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We show that the Hilbert subspace of L2(G(F )\G(A))
generated by wave packets of Eisenstein series built from 
discrete series is the whole space. Together with the work of 
Lapid [17], it achieves a proof of the spectral theorem of R.P. 
Langlands ([16], [19]) based on the work of J. Bernstein and 
E. Lapid [6] on the meromorphic continuation of Eisenstein 
series built from discrete data. I use truncation on compact 
sets as J. Arthur did for the local trace formula in [2].
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1. Introduction

Let G be a connected reductive group over a number field F with ring of adeles A. We 
fix a minimal parabolic subgroup P0 of G defined over F with a Levi decomposition P0 =
M0U0 over F . Denote by Pst the set of standard parabolic subgroups of G (i.e., those 
containing P0) that are defined over F . Any P ∈ Pst admits a unique Levi decomposition 
P = MPUP where MP contains M0. Set a∗P = X∗(P ) ⊗ZR = X∗(M) ⊗ZR where X∗(·)
denotes the lattice of characters defined over F . Denote the dual vector space by aP .
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Fix a maximal compact subgroup K of G(A) that is in a “good position” with respect 
to M0. We let HP : G(A) → aP be the left-U(A) and right-K invariant surjective map 
on G(A) such that

e<χ,HP (m)> = |χ(m)|,m ∈ MP (A), χ ∈ X∗(MP ).

The surjective HP admits a canonical section whose image is a connected Lie group, 
A∞

P , contained in the center of MP (A).
Denote by AP (G) the space of automorphic forms on U(A)P (F )\G(A) and by A2

P , 
the space of “square integrable” elements φ of AP (G) which satisfy in particular:

‖φ‖2
P :=

∫

A∞
P P (F )U(A)\G(A)

|φ(g)|2dg < ∞.

For any φ ∈ AP (G) and λ ∈ a∗P,C set φλ(g) = φ(g)e<λ,HP (g)>. We have φλ ∈ AP (G).
Consider the Eisenstein series defined by:

EP (g, φ, λ) =
∑

γ∈P (F )\G(F )

φλ(γg), g ∈ G(A).

The series converges absolutely for Re(λ) sufficiently regular in the positive Weyl cham-
ber of a∗P .

If P, Q are standard parabolic subgroups of G, let W (Q\G/P ) be a set of represen-
tatives of minimal length of Q\G/P in the Weyl group W of G relative to M0 with the 
order given by P0. Let W (P |Q) be the set of w ∈ W (Q\G/P ) such that wMPw

−1 = MQ. 
For any w ∈ W (P |Q), the intertwining operator M(w, λ) : AP → AQ is defined by

[M(w, λ)φ]wλ(g) =
∫

(wUP (A)w−1∩UQ(A))\UQ(A)

φλ(w−1ug)du.

The integral converges in particular for Re(λ) sufficiently regular in the positive Weyl 
chamber of a∗P .

J. Bernstein and E. Lapid (cf. [6]) gave a short proof of the following results due to 
R.P. Langlands when φ ∈ A2

P (cf. [16], [19] Chapter IV):

Let P, Q ∈ Pst. When φ ∈ AP (G):
1) The Eisenstein series EP (φ, λ), which is absolutely convergent and holo-
morphic for Re(λ) sufficiently regular in the positive Weyl chamber of a∗P , 
extends to a meromorphic function λ �→ EP (φ, λ) on a∗P,C. Whenever reg-
ular, EP (φ, λ) ∈ A(G).
2) For any w ∈ W (P |Q), the map λ �→ M(w, λ)φ, taking values in a finite-
dimensional subspace of AQ, admits a meromorphic continuation to a∗P,C

∗ ∗

(1.1)
which is holomorphic around iaP . Moreover M(w, λ) is unitary for λ ∈ iaP .
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When φ is cuspidal, the theorem was proved by Langlands ([16]) and he described the 
discrete part of L2(G(F )\G(A)) in terms of residues of Eisenstein series for φ cuspidal 
and used it to extend the theorem to the case where φ is square-integrable. When φ is 
an element A2

P (G), E. Lapid ([17]) has given a short proof of:

For φ ∈ A2
P the map λ �→ EP (φ, λ) is analytic on ia∗P , (1.2)

by studying the truncated inner product of Eisenstein series which is also due to R.P. 
Langlands (cf. [16], [19]) for cuspidal data and was extended by Arthur ([3]).

Let P be a standard parabolic subgroup of G. Let WP be the space of compactly 
supported smooth functions on ia∗P taking values in a finite dimensional subspace of A2

P . 
For φ ∈ WP , write:

‖φ‖2
∗ =

∫

ia∗
P

‖φ(λ)‖2
P dλ, (1.3)

and let

ΘP,φ(g) =
∫

ia∗
P

EP (g, φ(λ), λ)dλ,

which we call wave packets of Eisenstein series. Let L2
disc(A∞

MM(F )\M(A)) be the 
Hilbert sum of irreducible M(A)-subrepresentations of L2(A∞

MM(F )\M(A)).
If P is a standard parabolic subgroup of G, let |P(MP )| be equal to the number of 

parabolic subgroups having MP as Levi factor.
Recall (cf. (1.1)) that M(w, λ) is well defined and holomorphic for λ around ia∗P

and unitary for λ ∈ ia∗P . Consider the space L consisting of families of measurable 
functions FP : ia∗P → Ind

G(A)
P (A)L

2
disc(A∞

MM(F )\M(A)) where P describes the set of 
standard parabolic subgroups of G such that:

‖(FP )‖2 =
∑

P∈Pst

|P(MP )|−1‖FP ‖2
∗ < ∞

and

FQ(wλ) = M(w, λ)FP (λ), w ∈ W (P |Q), λ ∈ ia∗P , (1.4)

the right hand side being well defined due to the properties of M(w, λ).
Let L′ be the subspace of L consisting of those families such that FP ∈ WP for all P .
We recall the statement of Theorem 2 of [17], also due to Langlands ([16], [19]). The 

short proof of Lapid is based on a direct proof of the asymptotic formula of the truncated 
inner product of Eisenstein series with square integrable data, independent of [16], [3], 
simply using the results of [6].
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The map E from L′ to L2(G(F )\G(A))

(FP ) �→
∑

P∈Pst

|P(MP )|−1ΘP,FP

extends to an isometry E from L to L2(G(F )\G(A)).

(1.5)

The main result of the present article, which achieves a new proof of the Spectral Theorem 
of R.P. Langlands ([16], [19]), is:

The map E is onto, i.e. it is an isometric isomorphism from L to L2(G(F )\G(A)).
(1.6)

One uses the notion of temperedness of automorphic forms introduced by J. Franke [14]
(cf. also [20] section 4.4). We show that this notion of temperedness is equivalent to the 
notion of temperedness introduced before by Joseph Bernstein in [5].

We introduce the notion of weak constant term of tempered automorphic forms. We 
prove that for bounded sets of unitary parameters, the Eisenstein series are uniformly 
tempered. One uses for this that the growth of an automorphic form is controlled by 
the exponents of its constant terms and that the constant terms of Eisenstein series are 
explicit.

The wave packets are in the Harish-Chandra Schwartz space (cf. [18]): this is due to J. 
Franke [14], section 5.3, Proposition 2 (2) but his proof rests on the work of Langlands. 
We give here a selfcontained proof (cf. Proposition 5.4) which uses the general scheme of 
Harish-Chandra’s study of wave packets in the Schwartz space in the real case (cf. [15], 
see also [4]).

From [5], one knows that only tempered automorphic forms can contribute to the 
spectrum of L2(G(F )\G(A)). Then, one shows that if the image of E is not the full space, 
there would exist a tempered automorphic form orthogonal to these wave packets: the 
proof, by a measurability argument, is similar to what we did for real symmetric spaces 
(cf. [10], [13]).

One can compute an explicit asymptotic formula for the truncated inner product of 
this form with an Eisenstein series. Actually, here, we use “true truncation” i.e. truncation 
on compact sets as in [2] and the weak constant term. This uses partitions of G(F )\G(A)
depending on the truncation parameter (cf. [1]).

By a process of limit, as in [13], one computes explicitly the scalar product of this 
form with a wave packet of Eisenstein series.

Then one shows that it implies that this form is zero. A contradiction which shows 
that E is onto.
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2. Notation

We introduce the notation for functions f , g defined on a set X with values in R+:

f(x) << g(x), x ∈ X

if there exists C > 0 such that f(x) < Cg(x), x ∈ X. We will denote this also f << g.
Let us denote

f(x) ∼ g(x), x ∈ X

if f << g and g << f . In that case we will say that the functions are equivalent.
If moreover f and g take values greater or equal to 1, we write:

f(x) ≈ g(x)

if there exists N > 0 such that

g(x)1/N << f(x) << g(x)N , x ∈ X.

If V is a real vector space, we denote by V ∗ its dual, by VC its complexification and if 
v ∈ VC we write v = Rev +

√
−1Imv where Rev, Imv ∈ V .

Let F be a number field and A be its adele ring. If G is a linear algebraic group defined 
over F , we denote its unipotent radical by NG. Let X∗(G) be the group of characters 
of G defined over F . Let aG = HomZ(X∗(G), R) and a∗G = X∗(G) ⊗Z R. We have a 
canonical paring < . > between aG and a∗G and a canonical morphism:

HG : G(A) → aG

such that for all χ ∈ X∗(G) and g ∈ G(A), < χ, HG(g) >= log|χ(g)|.
Let G(A)1 be the kernel of HG.
From now on we assume that G is reductive and connected. Let P0 be a parabolic 

subgroup of G defined over F and minimal for this property. Let M0 be a Levi factor of 
P0. We will denote aM0 by a0.

We have the notion of standard and semi-standard parabolic subgroup of G. Let K
be a good maximal compact subgroup of G(A) in good position with respect to M0.

If P is a semistandard parabolic subgroup of G we extend the map HP to a map

HP : G(A) → aP
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in such a way that HP (pk) = HP (p) for p ∈ P (A), k ∈ K.
We have a Levi decomposition P = MPNP , where MP is the Levi factor of P con-

taining M0. Let AP be the maximal split torus of the center of MP and A0 = AM0 .
Let GQ be the restriction of scalar from F to Q of G. We denote by AP (R) the group 

of real points of the maximal split torus of the center of MP,Q and by A∞
P the neutral 

component of this real Lie group. The map HP induces an isomorphism between the 
neutral component A∞

P and aP . The inverse map will be denoted exp or expP .
We define:

[G]P = MP (F )NP (A)\G(A), [G] = [G]G.

The map HP goes down to a map [G]P → aP .
The inverse image of 0 by this map is denoted [G]1P and one has [G]P = A∞

P [G]1P .
If P ⊂ Q are semistandard parabolic subgroups of G, we have the usual decomposition

aP = a
Q
P ⊕ aQ.

This allows to view elements of a∗Q as linear forms on aP which are zero on aQP .
Let AdQP adjoint action of MP on the Lie algebra of MQ ∩NP . Let ρQP be the element 

of aQ,∗
P such that for every m ∈ MP (A):

|det(AdQP (m)| = exp(< 2ρQP , HP (m) >).

If Q = G we omit Q from the notation and we write ρ for ρP0 .
If P is a standard parabolic subgroup of G, let ΔP

0 be the set of simple roots of A0
in MP ∩ P0 and ΔP ⊂ a∗P be the set of restriction to aP of the elements of ΔP0 \ ΔP

0 . 
If Q ⊂ P , one defines also ΔQ

P as the set of restrictions to aP of elements of ΔQ
0 \ ΔP

0 . 
One has also the set of simple coroots Δ̌Q

P ⊂ a
Q
P . By duality we get simple weights Δ̂Q

P

denoted �α, α ∈ ΔQ
P . If Q = G we omit Q from the notation.

We denote by a+
0 the closed Weyl chamber and by a+

P (resp. a++
P ) the set of X ∈ aP

such that α(X) � 0 (resp. > 0) for α ∈ ΔP .
If P is a standard parabolic subgroup of G, we say that ν ∈ a∗P,C is subunitary (resp. 

strictly subunitary) if Reν(X) � 0 for all X ∈ a
+
P (resp. if Reν =

∑
α∈ΔP

xαα where 
xα < 0 for all α). If ν ∈ a∗P , it is viewed as a linear form on a0 which is zero on aP0 . Then 
ν ∈ a∗P,C is subunitary if and only if one has:

Reν(X) � 0, X ∈ a
+
0 . (2.1)

This follows from the fact that α ∈ ΔP is proportional to 
∑

β∈Σ+
0 ,β|aP

=α β where Σ+
0 is 

the set of positive roots. In fact this sum is invariant by the Weyl group generated by 
the reflections around roots which are 0 on aP .

Let W be the Weyl group of (G, A0) and choose a scalar product on aG0 invariant by 
W .
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This determines a Lebesgue measure on aGP and aG∗
P for every standard

parabolic subgroup P .
(2.2)

If P, Q are standard parabolic subgroups of G, let W (Q\G/P ) be a set of representatives 
of Q\G/P in W of minimal length. If s ∈ W (Q\G/P ) the subgroup MP ∩s−1MQs is the 
Levi factor of a standard parabolic subgroup Ps contained in P and MQ∩sMP s

−1 is the 
Levi factor of a standard parabolic subgroup Qs contained in Q. Let W (P, Q) be the set 
of s ∈ W (Q\G/P ) such that sMP s

−1 ⊂ MQ. Let W (P |Q) be the set of s ∈ W (Q\G/P )
such that sMP s

−1 = MQ. Hence:

W (P |Q) = W (P,Q) ∩W (Q,P )−1.

By a Siegel domain sP for [G]P , we mean a subset of G(A) of the form:

sP = Ω0{expX|X ∈ a0, α(X + T ) � 0,∀α ∈ ΔP
0 }K (2.3)

where Ω0 is a compact of P0(A)1, T ∈ a0, such that G(A) = MP (F )NP (A)sP . Let

a
+,P
0 := {X ∈ a0|α(X) � 0,∀α ∈ ΔP

0 }.

Let us show

Any Siegel set sP is contained in ΩNP
{expX|X ∈ a

+,P
0 }Ω where Ω is a 

compact subset of G(A) and ΩNP
is a compact subset of NP (A).

(2.4)

There is a compact subset, in fact reduced to a single element, expT , Ω1 ⊂ A∞
0 such 

that

{expX|X ∈ a0, α(X + T ) � 0,∀α ∈ ΔP
0 } ⊂ {expX|X ∈ a

+,P
0 }Ω1.

The compact set Ω0 is a subset of ΩNP
ΩP0∩MP

, where ΩNP
(resp. ΩP0∩MP

) is a compact 
subset of NP (A) (resp. (P0 ∩ MP )(A)). Then the conjugate by exp − X, X ∈ a

+,P
0 of 

ΩP0∩MP
remains in a compact set, Ω2, when X varies in a+,P

0 . The compact subset 
Ω = Ω2Ω1K satisfies the required property.

Let Ξ (resp. σL) be the function on G(A) (resp. on [G]) introduced by Lapid in [18], 
beginning of section 2 (resp. after the proof of Lemma 2.1 and denoted σ there). From 
[18] section 2 (9), one has:

There exists d ∈ N such that:
∫

P0(F )\sG

Ξ2(g)σL(g)−ddg < ∞. (2.5)

If f is a function on G(A) with values in R+, we denote f[G]P the function on [G]P
defined by
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f[G]P (g) = infγ∈MP (F )NP (A)f(γg), g ∈ G(A). (2.6)

We fix a norm ‖.‖ on G(A) as in [7], Appendix A.1. From [8] 2.4.1.2, one has:

‖g‖ ≈ ‖g‖[G]P , g ∈ sP . (2.7)

Let us define:

σ(g) = 1 + log(‖g‖), g ∈ G(A).

From (2.7), one deduces:

σ[G]P (g) ∼ σ(g) ∼ 1 + ‖H0(g)‖, g ∈ sP , (2.8)

where H0 := HP0 , the last relation being a consequence of the properties of sP (cf. (2.3)). 
We normalize the measures as in [19], I.1.13.

If X is a topological space, let C(X) be the space of complex valued continuous 
functions on X. Let Ω be a compact subset of G[A] and [Ω] its image in [G]. Let 
B be a symmetric bounded neighborhood of 1 in G(A) (a ball) and let Ξ[G]P (x) =
(vol[G]P xB)−1/2, g ∈ [G]P .

The equivalence class of the function Ξ[G] on [G] does not depend of the 
choice of B.

(2.9)

2.1 Lemma. One has:
(i)

Ξ[G](g) ∼ eρ(H0(g)) ∼ Ξ(g), g ∈ sG.

(ii)

σ[G](g) ∼ 1 + ‖H0(g)‖ ∼ σL(g), g ∈ sG

Proof. The first relation of (i) follows from [8], 2.4.2.3. and the second follows easily 
from the definition of Ξ. The first relation of (ii) follows from (2.8) and the second From 
[18], 2, after the proof of Lemma 2.1. �

One deduces from (2.5) and from the preceding lemma:

∫
(1 + σ[G](x))−dGΞ[G](x)2dx < ∞. (2.10)
[G]



P. Delorme / Advances in Mathematics 426 (2023) 109107 9
Let Af be the ring of finite adeles of F . Let C∞(G(A) be the spaces of functions which 
are right invariant by a compact open subgroup of G(Af), say J , and which are C∞ on 
G(A)/J which is a smooth real differentiable manifold.

Let G∞ be the product of G(Fv) where v describes the Archimedean places of F and 
let U(g∞) be the enveloping algebra of the Lie algebra g∞ of this real Lie group. We 
have similar definition for subgroups of G defined over F .

One has the Harish-Chandra Schwartz space C([G]), denoted S([G]) in [18], Corollary 
2.6. From Lemma 2.1, it can be defined as the space of functions in C∞([G]) such that 
for all n ∈ N and u ∈ U(g∞):

|(Ruφ)(x)| << σ−n
[G] (x)Ξ[G](x), x ∈ [G],

where R denotes the right regular representation of U(g∞).

3. Tempered automorphic forms

3.1. Definition of temperedness

The space of automorphic forms on [G] = G(F )\G(A), A(G) is defined as in [19], 
I.2.17. In particular they are K-finite.

If φ ∈ A(G), it has uniform moderate growth on G(A) (cf. [19] end of I.2.17, Lemma 
I.2.17 and Lemma I.2.5).

It means that there exists r > 0 such that for all u ∈ U(g∞):

|Ruφ(g)| << ‖g‖r, g ∈ G(A).

Let Ω be a compact subset of G(A). Then one sees easily that this implies that for all 
u ∈ U(g∞), one has

|RuRωφ(g)| << ‖g‖r, g ∈ G(A), ω ∈ Ω. (3.1)

If P is a standard parabolic subgroup of G, the space of automorphic forms on [G]P =
NP (A)M(F )\G(A) denoted A(NP (A)M(F )\G(A)) in [19] will be denoted AP (G). The 
constant term along P (cf. [19], I.2.6), φP , of an element φ of A(G) is an element of 
AP (G). Similarly if Q is a standard parabolic subgroup contained in P and φ ∈ AP (G), 
φQ is a well defined element of AQ(G). Let An

P (G) be the space of elements φ ∈ AP (G)
such that:

φ(expXg) = eρP (X)φ(g), g ∈ G(A), X ∈ aP .

If φ ∈ AP (G), and λ ∈ a∗P,C we define

φλ(g) = eλ(HP (g))φ(g), g ∈ G(A).
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We view S(a∗P ) as the space of polynomial functions on aP and S(a∗P ) ⊗ An
P (G) as a 

space of functions on G(A) by setting (p ⊗φ)(g) = p(HP (g))φ(g). If φ ∈ AP (G), one can 
write it uniquely as:

φ(g) =
∑

λ∈EP (φ)

eλ(HP (g))(φ0,λ)(g), (3.2)

where EP (φ) ⊂ a∗P,C, φ0,λ is a non zero element of S(a∗P ) ⊗ An
P (G). The set EP (φ) is 

called the set of exponents of φ. We define also A2
P (G) as the subspace of elements φ of 

An
P (G) such that:

‖φ‖2
P :=

∫

A∞
P MP (F )NP (A)\G(A)

|f(x)|2dx.

We will need the following variant of [19], Lemma I.2.10:

3.1 Lemma. Let P = MU be a standard parabolic subgroup of G. Let Af be the ring of 
finite adeles of F . Let K ′

f be a compact open subgroup of G(Af ) and u ∈ U(g∞), c > 0
and t > 0. Let n ∈ N.

Then there exists two finite subsets {ui|i = 1, . . . N} ⊂ U(g∞) and {ci|i = 1, . . . , N} ⊂
R+∗ such that the following property is satisfied:

Let φ be a smooth function (see [19] section I.2.5 for the definition) on U0(F )\G(A), 
right invariant by K ′

f . Let r > 0 and λ ∈ a∗M0
. Suppose that for all a ∈ A∞

G , g ∈
G(A)1 ∩ sG, i ∈ {1, . . . , N}, we have the inequality:

|Rui
φ(ag)| � ci‖a‖reλ(HP0 (g))

(resp.

|Rui
φ(ag)| � ci(1 + ‖HG(a)‖)reλ(HP0 (g))(1 + ‖HP0(g)‖)N .)

Then for all a ∈ A∞
G , g ∈ G(A)1 ∩ sG, one has the inequality:

|Ru(φ− φP )(ag)| � c‖a‖reλ−tβP (HP0 (g))

(resp.

|Ru(φ− φP )(ag)| � c(1 + ‖HG(a)‖)reλ−tβP (HP0 (g))(1 + ‖HP0(g)‖)N )

where

βP (X) = inf
P
α(X), X ∈ a0.
α∈Δ0\Δ0
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Proof. The statement and the proof of [19], Lemma I.2.10 remains true if one changes 
P to a standard parabolic subgroup and, in the conclusion, one changes α to βP . 
This gives the first statement. If one replaces mλ

P0
(g) in [19] in the hypothesis by 

mλ
P0

(g)(1 +‖log(mP0(g))‖)n for some n, one can replace mP0(g)λ−tα by mP0(g)λ−tβP (1 +
‖log(mP0(g))‖)n in the conclusion: one has to use that (1 + ‖(logmP0(g))‖)n is U0(A)
invariant after (6) in the proof.

One can also replace in the statement ‖a‖r by (1 + ‖loga‖)r for a ∈ AG.
Altogether this gives the second statement. �

3.2 Lemma. Let P be a standard parabolic subgroup of G. Let d > 0. Let φ ∈ AP (G). 
The following conditions are equivalent:

a)

|φ(x)| << Ξ[G]P (x)σ[G]P (x)d, x ∈ [G]P .

b) For all Siegel domains sP , one has:

|φ(g)| << eρ(H0(g))(1 + ‖H0(g)‖)d, g ∈ sP .

c) For every compact subset Ω of G(A), one has:

|φ(expXω)| << eρ(X)(1 + ‖X‖)d, ω ∈ Ω, X ∈ a
+,P
0 .

Proof. a) is equivalent to b) follows from Lemma 2.1 and (2.9).
To prove c) implies b), we choose (cf. (2.4)), a compact subset Ω of G(A) and a compact 

subset, ΩNP
of NP (A) such that sP ⊂ ΩNP

A∞,+,P
0 Ω, where A∞,+,P

0 = {expX|X ∈
a
+,P
0 }. One has for g ∈ sP :

‖X −H0(g)‖ << 1, g = ωNP
expXω,X ∈ a

+,P
0 , ωNP

∈ ΩNP
, ω ∈ Ω. (3.3)

Then c) implies b) follows.
Similarly b) implies c). �

3.3 Definition. Let us define the space of tempered automorphic forms on [G]P , Atemp
P (G), 

as the space of automorphic forms satisfying, as well as its derivatives by elements of 
U(g∞), the equivalent properties a), b), c) of the preceding Lemma for some d.

3.4 Remark. This notion was introduced by J. Franke in [14] (cf. also [20], section 4.4 
where the space of tempered form is denoted Alog(G)).

Let us recall some facts from [5]. With the notation there, one can take dmX(x) =
(Ξ[G])(x)2dx where dx is the G(A)-invariant measure on X = [G], as it follows from the 
proof of [5] Lemma 3.3(ii). From (2.10) and the Criterion in [5] Section 3.3 it follows 
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that the weight σ−d
[G] on [G] is summable. In this context, J. Bernstein introduced in [5], 

the notion of [G]-temperedness for smooth functions on [G]:
A smooth function on [G] is said [G]-tempered if there exists d > 0 such that for every 

of its derivatives by elements of U(g∞), φ verifies:

(1 + σ[G])−dφ ∈ L2([G]).

3.5 Proposition. For φ ∈ A(G) the following conditions are equivalent:
(i) φ is tempered.
(ii) φ is [G]-tempered.

Proof. (i) implies (ii) follows from the definition of temperedness, especially condition 
a) in Lemma 3.2 and (2.10).

(ii) Let φ be [G]-tempered, i.e. there exists d > 0 such that all its derivatives by 
elements of U(g∞) are in L2([G], (1 + σ[G])−ddx).

Let us use the notation of [5], Lemma-Definition 3.3. From the proof of this Lemma, 
one can take dmX(x) = ν(x)dx where dx is the G(A)-invariant measure on X = [G] and 
ν = (Ξ[G])2, as it follows from the proof of [5] Lemma-Definition 3.3 (ii).

Let k � dimG and f be a continuously k-times differentiable function on G(A). Fix 
a basis d1, . . . , dr of the space U(g∞)k of elements of U(g∞) of degree � k and define:

Q(f) =
∑
i

|dif |2.

Let J be a compact open subgroup of G(Af). Let C([G])k,J be the space of continuously 
k-times differentiable and fixed by J . One has from the Key Lemma of [5], p. 686:

|f(x)|2 <<

∫

xB

Q(f)dmX =
∫

xB

Q(f)ν(y)dy, x ∈ [G], f ∈ C([G])k,J .

Let w = σd
[G]. Then

|f(x)|2 <<

∫

xB

Q(f)νww−1dy, x ∈ [G].

We use now that w is a weight, in the sense of [5], Definition 3.1, as well as ν to get:

|f(x)|2 << ν(x)w(x)
∫

xB

Q(f)w−1dx � ν(x)w(x)
∫

[G]

Q(f)w−1dx, x ∈ [G].

As our hypothesis implies that 
∫
[G] Q(f)w−1dx < ∞, this finishes the proof of the 

Lemma. �
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3.2. Characterization of temperedness and definition of the weak constant term

3.6 Proposition. Let φ ∈ A(G). It is in Atemp
G (G) if and only if the exponents of its 

constant term φP along any standard parabolic subgroup P of G are subunitary.

Proof. Let us show that the condition is necessary. Let φ ∈ Atemp(G). Let X ∈ aG. 
Then there exists d such that for all g ∈ [G]:

|φ(gexptX)| << (1 + t)d, t > 0.

It follows from [11], Proposition A.2.1, that the exponents of φ restricted to aG are 
unitary. Let P be a standard parabolic subgroup of G. Let X ∈ a

++
P ⊂ a

+
0 , where a++

P

is the relative interior of a+
P . Let g ∈ G(A), t ∈ R. From the property c) of the definition 

of temperedness, applied to Ω = g, one gets:

|φ(exptXg)| << eρ(tX)(1 + t)d, t > 0. (3.4)

Due to (3.1), one can apply Lemma 3.1 to the right translate by g of φ. Write X =
XG + XG with XG ∈ aG, XG ∈ aG. Applying the second statement of Lemma 3.1 for 
the parameter t large and with g equals to exptXG ∈ sG ∩G(A)1, a equals to exptXG, 
one gets, for k > 0,

|φ(exptXg) − φP (exptXg)| << eρ(tX)e−kt, t > 0.

Together with (3.4) this implies that the exponential polynomial in t, φP (exptXg) sat-
isfies:

|φP (exptXg)| << eρ(tX)(1 + t)d, t > 0.

There is a dense open set O in a++
P such that different exponents of φP take different 

values on any element of O. We use the notation of (3.2). Then [11], Proposition A.2.1 
gives:

If φP,0,λ(g) �= 0:

Reλ(X) � 0, λ ∈ EP (φ), X ∈ O.

As φP,0,λ is not identically zero, one has Reλ(X) � 0 for X ∈ O, hence also for X ∈ a
+
P

by density. This achieves the proof of (i).
The sufficiency of the condition follows from [19], Lemma I.4.I. �

3.7 Definition. Let φ ∈ Atemp(G) and let P be a standard parabolic subgroup of G. We 
define the weak constant term of φ, denoted φw

P as the sum of the terms for φP in (3.2)
corresponding to unitary exponents. It is an element of Atemp

P (G) from the preceding 
proposition applied to MP (see below Lemma 3.8 for a detailed proof). Let φ−

P = φP −φw
P

and let us denote Ew
P (φ) (resp. E−

P (φ)) the exponents of φw
P (resp. φ−

P ).
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3.3. Transitivity of the weak constant term

Let Q ⊂ P be standard parabolic subgroups of G. If φ is a function on G(A) and 
k ∈ K, we define a function on MQ(A) by:

φk,MQ(mQ) = e−ρQ(HQ(mQ))φ(mQk),mQ ∈ MQ(A) (3.5)

where ρQ ∈ aQ is the restriction of ρ to aQ, which can be extended to a0 by zero on aQ0 . 
One has the following immediate properties, by coming back to the definitions:

If φ ∈ A(G) one has:

φQ = (φP )Q, (φQ)MQ,k = [((φP )MP ,k)Q∩MP
]MQ,1, k ∈ K.

(3.6)

Notice that the function in bracket is a function on MP (A), hence the upper index MQ,1

indicates that we multiply by e−ρQ∩MP
(HQ(m)) the restriction of this function to MQ(A).

3.8 Lemma. Let Q ⊂ P be as above.
(i) If φ ∈ Atemp

P (G) the exponents of φQ are subunitary and one can define φw
Q as the 

sum of the terms of φQ corresponding to unitary exponents.
If φ ∈ Atemp(G) one has:
(ii) φw

P is in Atemp
P (G).

(iii)

φw
Q = (φw

P )wQ.

(iv)

(φw
Q)MQ,k = [((φw

P )MP ,k)wQ∩MP
]MQ,1, k ∈ K.

Proof. (i) is proved as Proposition 3.6 (i).
(ii) From (3.6) and Proposition 3.6 applied to φ, one sees that the exponents of 

(φw
P )k,MP are subunitary. Hence by this Proposition applied to MP , one sees: φw,MP ,k

P ∈
Atemp(MP ). Let ΩMP

be a compact subset of MP (A). Using K-finiteness, this gives that 
there exists d ∈ N such that:

|φP (expXωk)| << eρ(X)(1 + ‖X‖)d, X ∈ a
+,P
0 , ω ∈ ΩMP

, k ∈ K.

Every compact subset of G(A) is contained in a set of the form NP (A)Ω′K where Ω′ is a 
compact subset of MP (A). Hence, recalling the definition of Atemp

P (G) (cf. Definition 3.3), 
the preceding estimate achieves the proof of (ii).

(iii) Write φP = φw
P + φ−

P . Then none of the exponents of (φ−
P )Q is unitary. Hence as 

φQ = (φP )Q we get (iii).
(iv) follows from the second assertion of (3.6). �
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3.4. A characterization of elements of square integrable automorphic forms

It follows from [19], Lemmas I.4.1 and I.4.11 that:

A2(G) ⊂ C(G).

From this, (2.10) and Proposition 3.5, one has:

For all φ ∈ Atemp(G) and ψ ∈ A2(G), for all X ∈ aG, the integral
∫

[G]1

φ(g1expX)ψ(g1expX)dg1

is absolutely convergent. It is denoted (φ, ψ)XG . Moreover X �→ (φ, ψ)XG is 
an exponential polynomial in X. One defines similarly for φ ∈ A2

P (G), ψ ∈
Atemp

P (G), an exponential polynomial, pP (φ, ψ) on aP by pP (φ, ψ)(X) =
(φ, ψ)XP , X ∈ aP , where:

(φ, ψ)XP = e−2ρP (X)
∫

M(A)1×K

φ(expPXm1k)ψ(expPXm1k)dm1dk.

(3.7)

We denote by Atemp,c(G) the space of ψ ∈ Atemp(G) such that for all φ ∈ A2(G), the 
polynomial pG(φ, ψ) is zero. We define similarly Atemp,c

P (G).
Then one has a direct sum: Atemp,c

P (G) ⊕A2
P (G) and one can define, for φ = φ1 +φ2 ∈

Atemp,c
P (G) ⊕ A2

P (G) and ψ ∈ Atemp
P (G), an exponential polynomial denoted pP (φ, ψ)

equal to pP (φ2, ψ).

3.9 Remark. If ψ is moreover in S(a∗P ) ⊗An
P (G), p(φ, ψ) is a polynomial.

With these definitions one has:

3.10 Lemma. (i) Let Q be a standard parabolic subgroup of G and let φ ∈ Atemp
Q (G) ∩

An
Q(G) (resp. φ ∈ Atemp(G)) such that φw

P = 0 for any standard parabolic subgroup of 
G with P ⊂ Q, Q �= P , P standard then φ ∈ A2

Q(G) (resp. φ is a linear combination of 
products of exponential polynomials on aG with elements of A2(G)).

(ii) If φ ∈ Atemp(G) and φw
Q ∈ Atemp,c

Q (G) for all standard parabolic subgroup Q of 
G, then φ = 0.

Proof. (i) We first prove the result for Q = G and φ ∈ Atemp
Q (G) ∩An

Q(G). Let us show 
that for any standard parabolic subgroup of G, P �= G, the exponents of φP are strictly 
subunitary. Let ν be such an exponent. From the hypothesis it is subunitary but not 
unitary. If it is not strictly subunitary, there exists α ∈ ΔP such that:
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Reν =
∑

β∈ΔP \{α}
xββ, xβ � 0.

Let Q be the maximal parabolic subgroup of G, containing P , such that ΔQ = {α|aQ
}. 

Then ν|aQ
is an exponent of φQ. But it is clear that it is unitary, hence φw

Q is non zero 
which contradicts our hypothesis. Hence ν is strictly subunitary. Then (i) for Q = G and 
φ ∈ Atemp

Q (G) ∩ An
Q(G) follows from Lemma I.4.11 of [19]. For φ ∈ Atemp

Q (G) ∩ An
Q(G), 

(i) follows from Lemma 3.8 (iv) and what we have just proved for MQ instead of G.
If φ ∈ Atemp(G), it is equal to a linear combination of products of exponential poly-

nomials on aG with elements of Atemp
Q (G) ∩An

Q(G) to which one can apply what we have 
just proved. (i) follows.

Let us prove (ii) by induction on the dimension on aG0 . If it is zero the claim is clear. 
Suppose now dimaG0 > 0. By applying the induction hypothesis to MP for a strict 
standard parabolic subgroup P of G and Lemma 3.8, one sees that φw

P = 0. Hence by (i), 
φ is a linear combination of products of exponential polynomials on aG with elements of 
A2(G). As φ is in Atemp,c(G), one deduces from this that φ = 0. �
4. Uniform temperedness of Eisenstein series

4.1. Exponents of Eisenstein series

Let P be a standard parabolic subgroup of G. Let φ ∈ A2
P (G). Let EP (., φ, λ) be 

the Eisenstein series (cf. [6], (2.1)). Let P, Q be two standard parabolic subgroups of G
and w ∈ W (P |Q). One has the operators M(w, λ) : A2

P (G) → A2
Q(G) meromorphic in 

λ ∈ a∗P,C when restricted to a finite dimensional space of A2
P (G) (cf. [6], after (2.1) and 

Theorem 2.3 (3).
One can define EQ

P (., φ, λ) which is, when defined, in AQ(G) and is characterized by:

EQ
P (., φ, λ)MQ,k = EP∩MQ

(., φMQ,k, λ), k ∈ K. (4.1)

They are analytic on the imaginary axis: this follows from [17], Proposition 1, as the 
Working Hypothesis of this article follows from [6], Theorem 2.3 and Corollary 8.6. We 
recall the formula for generic λ (cf. [17], Proposition 4, with the notation there)

(EP (., φ, λ))Q =
∑

s∈W (Q\G/P )

EQ
Qs

(.,M(s, λ)φPs
, sλ). (4.2)

The exponents of EP (., φ, λ)Q are given by [17], equation (13). Moreover they are sub-
unitary by [17] Lemma 6 for λ unitary. Hence by Proposition 3.6, EP (., φ, λ) is tempered 
for φ ∈ A2

P (G), λ ∈ ia∗P and the weak constant term is given by:

(EP (., φ, λ))wQ =
∑

EQ
Qs

(.,M(s, λ)φ, sλ) (4.3)

s∈W (P,Q)
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which is holomorphic in a neighborhood of ia∗P . The same is true for EP (., φ, λ)−Q =
EP (., φ, λ)Q −EP (., φ, λ)wQ whose exponents are contained in

E−
Q (λ) = ∪s∈W (Q\ G/P )\W (P,Q){s(EPs

(φ) + λ)|aQ
}.

Hence, by analyticity, this inclusion holds for all λ in ia∗P . This implies:

For λ ∈ ia∗P , X �→ EP (expXg, φ, λ)−Q, X ∈ aQ is an exponential polynomial 
with exponents in a set Ẽ−

Q (λ), where Ẽ−
Q (λ) is built from E−

Q (λ) by some 
repetitions, the multiplicities depending on the multiplicities of the expo-
nents of φ. Moreover the real parts of the exponents above do not depend 
on λ ∈ ia∗P .

(4.4)

4.2. Uniform temperedness of Eisenstein series

Let Λ be a compact subset of ia∗P .

Let μ ∈ a
G,+
0 , n ∈ N. Let FΛ,μ,n be the space of functions F on G(A) × Λ

which satisfy for every compact subset Ω of G(A) and u ∈ U(g∞):

|RuF (expXω, λ)| << (1 + ‖X‖)neμ(X), X ∈ a
+
0 , ω ∈ Ω, λ ∈ Λ,

F (expXg, λ) = eλ(X)F (g, λ), X ∈ aG, g ∈ G(A), λ ∈ Λ.

(4.5)

4.1 Proposition. Let E : [G] ×Λ → C be defined by: E(g, λ) = EP (g, φ, λ) for φ ∈ A2
P (G). 

Then there exists n ∈ N such that

E ∈ FΛ,ρ,n.

Proof. We will need the fact that lemma 1.4.1 of [19] holds uniformly for a set of auto-
morphic forms which is bounded in a space of functions with given moderate growth and 
whose constant terms uniformly satisfy the assumption of that lemma. This is easy to 
see from the proof given in [19]. This applies to Eisenstein series from [6], Corollary 8.6, 
from the holomorphy of Eisenstein series on the imaginary axis and from (4.1), (4.2). �

Let us show:

If P �= G, EP (., φ, λ) ∈ Atemp,c(G) for all φ ∈ A2
P (G), λ ∈ ia∗P . (4.6)

Let X ∈ aG and us look to

I(λ) =
∫

1

EP (xexpX, φ, λ)ψ(xexpX)dx, λ ∈ ia∗P
[G]



18 P. Delorme / Advances in Mathematics 426 (2023) 109107
for ψ ∈ A2(G). From the uniform temperedness of Eisenstein series, it is a continuous
function in λ. Let z be an element of the center Z([g∞, g∞]) of the enveloping algebra of 
[g∞, g∞]. Let us assume that z∗ is in the cofinite dimensional ideal of Z([g∞, g∞]) which 
annihilates ψ. One can assume that φ is Z(g∞) eigen and let pz be the polynomial on 
ia∗P such that RzEP (., φ, λ) = pz(λ)EP (., φ, λ), λ ∈ ia∗P . Then on one hand:

∫

[G]1

RzEP (xexpX, φ, λ)ψ(xexpX)dx = pz(λ)I(λ), λ ∈ ia∗P

and on the other hand, taking adjoint, this integral is zero.
Moreover by the cofinite dimension of the annihilator in Z([g∞, g∞]) of ψ, there exists 

z as above such that pz in non identically zero. Then it follows, by continuity and density, 
that I(λ) is identically zero. This proves our claim.

5. Wave packets

5.1. Difference of a tempered automorphic form with its weak constant term

Let Q be a parabolic subgroup of G. For δ > 0, we define:

a
G,+
Q,δ = {X ∈ a

G,+
Q |α(X) � δ‖X‖,∀α ∈ ΔQ}.

5.1 Lemma. Let φ ∈ Atemp(G). Let Ω be a compact subset of G(A). Let δ > 0. Then 
there exists ε > 0 and d ∈ N such that:

|(φ− φw
Q)(nQexpXexpY ω)| << (1 + ‖X‖)deρ(X)eρ(Y )−ε‖Y ‖,

nQ ∈ NQ(A), X ∈ a
+
0 , Y ∈ a

G,+
Q,δ , ω ∈ Ω.

Proof. Using that conjugation by exp − X and exp − Y contracts NQ(A) and as 
NQ(F )\NQ(A) is compact, possibly changing Ω, one is reduced to prove a similar claim, 
but without nQ.

Let SQ,δ be the intersection of the unit sphere of aQ with aG,+
Q,δ . It is compact. Let us 

look to the family of exponential polynomials in t ∈ R:

pY,X,ω(t) := φQ(expXexptY ω) − φw
Q(expXexptY ω), X ∈ a

+
0 , Y ∈ SQ,δ, ω ∈ Ω.

On one hand, from the definition of temperedness of φ and Lemma 3.1 one gets that 
there exists d ∈ N such that:

|φQ(expXexptY ω)| << (1 + ‖X‖)deρ(X)(1 + t)detρ(Y ), X ∈ a
+
0 , Y ∈ SQ,δ, ω ∈ Ω, t > 0.
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On the other hand the temperedness of φw
Q (cf. Lemma 3.8) and the definition of the 

temperedness of φw
Q implies a similar bound for φw

Q(expXexptY ω). Hence by difference 
it follows that there exists d ∈ N such that:

|pY,X,ω(t)| << (1 + ‖X‖)deρ(X)(1 + t)detρ(Y ), X ∈ a
+
0 , Y ∈ SQ,δ, ω ∈ Ω, t > 0. (5.1)

Moreover the exponents of these exponential polynomials are equal to μ(Y ) +ρ(Y ) where 
μ is an exponent of φQ which is not imaginary. Hence its real part is equal to 

∑
α∈ΔQ

cαα

with Recα � 0, with at least one Recα non zero. Hence there exists ε′ > 0 such that for 
Y ∈ SQ,δ, Reμ(Y ) < −ε′.

By applying (5.1) to Ω′ such that Ω′ contains {exptY ||t| < ε′′, Y ∈ SQ,δ}Ω, one gets 
that the modulus of these polynomials restricted to the interval [−ε′′, ε′′] is bounded 
by a constant times (1 + ‖X‖)deρ(X). Applying Lemma 3 of [17] to the polynomials 
[(1 + ‖X‖)deρ(X)]−1pY,X,ω, one gets:

|(φQ − φw
Q)(nQexpXexpY ω)| << (1 + ‖X‖)deρ(X)eρ(Y )−ε‖Y ‖,

nQ ∈ NQ(A), X ∈ a
+
0 , Y ∈ a

G,+
Q,δ , ω ∈ Ω.

Then one uses Lemma 3.1 to have a similar bound for |φ − φQ|. By addition, this gives 
the Lemma. �
5.2 Lemma. Let φ ∈ Atemp(G). Let δ > 0 and aG+

0,Q,δ := {X ∈ a
G+
0 |α(X) � δ‖X‖, ∀α ∈

ΔP0 \ ΔQ
P0
}. Let Ω be a compact subset of G(A).

Let φ ∈ Atemp(G). There exists ε > 0 such that

|φ(nQexpXω) − φw
Q(nQexpXω)| << eρ(X)−ε‖X‖, nQ ∈ NQ(A), X ∈ a

G+
0,Q,δ, ω ∈ Ω.

Proof. For X ∈ a
G+
0,Q,δ, let Y be the element of aGQ such that α(Y ) = α(X), α ∈ ΔP0\ΔQ

P0
. 

Then, looking at coordinates in aGQ, one sees that there exists δ1 > 0 such that δ1‖Y ‖ �
δ‖X‖. Hence Y ∈ a

+
Q,δ1

. Moreover as X ∈ a
G+
0,Q,δ, X ′ = X − Y is in aG+

0 . One gets the 
required estimate by using the preceding lemma with X ′ instead of X as:

‖X ′‖ << ‖X‖ + ‖Y ‖ << ‖X‖

and if α ∈ ΔP0 \ ΔQ
P0

,

δ‖X‖ � α(Y ) << ‖Y ‖. �
5.3 Lemma. Let Ω be a compact subset of G(A) and let δ > 0. Let Λ be a bounded subset 
of ia∗P and φ ∈ A2

P (G). There exists ε > 0 such that:

|EP (nQexpXω, φ, λ) −EP (nQexpXω, φ, λ)wQ| << eρ(X)−ε‖X‖,

nQ ∈ NQ(A), X ∈ a
G+
0,Q,δ, ω ∈ Ω, λ ∈ Λ.
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Proof. The proof is similar to the proof of the preceding lemma. One has to prove an 
analogous of Lemma 5.1 for Eisenstein series by using Proposition 4.1, that the real part 
of the exponents of EP (., φ, λ)Q do not depend of λ ∈ ia∗P and the expression of the 
weak constant term of Eisenstein series (cf. (4.3)). �
5.2. Wave packets in the Schwartz space

5.4 Proposition. Let a be a smooth compactly supported function on ia∗P and φ ∈ A2
P (G). 

Then the wave packet

Ea :=
∫

ia∗
P

a(λ)EP (., φ, λ)dλ

is in the Schwartz space C([G]).

5.5 Remark. As already said in the introduction, this is due to Franke, [14], section 5.3, 
Proposition 2 (2). His proof rests on the main result of [3] for which Lapid in [17] has 
given a proof independent of [16]. We give below a more selfcontained proof.

Proof. We proceed by induction on the dimension of aG0 . The case where dima0
G = 0

is immediate by classical Fourier analysis on aG: the classical Fourier transform of a 
compactly supported function on Rn is in the Schwartz space.

Now we assume dimaG0 > 0. Let S+ be the intersection of the unit sphere of aG0
with aG,+

0 . Let X0 in S+. Let Q be the standard parabolic subgroup of G such that 
X0 ∈ a

++
Q . As X0 ∈ S+, Q is not equal to G. Let βQ(X) := infα∈ΔP0\Δ

Q
P0

α(X), X ∈ a0. 
Then βQ(X0) > 0. We choose a neighborhood S0 of X0 in S+ such that

βQ(X) � βQ(X0)/2, X ∈ S0.

Let δ = βQ(X0)/2. Then

S0 ⊂ a
G,+
0,Q,δ.

Let Λ be the support of a. We use the notation of Proposition 4.1. Let E(., λ) :=
EP (., φ, λ). Then E(., λ) is the sum of 2 terms: E(., λ) − E(., λ)wQ and E(., λ)wQ. Let 
us show that, for all k ∈ N one has:

|
∫

ia∗
P

a(λ)F (expXGexptXω, λ)dλ| << (1 + ‖XG‖)−k(1 + t)−ketρ(X),

t > 0, XG ∈ aG, X ∈ S0, ω ∈ Ω, λ ∈ Λ,
(5.2)

when F is any of these two families of functions. The case where F = Ew
Q follows from 

the induction hypothesis, using the formula for the weak constant term of Eisenstein 
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series (cf. (4.3), (4.1)) and the fact that in this formula M(w, λ) is analytic in λ (cf. e.g. 
[17], after the Working Hypothesis). Let us treat the case where F = E−Ew

Q. One knows 
from Lemma 5.3 that there exists ε > 0 such that:

|EP (expXGexptXω, φ, λ) −EP (expXGexptXω, φ, λ)wQ| << etρ(X)−εt,

XG ∈ aG, X ∈ S0, ω ∈ Ω, λ ∈ Λ.

By multiplying by a and integrating on iaP , we get (5.2) for F = E−Ew
Q and k = 0. One 

applies this to successive partial derivatives of a with respect to elements of aG. Then 
using that Ew

Q transforms under aG by λ and applying integration by part one gets the 
result for all k. One can do the same for RuE, u ∈ U(g∞).

As a finite number of S0 covers S+ this achieves to prove the proposition. �
6. An isometry

We recall the statement of Theorem 2 of [17].
Let Pst be the set of standard parabolic subgroups of G. Let P be a standard parabolic 

subgroup of G. Let WP be the space of compactly supported smooth functions on ia∗P
taking values in a finite dimensional subspace of A2

P . Write:

‖φ‖2
∗ =

∫

ia∗
P

‖φ(λ)‖2
P dλ. (6.1)

For φ ∈ WP , let

ΘP,φ(g) =
∫

ia∗
P

EP (g, φ(λ), λ)dλ.

Let L2
disc(A∞

MM(F )\M(A)) be the Hilbert sum of irreducible M(A)-subrepresentations 
of L2(A∞

MM(F )\M(A)).
If P is a standard parabolic subgroup of G, let |P(MP )| be equal to the number 

of parabolic subgroups having MP as Levi factor. Consider the space L consisting of 
families of measurable functions FP : ia∗P → Ind

G(A)
P (A)L

2
disc(A∞

MM(F )\M(A)) where P
describes the set of standard parabolic subgroups of G such that:

‖(FP )‖2 =
∑

P∈Pst

|P(MP )|−1‖FP ‖2
∗ < ∞

and

FQ(wλ) = M(w, λ)FP (λ), w ∈ W (P |Q), λ ∈ ia∗P . (6.2)

Let L′ be the subspace of L consisting of those families such that FP ∈ WP for all P .
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6.1 Theorem. (cf. Lapid, [17], Theorem 2, for a short proof) The map E from L′ to 
L2(G(F )\G(A))

(FP ) �→
∑

P∈Pst

|P(MP )|−1ΘP,FP

extends to an isometry E from L to L2(G(F )\G(A)).

6.2 Lemma. We take the notation of Proposition 5.4. In particular P is fixed. Then Ea

is in the image of E.

Proof. For this one has to define a family in L′ whose image by E is a non zero multiple 
of Ea. Let ψ be the map on ia∗P with values in A2

P (G) defined by:

ψ(λ) = a(λ)φ.

FQ(λ) =
∑

s∈W (P |Q)

M(s, s−1λ)ψ(s−1λ).

It is an easy consequence of the product formula for intertwining operators (cf. [6], The-
orem 2.3 (5)) that the family (FQ) satisfies (6.2). Moreover it is in L′ as the intertwining 
operators are analytic on the imaginary axis (cf. [6] Remark 1.3). Then the functional 
equation for Eisenstein series (cf. [6] Theorem 1.3 (3)), implies that the image of (FQ)
by E is a non zero multiple of Ea. �
7. Truncated inner product

If Q is a semistandard parabolic subgroup of G, let:

θQ(λ) =
∏

α∈ΔQ

λ(α̌), λ ∈ a∗Q,C.

Let LQ be the cocompact lattice of aGQ generated by Δ̌Q and let CQ = vol(aGQ/LQ).
We fix a Siegel domain as in (2.3) associated to a compact set Ω0 ⊂ P 1

0 (A) and to 
T0 ∈ a0 that we might choose in −a

+
0 . We can choose Ω0 = ΩN0ΩM1

0
where ΩN0 (resp. 

ΩM1
0
) is a compact subset of N0(A) (resp. M0(A)1) such that

N0(A) = N0(F )ΩN0 ,M0(A)1 = M0(F )ΩM1
0
. (7.1)

If C is a subset of a0 we define M0(C) = {m ∈ M0(A) ∩ G(A)1|H0(m) ∈ C} which is 
right invariant by M0(A)1. We take T dominant and regular in aG0 . We let dP0(T ) =
infα∈ΔP0

α(T ) and if Q is a standard parabolic subgroup of G, TQ is the orthogonal 
projection of T on aQ.
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If Q is a standard parabolic subgroup of G, we define the convex set CQ
T of aG0 by

CQ
T = {X ∈ aG0 |α(X − T0) � 0,∀α ∈ ΔQ

0 , �(X − T ) � 0,∀� ∈ Δ̂Q
0 , β(X − T ) > 0,

∀β ∈ ΔQ}.

Notice that CG
T is compact.

Let TMQ
= T −TQ, T0,MQ

= T0 −T0,Q. Let CMQ

TMQ
⊂ a

MQ

0 ⊂ aG0 be defined as CQ
T with 

TMQ
= T − TQ instead of T and T0,MQ

instead of T0. Let aG,++
Q (T ) = TQ + a

G,++
Q . We 

have:

CQ
T = C

MQ

TMQ
+ a

G,++
Q (T ). (7.2)

We define

CG
T = G(F )ΩN0M0(CG

T )K ⊂ [G]

which is compact. Using (7.1), one has:

CG
T = G(F )N0(A)M0(CG

T )K.

Replacing N0 by N0 ∩MQ and G by MQ we define CMQ

T ⊂ [MQ] by:

C
MQ

TMQ
= MQ(F )(N0 ∩MQ)(A)M0(C

MQ

T )(K ∩MQ(A)), (7.3)

which is independent of the choice of Ω0.
We define

C
Q
T = Q(F )N0(A)M0(CQ

T )K ⊂ Q(F )\G(A)1. (7.4)

Then CQ
T is NQ(A) invariant as

NQ(A)Q(F )N0(A) = Q(F )NQ(A)N0(A) = Q(F )N0(A).

As N0(A) = NQ(A)(N0 ∩MQ)(A) one has from (7.2):

C
Q
T = NQ(A)exp(aG,++

Q (T ))CMQ

TMQ
K ⊂ Q(F )\G(A)1. (7.5)

We say that a strictly P0-dominant T ∈ aG0 is sufficiently regular if there exists a suf-
ficiently large d > 0 with dP0(T ) � d. We have the following result due to Arthur ([1], 
Lemma 6.4).
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Let T be sufficiently regular.
(i) For each standard parabolic subgroup Q of G, viewing CQ

T as a subset of 
Q(F )\G(A), the projection to [G] is injective on this set. Its image is still 
denoted CQ

T .
(ii) The CQ

T form a partition of [G]1.

(7.6)

For a compactly supported function f on CQ
T we have, using (7.5):

∫

C
Q
T

f(x)dx =
∫

(NQ(F )\NQ(A))×a
G,++
Q (T )×C

MQ
TMQ

×K

f(nQexpXm1
Qk)e−2ρQ(X)dnQdXdm1

Qdk,

(7.7)
as follows from the integration formula on G(A) related to the decomposition G(A)1 =
NQ(A)expaGQMQ(A)1K. Here dm1

Q is the measure on [MQ]1.
Let

aG0,− = {X ∈ aG0 |ω(X) � 0,∀ω ∈ Δ̂0}

be the cone generated by the negative coroots and

aGQ,−(T ) = {X ∈ aGQ|ω(X − T ) � 0,∀ω ∈ Δ̂Q} = TQ + aQ ∩ aG0,−.

Let p be an exponential polynomial with unitary exponents on aQ and Z ∈ aG. If 
μ ∈ a∗Q,C has its real part strictly Q-dominant, the integral:

∫

aG
Q,−(T )

eμ(X+Z)p(X)dX

is convergent and has a meromorphic continuation in μ. When it is defined, its value in 
λ ∈ ia∗Q,C is denoted:

∗∫

Z+aG
Q,−(T )

eλ(X)p(X)dX.

Notice that

∗∫

aG
Q,−(0)

eλ(X)dX = CQθ
−1
Q (λ). (7.8)

We use the notation defined just before Remark 3.9 in order to define pQ(φ, Ψ)(X). We 
define for φ ∈ A2

Q(G) ⊕Atemp,c
Q (G), λ ∈ a∗Q,C and Ψ ∈ Atemp

Q (G), Z ∈ aG:
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rTQ(φλ,Ψ)Z =
∗∫

Z+aG
Q,−(T )

eλ(X)pQ(φ,Ψ)(X)dX. (7.9)

Let Z ∈ aG. If p is a polynomial on aQ, let pZ be the polynomial on aGQ defined by:

pZ(X) = p(X + Z), X ∈ aGQ

and pZ(∂) its Fourier transform viewed as a differential operator on aG,∗
Q . More precisely, 

let us define the Fourier transform Fφ of φ ∈ C∞
c (aGQ) by

Fφ(λ) =
∫

aG
Q

φ(X)e<λ,X>dX, λ ∈ iaG∗
Q , (7.10)

where the measure on aGQ has been chosen in (2.2). Then p(∂) is characterized by:

F(pφ) = p(∂)(Fφ). (7.11)

Recall that CQ has been defined in the beginning of this section. Taking into account 
the definition of Ψ0,ν (cf. (3.2)), Remark 3.9 shows that pQ(φ, Ψ0,μ)Z is a polynomial. 
Using (7.8) and (7.11), one sees:

rTQ(φλ,Ψ)Z = CQ

∑
μ∈EQ(Ψ)

[pQ(φ,Ψ0,μ)Z(∂)e<.,TQ>θ−1
Q ](λ− μ), (7.12)

where Ψ0,μ is defined as in (3.2).
One can define rT (ψ, Ψ) where ψ is a linear combination of φλ. If Φ is a function on 

G(A) and Z ∈ aG, one defines a function on G(A)1 by:

ΦZ(g1) = Φ(g1expZ), g1 ∈ G(A)1.

7.1 Theorem. Let T ∈ aG0 be sufficiently regular, Z ∈ aG and λ ∈ ia∗P . Let Φ be an 
element of Atemp(G) and φ ∈ A2

P (G). We denote by E(., λ) the function EP (., φ, λ). Let:

ΩT
P0

(E(λ),Φ)Z :=
∫

CG
T

E(x, λ)ZΦZ(x)dx,

ωT
P0

(E(λ),Φ)Z :=
∑

Q∈Pst

rTQ(E(λ)wQ,Φw
Q)Z .

(i) Let Hc be the subset of λ ∈ ia∗P where the summands of ωT
P0

(E(λ, Φ) are analytic 
for all Z. From (7.12), this set contains the complementary set of a finite union of 
hyperplanes. The function ωT

P0
(E(λ), Φ)Z on Hc extends to an analytic function on ia∗P

denoted in the same way.
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(ii) Let δ > 0. Let Λ be a bounded set of ia∗P . There exists k ∈ N, ε > 0 such that the 
difference

ΔT
P0

(E(λ),Φ)Z := ΩT
P0

(E(λ),Φ)Z − ωT
P0

(E(λ),Φ)Z

is an O(e−ε‖T )‖(1 + ‖Z‖k) for λ ∈ Λ, for T such that dP0(T ) � δ‖T‖, Z ∈ aG.

The proof is by induction on dimaG0 . The statement is clear for dimaG0 = 0. We 
suppose that the Theorem is true for all groups G′ with dimaG

′
0 < dimaG0 .

7.2 Lemma. Let k0, δ > 0. Then if Λ is a bounded subset of Hc, there exists C > 0, 
k ∈ N, ε > 0 such that

|ΔT+S
P0

(E(λ),Φ)Z − ΔT
P0

(E(λ),Φ)Z | � Ce−ε‖T‖(1 + ‖Z‖)k,

for λ ∈ Λ, Z ∈ aG, for T, S strictly P0-dominant such that dP0(T ) � δ‖T‖, ‖S‖ � k0‖T‖, 
‖T0‖ � ‖T‖.

Proof. Let us define:

CQ
T+S,T = CG

T+S ∩ CQ
T , (7.13)

and

C
Q
T+S,T = G(F )N0(A)M0(CQ

T+S,T )K

From (7.6), these subsets of [G] are disjoints. Moreover from (7.6), they cover CG
T+S.

Let us show that, for T, S as in the Lemma, there exists δ1 > 0 such that:

α(X) � δ1‖X‖, X ∈ CQ
T+S,T , α ∈ Δ0 \ ΔQ

0 . (7.14)

Let X ∈ CQ
T+S,T and α ∈ Δ0 \ ΔQ

0 . The definition of CQ
T shows in particular that 

X = T −X ′ + Y where X ′ =
∑

β∈ΔQ
0
dββ̌ with dβ > 0 and Y ∈ a

+
Q. Since α(β̌) � 0 for 

each β ∈ ΔQ
0 , from the properties of simple roots, one has

α(X) � α(T ) � δ‖T‖. (7.15)

Let us show:

‖X − T0‖ � ‖T + S‖, X ∈ CG
T+S . (7.16)

As X ∈ CG
T+S , X−T0 = (T +S) −Y ′ where Y ′ is a linear combination with nonnegative 

coefficients of coroots. Moreover T + S and X − T0 are in a+
0 . Hence
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(X − T0, X − T0) � (X − T0, T + S) � (T + S, T + S)

which proves our claim. Hence

‖X‖ � ‖T‖ + ‖S‖ + ‖T0‖ � (2 + k0)‖T‖, X ∈ CQ
T

and

α(X) � δ1‖X‖

where δ1 = (2 + k0)−1δ. This proves (7.14).
From (7.15) one gets:

‖X‖ >> ‖T‖, X ∈ CQ
T

if Q �= G.
Hence from Lemma 5.2, one gets:

Let Ω be a compact subset of G(A). There exists ε > 0, k ∈ N such that

|(Φ − Φw
Q)Z(nQexpXω)| << eρ(X)−ε‖T‖(1 + ‖Z‖)k,

nQ ∈ NQ(A), X ∈ CQ
T+S,T , ω ∈ Ω, Z ∈ aG

and T, S as in the Lemma.

(7.17)

Similarly one gets from Lemma 5.3 that there exists ε > 0 and k ∈ N such that:

|(EP (nQexpXω, φ, λ)Z −EP (nQexpXω, φ, λ)ZQw | << eρ(X)−ε‖T‖(1 + ‖Z‖)k,

nQ ∈ NQ(A), X ∈ CQ
T+S,T , ω ∈ Ω, λ ∈ Λ, Z ∈ aG.

(7.18)

One has:

The volume of CG
T and C

Q
T+S,T is bounded by the volume of [G]1. (7.19)

Let us introduce:

IQ(T, λ)Z :=
∫

C
Q
T+S,T

E(x, λ)ZΦZ(x)dx, IwQ(T, λ)Z :=
∫

C
Q
T+S,T

E(x, λ)w,Z
Q Φw,Z

Q (x)dx.

Notice that:

IG(T, λ)Z = IwG(T, λ)Z = ΩT
P0

(E(λ)Z ,ΦZ),
∑

Q∈Pst

IQ(T, λ)Z = ΩT+S
P0

(E(λ)Z ,ΦZ).

(7.20)
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For C > 0, k ∈ N and ε > 0 let us consider the function of T and Z:

Ce−ε‖T‖(1 + ‖Z‖)k. (7.21)

It follows from (7.17), (7.18), as well as the tempered estimate for Φ and the uniform 
estimate for Eisenstein series (cf. Proposition 4.1) that:

The difference of

|IQ(T, λ)Z − IwQ(T, λ)Z |

is bounded for λ, T , S as in the Lemma, by a function of type (7.21).

(7.22)

Let us define

a
G,++
Q (T + S, T ) := {TQ + Y |Y ∈ a

G,++
Q , �α(Y − S) � 0,∀α ∈ ΔQ} ⊂ aGQ.

Let us show

CQ
T+S,T = a

G,++
Q (T + S, T ) + C

MQ

TMQ
. (7.23)

Let X ∈ C
MQ

T and TQ+Y ∈ a
G,++
Q (T +S, T ). Let us show that X+TQ+Y is an element 

of CQ
T+S,T . In view of (7.2), the only thing to prove is that it is an element CG

T+S. One 
has:

X + TQ + Y − S − T = Y − S + X − TMQ
.

Let α ∈ Δ0 \ΔQ
0 . Then �α(Y −S +X −TMQ

) = �α(Y −S) which is less than or equal 
to 0, by the definition of aG,++

Q (T +S, T ). Let α ∈ ΔQ
0 . The difference Y −SQ is a linear 

combination with coefficients less or equal to zero of elements of Δ̌Q hence of Δ̌0. The 
same is true for Y − S = Y − SQ − SMQ

. Hence �α(Y − S) � 0. The definition of CMQ

T

shows that �α(X−TMQ
) � 0. Hence �α(Y −S +X−TMQ

) = �α(Y −S) � 0, α ∈ ΔQ
0 . 

This achieves to prove X + TQ + Y ∈ CG
T+S,T as wanted. Hence

a
G,++
Q (T + S, T ) + C

MQ

T ⊂ CQ
T+S,T . (7.24)

The reciprocal inclusion follows easily from (7.2) and of the definition of CQ
T+S,T . This 

achieves to prove (7.23).
We use that Φw

Q and EP (x, φ, λ)wQ are left NQ(A)-invariant and that the volume of 
NQ(F )\NQ(A) is equal to 1. If P is a parabolic subgroup of G with Levi factor MP and 
k ∈ K, we have defined (cf. section 3.3) for any function φ on G(A), the function φMP ,k

on MP (A) by:
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φMP ,k(m) = e−ρ(HP (m))φ(mk),m ∈ MP (A).

Thus, using (7.7) and (3.5), we get:

IwQ(T, λ)Z =
∫

C
Q
T+S,T

E(x, λ)w,Z
Q Φw,Z

Q (x)dx =

∫

a
G,++
Q (T+S,T )×C

MQ
T ×K

E(expXm1
Qk, λ)w,Z

Q Φw,Z

Q (expXm1
Qk)e−2ρQ(X)dXdm1

Qdk

=
∫

a
G,++
Q (T+S,T )×K

ΩT
P0∩MQ

([E(λ)wQ]MQ,k, [Φw
Q]MQ,k)X+Zdm1

QdXdk.

Recall that by induction hypothesis, Theorem 7.1 is true for MQ if Q �= G. Taking into 
account (7.19) and the previous equality, one sees, using K-finiteness, that the difference 
of the preceding expression with the same expression, where ΩT

P0∩MQ
is replaced by 

ωT
P0∩MQ

, denoted JQ(T, λ)Z , is bounded by a function of type (7.21).
One has:

JQ(T, λ)Z =
∫

a
G,++
Q (T+S,T )×K

ωT
P0∩MQ

([E(λ)wQ]MQ,k, [Φw
Q]MQ,k)X+ZdXdk

=
∫

a
G,++
Q (T+S,T )×K

∑
R1∈Pst(MQ)

rTR1
(([E(λ)wQ]MQ,k)wR1

, ([Φw
Q]MQ,k)wR1

)X+ZdXdk.

If R1 is a standard parabolic subgroup of MQ, let P1 be the standard parabolic subgroup 
of G contained in Q with P1 ∩MQ = R1. Using Lemma 3.8 (iv), the definition (7.9), for 
MQ and R1, and integrating over K, one sees:

JQ(T, λ)Z =
∑

P1∈Pst(G),P1⊂Q

∗∫

a
G,++
Q (T+S,T )+a

MQ
P1∩MQ,−(T )

pP1(E(λ)wP1
,Φw

P1
)(X + Z)dX.

We observe that JG(T, λ)Z = ωT
P0

(E(λ)Z , ΦZ) and one has seen that IG(T, λ)Z =
ΩT

P0
(E(λ)Z , ΦZ). One writes:

ΩT
P0

(E(λ)Z ,ΦZ) = ΔT
P0

(E(λ)Z ,ΦZ) + ωT
P0

(E(λ)Z ,ΦZ).

Using what we have just proved and (7.20), and (7.22), we get:
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The modulus of the difference

ΩT+S
P0

(E(λ)Z ,ΦZ) − ΔT
P0

(E(λ)Z ,ΦZ)

= ΔT+S
P0

(E(λ)Z ,ΦZ) + ωT+S
P0

(E(λ)Z ,ΦZ) − ΔT
P0

(E(λ)Z ,ΦZ)

with J(T, λ)Z =
∑

Q∈Pst(G) JQ(T, λ)Z is bounded by a function of type 
(7.21).

(7.25)

Thus it is enough, to finish the proof of the Lemma, to prove:

J(T, λ)Z = ωT+S
P0

(E(λ)Z ,ΦZ).

Using the expression of JQ(T, λ)Z above and interverting the sum over Q and P1, one 
sees that:

J(T, λ)Z

=
∑

P1∈Pst(G),Q∈Pst(G),P1⊂Q

∗∫

a
G,++
Q (T+S,T )+a

MQ
P1∩MQ,−(T )+Z

e−2ρP1 (X)pP1(E(λ)wP1
,ΦP1)(X)dX.

Let aMQ

P1∩MQ,−− be the interior in aQ of aMQ

P1∩MQ,− and let aG,+
Q (T + S, T ) be the closure 

of aG,++
Q (T + S, T ) in aQ. Let us show:

The union

∪Q∈Pst,P1⊂Qa
G,+
Q (T + S, T ) + a

MQ

P1∩MQ,−−(TMQ
)

is disjoint and is a partition of aGP1,−(T + S).

(7.26)

Let us consider the projection of aP1 on the closed convex cone aGP1,−. By translating, 
one sees, using e.g. [9] Corollary 1.4, that, if X ∈ aGP1,−(T + S), there exists a unique 
standard parabolic subgroup of G, Q with P1 ⊂ Q such that X = X ′ + Y , X ′ ∈
a
MQ

P1∩MQ,−−(TMQ
), Y ∈ a

G,+
Q (T ). As X ∈ aGP1,−(T + S), one has Y ∈ a

G,+
Q (T + S, T ). 

Hence the union in (7.26) contains aGP1,−(T + S) and is disjoint.
Reciprocally let us prove that for P1 ⊂ Q:

a
MQ

P1∩MQ,−−(TMQ
) + a

G,+
Q (T + S, T ) ⊂ aGP1,−(T + S).

To see this, by translation, it is enough to prove that if X ∈ a
MQ

P1∩MQ,−−(TMQ
), Y ∈ aGQ,−

one has X + Y ∈ aGP1,− which is clear by convexity. This proves (7.26).
Neglecting sets of measure zero, this implies that the sum J(T, λ) is equal to 

ωT+S
P (E(λ), Φ)Z . This achieves to prove the lemma. �
0
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7.3 Remark. A similar decomposition than (7.26) without replacing aG,++
Q , aMQ

P1∩MQ,−

by aG,+
Q , aMQ

P1∩MQ,−− respectively and that is a direct consequence of the Langlands 
combinatorial lemma.

We will give below a proof of Theorem 7.1. It is done using first the argument of 
[2], Lemma 9.2 and second using wave packets as in [13] Lemma 3 and end of proof of 
Proposition 1 (see also the end of the proof of Theorem 1 in [12]).

One fixes δ > 0 and one writes lim
T

δ−→∞
to describe the limit when ‖T‖ tends to 

infinity verifying dP0(T ) � δ‖T‖. One deduces from the preceding Lemma, as in ([2], 
Lemma 9.2) that the limit

Δ∞
P0

(E(λ),Φ)Z = lim
T

δ−→∞
ΔT

P0
(E(λ),Φ)Z

exists uniformly for λ in any compact subset of Hc and if Λ is a bounded set in Hc, there 
exists C, ε > 0, k ∈ N such that for λ ∈ Λ and T such that dP0(T ) � δ‖T‖, Z ∈ aG, one 
has:

|Δ∞
P0

(E(λ),Φ)Z − ΔT
P0

(E(λ),Φ)Z | � Ce−ε‖T‖(1 + ‖Z‖)k. (7.27)

We prepare some Lemmas to prove that Δ∞
P0

(E(λ), Φ)Z is identically zero on Hc. Using 
Proposition 5.4, we define a distribution TΦ,Z on ia∗P by:

TΦ,Z(a) =
∫

[G]1

Ea(x)ZΦZ(x)dx, a ∈ C∞
c (ia∗P ),

where Ea is the wave packet 
∫
ia∗

P
a(λ)E(λ)dλ.

7.4 Lemma. The support S of TΦ,Z is a finite set.

Proof. For λ ∈ ia∗P , the center Z(g∞) of U(g∞) acts on E(λ) by a character denoted 
χλ and Φ is annihilated by an ideal I of Z(g∞) of finite codimension. Let us compute in 
two ways:

A :=
∫

[G]1

(zEa(x))ZΦZ(x)dx, z ∈ Z([g∞, g∞]) ⊂ Z(g∞), z∗ ∈ I,

where z∗ is the adjoint of z.
On one hand, looking to the action of z on E(λ) and differentiating under the integral 

defining Ea we get:

A = TΦ,Z(p(z)a),

where p(z)(λ) = χλ(z), which is a polynomial in λ. On the other hand:
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A =
∫

[G]1

(Ea(x))Zz∗ΦZ(x)dx = 0.

From the equality above, if z∗ ∈ I the distribution p(z)TΦ,Z is equal to zero. Let I∗ =
{z∗|z ∈ I}. As I is finite codimensional, the set of λ ∈ ia∗P such that I∗ ⊂ kerχλ is 
a finite set F . Hence if λ /∈ F , there exists z ∈ I∗ such that p(z)(λ) �= 0. Hence TΦ,Z

restricted to a neighborhood of λ is zero. Hence S ⊂ F . �
7.5 Lemma. If a ∈ C∞

c (ia∗P ) has its support in the complimentary set of S, one has:

lim
T

δ−→∞

∫

ia∗
P

a(λ)ΩT
P0

(E(λ),Φ)Zdλ = 0.

Proof. From Fubini theorem and Lebesgue dominated convergence the limit is equal to 
TΦ,Z(a), which is equal to zero by the preceding lemma. �
7.6 Lemma. If a ∈ C∞

c (ia∗P ) has its support in Hc one has:

lim
T

δ−→∞

∫

ia∗
P

a(λ)ωT
P0

(E(λ),Φ)Zdλ = 0.

Proof. This follows from the definition of ωT
P0

(E(λ), Φ)Z , (7.12) and from the fact that 
the Fourier transform of a C∞

c function on Rn is rapidly decreasing. �
7.7 Lemma. If Sc is the complimentary set of S in ia∗P one has:

Δ∞
P0

(E(λ),Φ)Z = 0, λ ∈ Hc ∩ Sc.

Proof. From the two preceding lemmas one has for all in C∞
c (ia∗P ) with support in the 

intersection Hc ∩ Sc:
∫

ia∗
P

a(λ)Δ∞
P0

(E(λ),Φ)Zdλ = 0.

This implies the Lemma. �
Proof. Let us finish the proof of the Theorem 7.1. The vanishing property of the preced-
ing Lemma together with (7.27) shows that the bound of the theorem is true for λ in a 
bounded subset of Hc ∩Sc. Recall that ΩT

P0
(E(λ), Φ)Z is analytic in λ. Hence, for any λ

in ia∗P and any compact neighborhood of λ, V , ωT
P0

(E(λ), Φ)Z is bounded on V ∩Hc∩Sc. 
But this meromorphic function has only possible poles along hyperplanes. It follows that 
it is analytic on ia∗P . This proves the first part of the Theorem. The second part follows 
from (7.27) by continuity and density. �
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Let Λ ∈ a∗MP
be strictly P -dominant. If Q is a parabolic subgroup of G with Levi 

factor MQ one will denote by ψΛ
Q the characteristic function of:

CΛ
Q = {X ∈ aGQ|ωα(X)Λ(α̌) > 0,∀α ∈ ΔQ}

that we look as a tempered measure on aGP by our choice of Haar measures. Let βΛ
Q

be the number of elements α̌ of Δ̌Q such that Λ(α̌) < 0. Then one has the following 
proposition, whose proof is analogous to Proposition 2 in [13], using (4.2) and (7.12). 
One has to remark that only terms with s ∈ W (Q|P ) due to Lemma 4.6.

7.8 Proposition. Using the notation of Theorem 7.1, the analytic function λ �→
ωT
P0

(E(λ, Φ)Z is equal, as a distribution on ia∗P , to the sum:
(a) on Q ∈ Pst

(b) on s ∈ W (Q|P )
(c) on μ ∈ EQ(Φw

Q) of:

CQ[(pQ(M(s−1, λ)φ,Φw
Q,0,μ)Z ◦ s−1)(∂)((−1)β

Λ
QsF(ψΛ

Qs,TQs ) ](λ− sμ),

where Qs = sQs−1, TQs = sTQ and ψΛ
Qs,TQs is the characteristic function of the translate 

of CΛ
Qs , CΛ

Qs − TQs and F indicates that we take the Fourier transform.

Proof. First ω(λ) := ωT
P0

(E(λ), Φ) is analytic on ia∗P from Theorem 7.1 (i). Then, ω(λ)
is the limit when t to 0+ of ω(λ + tΛ) in the sense of distributions. Then one uses [12], 
Lemma 11, for each term of the sum defining ω(λ + tΛ). The Lemma follows. �

The following theorem is the main result of this article.

7.9 Theorem. The image of the map E of Theorem 6.1 is equal to L2(G(F )\G(A)).

We start with a preliminary remark. From [5], end of section 3.5, automorphic forms 
which may contribute to the spectrum (see below for a precise meaning) are [G]-
tempered. Hence they are tempered, by Proposition 3.5.

7.10 Lemma. If the image of E is not equal to L2(G(F )\G(A)), there exists a non zero 
tempered automorphic form Φ, transforming under a unitary character νG of aG and 
orthogonal to all the wave packets Ea of Proposition 5.4, when P , φ and a vary.

Proof. The proof is similar to [10], Lemma 11. Let H be the orthogonal to the image of E , 
which is assumed to be non zero. One considers the decomposition of this representation 
of G(A) into an Hilbert integral of multiple of irreducible representations:

H =
∫

Hπdμ(π).

Ĝ
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The restriction ξ of the Dirac measure at the neutral element to the space H∞ of C∞

vectors, disintegrates:

ξ =
∫

Ĝ

ξπdμ(π),

where ξπ ∈ (H−∞
π )G(F ), i.e. is a G(F )-invariant distribution vector on Hπ.

Let

v =
∫

Ĝ

vπdμ(π) ∈ H∞.

We assume that it is K-finite and non zero.
Let (gn) be a dense sequence in G(A). For p, q, n ∈ N, let:

Xp,q,n = {π ∈ Ĝ| | < ξπ, π(gn)vπ > | � pΞ(gn)(1 + σ[G](gn))q}

For all g ∈ G(A), the map π �→< ξπ, π(g)vπ > is μ-measurable. Hence all Xp,q,n are 
measurable as well as Xp,q = ∩n∈NXp,q,n. Moreover, from our preliminary remark, just 
after the statement of the theorem, ∪p,q∈NXp,q is equal to Ĝ up to a set of μ-measure 0. 
Let X0

p,q be the set of elements π of Xp,q such that g �→< ξπ, π(g)vπ > is non identically 
zero. As v is non zero, one can find p, q such that the set X0

p,q is of non zero measure. 
Let χ be the characteristic function of X0

p,q. Then one has for any θ ∈ L∞(Ĝ, μ), going 
back to the definition:

fθ :=
∫

Ĝ

χ(π)θ(π)vπdμ(π) ∈ H∞.

Hence by using the disintegration of ξ, viewing fθ as a function on G(A), one has:

fθ(g) =
∫

Ĝ

χ(π)θ(π) < ξπ, π(g)vπ > dμ(π), g ∈ G(A).

Let us show that the map (π, g) �→< ξπ, π(g)vπ > is measurable. Let g = g∞gf where 
g ∈ G(A∞) and gf ∈ G(Af ). As v is smooth the map is locally constant in gf . One 
easily reduces to gf = 1 and look to the dependence on (π, g∞) only. Then one uses the 
argument given in [10], p. 96 which uses step functions.

Using (2.10), one can apply Fubini’s theorem to
∫

[G]

Ea(x)fθ(x)dx =
∫

X0
p,q

θ(π)
∫

[G]

Ea(x)< ξπ, π(x)vπ >dxdμ(π).

This has to be zero for all θ. Hence for almost all π in X0
p,q one has:
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∫

[G]

Ea(x) < ξπ, π(x)vπ > dx = 0

for a given Ea. Using a separability argument, one finds an element π0 of X0
p,q ⊂ Ĝ such 

that it is true for all Ea. One takes Φ =< ξπ0 , π0(x)vπ0 >. �
Let a = a1 ⊗ a2 where a1 ∈ C∞

c ((iaGP )∗) and a2 ∈ C∞
c (ia∗G)). Let νG ∈ ia∗G which 

describes the action of aG on π0. Then, using Fourier inversion formula for ia∗G, one has:

∫

G(F )\G(A)

Ea(x)Φ(x)dx = a2(νG)
∫

G(F )\G(A)1

Ea1(x)Φ(x)dx

where Ea1 =
∫
iaG,∗

P
a1(λ)EP (x, φ, λ)dλ. We want to compute

I =
∫

G(F )\G(A)1

Ea1(x)Φ(x)dx

using the preceding theorem.

7.11 Lemma.

I = CP

∑
μ∈Ew

P (Φ)

[pP (φ,ΦP,0,μ)0(∂)a1](μ|aG
P
).

Proof. We can compute I as limit. Using Lebesgue dominated convergence and Fubini 
theorems, one can write I as a limit. Let T be strictly P0-dominant. Then:

I = limn→+∞

∫

iaG,∗
P

a1(λ)ΩnT
P0

(E(λ),Φ)0dλ.

From Theorem 7.1, one can replace Ω by ω.
Then one uses Proposition 7.8 with Z = 0. One sees easily that unless Qs = P , the 

characteristic function of CΛ
Qs − nTQs tends to 0 in the sense of tempered distributions. 

But in this case Q is standard and conjugate to P . Hence Q = P and s = 1. Using 
Proposition 7.8, one computes easily the limit. �

Now we can finish the proof of the theorem. The hypothesis on Φ above shows that the 
right hand side of the equality of the Lemma is zero for all P , φ, a1, a2. One concludes, 
by varying a1, a2 and φ, that ΦP,0,μ ∈ Atemp,c

P (G) for all P and μ ∈ Ew
P (Φ). Then, using 

Lemma 3.10 (ii), one concludes that Φ = 0. A contradiction which finishes the proof. �
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