15.22) ζw[1] = ζ[w] .

Theorem 15.9. For generic λ ∈ iC∗
I and π = πσ,λ for σ ∈ M̂I cuspidal the map

(15.23) Mπ →
⊕

[w]∈W(I)\W
MI,ρ−λ

π,w,td, η �→ (ηI,ρ−λ
w )[w]∈W(I)\W

is a bijective isometry.

Proof. First note that both target and source have the same dimension by Theorem
15.4 and equation (15.7) applied to all spaces Zw via transport of structure. Now
Lemma 15.8 together with (15.22) implies that the map is bijective. Finally that
the map is an isometry follows from the Maass-Selberg relations from Theorem 9.6
– for that we use W(I)\W �

⋃
c∈cI

FI,c from Lemma 15.3. �
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15.5. The Plancherel formula. As in the group case we select now with I ⊂ S
a subset of representatives for the association classes. Let us describe in terms of
(15.23) the inner product on the multiplicity space Mπ for [π] = [πσ,λ], where σ is
cuspidal with respect to MI and I ∈ I.

For that observe that the map

Mσ,d → MI,ρ−λ
π , ζ �→ ξσ,λ,ζ

is a linear isometry by (15.7) if we request that the Plancherel measure for L2(ZI)td
is the Lebesgue measure dλ times the counting measure of the discrete series, i.e.
we request the normalization (15.4).

Via Theorem 15.9 we can now normalize the Plancherel measure μ such that we
have an isometric isomorphism:⊕

[w]∈W(I)\W
MI,ρ−λ

π,w,td �
⊕

[w]∈W(I)\W
Mσ,w,d

where Mσ,w,d refers to the MI ∩Hw-invariant square integrable functionals of the
symmetric space MI/MI ∩Hw � w−1MIw/w

−1MIw ∩H. We now define

HI =
⊕

[w]∈W(I)\W

∑
σ∈M̂I

∫ ⊕

iC∗
I

Hσ,λ ⊗Mσ,w,d dλ

considered as a subspace of L2(ZI)td. Let B
′
I be the restriction of B to HI . Then

with Theorem 15.9 we obtain with the same reasoning as in the group case the
Plancherel formula for symmetric spaces:

Theorem 15.10 (Plancherel formula for symmetric spaces). Let Z = G/H be a
symmetric space and let its Plancherel measure be normalized by unit asymptotics.
Then

B′ =
⊕
I∈I

B′
I :

⊕
I∈I

HI → L2(Z)

is a bijective G-equivariant isometry and is the inverse of the Fourier transform.
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tion vectors, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 359–412. MR974410
[2] E. P. van den Ban, The principal series for a reductive symmetric space. II. Eisenstein

integrals, J. Funct. Anal. 109 (1992), no. 2, 331–441, DOI 10.1016/0022-1236(92)90021-A.
MR1186325

[3] E. P. van den Ban and H. Schlichtkrull, The Plancherel decomposition for a reductive sym-
metric space. II. Representation theory, Invent. Math. 161 (2005), no. 3, 567–628, DOI
10.1007/s00222-004-0432-x. MR2181716

[4] Joseph N. Bernstein, On the support of Plancherel measure, J. Geom. Phys. 5 (1988), no. 4,
663–710 (1989), DOI 10.1016/0393-0440(88)90024-1. MR1075727
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[33] B. Krötz, J. Kuit, and H. Schlichtkrull, Discrete series representations with non-tempered
embeddings, 2021 arXiv:2103.08296.
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