

**Licence de mathématiques**, 2<sup>e</sup> année Algèbre Linéaire 2

|                         | □ Aix-Montperrin  |
|-------------------------|-------------------|
| Devoir à la maison      | ☐ Luminy          |
| à rendre le             |                   |
| jeudi 25 septembre 2014 | □ Saint-Jérôme    |
|                         | ⊓ Château-Gombert |

Enseignants: T. Coulbois, P. Mercat

Vous porterez une attention particulière sur la rédaction.

**Exercice I.** 1. Dans  $\mathbb{R}^3$ , on considère le plan vectoriel  $\mathcal{P}_1$  d'équation x+2y-z=0. Donner une base de ce plan.

- **2.** Montrer que les vecteurs u = (1,0,2) et v = (-1,1,-1) ne sont pas colinéaires.
- 3. Donner une équation cartésienne du plan vectoriel  $\mathcal{P}_2$  engendré par u et v.
- 4. Les plans vectoriels  $\mathcal{P}_1$  et  $\mathcal{P}_2$  sont-ils supplémentaires?
- **5.** Décrire leur intersection  $\mathcal{P}_1 \cap \mathcal{P}_2$ .
- **6.** Trouver un vecteur w tel que (u, v, w) soit une base de  $\mathbb{R}^3$ .

**Exercice II.** Dans le plan euclidien tracer les vecteurs u = (1, 2), v = (-1, 3), et la droite  $\mathcal{D}$  d'équation x + 2y = 0.

- **2.** Tracer les images u' = p(u) et v' = p(v) de u et v par la projection orthogonale p sur la droite  $\mathcal{D}$  de u et v.
- 3. Tracer les images u'' = s(u) et v'' = s(v) de u et v par la symétrie orthogonale par rapport à la droite  $\mathcal{D}$  de u et v.
- **4.** Pour un vecteur quelconque w=(x,y) exprimer les deux coordonnées x' et y' du vecteur (x',y')=w'=p(w) en fonction de x et y.
- 5. Même question pour la symétrie orthogonale s.