Exercice I. Déterminer lesquels des ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^3 .

- 1. $\{(x,y,z) \in \mathbb{R}^3 | x+y-z=x+y+z=0 \}$
- **2.** $\{(x,y,z) \in \mathbb{R}^3 | x+y+a=0 \text{ et } y+3az=0\}$

3. $\{(x,y,z) \in \mathbb{R}^3 | x^2 - z^2 = 0\}$

4. $\{(x,y,z) \in \mathbb{R}^3 | e^x e^y = 0\}$

5. $\{(x,y,z) \in \mathbb{R}^3 | z(x^2+y^2) = 0\}$

Exercice II. On considère les vecteurs de \mathbb{R}^3 suivants :

$$\vec{a} = (1, 2, 1), \qquad \vec{b} = (1, 3, 2), \qquad \vec{c} = (1, 1, 0), \qquad \vec{d} = (3, 8, 5)$$

Soient $F = \text{vect}(\vec{a}, \vec{b})$ et $G = \text{vect}(\vec{c}, \vec{d})$. Comparer F et G.

Exercice III. Soient P_0, P_1, P_2 et P_3 , les polynomes de $\mathbb{R}_2[X]$ définis par :

$$P_0 = \frac{1}{2}(X-1)(X-2), \quad P_1 = \frac{1}{2}X(X-1), \quad P_2 = 2X(X-2), \quad P_3 = \frac{1}{3}(X-1)(X-3)$$

- 1. Montrer que P_0, P_1, P_2 est une base de $\mathbb{R}_2[X]$.
- **2.** On pose $F = vect\{P_0, P_1\}$ et $G = vect\{P_2, P_3\}$. Calculer dim F, dim G, dim(F + G), dim $(F \cap G)$.

Exercice IV. On considère dans \mathbb{C}^3 les vecteurs $x_1 = (1,0,1), x_2 = (1,i,3)$ et $x_3 = (-2,1,i)$. Démontrer qu'ils forment une famille libre.

Exercice V. On considère dans \mathbb{R}^4 les vecteurs $x_1 = (1, 1, 1, 2), x_2 = (0, 2, 0, 0), x_3 = (1, -1, 2, 2)$ et $x_4 = (1, -1, 2, 3)$.

- 1. Vérifier que $\mathcal{X} = (x_1, x_2, x_3, x_4)$ est une base de \mathbb{R}^4 .
- 2. Calculer dans la base \mathcal{X} les composantes des vecteurs de la base canonique de \mathbb{R}^4 .
- 3. Calculer dans la base $\mathcal X$ les composantes d'un élément quelconque de $\mathbb R^4$.

Exercice VI. On considère dans \mathbb{R}^3 les trois vecteurs $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$. Montrer qu'ils forment une base de \mathbb{R}^3 et exprimer les composantes dans cette base d'un vecteur quelconque de \mathbb{R}^3 .

Exercice VII. Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels, de degré $\leq n$.

- **1.** Soit $P_0, P_1, ..., P_n$ des polynômes de E tels que $\deg P_k = k$ (pour $0 \le k \le n$). Montrer que $(P_0, P_1, ..., P_n)$ est une base de E.
- **2.** Soit P un polynôme de degré n. Montrer que $(P, P', \ldots, P^{(n)})$ est une base de E. Soit $a \in \mathbb{R}$; déterminer les composantes du polynôme Q défini par Q(X) = P(X+a) dans la base $(P, P', \ldots, P^{(n)})$.
- **3.** Montrer que la dérivation est un endomorphisme linéaire de E, donner sa matrice dans la base $1, X, \ldots, X^n$. Déterminer son noyau et son image.

Exercice VIII. On note (e_1, e_2, e_3) la base canonique de \mathbb{C}^3 . On note f l'application linéaire de \mathbb{C}^3 dans lui-même telle que $f(e_1) = (2, 0, 1), f(e_2) = (1, 2i, 1), f(e_3) = (2, \pi, -2)$.

- 1. Déterminer les images par f de $u_1 = (1, 1, 1), u_2 = (2, -1, 0)$ et $u_3 = (-3, 0, 2)$.
- 2. Déterminer la matrice de f par rapport à la base canonique de \mathbb{C}^3 .

Exercice IX. On rappelle que l'ensemble des fonctions de \mathbb{R} dans lui-même est un espace vectoriel pour les opérations usuelles. On considère les quatre fonctions définies sur \mathbb{R} par les formules

$$f_1(x) = e^x \cos x$$
 $f_2(x) = e^x \sin x$
 $f_3(x) = e^{-x} \cos x$ $f_3(x) = e^{-x} \sin x$

- 1. Montrer qu'elles sont linéairement indépendantes. On note E l'espace vectoriel des combinaisons linéaires de ces quatre fonctions.
- **2.** Montrer que si $f \in E$ alors $f' \in E$.
- 3. On note d l'application de E dans E qui à f associe f'. Vérifier que d est une application linéaire.
- **4.** Déterminer la matrice de d dans la base (f_1, f_2, f_3, f_4) de E.

Exercice X. On désigne par \mathcal{I} le sous-espace de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ des fonctions impaires, et par \mathcal{P} celui des fonctions paires. Montrer que $\mathcal{F}(\mathbb{R}, \mathbb{R}) = \mathcal{I} \oplus \mathcal{P}$. Si $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, donner la décomposition explicite $f = f_i + f_p$ avec $f_i \in \mathcal{I}$ et $f_p \in \mathcal{P}$.

Exercice XI. On considère les matrices
$$A = \begin{pmatrix} 3 & 2 \\ 1 & 3 \\ 6 & 7 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 4 & 5 \\ 3 & 0 & 4 \end{pmatrix}$, $D = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $E = \begin{pmatrix} -1 & 2 & -1 \end{pmatrix}$.

- 1. Calculer AB, AC, CA, BC, CD et ED.
- **2.** Pour quelles valeurs de $m \in \mathbb{R}$, la matrice $B'_m = \begin{pmatrix} 4+m & 3-m \\ 2 & 1+m \end{pmatrix}$ vérifie-t-elle $B'_m B = B B'_m$?
- 3. Déterminer toutes les matrices $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ telles que BM = MB

Exercice XII. Calculer l'inverse de chacune des matrices suivantes :

$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} , \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} , \quad \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} , \quad \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} .$$

Exercice XIII. 1. Calculer $\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$.

2. Soient A et B deux matrices carrées d'ordre n telles que AB=0. Dans quel cas la matrice A peut elle être inversible?

Exercice XIV. Soit t l'application linéaire de \mathbb{R}^5 dont la matrice dans la base canonique est

2

$$\begin{pmatrix} 1 & 2 & 0 & -1 & 5 \\ 2 & 0 & 2 & 0 & 1 \\ 1 & 1 & -1 & 3 & 2 \\ 0 & 3 & -3 & 2 & 6 \\ 3 & -2 & 4 & 1 & -3 \end{pmatrix}. \text{ Calculer ker } T \text{ et Im } T.$$

Consultez régulièrement http://www.i2m.univ-amu.fr/~coulbois/2015/alg-lin-2.