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Integral representations of automorphic L-functions

F number field, A its adele ring,

G reductive group over F , [G ] = G (F )\G (A),
H ≤ G algebraic subgroup, [H] = H(F )\H(A),
π an irreducible unitary cuspidal automorphic representation of G ,

r : LG → GL(V ).

Goal : Find relations when φ ∈ π varies∫
[H]
φ(h)dh︸ ︷︷ ︸

period side

←→ L(s, π, r)︸ ︷︷ ︸
L-function side

Applications :

Analytic properties, poles,

Functional equation,

Special values.
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Example I : Tate’s Thesis

Let χ be an automorphic character of A×. For Φ ∈ S(A), set

Θ(h,Φ) =
∑
x∈F×

Φ(hx), h ∈ A×.

For ℜ(s) > 1, consider

Z (χ,Φ, s) =

∫
F×\A×

χ(h)Θ(h,Φ)|h|sdh.

Theorem (Tate)

Assume that Φ = ⊗vΦv . For S a sufficiently large finite set of places of F

Z (χ,Φ, s) = L(s, χ)
∏
v∈S

Zv (χv ,Φv , s)

Lv (s, χv )
.
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Example II : Rankin–Selberg theory
Let G = GLn ×GLn, H = GLn

∆
↪−→ G . For Φ ∈ S(An), set

Θ(h,Φ) =
∑

x∈F n\{0}

Φ(thx), h ∈ H(A).

Let π be a cuspidal automorphic rep. of G . For φ ∈ π consider

PH(φ,Φ, s) =
∫
[H]
φ(h)Θ(h,Φ)| det h|sdh, (ℜ(s) > 1).

Theorem (Jacquet, Piatetski–Shapiro, Shalika)

Assume that φ = ⊗vφv , Φ = ⊗Φv . Then

PH(φ,Φ, s) = L(s, π)
∏
v∈S

Zv (φv ,Φv , s)

Lv (s, πv )
.

Moreover, for generic s

PH(·, ·, s) ̸= 0 ⇐⇒ L(s, π) ̸= 0.
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Global Gan–Gross–Prasad conjecture for unitary groups

Goal : generalize these integral representations to U(V ) ⊂ U(V )×U(V ).
Some data :

E/F quadratic extension of number fields.

(V , ⟨·, ·⟩) a skew-Hermitian space over E/F of dimension n.

GV = U(V )×U(V ), HV = U(V ).

We first need a period PHV
and an L-function.
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The Weil representation

Set :

ψ a non-trivial unitary character of F\A,
η the quadratic character of F×\A× associated to E/F by global
class field theory,

µ a character of E×\A×
E such that µ|F×\A× = η.

By a classical construction of Weil and Kudla, one can associate to (ψ, µ)
an automorphic representation ωψ,µ of U(V )(A). This is the Weil
representation. It is realized on S(An).
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Fourier Jacobi periods

For ϕ ∈ ωψ,µ = S(An), set

θ(h, ϕ) =
∑
x∈F n

(ωψ,µ(h)ϕ) (x), h ∈ HV (A).

Let π be a cuspidal representation of GV (A). Let φ ∈ π. The
Fourier–Jacobi period is

PHV
(φ, ϕ) =

∫
[HV ]

φ(h)θ(h, ϕ)dh.

Remark : If E = F × F , then V = F n × F n, U(V ) = GLn and

θ(h, ϕ) = µ(h)| det h|
1
2

∑
x∈F n

ϕ(thx).
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Base-change and L-functions

There exists BC : LU(V )→ LGLn,E . By functoriality, there should exist a
mapping from automorphic rep. of U(V ) to automorphic rep. of GLn,E .

Theorem (Mok; Kaletha, Minguez, Shin, White)

For every cuspidal rep. π of U(V ) the base-change BC(π) exists.

If π is a cuspidal rep. of GV , we have a completed Rankin–Selberg
L-function L(s,BC(π)). We want to vary V but keep the L-function fixed.

Definition

Let V1, V2 be two skew-Hermitian spaces. Let π1 be a cuspidal rep. of
GV1 , π2 be a cuspidal rep. of GV2 . We say that π1 and π2 are in the same
L-packet if BC(π1) = BC(π2).
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GGP for Fourier–Jacobi periods

Theorem (B., Lu, Xue)

Let π be an irreducible unitary cuspidal rep. of GV . Assume that BC(π) is
generic. TFAE

1 L(12 ,BC(π)⊗ µ) ̸= 0,

2 There exist V ′ and π′ a cuspidal rep of GV ′ in the same L-packet
than π such that

(PHV ′ )|π′⊗ωψ,µ ̸= 0.

By local GGP (Gan, Ichino; Xue), the pair (V ′, π′) is unique.

This was known under local conditions by works of Xue.

In the Bessel case, this was proved by Beuzart-Plessis, Chaudouard,
Zydor.
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Local Fourier–Jacobi periods

Write π = ⊗vπv , ωψ,µ = ⊗vωv , φ = ⊗vφv , ϕ = ⊗vϕv , ⟨·, ·⟩π =
∏

v ⟨·, ·⟩v ,
⟨·, ·⟩ω =

∏
⟨·, ·⟩v , dh =

∏
dhv . Let v be a place of F . The local

Fourier–Jacobi period is

PHV ,v (φv , ϕv ) =

∫
HV (Fv )

⟨πv (hv )φv , φv ⟩v ⟨ωv (hv )ϕv , ϕv ⟩vdhv .

If πv is tempered, this is absolutely convergent.

Multiplicity one result (Aizenbud–Gourevitch–Rallis–Schiffmann,
Sun–Zhu) :

dimHomHV (Fv )(πv ⊗ ωv ,C) ≤ 1.

Non-vanishing (Xue) :

PHV ,v ̸= 0 ⇐⇒ dimHomHV (Fv )(πv ⊗ ωv ,C) = 1.
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Ichino–Ikeda factorization

Theorem (B., Lu, Xue, 2024)

Let π be an irreducible unitary cuspidal rep. of GV . Assume that BC(π) is
generic and that for all v πv is tempered. Then

|PHV
(φ, ϕ)|2 =2−β∆

L(12 ,BC(π)⊗ µ)
L(1, π,Ad)

×
∏
v∈S
PHV ,v (φv , ϕv )∆

−1
v

L(1, πv ,Ad)

L(12 ,BC(πv )⊗ µv )

where

∆ =
∏n

i=1 L(i , η
i ), ∆v =

∏n
i=1 L(i , η

i
v ),

β ∈ N is the number of isobaric components of BC(π),

L(s, π,Ad) is defined using BC and the Asai L-function.

The Ramanujan conjecture predicts that if BC(π) is generic then all the
πv are tempered.
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Non-vanishing of Fourier–Jacobi periods

Corollary

Let π be an irreducible unitary cuspidal rep. of GV . Assume that BC(π) is
generic and that for all v πv is tempered. Then

(PHV
)|π⊗ωψ,µ ̸= 0 ⇐⇒

{
L(12 ,BC(π)⊗ µ) ̸= 0,
for all v , dimHomHV (Fv )(πv ⊗ ωv ,C) = 1.
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Automorphic forms on Jacobi groups
The Fourier–Jacobi period PHV

is a priori not the integral of a
cuspidal automorphic form because of θ(h, ϕ) and ωψ,µ.
Let H(V ) = V × F be the Heisenberg group of V . Set
J(V ) = U(V )⋉H(V ) : this is the Jacobi group of V . Let
V ′ = V ⊕⊥ (Ee ⊕ Ee∗) where ⟨e, e∗⟩ = 1. Then

J(V ) =

1 ∗ ∗
U(V ) ∗

1

 ⊂ U(V ′).

The Weil representation ωψ,µ extends to J(V ), and so does θ(·, ϕ).
Set φJ(g1, j) = φ(g1, j)θ(j , ϕ) : this is a cuspidal automorphic form
on U(V )× J(V ). We have

PHV
(φ, ϕ) =

∫
[HV ]

φJ(h)dh.

Liu proposed the prove the GGP conjecture by using a (comparison
of) relative trace formulae involving θ(·, ϕ) on HV \GV /HV . It is
better understood as HV \U(V )× J(V )/HV .
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Thank you !
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